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7 Microscopic Degeneracies and a
Counting Formula

Our main reason for being interested in the N = 4, d = 4 string theory com-
pactification introduced in chapter 3 lies in the possibility of studying the
supersymmetric states in great details. In particular, the presence of many
supersymmetries and a long chain of dualities relating different corners of mod-
uli space makes possible a microscopic understanding of the supersymmetric
spectrum of the theory, and this is something that cannot be said for a generic
N = 2, d = 4 string theory.
In this chapter we will review the microscopic counting of BPS states in

the present theory. In section 7.1 we recall the microscopic origin of the 1/2-
and 1/4-BPS states, and in particular we will see how a microscopic counting
formula for dyonic states can be derived using the known D1-D5-P degenera-
cies. In section 7.2 we review various mathematical properties of this counting
formula, which are connected to each other by their relations to a certain
Borcherds- (or generalised-) Kac-Moody algebra. These properties will be
important for our physical discussion in the next chapter.

7.1 Microscopic Degeneracies

In this section we will discuss the microscopic counting of the 1/2- and 1/4-
BPS states of the theory, exploiting the chain of dualities introduced in section
3.3.2.

7.1.1 1/2- and 1/4-BPS Solutions

The central charge in the N = 4 supersymmetry algebra can be written as

Ẑ =
1√
λ2
(PL − λQL)mΓm , m = 1, .., 6 , (7.1.1)
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174 7. Microscopic Degeneracies and a Counting Formula

where λ = λ1 + iλ2 is the complex scalar which is a part of the N = 4, d = 4
supergravity multiplet introduced in (3.3.1). In the heterotic frame it is the
usual axion-dilaton field while in the IIA/K3×T 2 frame the Kähler moduli of
the torus, in the IIB/K3×T 2 frame the complex moduli of the torus. And PL,
QL denote the moduli-dependent left-moving charges given in (3.3.3). Here
and from now on all the moduli fields should be understood as being evaluated
at spatial infinity.
As mentioned in (2.2.24), there are two BPS bounds in N = 4, d = 4

supersymmetry algebra. Indeed, from

Ẑ†Ẑ =
1
τ2
|PL − τQL|2 1− 2iPm

L Qn
LΓmn

and the fact that the operator iPm
L Qn

LΓmn satisfies

(iPm
L Qn

LΓmn)2 = |PL ∧QL|2 ≡ Q2
L P 2

L − (QL · PL)2 , (7.1.2)

one concludes that Ẑ†Ẑ has the following two eigenvalues

|ZP,Q|2 =
1
τ2
|PL − τQL|2 + 2|PL ∧QL| (7.1.3)

and |Z ′P,Q|2 =
1
τ2
|PL − τQL|2 − 2|PL ∧QL| .

Therefore the 1/4-BPS states of the theory satisfy

MP,Q = |ZP,Q| > |Z ′P,Q| ,

while states that preserve half of the supersymmetries must have

|PL ∧QL| = 0 ⇔ P ‖ Q . (7.1.4)

7.1.2 Microscopic Degeneracies of 1/2-BPS States

Let’s begin with the microscopic counting of states which preserve half of
the supersymmetries. From the supersymmetry algebra we have seen that
the electric and magnetic charges have to be parallel to each other (7.1.4).
Together with the co-prime condition (6.6.7) this means that we can always
find the S-duality transformation such that the charges are purely magnetic,
namely now we can put Q = 0 without loss of generality. The microscopic
degeneracy therefore becomes a function of only one T-duality invariant P 2/2.
In other words, to count these 1/2-BPS states it is enough to count the

perturbative heterotic string states, for example the momentum and winding
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modes along the internal six-torus listed in Table 3.1. Recall that the right-
moving sector of the heterotic string theory, which is the same as the open
bosonic string theory, has non-vanishing zero point energy level −1. The
mass shell condition and the level matching condition of the heterotic string
therefore reads

m2 = NL +
1
2
P 2

L = NR − 1 +
1
2
P 2

R . (7.1.5)

Furthermore, supersymmetry requires the supersymmetric (left-moving) side
of the string to be at its ground state, namely NL = 0. Combining these we
conclude the right-moving oscillator number is given in terms of the charges
as

NR = 1 +
1
2
(P 2

L − P 2
R) = 1 +

1
2
P 2 . (7.1.6)

Recall that 1
2P

2 ∈ Z because the charge lattice Γ6,22 is even and self-dual
(unimodular).
There are 24 bosonic oscillators in the right-moving sector, which can be

understood as the 24 bosonic oscillators in the light-cone quantisation of the
bosonic string theory, which implies that the generating function of the de-
generacies of the above 1/2-BPS states is

∑
P2

2
∈Z

d(P ) q1+
P2

2 =
∞∏

n=1

(
1

1− qn

)24

,

or equivalently

d(P ) =
∮

dσ
e−πiP 2σ

η24(σ)
, (7.1.7)

where η(σ) is the Dedekind eta-function

η(σ) = q1/24
∞∏

n=1

(1− qn) , q = e2πiσ .

The 1/2-BPS states in this context are sometimes called the Dabholkar-
Harvey states [134]. Notice that from the modular transformation of the
eta-function one can see that the asymptotic growth of degeneracy is

log d(P ) ∼
√

P 2/2 (7.1.8)

and scales linearly with the charges, which is slower than the quadratic growth
one expects for the Bekenstein-Hawking entropy of a four-dimensional black
hole. In this sense we say that 1/2-BPS states are “small” and form “small”
black holes.
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7.1.3 Microscopic Degeneracies of 1/4-BPS States

More interesting and more complicated are the dyonic states, meaning states
with both magnetic and electric charges non-vanishing in all duality frames
and therefore must preserve only four of the sixteen supercharges, as can be
seen from the supersymmetry algebra (7.1.4). In this part of the section,
following [135, 136], we will derive a microscopic formula counting these 1/4-
BPS states, which will be play an important role in the following chapters of
the thesis.
Under the assumption (6.6.7) that the degeneracies depend only on the

three quadratic invariants P 2/2, Q2/2, P · Q, it is enough to understand the
degeneracies of the states with charges highlighted in Table 3.1. Namely, let’s
now consider states with the following charges in the type IIB frame: Q1 D1
and Q5 D5 strings with k units of momenta along the first circle, together
with a Taub-NUT along the third circle and k̃ units of momenta along that
direction, assuming that the size of the third circle is large compared to the
rest of the internal directions1.
One can immediately work out the three invariants for these charges

P 2 = 2Q1Q5

Q2 = 2k
P ·Q = k̃ ,

and see that for given P 2/2, Q2/2, P ·Q we can always find the corresponding
D1, D5 charges, and momenta Q1, Q5, k, k̃.
The advantage of studying this relatively simple system is that its micro-

scopic description is relatively well understood, namely the D1-D5-P system
in five dimensions. Especially, since we are interested in the index counting
the graded (in terms of bosons and fermions) degeneracies of the BPS states
which has rigidity properties upon deformations of the theory, we can map
the system to a regime with very different coupling constants while still being
able to trust the counting from the microscopic theory.
Going back to the Table 3.1, let’s first decompactify the circle S1(3), meaning

that we take the limit that the circle is very large in the four-dimensional
Planck unit and the theory becomes the five-dimensional theory obtained by
compactifying type IIB string theory on S1(1) × K3. In the five-dimensional
description, the KK monopole becomes a Taub-NUT space (1.3.7) with the

1Notice that we use Q1 and Q5 to denote the components of the charge vector corre-
sponding to D1 and D5 branes respectively, but not the actual number of branes wrapped.
The relevant subtlety here is that there is also the geometrically induced D1 charge when a
D5 brane is wrapped around the K3.
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S1(3)-direction being the direction of the circle fibration. Secondly, we assume
that the internal circle S1(1) is much larger than the size of the K3 manifold,
then it was proposed that the six-dimensional world-volume theory of the
D5-D1 branes is reduced to a two-dimensional supersymmetric sigma model,
whose target space is the symmetric product of P 2

2 + 1 copies of K3 [137,
113, 138]. Furthermore, there are decoupled modes which are present even
when P 2 = 0, corresponding to the closed string modes localised at the tip
of the Taub-NUT that may also carry momenta along the internal circle, and
the center of mass modes of the D1-D5 system, which may carry momenta
along the internal and the Taub-NUT circle. In other words, we can break the
theory into three separated parts David:2006yn,Dabholkar:2008zy

Σ(TN1)× Σ(C.O.M.)× Σ(SQ1Q5+1K3) . (7.1.9)

From Table 3.1 we can see that the first part can be dualized to a perturbative
heterotic string system and is therefore again counted by the partition function

1
η24(σ)

=
1
q

∏
m≥1

1
(1− qm)24

. (7.1.10)

The contribution of the second part is computed to be [135, 133]

1
(y1/2 − y−1/2)2

∏
m≥1

(1− qm)4

(1− qmy)2(1− qmy−1)2
. (7.1.11)

Now let’s look at the third factor of the CFT. Recall that the K3 elliptic
genus has the following Fourier expansion

χ(σ, z) = TrRR (−1)F e2πizJ0 e2πiτ(L0− c
24
) e−2πiτ̄(L̃0− c

24
)

=
∑

n∈Z+,�∈Z

c(4n− �2)qny� , (7.1.12)

with c(−1) = 2, c(0) = 20.
The elliptic genus of the symmetric products of K3 has the following gen-

erating function given in terms of the Fourier coefficients of the K3 elliptic
genus [43]

∑
N≥0

pNχ(SNK3; q, y) =
∏

n>0,m≥0,�

(
1

1− pnqmy�

)c(4nm−�2)

, (7.1.13)
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and this is the contribution from the symmetric product part of the CFT.
Identifying the CFT and the spacetime data as

k =
Q2

2
= L0 − L̄0 = L0 − c

24
= momenta along internal circle

k̃ = P ·Q = J0 = momenta along TN circle

and combining the three factors, we conclude that the generating function for
the degeneracies of the 1/4-BPS states is

∑
P,Q

(−1)P ·Q D(P,Q) eπi(P 2ρ+Q2σ+2P ·Qν) =
1

pqy

∏
(n,m,�)>0

(
1

1− pnqmy�

)c(4nm−�2)

p = e2πiρ , q = e2πiσ , y = e2πiν (7.1.14)

and (n, m, �) > 0 means n, m ≥ 0, � ∈ Z but � < 0 when n = m = 0.
In particular, the above formula has been shown [139] to reproduce the

asymptotic growth which agrees with the macroscopic black hole entropy [140,
141]

S(P,Q) = π
√

P 2Q2 − (P ·Q)2 . (7.1.15)

This is the dyon counting formula, sometimes referred to as the Dijkgraaf-
Verlinde-Verlinde formula, conjectured more than ten years ago [139].

7.2 The Counting Formula and a Borcherds-Kac-Moody
Algebra

The above dyon counting formula (7.1.14) turns out to have many seemingly
unrelated mathematical properties, such as being an automorphic form, having
an infinite product expansion, and being the “lift” of a modular form related
to the elliptic genus of K3. For later use we will now review the relevant
mathematical properties of the following object appearing at the right-hand
side of (7.1.14)

Φ(Ω) = pqy
∏

(n,m,�)>0

(
1− pnqmy�

)c(4nm−�2)
(7.2.1)

Ω =
(

σ −ν
−ν ρ

)
, p = e2πiρ , q = e2πiσ , y = e2πiν ,

using the presence of a Borcherds-Kac-Moody algebra as the theme connecting
these various properties.
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7.2.1 Dyons and the Weyl Group

In this subsection we will introduce a vector space of Lorentzian signature
which appears naturally in the dyon-counting problem. In particular we con-
sider the vector of quadratic invariants in this vector space, and define a basis
for these “charge vectors”. This basis defines a Lorentzian lattice of signature
(2, 1) and generates a group of reflection with respect to them. We then briefly
argue the physical relevance of this group while leaving the details for later
sections.
In the above formula (7.2.1) we have written the inverse partition function

Φ as a function of a 2× 2 symmetric complex matrix Ω. Indeed, anticipating
the important role played by the S-duality group PSL(2, Z) (3.3.7), it will
turn out to be convenient to introduce a space M2(R) of 2 × 2 symmetric
matrices with real entries

M2(R) =
{

X
∣∣∣ X =

(
x11 x12
x21 x22

)
, X = XT , xab ∈ R

}
. (7.2.2)

Besides the matrix Ω, the left-hand side of the counting formula (7.1.14)
involves another matrix ΛP,Q constituted of the three T-duality invariants
(P 2, Q2, P ·Q)

ΛP,Q =
(

P · P P ·Q
P ·Q Q ·Q

)
. (7.2.3)

Since this is the vector of invariants of charges that determine the counting
of states, in the following we will often refer to this vector ΛP,Q in the vector
space M2(R) also as the “charge vector”.
From the expression for the Bekenstein-Hawking entropy (7.1.15) for a 1/4-

BPS dyonic black hole, which is manifestly invariant under the S-duality group
(3.3.7), we see that the vector (P 2, , Q2, P · Q) naturally lives in a space of
Lorentzian signature (+,+,−) on which the S-duality group acts as a Lorentz
group PSL(2, Z) ∼ SO+(2, 1;Z), where the “+” denotes the time-orientation
preserving component of the group.
This motivates us to equip the vector space of 2×2 symmetric real matrices

(7.2.2) with the following metric

(X, Y ) = − εac εbd xab ycd = −detY Tr(XY −1), (7.2.4)

where ε is the usual epsilon symbol ε12 = −ε21 = 1 .
Especially, the norm of a vector is given by2

‖X‖2 = (X, X) = −2 detX . (7.2.5)
2The “-2” factor here and in many places later is due to the fact that we choose the

normalisation of the metric to be consistent with the familiar convention for Kac-Moody
algebras that the length squared of a real simple root is 2.
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One can immediately see that this is indeed a vector space of signature (2,1),
in which the diagonal entries of the 2×2 matrix play the role of the light-cone
directions. As mentioned earlier, an element of the S-duality group PSL(2, Z)
acts as a Lorentz transformation on this space: for any real matrix γ with
determinant one, one can check that the following action

X → γ(X) := γXγT (7.2.6)

is indeed a Lorentz transformation satisfying ‖X‖2 = ‖γ(X)‖2 .
Using this metric, the entropy of a dyonic black hole (7.1.15) becomes noth-

ing but given by the length of the charge vector ΛP,Q as

S(P,Q) = π

√
−1
2
‖ΛP,Q‖2 . (7.2.7)

Similarly, the counting formula (7.1.14) can now (at least formally) be
rewritten as the following contour integral

D(P,Q) = (−1)P ·Q
∮
C

dΩ
eπi(ΛP,Q,Ω)

Φ(Ω)
. (7.2.8)

Next we would like to consider a basis for the charge vectors ΛP,Q. From the
fact that P 2, Q2 are both even, it is easy to check that for any dyonic charge
which permits a black hole solution, namely for all (P,Q) with S(P,Q) > 0,
the charge vector ΛP,Q is an integral positive semi-definite linear combination
of the following basis vectors

α1 =
(

0 −1
−1 0

)
, α2 =

(
0 1
1 2

)
, α3 =

(
2 1
1 0

)
. (7.2.9)

In other words, for all black hole dyonic charges we have

ΛP,Q ∈ Γ+ := {Z+α1 + Z+α2 + Z+α3} . (7.2.10)

As a side remark we note that there is another place where the positive
part Γ+ of the lattice generated by the three vectors α1,2,3 appears naturally.
Consider the integral vector

α =
(
2n �
� 2m

)
, n,m, � ∈ Z , (7.2.11)

from the fact that the Fourier coefficients of the K3 elliptic genus satisfies
c(k) = 0 for k < −1 (2.1.51), one can easily show that the microscopic partition
function can be rewritten in the following suggestive form

Φ(Ω) = e−2πi(�,Ω)
∏

α∈Γ+

(
1− e−πi(α,Ω)

)c(−‖α‖2/2)
, (7.2.12)
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∞

∞∞

Figure 7.1: The Coxeter graph of the hyperbolic reflection group generated by (7.2.15).
See (8.9) for the definition of the Coxeter graph.

where

� =
1
2

3∑
i=1

αi (7.2.13)

is the Weyl vector corresponding to the above basis vectors, a name that will
be justified later in section 7.2.3.
The matrix of the inner products of the above basis is

(αi, αj) =

⎛
⎝ 2 −2 −2
−2 2 −2
−2 −2 2

⎞
⎠ . (7.2.14)

We can now define in the Lorentzian vector space M2(R) the group W
generated by the reflection with respect to the spacelike vectors α1,2,3:

si : X → X − 2
(X, αi)
(αi, αi)

αi , i = 1, 2, 3 . (7.2.15)

This group turns out to be a hyperbolic Coxeter group with the Coxeter
graph shown in Fig 7.1. The definition and basic properties of Coxeter groups
can be found in the Appendix 8.9. We will from now on refer to this group
as the Weyl group, anticipating the role it plays in the Borcherds-Kac-Moody
algebra discussed in the following sections. In particular, we will denote as
Δre
+ the set of all positive roots of the Weyl group (8.9.2)

Δre
+ = {α = w(αi), w ∈W, i = 1, 2, 3} ∩ Γ+ = {Z+α1 + Z+α2 + Z+α3} ,

(7.2.16)
as it will turn out to be the set of all positive real (i.e. spacelike) roots of the
Borcherds-Kac-Moody algebra discussed in section 7.2.3.
The physical relevance of this group can be intuitively understood in the

following way. We have seen that the S-duality group PSL(2, Z), which acts
like (3.3.7), is a symmetry group of the theory. We can further extend this
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α1

α2α3

α1

α2 α3 α1α2

α3

Figure 7.2: The dihedral group D3, which is the symmetry group of an equilateral triangle,
or the outer automorphism group of the real roots of the Borcherds-Kac-Moody algebra (the
group of symmetry mod the Weyl group), is generated by an order two element corresponding
to a reflection and an order three element corresponding to the 120◦ rotation.

symmetry group with the spacetime parity reversal transformation

λ → −λ̄ ,

(
P
Q

)
→

(
P
−Q

)
(7.2.17)

and thereby extend the group PSL(2, Z) to PGL(2, Z). From the point of
view of the Lorentzian space M2(R) ∼ R

2,1, the above element, when acting
as (7.2.6), augments the restricted (time-orientation preserving) Lorentz group
with the spatial reflection. Notice that the requirement that the inverse of an
element γ ∈ PGL(2, Z) is also an element implies detγ = ±1. Explicitly, this
group acts on the charges and the (heterotic) axion-dilaton as

(
P
Q

)
→

(
Pγ

Qγ

)
:= γ

(
P
Q

)
, γ =

(
a b
c d

)
∈ PGL(2, Z)

λ → λγ :=
aλ+ b

cλ+ d

(aλ̄+ b

cλ̄+ d

)
when ad− bc = 1 (−1) . (7.2.18)

As we will prove now, this is nothing but the semi-direct product of the
Weyl group W and the automorphism group of its fundamental domain (the
fundamental Weyl chamber), which is in this case the dihedral group D3 that
maps the regular triangle whose boundaries are orthogonal to {α1, α2, α3}
to itself. Explicitly, the D3 is the group with six elements generated by the
following two generators: the order two element corresponding to the reflection

α1 → α1 , α2 ↔ α3 (7.2.19)

and order three element corresponding to the 120◦ rotation

α1 → α2 , α2 → α3 , α3 → α1 (7.2.20)

of the triangle. See Figure 7.2.
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Recall that the usual S-duality group PSL(2, Z) is generated by the two
elements S and T , with the relation S2 = (ST )3 = 1. In terms of 2 × 2
matrices, they are given by

S =
(
0 −1
1 0

)
, T =

(
1 1
0 1

)
.

The extended S-duality group PGL(2, Z) is then generated by the above two
generators, together with the other one corresponding to the parity reversal
transformation (7.2.17)

R =
(
1 0
0 −1

)
.

On the other hand, in terms of these matrices and the PGL(2, Z) action
(7.2.6) on the vectors in the vector space M2(R) ∼ R

2,1, one of the three
generators of the Weyl group W , corresponding to the reflection with respect
to the simple root α1, is given by

s1 : X → X − 2
(X, α1)
(α1, α1)

α1 = R(X) . (7.2.21)

For the dihedral group D3, the reflection (α2 ↔ α3) generator is given by

X → RS(X) (7.2.22)

and the order three 120◦ rotation generator is given by

X → RSTR(X) . (7.2.23)

From the expression for these three generators one can deduce the rest of
the elements of W . For example, the reflections s2, s3 with respect to the other
two simple roots α2, α3 are given by R conjugated by the appropriate power
(1 and 2 respectively) of the rotation generator RSTR.
In particular, we have shown that the extended S-duality group can be

written as
PGL(2, Z) ∼= O+(2, 1;Z) ∼= W � D3 . (7.2.24)

This means that the Weyl group is a normal subgroup of the group PGL(2, Z),
namely that the conjugation of a Weyl group element with any element of
PGL(2, Z) is again a Weyl group element.
This relation between the symmetry of the root system of the present Weyl

group and the physical phenomenon of crossing the walls of marginal stability
will be further explored later in section 8.6.
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7.2.2 K3 Elliptic Genus and the Siegel Modular Form

In this subsection we will focus on the automorphic property of the microscopic
partition function Φ(Ω). As we have discussed in the previous subsection, the
theory has an extended S-duality group PGL(2, Z), which acts naturally on
the argument Ω of the partition function as (7.2.6). We therefore expect Φ(Ω)
to transform nicely under this group action. But it will turn out that this
function has a much larger automorphic group Sp(2, Z) ⊃ SL(2, Z) under
which it displays a nice transformation property. We will now motivate and
explain the presence of this automorphic group from a mathematical point of
view. The material covered here can be found in, for example, [44, 142]
As it stands in equation (7.2.1), Φ(Ω) is a function of the 2× 2 symmetric

complex matrix Ω. But as c(n) grows with n, it is clear that in order for the
function to be convergent Ω should be restricted to lie in the Siegel upper-half
plane, obtained by complexifying the vector space M2(R) introduced before
and taking only the future light-cone for the imaginary part

Ω ∈M2 + iV +

V + = {X ∈M2, ‖X‖2 < 0 ,TrX > 0} . (7.2.25)

See Figure 8.1. In other words, Φ(Ω) should be considered as a function on
the space M2(R) + iV +. But there is another equivalent presentation of this
space, namely the Grassmannian of a higher dimensional space

M2 + iV + =
O(3, 2)

O(3)×O(2)
= {u ∈ C

5, 〈u, u〉 = 0, 〈u, ū〉 < 0}/(u ∼ C
∗u) .

(7.2.26)
To see the second equivalence, simply observe that the real and imaginary
part of u are indeed two mutually perpendicular timelike vectors which span
a maximally timelike surface in the total space R

3,2, a phenomenon we have
used in our discussion of the K3 moduli space in section 3.2. To see the first
equivalence, separate the five-dimensional one R

3,2 into R
2,1 ⊕ R

1,1 with the
inner product

〈(X; z+, z−), (X; z+, z−)〉 = ‖X‖2 + 2z+z− ,

then using the C
∗ identification we obtain the following one-to-one mapping

between a vector Ω ∈M2 + iV + and u ∈ O(3,2)
O(3)×O(2) :

Ω→ u(Ω) = (Ω; 1,−1
2
‖Ω‖2) .

From this point of view, Φ(Ω) is a function on the coset spaceO(3, 2)/O(3)×O(2),
and it is therefore not surprising that Φ(Ω) should have automorphic proper-
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ties with respect to the automorphism group SO+(3, 2;Z) ∼= Sp(2, Z)/{±14}.
For the explicit map between these two groups, see for example [143].
To be more precise, what we have here is actually a special case of the

following theorem of R. Borcherds (Theorem 10.1 of [44]).

Theorem 7.2.1 Let g(τ) =
∑

f(4n)qn be a meromorphic modular form with
all poles at the cusps of weight −s/2 for SL(2, Z) with integer coefficients, with
24|f(0) if s = 0. There is a unique vector � in a Lorentzian lattice Γ = Γs+1,1

such that

F (Ω) = e−πi(Ω,�)
∏

α∈Γ+

(
1− e−πi(Ω,α)

)f(− 1
2
‖α‖2) (7.2.27)

is a meromorphic automorphic form of weight f(0)/2 for O(s+ 2, 2;Z).
Furthermore, define a rational quadratic divisor to be the following zero

locus

〈(α; 2r, 2s), u(Ω)〉 = 〈(α; 2r, 2s), (Ω; 1,−1
2
‖Ω‖2)〉 = 0 , r, s ∈ Z (7.2.28)

for

〈(α; 2r, 2s), (α; 2r, 2s)〉 > 0 ,

then all the zeros and poles of F lie on the rational quadratic divisors with the
multiplicities of the zeros being

∑
n>0

f(−n2

2
〈(α; 2r, 2s), (α; 2r, 2s)〉) .

In some cases the above product formula is known to be the denominator
formula of a certain Borcherds-Kac-Moody algebra. In this case the vector �
is the Weyl vector of the algebra.
To see how this theorem applies to our Φ(Ω), let’s first recall a few facts

about the elliptic genus of K3. As was discussed in section 2.1.5, the elliptic
genus has a theta-function decomposition given in (2.1.38). From the trans-
formation properties of the theta-function we conclude that hμ(τ)’s transform
as modular forms of weight −1/2.
For the K3 case, we know the full answer in terms of Eisenstein series

(2.1.51). Now consider the case when the modular form in the above theorem
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is given by hμ/2, where

2φ0,1(τ, z) = χK3(τ, z) =
∑

μ=0,1

hμ(σ)θμ(σ, z)

= 2y−1 + 20 + 2y +O(q) ,

hμ(σ) = c(4n− μ2)qn−μ2

4

θμ =
∑
�∈Z

q(�+
μ
2
)2 yμ+2� .

By taking f(n) = 1
2c(n) and comparing the result to (7.2.12) we see that

Φ(Ω) = (F5(Ω))2 is a weight 10 automorphic form for the group SO+(3, 2;Z) ∼=
Sp(2, Z)/{±14}, which is also the modular group of a genus two Riemann
surface. In other words, Φ(Ω) transforms as

Φ(Ω)→ (
det(CΩ+D)

)10Φ(Ω) (7.2.29)

when
Ω→ (AΩ+B)(CΩ+D)−1 ,

for 2× 2 matrices of integral entries satisfying the symplectic condition

ABT = BT A , CDT = DT C , ADT −BCT = 12×2 .

In particular, this gives a product formula for the Igusa cusp form of weight
10, which is one of the five generators of the ring of genus two modular forms
of all weights, as [143]

Φ(Ω) =
∏

(a,b) even

θ2a,b(Ω) = e−2πi(�,Ω)
∏

α∈Γ+

(
1− e−πi(α,Ω)

)c(−‖α‖2/2)
(7.2.30)

where the product of the theta function is taken over all a, b ∈ (Z/2Z)2 with
aT b = 0 mod 2.
Furthermore, using the second part of the above theorem, we see that all the

zeros of Φ(Ω) are of multiplicity two and lie on the rational quadratic divisor

1
2
〈(α; 2r, 2s), (Ω; 1,−1

2
‖Ω‖2)〉 = r(ρσ − ν2) + nρ+mσ + �ν + s = 0 ,

with

1
2
〈(α; 2r, 2s), (α; 2r, 2s)〉 = �2 − 4nm+ 4rs = 1 , �, n, m, r, s ∈ Z . (7.2.31)
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In the counting formula (7.2.8), these zeros lead to double poles in the inte-
grand.
It is clear that all the above zeor are related to each other by Sp(2, Z)

transformations. Indeed, when one identifies Ω with the period matrix of
a genus two surface, the poles in 1/Φ occur precisely at those values of Ω
at which the genus two surface degenerates into two disconnected genus one
surfaces through the pinching of a trivial homology cycle. These degenerations
are labelled by elements of Sp(2, Z)/{±14} and are characterized by the fact
that the transformed period matrix is diagonal. From this consideration and
from the knowledge that (Ω, α1) describes such a degeneration, we see that
the location of the above rational quadratic divisor can also be written as

(
(AΩ+B)(CΩ+D)−1, α1

)
= 0 . (7.2.32)

7.2.3 The Borcherds-Kac-Moody Superalgebra and the Denomi-
nator Formula

After the discussion in the last two sections about the related mathemati-
cal properties of the counting formula, now we are ready to see how it is
associated with a Borcherds-Kac-Moody, or generalised Kac-Moody, superal-
gebra. A Borcherds-Kac-Moody superalgebra is a generalisation of the usual
Lie algebra by the following facts: (i) the Cartan matrix is no longer positive-
definite (“Kac-Moody”), (ii) there are also the so-called “imaginary” simple
roots with lightlike or timelike length (“Borcherds”), (iii) it is Z2-graded into
the “bosonic” and the “fermionic” part (“super”). We will summarise the
important properties of these algebras that we will use later. See [144] or the
appendix of [143] for a more systematic treatment of the subject.
Consider a set I = {1, 2,· · · , n} and a subset S ⊂ I. A generalised Cartan

matrix is a real n×n matrix A = (hi, hj) that satisfies the following properties

1. either Aii = 2 or Aii ≤ 0 .

2. Aij < 0 if i �= j , Aij ∈ Z if Aii = 2 .

Furthermore we will restrict our attention to the special case of BKM
algebra without odd real simple roots, which means

3. Aii ≤ 0 if i ∈ S .

Then the BKM superalgebra g(A, S) is the Lie superalgebra with even gen-
erators h, ei, fi with i ∈ I −S and odd generators ei, fi with i ∈ S, satisfying
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the following defining relations

[ei, fj ] = δijhi

[h, h′] = 0
[h, ei] = (h, hi) ei , [h, fi] = −(h, hi) fi

(adei)1−Aijej = (adfi)1−Aijfj = 0 if Aii = 2, i �= j

[ei, ej ] = [fi, fj ] = 0 if Aij = 0 .

Another important concept we need is that of the root space. For later
use we have to introduce more terminologies. The root lattice Γ is the lattice
(the free Abelian group) generated by αi, i ∈ I, with a real bilinear form
(αi, αj) = Aij . The Lie superalgebra is graded by Γ by letting h, ei, fi have
degree 0, αi and −αi respectively. Then a vector α ∈ Γ is called a root if there
exists an element of g with degree α. A root α is called simple if α = αi,
i ∈ I, real if it’s spacelike ‖α‖2 > 0 and imaginary if otherwise. It is called
even (odd) if the elements in g with degree α are generated by the even (odd)
generators, and positive (negative) if it is a positive- (negative-) semi-definite
linear combinations of the simple roots. It can be shown that a root is either
positive or negative, and either even or odd. Furthermore, the Weyl group W
of g is the group generated by the reflection in Γ⊗ R with respect to all real
simple roots. A Weyl vector � is the vector with the property

(�, αi) = −12(αi, αi)

for all simple real roots αi. It is easy to see that, for the case discussed in
section 7.2.1, the vector (7.2.13) is indeed the Weyl vector satisfying the above
condition.
Just as for ordinary Kac-Moody algebras, there is the following so-called

denominator formula

e(−�)
∏

α∈Δ+

(
1− e(−α)

)multα = ∑
w∈W

ε(w)w(e(−�)S) , (7.2.33)

where Δ+ is the set of all positive roots, ε(w) = (−1)�(w) where �(w) is the
length of the word w in terms of the number of generators, defined in (8.9.3)3.
There are differences between this product formula and the usual Weyl de-
nominator formula due to, first of all, the fact that it’s “super”. Concretely,

3Warning: the conventions of the signs of the above formula, in particular the signs of
the Weyl vector, do vary in the existing literature.
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we have used the following definition for the “multiplicity” of roots multα:

multα = dimgα(−dimgα) when α is even (odd) .

Furthermore, there is a correction term S on the right-hand side of the formula
due to the presence of the imaginary roots. The exact expression for S is rather
complicated for generic BKM superalgebras and can be found in [144, 143].
In the above formula, the e(μ)’s are formal exponentials satisfying the mul-

tiplication rule e(μ)e(μ′) = e(μ+μ′). Taking e(−μ)→ e−πi(μ,Ω), the left-hand
side becomes the product formula of (7.2.27) with multα = f(−1

2‖α‖2).
Now we will concentrate on the case discussed in the last subsection. We

have seen that (7.2.30)

Φ(Ω)1/2 = e−πi(�,Ω)
∏

α∈Δ+

(
1− e−πi(α,Ω)

) 1
2
c(−‖α‖2/2)

. (7.2.34)

From the transformation property of the above automorphic form under the
Weyl group W introduced in (7.2.15), we can also rewrite it in a form as
the right-hand side of (7.2.33). From this equivalence one can therefore read
out the set of even and odd imaginary simple roots and therefore construct
a “automorphic-form corrected” Borcherds-Kac-Moody superalgebra, whose
denominator is the Siegel modular form Φ(Ω)1/2 of weight five and have

multα =
1
2

c(−‖α‖2/2) , (7.2.35)

where c(n) is the Fourier coefficient of the K3 elliptic genus.
By construction, the real simple roots can be chosen to be the basis of

the charge vector appearing in the dyon counting formula (7.2.9), while the
Weyl group is the one generated by the three reflections with respect to them
(7.2.15). In particular, the part of the generalised Cartan matrix correspond-
ing to the simple roots is given by (7.2.14). The above expression for the root
multiplicity together with the property c(n) = 0 for n < −1 is indeed consis-
tent with the fact that all real roots have length ‖α‖2 = 2. The set of all real
positive roots is denoted as Δre

+ as was announced in (7.2.16).
The fact that the dyons are counted with a generating function which is

simply the square of the denominator formula of a generalized Kac-Moody
algebra, and that the charge vectors naturally appear as elements of its root
lattice, strongly suggests a physical relevance of this superalgebra in the BPS
sector of the theory. Later we will see how features of this algebra appear in
a physical context and elucidate (part of) the role of this algebra.




