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Introduction

The goals of the thesis, apart from for the author to become a doctor, are
the following: 1. To summarise the main results of my research of the past
three years. 2. To provide a compact and self-contained survey of the relevant
materials for beginning graduate students or researchers in other sub-�elds as
a shortcut to the frontline of the current research in this area of string theory.

Motivation for the First Goal

My personal motivation to pursue this line of research has two sides. First
of all, in order to understand the structure of a theory, it is important to know
the spectrum of the theory. Just like the spectrum of a hydrogen atom holds
the key to understanding quantum mechanics, we hope that the same might
be true for string theory. For a very complex theory as string theory is, the su-
persymmetric part of the spectrum is usually the part which is most accessible
to us due to the great simpli�cation supersymmetry o�ers. Nevertheless, as I
hope I will convince the readers in this thesis, it is still a far from trivial task
to study this part of the spectrum. In other words, we hope that the study of
the spectrum of supersymmetric states of string theory will be a feasible step
towards furthering our understanding of string theory.

In the other direction, it has been a great challenge since the invention of
Einstein gravity and quantum mechanics to understand the quantum aspects
of gravity. A fundamental question since the work of Bekenstein and Hawking
in the 70's, is why black holes have entropy. Only when we can answer this
question can we ever claim that we understand the nature of quantum gravity.
Conversely, because of the challenging nature of the question, once we can
answer this question we have a reason to believe that we are on the right
track to the goal of quantising, in one way or the other, Einstein gravity.
String theory, at the time of writing, still scores highest in the challenge of
explaining the thermodynamical entropy of the black holes, while it is also
true that most of the work done along this trajectory still focuses on black
holes with supersymmetry, which are unlikely to be directly observable in
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vi Introduction

nature. From this point of view, to study the supersymmetric spectrum of
string theory and to use it as information about the black hole entropy, is a
part of the e�ort towards a deeper understanding of the nature of quantum
gravity.

Motivation for the Second Goal

Now I will move on to explain the motivation to achieve the second goal
of the thesis: providing a self-contained material serving as a shortcut to the
current research on the topic.

In the course of development of string theory since its birth in the 70's, it
has expanded into an extremely broad and sometimes very complicated �eld.
According Mr. Peter Woit, there might be around 30,000 papers written on
the subject so far. While exactly this property makes it, in my opinion, a
su�ciently fun �eld to be working in, it is no good news for beginners. In
order to work on a topic in a speci�c sub-�eld, she or he is likely to �nd
herself having to go through the labyrinth of a large amount of papers on
various totally di�erent but yet somehow inter-connected topics in physics
and mathematics, with con
icting notations and conventions.

As my own experience seems to suggest that it could be fairly time-consuming
and frustrating a process, I would like to take the chance of writing my PhD
thesis to provide a service for great string theorists yet to materialise, or for
researchers specialising on other topics, by making an attempt at a relatively
compact and self-contained exposition of some of the should-know's for per-
forming research related to the subjects I have worked on in the past three
years.

Reader's Manual

But the attempt to be self-contained also brings some drawbacks to this
thesis, namely that a fair portion of it is probably unnecessary for expert
readers only interested in the results of my research. To cure this problem we
now give a rough reader's manual so the advanced readers will be less likely
�nding themselves wasting their time on the introductions.

This thesis is organised as follows. In the �rst part we introduce some basic
concepts of superstring theories in 30 pages, focusing on the perturbative
aspects in the �rst section and the non-perturbative aspects in the second.
The readers who are su�ciently familiar with superstring theory can safely
skip this part.

The second part of the thesis is about string theory compacti�ed on Calabi-
Yau two- and three-folds. The readers who are not yet familiar with basic con-



Introduction vii

cepts of di�erential and algebraic geometry might want to �rst read Appendix
A before going into this part. Basically all the mathematical background
for understanding this thesis, in particular part II and IV, is summarised in
Appendix A with some explanations but without proofs.

The readers who are familiar with basic concepts of di�erential and alge-
braic geometry can go directly to chapter two where Calabi-Yau (three-fold)
compacti�cation is discussed. This chapter is relevant for understanding the
discussion of the BPS spectrum of thed = 4 ; N = 2 theories. But this chap-
ter can again be skipped if the reader is su�ciently familiar with generalities
of Calabi-Yau compacti�cations. The same goes for chapter three, where K3
compacti�cation is discussed and which is relevant for the understanding the
discussion of the BPS spectrum of thed = 4 ; N = 4 theories.

After chapter four, the reader can go directly to the part III, IV or part
V of the thesis, depending on whether she or he is interested inN = 2 or
N = 4 theories, and which aspects of them. The material presented here are
mostly original. I wish the readers who have gone through the �rst half can
now enjoy the fruit of reading the hundred pages of \preliminary knowledge",
and the expert readers can �nd this half of the thesis somewhat interesting
after having skipped the �rst half.





Part I

Superstring Theory

1





3

In this part of the thesis I will give an introduction of various aspects of
superstring theory. The readers who are already familiar with general knowl-
edge of string theory can safely skip this part and go directly to other topics
of interests.

Facing such a vast subject as string theory is now, it is absolutely not
my intention to give a complete account of the subjects. Rather I will try to
compactly introduce the key concepts and important results that will be crucial
for our study of the spectra of supersymmetric states, in systems resulting from
various compacti�cations of superstring theory. This is done as part of the
e�ort to present a self-contained PhD thesis accessible to beginning graduate
students of the �eld and and should not appeal to all readers.

This part of the thesis is organised as follows. In the �rst section I will begin
with aspects of perturbative superstring theory from a world-sheet viewpoint.
The resulting spacetime physics will be introduced in the second section, with
a focus on low-energy e�ective action and the relationship with spacetime
coupling constants and the world-sheet �elds. In the last section I will turn to
the non-perturbative aspects of the \superstring theory", where fundamental
string loses its fundamental status. Topics included in this section are M-
theory and S-duality, D-branes and gauge/gravity correspondence.





1 Type IIA and Type IIB
Superstring Theory

1.1 The World-Sheet Action

Consider the two-dimensional Ramond-Neveu-Schwarz action

S =
1

4�

Z
d2z

�
2
� 0@X� �@X� +  � �@ � + ~ � @~ �

�
; (1.1.1)

where � and ~ � are the two components of the super-partner of bosonic �elds
X � .

The conserved currents corresponding to the symmetry of world-sheet trans-
lation and the (1; 1) world-sheet supersymmetry transformation are, respec-
tively,

T = �
1
2

(@X� @X� +  � @ � )

TF = i � @X� (1.1.2)

and similarly for the anti-holomorphic part 1. Notice that T(z) and �T(�z) are
the only non-vanishing component of the energy-momentum tensor of this
theory. The vanishing of the trace Tz�z(z; �z) of the energy-momentum tensor,
which is a property special for the above theory in two dimensions, implies a
much larger group of symmetry. Indeed one can check that the Noether current
corresponding to any in�nitesimal world-sheet transformation z ! z + � (z) is
conserved, implying the presence of the following conformal symmetry

X � (z0; �z0) = X � (z; �z)

 � (z0; �z0) = (
@z0

@z
) � 1=2 � (z; �z) ; ~ � (z0; �z0) = (

@�z0

@�z
) � 1=2 ~ � (z; �z) ;

1Here and for the rest of this section we have put � 0 = 2 to simplify the equations.
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6 1. Type IIA and Type IIB Superstring Theory

for any holomorphic function z0(z) of z. The world-sheet supercurrentTF on
the other hand, generates the superconformal transformation

�X � (z; �z) = � �
�

f (z) � (z) + �f (�z) ~ � (�z)
�

� � (z) = �f (z)@X� (z) (1.1.3)

� ~ ( �z) = � �f (�z) �@X� (z) :

In order for the above classical symmetries to be realised at the quantum
level, one has to make sure that the path integral is well-de�ned. To work with
the gauged-�xed action (1.1.1), the Jacobian factor of the gauge orbits has to
be appropriately taken into account for each gauge symmetry of the theory.
This can be done by introducing ghost �elds, the so-called Faddeev-Popov
ghosts, into the theory. For this particular theory we need ghost �elds for
both the conformal and the superconformal gauge symmetries. Furthermore,
the anomaly associated to the above conformal transformation only vanish
when the total central charge of the full conformal �eld theory, now with the
ghosts �elds included, vanishes. This condition turns out to imply that the
above Ramond-Neveu-Schwarz string theory is only consistent when there are
ten of the �elds ( X � ;  � ; ~ � ). In other words, the critical dimension of the
target space is ten for these theories. See for example [1] or [2] for further
details of the above argument about the critical dimensions.

1.1.1 Canonical Quantisation

Now we would like to quantise this theory in ten-dimensional 
at space. We
will follow the canonical quantisation formalism. Though arguably not the
most elegant way to do it, as opposed to the more systematic way of BRST
quantisation, it has the advantage of admitting a simple exposition for our
purpose. Since in this approach we put the ghost sector at its ground state at
all stages, we will usually avoid writing down the ghost operators. Interested
readers can consult, for example, [1] or [2] for a thorough treatment of the
topic.

Let's consider the spectrum of the theory (1.1.1) on a cylinder. Without
further identi�cation on the target space, the world-sheet scalars X � have to
return to the same value after circling the cylinder once. The fermions on the
other hand, can have two di�erent possibilities. The fermions which return to
itself after circling once are said to satisfy the Neveu-Schwarz (NS) boundary
condition and those which return to minus itself the Ramond (R) boundary
condition.

In other words, upon conformally mapping the cylinder onto a complex



1.1 The World-Sheet Action 7

plane with coordinate z, the Laurent expansion of the �elds can take the form

@X� (z) = � i
X

n2 Z

a�
n

zn+1

 � (z) =
X

r

 �
r

zr +1 =2
;

where one has to choose between the two possible fermion boundary conditions
8
><

>:

2r = 0 mod 2 for R sector

2r = 1 mod 2 for NS sector;

(1.1.4)

and similarly for the right-moving sectors. Notice that all coe�cients a�
� and

 �
r are conserved quantities, due to the presence of the conformal symmetry.

Canonical quantisation therefore gives us in�nitely many (anti-)commutation
relations

[a�
m ; a�

n ] = m� �� � m+ n;0

f  �
r ;  �

s g = � �� � r + s;0 ; (1.1.5)

where � �� = diag( � 1; 1;� � � ; 1) is the metric for (9+1)-dimensional 
at space-
time, and again the same relations hold also for the right-moving sector.

Now one can expand the conformal and the superconformal currents in the
same way as

T =
X

n2 Z

L n

zn+2

TF =
X

2r 2 Z�

Gr

zr +3 =2
; (1.1.6)

and the generators now have the following expansion

L m =
1
2

0

@
X

n2 Z

: a�
m� na�;n : +

X

2r 2 Z�

(r �
m
2

) :  �
m� r  �;r :

1

A + L gh
m + AR,NS � m;0

Gr =
X

n2 Z

a�
n  �;r � n + Ggh

r ; (1.1.7)

where L gh
m and Ggh

r denote the contribution from the ghost �elds which we
won't need, and the : ::: : denotes the normal ordering among the operators.



8 1. Type IIA and Type IIB Superstring Theory

From the commutation relations we see that the normal ordering only matters
for the generator L 0, and we have introduced the extra constant \AR,NS" in
this case to account for this ordering ambiguity. There are various ways to
determine this zero point energy, such as the zeta-function regularization for
example. The readers can consult various textbooks, for example, [1] or [3] for
a careful treatment of this issue. Here we will simple quote the results. These
zero-point energies are

8
><

>:

AR = 0 for R sector

ANS = � 1
2 for NS sector:

(1.1.8)

Now we are ready to move on to analysing the lowest-lying spectrum of
this theory and especially how the tachyonic state can be projected out of the
spectrum.

1.1.2 Massless Spectrum

In the canonical quantisation, extra constraints have to be imposed on a phys-
ical state. This is because we expect the scattering amplitudes between two
physical states to be invariant under the conformal and superconformal trans-
formation. In other words

0 = h 1jT(z)j 2i = h 1jTF (z)j 2i (1.1.9)

for any two physical states j 1i and j 2i .
In the previous two subsections we have seen that the total central charge

vanishes, and the currents satisfy the superconformal algebra

[L m ; L n ] = ( m � n)L m+ n

f Gr ; Gsg = 2L r + s

[L m ; Gr ] =
m � 2r

2
Gm+ r : (1.1.10)

It is therefore self-consistent and su�cient for the purpose of ensuring (1.1.9)
to impose

L m j i = Gr j i = 0 for all n; r � 0 : (1.1.11)

Especially, since in the canonical quantisation we are putting the ghost sector
to its ground state, now we just have to impose the above condition on the
matter part of the Hilbert space. In particular, the L 0-constraint gives the
mass-shell condition

L 0j i = H j i = 0 : (1.1.12)
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In the above equation, p� is the eigenvalue of the center-of-mass modea�
0 ,

N =
P

n> 0 a�
� na�;n +

P
r> 0 r �

� r  �;r is the oscillation number operator, and
the \Hamiltonian operator" is given in terms of them as

H =

8
><

>:

1
2p2 + N for R sector

1
2p2 + N � 1

2 for NS sector:

(1.1.13)

Apart from the constraints, there are also equivalence relations among the
physical states. Namely

j i � j  i + j� i

if h 0j� i = 0 for all physical states j 0i , since any two states having the same
scattering amplitudes with any other physical state must be equivalent. This
happens, for example, when

j� i = (
X

m> 0

`m L � m +
X

r> 0

� r G� r )j� 0i (1.1.14)

for some coe�cients `m and � r . This equivalence condition together with the
constraints will remove for us the two light-cone directions. To see this we
will now study the spectra of R-ground states and NS-ground state and their
excited states.

De�ne j0;pi R to be the R-ground state annihilated by all annihilation op-
erators

a�
n j0;pi R =  �

n j0;pi R = 0 for all n > 0 and a�
0 j0;pi R = p� :

From the commutation relations of the fermionic zero modes �
0 , we see that

they satisfy the ten-dimensional Cli�ord algebra. The R-ground states are
therefore spacetime fermions. In ten dimensions the smallest representation is
the 16-dimensional Weyl-Majorana spinors, which are real and have de�nite
chiralities

� j0;pi �
R = �j 0;pi �

R ;

with � anti-commuting with all the ten Gamma matrices. Now the only non-
trivial constraints from (1.1.11) are

L 0j0;pi �
R = G0j0;pi �

R = 0 :

The �rst condition tells us that the state is massless and the second now gives
the massless Dirac equation. The massless Dirac equation further reduces
the degrees of freedom of the 16-component spinors in half. We therefore
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open string massless spectrum
sector SO(8) rep. G-parity
R+ 8 1
R� 80 � 1

NS+ 8v 1

type IIA massless spectrum
sector SO(8) rep. 10d multiplet

(NS+,NS+) [0]+[2]+(2) �, B, g ,  +
(2=3) ; � +

(R+,NS+) 80+ 56 (Graviton Multiplet )
(NS+,R � ) 8+ 560  �

(2=3) ; � � , C(1) , C(3)

(R+,R � ) [1]+[3] (Gravitini Multiplet)

type IIB massless spectrum
sector SO(8) rep. 10d multiplet

(NS+,NS+) [0]+[2]+(2) �, B, g ,  +
(2=3) ; � +

(R+,NS+) 80+ 56 (Graviton Multiplet )

(NS+,R+) 80+ 56 C(0) , C(2) , C(4)
+ ,  +

(2=3) , � +

(R+,R+) [0]+[2]+[4] + (Gravitini Multiplet)

Table 1.1: Summary of the massless spectrum of the open, type IIA, type IIB superstring
theories.

conclude that the R-ground states transform in the spinor representation8
or 80 of SO(8), corresponding to the two possible ten-dimensional chiralities
� j0;pi �

R = �j 0;pi �
R . In this case there is no state of this form which can be

created by operators of the form as in (1.1.14) and the equivalence relation
does not impose further conditions.

Next we turn to the NS sector. Now there is a unique tachyonic ground
state. The �rst excited states are the ones obtained by acting with the lowest
lying fermionic creating operators

jv; pi NS = v�  �; � 1=2j0;pi NS

satisfying

N jv; pi NS =
1
2

jv; pi NS :

The non-trivial constraint L 0jv; pi NS = G1=2jv; pi NS = 0 now gives the mass-
shell and the orthogonality condition p2 = p� v� = 0. But here a state of the
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same form can also be produced by acting on the tachyonic ground state by
G� 1=2:

G� 1=2j0;pi NS = jp; pi NS ;

and we are led to further impose the equivalence condition (1.1.14)v � v+ Rp.
Therefore the �rst excited states of the NS sector are massless and transform
in the vector representation 8v of SO(8). While the degrees of freedom along
the light-cone directions for the massless states of the R-sector are forbidden
by the constraint which is equivalent to the massless Dirac equation, in the NS
sector they are frozen by the constraint together the equivalence relation. This
is yet another way to see why the zero point energy of the NS sector has to
be � 1=2: SO(8) is the little group of the massless particles in ten dimensions.
For consistency the excited states transforming as a massless photon should
indeed be massless [4].

After seeing that the dynamics in light-cone directions are unphysical, we
now concentrate on the transversal degrees of freedom and de�ne a parity
operator

G =

8
><

>:

� ( � 1)
P 1

n =1  i
� n  i;n for R sector i = 1 ;� � � ; 8

(� 1)
P 1

n =1  i
� ( n � 1=2)  i; ( n � 1=2) +1 for NS sector

: (1.1.15)

The massless spectrum of R and NS open string, together with their eigenvalue
under the above parity operator, is summarised in Table 1.1.

Notice that by projecting the NS states onto the positive-G-parity states we
eliminate the tachyonic ground state. Another merit of this projection, the so-
called GSO (Gliozzi-Scherk-Olive) projection, is that it yields a closed string
spectrum with equal number of (spacetime) bosonic and fermionic �elds when
left- and right-moving copies of the massless �elds are combined. In other
words, it is a projection which yields a consistent conformal �eld theory with
spacetime supersymmetry. It is also possible to derive this projection by var-
ious consistency requirement, for example the modular invariance of the loop
amplitudes, but we will not do it here. The full GSO projection leaves us with
two consistent theories in ten dimensions, corresponding to whether the left-
and right-moving R-ground states are combined with the same or the opposite
partities. By carefully combing the left- and right-moving components of the
NS- and R-massless states discussed above, we obtain the massless spectrum
of these two theories as listed in Table 1.1. The di�erence between IIA and
IIB is that the spin-1=2 �elds in the type IIB case are of the same chirality and
those of IIA are of opposite chiralities. We therefore call type IIB string theory
a chiral theory and IIA a non-chiral one. Each theory contains one graviton
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and one gravitini supermultiplets, and the massless spectrum of type IIA and
IIB string theory is therefore identical to that of type IIA and IIB N = 2
supergravity. This is not surprising because the large amount of supersymme-
tries highly constrains the structure of the �elds 2. In fact, the supersymmetry
does not only �x the �eld content but also the allowed action; there are two
possible supergravity theory with sixteen supercharges in ten dimensions, the
type IIA and IIB supergravity, which are are simply the low-energy e�ective
theory of type IIA and IIB string theory. We will see the explicit form of these
low-energy e�ective actions in the following section.

1.1.3 T-Duality

In the previous subsection we introduced two kinds of superstring theories,
namely the type IIA and IIB theories. But in fact the two superstring theo-
ries discussed above are not so independent from each other as they may seem.
They are related by the so-called T-duality, which involves re
ecting the space-
time parity along one (or any odd number in general) spatial direction on one
of the two sides (right- or left-moving) of the world-sheet.

For concreteness let's choose

X 1(�z) ! � X 1(�z) ; ~ 1(�z) ! � ~ 1(�z)

X 1(z) ! X 1(z) ;  1(z) !  1(z) :

Upon this transformation, the eigenvalues of the parity operator de�ned in
(1.1.15) 
ip signs for the right-moving R-sector states and remain unchanged
for the NS-sector states. Consulting the table 1.1, we then see that T-duality,
a duality which is stringy by nature, exchanges the chiral (IIB) and the non-
chiral (IIA) theories. In this sense type IIA and type IIB string theory are
really the same theory.

For later use we would like to have an explicit map between the bosonic
massless degrees of freedom under T-duality. We will now derive it based
on the canonical quantisation approach we followed earlier. Let's begin �rst
with the NS-NS sector as its �eld content is shared by both the IIA and the
IIB theory. As we saw earlier in Table 1.1, these are the spacetime �elds
� ; Gij ; B ij corresponding to the massless states of the form~ i  j j0; ~0i in the
world-sheet theory. Here we remind the readers that the total Hilbert space is
the tensor product of left- and right-moving Hilbert spaces, and our notation
really means j0; ~0i = j0i 
 j ~0i . Now, instead of considering them all in a

2Strictly speaking, because we begin with the Ramnod-Neveu-Schwarz superstring action
(1.1.1) as opposed to the Green-Schwarz one, it is therefore not a priori clear that the theory
has spacetime supersymmetry.
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at background as in the previous sections, we would like to derive a map
between backgrounds. For this purpose it will be more convenient to turn
to the vielbein frame, in other words we will consider the spacetime �eldsei

ĵ

and B k̂ ^̀ := B ij ei
k̂
ej

^̀, and operators î etc, where the hatted indices denote the
orthonormal indices. Matching the representation under the rotation group
we obtain a map between the operators and the perturbations of the spacetime
�elds under consideration

~ ( î  ĵ ) �! ek
( î

�ek;ĵ ) =
1
2

ek
î
è̂

j
�G k`

~ [̂i  ĵ ] �! ek
[̂i
è̂

j ]
�B k`

~ î  
î �! 2� � :

Now consider a T-duality transformation along the 1st direction, with ei
1̂
@i

being an isometry (a Killing vector) of the background. For any such back-
ground metric we can always choose the vielbein such thateâ

1 = ea
1̂

= 0, with
a = 2 ;� � � ; 8 being the directions transversal to the light-cone and the T-dual
directions. In other words, we can now write the metric in the form

ds2 = Gij dxi dxj = G1;1(dx1 + Aadxa)2 + gabdxadxb

= � 1̂ 
 � 1̂ + � â 
 � â

where � î = eî
j dxj .

In this frame we can rewrite the above relations as follows.

~ (1̂ 1̂) !
1
2

� (log G1;1) ~ (â b̂) !
1
2

�gab

~ (1̂ â) !
1
2

p
G1;1 eb

â�A b
~ [1̂ â] !

1
2

1
p

G1;1
eb

â�B 1b

~ [â b̂] ! ec
[âed

b̂]
(�B ab � 2Aa�B 1b) ~ î  

î ! 2� � =
1
2

gab�gab +
1
2

� (log G1;1)

(1.1.16)

When we now re
ect the right-moving side along the �rst direction in the
orthonormal frame, namely ~ 1̂ ! � ~ 1̂, it's easy to see that it's equivalent to
a �eld rede�nition as listed in Table 1.2. This table rewritten in terms of the
full metric Gij is the usual Buscher rules. Finally we also have to set

� ! � �
1
2

logG1;1 : (1.1.17)
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before  ! after

G1;1
1

G1;1

gab gab

Aa B1a

B1a Aa

Bab � A [aB1b] Bab + A [aB1b]

Table 1.2: T-duality (Buscher Rules)

To understand this map between the dilaton �elds under T-duality, �rst recall
that not all the metric 
uctuations are physical because of the di�eomorphism
invariance Gij � Gij + r (i vj ) , the trace mode here gives rise to the dilaton

uctuation. Of course now the choice of coe�cient in (1.1.17) is just a matter
of convention. But it is chosen in such a way that later the world-sheet action
(1.2.7) in arbitrary consistent NS background will stay conformally invariant
after a T-duality transformation. This choice also renders the nine-dimensional
Newton's constant invariant when reduced on the T-circle invariant under T-
duality.

When the 1st direction is a circle, by studying the massive spectrum of the
\compacti�ed" theory before and after the above transformation, one con-
cludes that T-duality also changes the radius of the circle as

R1 !
� 0

R1
; (1.1.18)

where � 0 is the coupling constant appearing in the world-sheet action (1.1.1).
This is indeed consistent with the world-sheet dictionary that G1;1 $ 1=G1;1.

We can now do the same analysis for the R-R sector. It's a straightforward
exercise involving �rst inserting p Gamma matrices to makep-form �elds out
out a (spacetime) spinor bilinear, and then 
ipping the chirality along one
spatial direction. Since the R-R gauge �elds are di�erent in type IIA and IIB
string theory, we expect T-duality to also exchange the objects charged under
these higher-form �elds.

Furthermore, if there are also open strings in the theory, which have either
Neumann or Dirichlet boundary condition at the end points, it's not hard to
see that the T-duality transformation exchanges the two boundary conditions.
In other words, T-duality together with the presence of open strings forces
onto us other kinds of objects on which the open strings can end. We will
introduce these Dirichlet branes (D-branes) from the point of view of the low-
energy e�ective theory in the following sections. As we will see, these are
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exactly the objects charged under the R-R �elds which get exchanged under
T-duality accordingly.

1.2 Low Energy E�ective Action

1.2.1 Supergravity Theory in Eleven and Ten Dimensions

In the previous section we derived the massless spectrum of type IIA and IIB
superstring theory. In this section we would like to describe the interactions
of these massless modes, which is constrained by supersymmetry to be de-
scribed by the type IIA and IIB supergravity theories in ten dimensions. It
will nevertheless turn out to be a rewarding path to begin with the eleven
dimensional supergravity theory. Supersymmetry ensures that this theory is
unique. Furthermore the IIA ten-dimensional supergravity has to be the di-
mensional reduction of this higher-dimensional theory, since the two theories
have the same supersymmetry algebras.

The �eld content of this theory is rather simple: for the bosons there are
just graviton with 9� 10

2 � 1 = 44 components and a three-form potential with
9� 8� 7

3! = 84 components, in representation of the SO(9) little group of massless
particles in eleven dimensions. There is also the gravitino with its 16� 8 degrees
of freedom, in representation of the covering groupSpin(9). This is indeed
the same number as the number of massless degrees of freedom of the type II
string theory as recorded in Table 1.1. The bosonic part of the action is

(16�G (11)
N ) S(11) =

Z
d11x

p
� G

�
R �

1
2

jF (4) j2
�

�
1
3!

Z
A (3) ^ F (4) ^ F (4) ;

(1.2.1)
where F (4) is the �eld strength of the three-form potential F (4) = dA(3) and
we use the notation

jF (n) j2 =
F (n) ^ ?F (n)

volume form
for the kinetic term of a (n-1)-form potential. Here and most of the time in
this thesis we will avoid writing down the fermionic part of the action. This
is because we are interested in supersymmetric solutions with zero fermionic
�elds, which of course have vanishing action for the fermionic part.

To dimensionally reduce it, write the eleven-dimensional metric as

GMN = e� 2
3 �

�
g�� + e2� A � A � e2� A �

e2� A � e2�

�
; (1.2.2)

where we useM; N; � � � = 0 ; 1;� � � ; 10 to denote the eleven-dimensional and
�; �; � � � = 0 ; 1;� � � ; 9 the ten-dimensional directions. The above choice of de�n-
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ing the ten-dimensional �elds will be justi�ed in subsection 1.2.2 when we
make a detailed comparison with the world-sheet theory.

We also reduce the three-form potentialA (3)
MNP asA ��� when it has no \leg"

in the 11-th direction and as A (3)
MN 10 = B �� and H (3) = dB (2) when it does.

Under this �eld rede�nition, and truncating all the dependence on the
eleventh direction, the action reduces to

S( IIA ) = SNS + S( IIA )
R + S( IIA )

C-S

2� 2SNS =
Z

d10p
� g e� 2�

�
R + 4@� � @� � �

1
2

jH3j2
�

2� 2S( IIA )
R = �

1
2

Z
d10x

�
jF (2) j2 + j ~F (4) j2

�

2� 2S( IIA )
C-S = �

1
2!

Z
B (2) ^ F (4) ^ F (4) ; (1.2.3)

where F (2) is the �eld strength of the Kaluza-Klein gauge �eld A (1) and

~F (4) = dA(3) + A (1) ^ H (3) (1.2.4)

is the �eld strength modi�ed by the Chern-Simons term. This is the bosonic
action for the type IIA supergravity that we want to construct. The 10d
gravitational coupling constant � will be discussed in the following subsection.

Type IIB supergravity, on the other hand, cannot be obtained by dimen-
sionally reducing the eleven-dimensional supergravity. Although in principle
it is related to the IIA supergravity by T-dualise the IIA string theory and
then take the low-energy limit, it is actually not at all a straightforward task
to write down a classical action for the �eld content recorded in Table 1.1.
This is because in d=2 (mod 4) dimensions there is no straightforward way
to incorporate in the action the self-duality condition on a middle rank ( i.e.,
( d

2)-form) �eld strength. Recall that in type IIB string theory this is indeed

the case at hand, since the R-R �eldC(4)
+ is constrained to have self-dual �eld

strength. Here we shall write down an action analogous to the IIA version,
while the self-duality condition should be imposed as an additional constraint.

The NS sector bosonic action is identical to the type IIA case, as expected
from our notation, while the rest reads
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S( IIB ) = SNS + S( IIB )
R + S( IIB )

C-S

2� 2S( IIB )
R = �

1
2

Z
d10x

�
jF (1) j2 + j ~F (3) j2 +

1
2

j ~F (5) j2
�

2� 2S( IIB )
C-S = �

1
2!

Z
C(4) ^ H (3) ^ F (3) ; (1.2.5)

where F (1) is the �eld strength of the R-R zero form potential C(0) and

~F (3) = dC(2) � C(0) ^ H (3)

~F (5) = dC(4) �
1
2

C(2) ^ H (3) +
1
2

B (2) ^ F (3)

are again the �eld strength with Chern-Simons term, while the self-duality
constraint

~F (5) = ? ~F (5) ; (1.2.6)

must be imposed by hand additionally.

1.2.2 Couplings of String Theory

In the last section we introduced the type IIA and IIB superstring theory, and
in the last subsection the type IIA and IIB supergravity theory. Furthermore
we have observed that the massless spectrum of the two sets of theories are the
same. We therefore conclude that, for the supergravity theories to be the low-
energy e�ective description of the superstring theories, the dynamics of these
massless modes must be explained by both theories. In this subsection we will
establish this connection, and furthermore spell out the relation between the
coupling constants of the ten- and eleven-dimensional supergravity and the
various quantities of string theory .

Let us focus on the NS part of the action (1.2.3), which is common for both
type IIA and type IIB supergravity 3. Then the equations of motion obtained
from SNS is the same as requiring the absence of the conformal anomaly in
the following world-sheet theory

Sworld-sheet =
1

2�� 0

Z

�
d2�

p
h

�
(habg�� + i� abB �� )@aX � @bX � + � 0�( X )R(h)

�
;

(1.2.7)
where hab is the world-sheet metric, R(h) its Ricci scalar, and � ab is an anti-
symmetric tensor normalised such that the term involving the B -�eld simply

3Although possible, here we will not attempt to explain the e�ects caused by a source of
the higher-form �elds from a world-sheet point of view.
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equal to 2�i
R

B (2) . Here and in the rest of the chapter we will not make a
di�erence in notation for the pull-back �elds when it is clear from the context.

It might be surprising that the bulk Einstein equation appears as the re-
quirement of conformal invariance of the world-sheet theory. This indeed
requires some justi�cation. Strictly speaking, we have obtained the massless
spectrum of type II strings by quantising it in the 
at background with B-�eld
and \dilaton" � turned o�. How do we know that the same theory is also con-
sistent in other backgrounds, except for the hint from the supergravity theory
as a low-energy e�ective theory? Indeed what we just saw is that a consis-
tent NS background for the world-sheet theory at the one-loop level is also
automatically a solution to the equation of motion of the proposed low-energy
e�ective theory. This connection justi�es our choice of frame for dimension
reduction (1.2.2). This choice of scaling of the ten-dimensional metric will
therefore be called the \string frame", since this is the target space metric
which shows up in the string world-sheet action. This \string frame" is dif-
ferent from the usual \Einstein frame", in which the curvature term in the
action has no pre-factore� 2� in front.

Now we will comment on the di�erent roles of and relations among various
coupling constants in the ten- and eleven-dimensional spacetime and the var-
ious quantities in the world-sheet theory. First of all we have � 0 which sets
the length scale in the world-sheet action (1.2.7). We therefore call the string
length

`s �
p

� 0 :

From the quantisation of the superstring we see that the mass-shell condition
gives

m2 �
1
� 0N �

1
`2

s
N ;

where N is the oscillator number above the massless level. From this we see
that the low-energy e�ective action, in which we truncate the �elds to only
the massless ones, is valid when one is only interested in physics much larger
than the string length.

Furthermore, comparing the world-sheet and the supergravity action (1.2.3)
we conclude that the gravity coupling constant is related to the string scale
by

� 2 � `8
s � � 04 :

But this is not yet the ten-dimensional Planck length. To discuss that we
should �rst understand the role played by the \dilaton" �eld �( X ). From the
world-sheet action we see that it controls the scattering between strings. For
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example, when �( X ) = � 0 is constant in spacetime,e� Sworld-sheet has a factor

e� � � = e� �(2 � 2g) � g2g� 2
s ;

where � is the Euler characteristic and g the genus of the world-sheet (see
(A.0.8) for Gauss-Bonnet theorem which relates the two quantities). In other
words, the dilaton �eld � controls the genus expansion, the string theory
counter-part of the loop expansion in particle physics. We therefore identify
as the string coupling's constant

gs = e� :

We should emphasize here that this is not just a parameter but really a dy-
namical �eld of the theory.

Now we are ready to identify the ten-dimensional gravitational coupling. By
going to the Einstein frame in which the Einstein action takes the standard
form, we see that

G(10)
N � (` (10)

P )8 � � 2e2� 0 � `8
sg2

s � � 04g2
s ; (1.2.8)

where � 0 is now the asymptotic value of the dilaton �eld. Finally we work
out the relation between the radius RM of the eleventh-dimensional circle on
which we reduce the eleven-dimensional supergravity to obtain the type IIA
supergravity, and the eleven-dimensional Planck length. From (1.2.1) and
(1.2.2) we get

RM

` (11)
P

� (e4� =3)1=2 � g2=3
s and

G(11)
N

RM

�
(` (11)

P )9

RM

� G(10)
N � `8

sg2
s ;

in other words

` (11)
P � `sg1=3

s and RM � `sgs : (1.2.9)

Here we see an interesting phenomenon, namely that the radius of the
eleventh-dimensional circle in string unit becomes large when the strings are
strongly interacting. When the string coupling constant is large, the pertur-
bative string theory we discussed in the last section should not be trusted.

There is a similar breaking down of the validity of the ten-dimensional
theory on the supergravity side. In the \decompacti�cation limit" in which the
Kaluza-Klein circle becomes larger and larger, the momentum modes along the
Kaluza-Klein direction becomes lighter and lighter. As a result, the truncation
of the spectrum to a lower-dimensional one eventually becomes invalid. In
other words,
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type IIA supergravity
decompactify

 �������!
compactify

11d supergravity (1.2.10)

In subsection 1.2.1 we have used the eleven-dimensional supergravity just
as a convenient starting point to write down the ten-dimensional supergravity
action. But if we take this reduction a step further, it seems to suggest that
the ten-dimensional supergravity is only a valid low-energy description of the
full non-perturbative theory at small `s and small gs. At large gs the eleven-
dimensional theory becomes a better description. Indeed, later in section
1.3.1 we will see that there are dynamical objects other than the fundamental
strings which become light at strong coupling and which are captured by the
eleven-dimensional supergravity but not by the ten-dimensional one.

1.3 Non-Perturbative Aspects

In the last section we introduced superstring theory as a perturbative theory.
But in fact the theory is much richer than that. In particular, for the purpose
of studying the supersymmetric spectrum, especially the spectrum which is re-
sponsible for the existence of black hole entropy, the non-perturbative aspects
of the theory will play a crucial role in our understanding of the problem.

While in general the non-perturbative aspects of string theory is very dif-
�cult to study, there are regions in the moduli space that are fortunately
accessible to us. The key word here is \dual perspective". An example of
which we have seen earlier is the T-duality relating type IIA and IIB string
theory, stating that while the two descriptions look di�erent, they o�er \dual
perspectives" on the same theory.

A duality is especially useful if this theory o�ers a complementary range of
computational accessibility. In this section we will introduce a few dualities
like this, mapping non-perturbative physics on one side to perturbative physics
on the other side of the duality. We will also introduce the solitonic objects of
the theory, which are generically called \branes". These objects can often be
described from two dual perspectives, a fact that makes black hole counting
in string theory possible and motivates an extremely important gauge/gravity
duality.

1.3.1 M-theory

In the last section, we have just saw the interesting possibility that an eleven-
dimensional supergravity might be the low-energy e�ective action for the type
IIA string theory at strong coupling. In this section we will explore this pos-
sibility further.
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Historically, eleven-dimensional supergravity theory is interesting because
eleven is the highest dimension in which Minkowski signature with Poincar�e
and supersymmetry invariance is possible. But one should keep in mind that,
just as type IIA and IIB supergravity should only be seen as an e�ective theory
at low energy but not a complete theory because of its non-renormalisability,
the eleven-dimensional supergravity can only at best be a low-energy descrip-
tion of a consistent theory. We will refer to this complete theory as \M-theory",
whose non-perturbative description is unfortunately not yet fully developed
and out of the scope of the present thesis.

From the above discussion we see that this \M-theory", no matter of what
nature it actually is, must have the following relationship with type IIA string
theory

IIA string theory
gs � 1
���! M-theory

as suggested by the low-energy relation (1.2.10), where the identi�cation of the
compacti�cation radius is given by (1.2.9). We will later refer to this relation
as the \M-theory lift".

Without really knowing the non-perturbative de�nition of M-theory, we will
now use its low-energy e�ective theory as a guide to explore the structure of
the theory. As we will see, it will turn out to be a fruitful path towards a
simple understanding of many of the non-perturbative features of the type II
string theory.

1.3.2 Branes

Let us begin by �nding supersymmetric classical solutions to the eleven di-
mension supergravity. Since the three-form potentialA (3) is the only bosonic
degree of freedom besides the gravitons, from the experience with the usual
Maxwell-Einstein theory, we expect to �nd objects that are charged under
these �elds. A straightforward generalisation of the Wilson line coupling to
one-form potential of a charged point particle is

Z

world-line
A (1) �!

Z

world-volume
C(n) ;

which leads us to expect an object with a (2 + 1)-dimensional world-volume
which plays the role of the \electron" for A (3) . Indeed there is a 1=2-BPS
solution (a supersymmetric solution with half of the supersymmetry unbroken)
which has a non-zero Noether charge

Q =
Z

S7
?F (4) �

1
2

A (3) ^ F (4) (1.3.1)
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for the three-form �eld. Notice that the expression of the Noether charge gets
modi�ed in the presence of a Chern-Simons term in the action. The solution
reads

ds2
M2 = f � 2=3

M2 ds2
3;L + f 1=3

M2 ds2
8;E

A (3) = f � 1
M2 dV3;L (1.3.2)

f M2 = 1 + a2 Q
� 1

r

� 6 :

It also has a magnetic cousin which looks like

ds2
M5 = f � 1=3

M5 ds2
6;L + f 2=3

M5 ds2
5;E

A (6) = f � 1
M5 dV6;L ; dA(3) = ?dA(6) (1.3.3)

f M5 = 1 + a5 P
� 1

r

� 3 ;

and satis�es

P =
Z

S4
F (4) : (1.3.4)

In the above equationsds2
n;L denotes the usual metric of a 
at Lorentzian space

with mostly positive signature (1,n-1) and dVn;L its volume form, and

ds2
n;E = dr2 + r 2d
 2

(n� 1)

is the metric of a 
at Euclidean space. The constantsa2, a5 are chosen such
that (1.3.1), (1.3.4) are satis�ed.

We see that the above solutions carrying electric and magnetic charges have
(2+1) and (5+1) \tangent" directions respectively. We will therefore call them
the M2 and the M5 brane solutions. In general, from Hodge duality we see
that a ( p + 1)-dimensional object in D dimensions must be electric-magnetic
dual to another object with ( D � p � 4) spatial directions, when both objects
are required to have a time-span.

Furthermore, as analogous to the Maxwell case, the Dirac quantisation,
namely the well-de�nedness of an electron wave-function in a monopole back-
ground, will impose on us4

QP 2 2� Z : (1.3.5)

Notice that this condition cannot be seen from studying the supergravity ac-
tion alone and is therefore a strictly quantum e�ect.

4This Dirac quantisation condition holds when (gravitational) anomaly e�ects can be
neglected. See [5] for a discussion about the correction of the charge quantisation condition
in M-theory due to gravitational e�ects, and section 6.2 of the present thesis for an explicit
example in which the charge quantisation condition is modi�ed.
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11d �eld
sources

10d �eld
sources

(elec/mag) (elec/mag)

GMN

Gkk �

G?? everything g�� everything

Gk?
pk C(1) D0

KK-monopole D6

A (3)
A (3)

k
M2k B (2) F1
M5? NS5

A (3)
?

M2? C(3) D2
M5k D4

Table 1.3: Dimensional reduction from M-theory branes to type IIA branes.

So far we have discovered the two charge-carrying fundamental objects of
M-theory, called M2 and M5 branes. In the full theory they should be dy-
namical objects, but the quantisation of them is not as developed of that of
fundamental strings and will not be discussed here.

Since the only scale of this theory is the eleven-dimensional Planck length,
we conclude that their tensions are

� M2 � (` (11)
P ) � 3 ; � M5 � (` (11)

P ) � 6 ) � M2 � M5 � (` (11)
P ) � 9 �

1

G(11)
N

;

(1.3.6)
This can also be checked from an explicit calculation using the gravity solution.

Now we would like to explore what they mean in type IIA string theory
when we perform the dimensional reduction to ten dimensions, an operation
valid when gs � 1. From the map of the dimensional reduction (1.2.2) between
the �eld contents, we can deduce a map between charged objects of the two
theories. This is recorded in Table 1.3.

First we will explain the notations in the above table. The subscript \ k"
denotes the �eld components or the M-theory branes with a leg (legs) or
extent in the M-theory circle direction along which we dimensionally reduce
the theory. Similar for the transversal direction \ ? ". Note that we leave the
sources for the size of the circle direction (Gk;k) empty, since the asymptotic
size of the eleventh-direction, or equivalently the ten-dimensional Newton's
constant, is a parameter of the theory from the ten-dimensional point of view.

Now we will explain the objects that appear in this table.
First we begin with the KK (Kaluza-Klein) monopole. It is the magnetic

monopole with respect to the Kaluza-Klein gauge �eld A � = G�; k, which is
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a geometry having the structure as the product of a seven-dimensional 
at
Minkowski space and a four-dimensional Taub-NUT gravitational instanton.
Its metric is

ds2
T-N = V(~x)d~x � d~x + R2 V � 1(~x)(d� 10 + ! 0)2

V(~x) = 1 +
R
j~xj

(1.3.7)

d! 0 = ?3dV ; � 10 � � 10 + 4 � :

This solution has a self-dual curvature two-form just like the usual Yang-Mills
instantons, and therefore the name \gravitational instanton" 5. The magnetic
charge corresponding to this solution is given by

Z

S2
dA = �

Z

S2
?3dV = 1 : (1.3.8)

The above structure can be easily generalised to obtain multi-instanton solu-
tions. We will now digress to discuss them since they will also be needed in
the subsequent parts of the thesis. But the reader can safely skip this part
and return at any time.

Digression Some Gravitational Instantons6

Theorem 1.3.1 Any hyper-K•ahler four-manifold (four-dimensional Riman-
nian manifold with Sp(1) � SU(2) holonomy) with a triholomorphic Killing
vector, namely any Ricci-
at Riemannian four-manifolds with a Killing vector
which preserves all three complex structures, must be of the following Gibbons-
Hawking form [7, 8, 9]

ds2
G-H = H (~x)d~x � d~x + H � 1(~x)(dx5 + ! 0)2

H (~x) = h +
nX

a=1

qa

j~x � ~xaj

d! 0 = ?3dH :
5Note that this is just an analogy. The term \gravitational instanton" is also used some-

times to refer to any four-dimensional Cauchy Riemannian manifold that is a solution to the
vacuum Einstein's equation, even if it does not satisfy the self-duality condition.

6Please see the next chapter for some of the background knowledge about classical geom-
etry. An excellent review on the present subject of can be found in [6].
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It has a self-dual curvature two-form and the anti-self-dual hyper-K•ahler (three
complex) structure

J (i ) = ( dx5 + ! 0) ^ dxi �
1
2

� ijk Hdx j ^ dxk : (1.3.9)

Example Taub-NUT space
The above Taub-NUT metric (1.3.7) can be obtained by taking the special

case
H (~x) =

1
R2 (1 +

1
j~xj

) (1.3.10)

and rescale the coordinates appropriately. The coordinate identi�cation comes
from requiring the absence of any Dirac-string-like singularity.

To make the isometry of this space manifest, it will be useful to introduce
the SU(2) left- and right-invariant one-forms on the three sphereS3.

First observe that, parametrising C2 using the coordinates

z1 = � cos �
2 ei  + �

2 ; z2 = � sin �
2 ei  � �

2

� 2 [0; � ]; � 2 [0; 2� );  2 [0; 4� ) ;

the 
at metric reads

ds2
R4 = dz1 
 d�z1 + dz2 
 d�z2 = d� 2 +

� 2

4

�
d� 2 + d� 2 + d 2 + 2 cos�d�d 

�
:

A general SU(2) rotation takes the matrix form

U(�; �;  ) =
1
�

�
z1 �z2

� z2 �z1

�
:

Furthermore, SU(2) acts on itself by left- and right- multiplication. We can
decompose the left-invariant variation U � 1dU and similarly the right-invariant
variation dU U� 1 in the basis of Pauli-matrices and get the following right-
and left-one forms

� 1;L = � sin  d� + cos  sin � d�

� 2;L = cos  d� + sin  sin � d� (1.3.11)

� 3;L = d + cos � d�

and

� 1;R = sin � d� � cos� sin � d 

� 2;R = cos � d� + sin � sin � d (1.3.12)

� 3;R = d� + cos � d 
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satisfying

d� L
i =

1
2

� ijk � L
j ^ � L

j

d� R
i = �

1
2

� ijk � R
j ^ � R

j :

We now see that the above metric of the 
at R4 can be written as

ds2 = d� 2 +
� 2

4

�
� 2

1;R + � 2
2;R + � 2

3;R

�

= d� 2 +
� 2

4

�
� 2

1;L + � 2
2;L + � 2

3;L

�
: (1.3.13)

With the above form of the metric, it becomes manifest that R4 has aSU(2)L �
SU(2)R symmetry generated by the following dual vectors of the above one-
forms

� 1;L = � cot � cos @ � sin  @� +
cos 
sin �

@�

� 2;L = � cot � sin  @ + cos  @� +
sin  
sin �

@� (1.3.14)

� 3;L = @ 

and

� 1;R = cot � cos� @� + sin � @� �
cos�
sin �

@ 

� 2;R = � cot � sin � @� + cos � @� +
sin �
sin �

@ (1.3.15)

� 3;R = @� :

Let's return to the Taub-NUT space. Now we can rewrite the metric (1.3.7)
as

ds2
T-N = (1 +

R
r

)
�
dr2 + r 2(� 2

1;L + � 2
2;L )

�
+ (1 +

R
r

) � 1 R2 � 2
3;L : (1.3.16)

In this form it is manifest that the Taub-NUT space has an U(2) = U(1)L �
SU(2)R symmetry generated by� i;R and � 3;L . The � 3;L isometry has a single
�xed point, called a \nut", at j~xj = 0.
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Figure 1.1: (a) The Taub-NUT geometry, with each point representing a two-sphere.
(b)The two-cycle (the bolt) given by the �xed point of a U(1) symmetry of the two-centered
Gibbons-Hawking space, also known as the Eguchi-Hanson space.

Example Eguchi-Hanson space
Take the harmonic function in the Gibbons-Hawking Ansatz to be of a

two-centered form

H (~x) =
1

j~x � ~aj
+

1
j~x + ~aj

; ~a = aẑ : (1.3.17)

Using the elliptic coordinates

x = a sinh � sin � cos 

y = a sinh � sin � sin  (1.3.18)

z = a cosh� cos� ;

the harmonic function and the metric for the 
at R3 base becomes

H = 2
cosh�

cosh2 � � cos2 �
a� 2 ds2

R3 = (cosh2 � � cos2 � ) (d� 2 + d� 2) + sinh 2 � sin2 � d 2 :

The solution for ! 0 can then be solved to be

! 0 = 2
sinh2 � cos�

cosh2 � � cos2 �
d :
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De�ne now R =
p

8a and the new coordinates

� = R cosh1=2 �

x5 = 2 � ;

the metric takes the familiar form

ds2
E-H = (1 �

R4

� 4 ) � 1 d� 2 +
� 2

4
(� 2

1;L + � 2
2;L ) +

� 2

4
(1 �

R4

� 4 ) � 2
3;L (1.3.19)

R � � < 1 � 2 [0; � ] ;  ; � 2 [0; 2� ]:

It has again a U(1)L � SU(2)R symmetry generated by � i;R and � 3;L . Ac-
tually the Eguchi-Hanson and the Taub-NUT spaces are the only non-
at,
half-
at, asymptotically locally 
at spaces with U(2) symmetries. But unlike
the Taub-NUT case, the � 3;L isometry has now aS2 surface of �xed point at
� = R , called a \bolt". The unusual identi�cation of the  coordinate comes
from requiring that the space approachesR2 � S2 without conical singularity
near the �xed point � = R. Comparing the asymptotic form of the metric
when � ! 1 with the 
at metric (1.3.13), we see that it is an asymptotically
locally Euclidean (ALE) space, only locally because of the presence of the
above-mentionedZ2 identi�cation ( A1 in terms of the A-D-E classi�cation).

After discussing the KK monopole, we now turn to the reduction of the M2
brane along the M-theory circle. From the table 1.3 we see that they must
be the electric source of the anti-symmetric B-�eld. Recall that there is an
electric coupling between the anti-symmetric B-�eld and the string world-sheet
(1.2.7), we conclude that the M2 brane wrapping the M-theory circle must be
reduced to the fundamental string we began with.

A circle-wrapping M2 brane is electric-magnetic dual to an M5 brane that
is transversal to the M-theory circle. From the preservation of the electric-
magnetic duality after the dimensional reduction, we know that such an M5
brane must reduce to the magnetic dual of the fundamental string. In type II
string theory, the (5+1)-dimensional object dual to the fundamental string is
called an NS5 brane, the name because it couples to the degrees of freedom
coming from quantising the NS-NS sector of the type II strings. We therefore
conclude that an M5 brane transversal to the Kaluza-Klein circle becomes a
type IIA NS5 brane upon dimensional reduction.
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Finally we turn to the D p-branes, the o�cial nickname for the ( p + 1)-
dimensional Dirichlet branes. In the earlier discussion about T-duality we
noted that this IIA-IIB duality and the presence of open strings implies the
existence of some objects which couple to the Ramond-Ramond �elds and on
which the open string can end. Here we see we indeed get these objects in the
spectrum, this time purely from the spacetime point of view. The Dp-branes
obtained by dimensionally reducing the M-theory objects are exactly what we
need.

In this table we leave out the end-of-the-world M-theory nine branes and the
corresponding eight branes in type IIA. Although important for introducing
gauge interactions into the theory, we will nowhere need them in the present
thesis. The same will be true for the type IIB D7-branes. Albeit fascinating
objects, they will play no role in our future discussions.

From the tension of the M-theory branes (1.3.6) and the map between ten-
and eleven-dimensional units (1.2.9) and by carefully following the reduction
procedure, we arrive at the following results for the tension of our newly dis-
covered objects:

� Dp-brane � g� 1
s ` � (1+ p)

s ; � F1 � ` � 2
s (1.3.20)

and the rest follows from the relation

� (object) � (E-M dual object) �
1

G(10)
N

� ` � 8
s g� 2

s : (1.3.21)

Now we have seen yet another reason why type IIA supergravity is not
a good description when strings couplings are large. In this case all other
objects are lighter (smaller tension) compared to the fundamental string, and
it is therefore also not surprising that the degrees of freedom coming from
quantising the fundamental string alone are not su�cient to account for the
physics in that regime.

1.3.3 D-brane World-Volume Action

Besides the closed-string world-sheet action we wrote down earlier (1.2.7), for
open strings we can add an extra boundary term

i
Z

@�
A (1)

to the world-sheet action, since the world-sheet has in the open string case
a (connected or disconnected) boundary. As we said before, the boundaries
of open strings lie on the D-branes that we just introduced, the presence of
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this boundary coupling suggests that there is anU(1) gauge �eld living on
the D-branes. We would like to understand how the dynamics of D-branes,
including the dynamics of this world-volume U(1) gauge �eld, can be described
by a world-volume action on the D-brane, in parallel with the way the string
dynamics is captured by the string world-sheet action.

The action for D-branes is a very rich subject and as we won't need too much
detail of it later, it will su�ce just to have a pauper's account of the D-brane
world-volume action here (not poor man's because K-theory, the framework
needed to discuss the subject properly [10, 11] and which we will not introduce
here, is a \poor man's derived category" [12]).

The basic strategy is to �rst �nd the right action for the massless open
string modes limited on the D-brane world-volume. Let's �rst begin with the
gravitational part. The gravitational coupling of the world-sheet action we
used (1.2.7)

1
2�� 0

Z

�
d2�

p
h habg�� @aX � @bX �

seems pretty hard to be generalised to a higher-dimensional world-volume.
But in fact, we could have equally well begun with the Nambu-Goto string
action

1
2�� 0

Z

�
d2�

q
� det(g�� @aX � @bX � ) ; (1.3.22)

whose equivalence with the original action can be shown by eliminating the
non-dynamical world-sheet metrichab using its Euler-Lagrange equation. The
Nambu-Goto action, on the other hand, can be generalised easily to higher
dimensional object as

� � p

Z
dp+1 � e � (� � � 0 )

p
detGab ; (1.3.23)

where � 0 = log gs is the asymptotic value of the dilaton , for we have absorbed
this factor in the physical string tension � p derived earlier. The quantity Gab

is the pull-back of the metric under the embedding map of the D-brane. This
action clearly has the geometric interpretation as the size of the D-brane given
a speci�c embedding.

Next we turn to the gauge coupling. Consider the B-�eld coupling term

1
2�� 0

Z

�
B (2) : (1.3.24)

in the string world-sheet action (1.2.7) , in the presence of world-sheet bound-
ary, the usual gauge transformation

B (2) ! B (2) + d� (1)
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does not seem to be a symmetry anymore. But this can be repaired by a
simultaneous gauge transformation of theU(1) world-volume �eld

A (1) ! A (1) �
1

2�� 0�
(1) :

Now we see that the gauge-invariant �eld combination is really

F = B + 2 �� 0F (1.3.25)

and is therefore the only combination in which the B-�eld and the U(1) �eld
strength can appear in the D-brane world-volume action. This leads us to the
following so-called Dirac-Born-Infeld action

SD-B-I = � � p

Z
dp+1 � e � (� � � 0 )

p
det(Gab + Fab) : (1.3.26)

But this is obviously not the whole story. As we mentioned earlier, a higher-
dimensional version of the Wilson line coupling

qp

Z
C(p) (1.3.27)

should also be included.
But this is again not the full answer for the R-R coupling. Because the

world-volume theory has to furthermore be anomaly-free. From the fact that
D-branes act as sources for the gravitational and thep-form �elds, in general
we might expect there to be gauge and gravitational anomalous coupling. By
considering two intersecting branes and requiring anomaly cancellation when
the open-string zero-modes along the intersection sub-manifold are included,
we get the following full \Chern-Simons" term in the world-volume action
[10, 13]

qp

Z
C ^ ch(F ) ^

q
Â(RT )

q
Â(RN )

; (1.3.28)

where C =
P

p C(p+1) is the sum of all p-form �elds in the theory, and the
Chern character and the A-roof genus are de�ned and explained in (A.0.2) and
(A.0.4). RT;N refers to the tangent and normal bundle of the world-volume
manifold respectively. All this is of course only the bosonic part of the action,
the supersymmetric action can be built by replacing the above bosonic �elds
by the appropriate super�elds.

One very interesting consequence of this anomalous coupling is, a Dp-brane
is not only the source ofC(p+1) but can possibly also source other lower form
�elds.
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All this is for one single D-brane. In the case ofN -coincident D-branes,
things again become more complicated. Now both the gauge potentialA (1) and
the transverse coordinateX i becomeN � N matrices and it's now not anymore
so clear how one should pull-back the bulk �elds in this non-commutative
geometry. There is a generalisation of both the Dirac-Born-Infeld and the
Chern-Simons part of the world-volume action, see for example [14, 15]. For
the purpose of our discussion we will only need the leading in� 0 terms of the
non-Abelian Dirac-Born-Infeld action, which reads

� � p
(2�� 0)2

4

Z
dp+1 � e � (� � � 0 )Tr

�
FabF ab + 2D aX i DaX i + [ X i ; X j ]2

�
:

From this we see conclude that we haveU(N ) but not just U(1)N world-volume
�eld theory for N � coincident branes, with gauge coupling

g2
Y-M � gs� � 1

p � 0� 2 � gs (`s)p� 3 : (1.3.29)

1.3.4 Gauge/Gravity Correspondence

It is absolutely out of the scope of the present thesis to give a full account
of the AdS/CFT correspondence. We will just sketch the ideas we will need
later. Please see [16, 17, 18, 19] for reviews of the basic ideas (as opposed to
the applications) of the correspondence.

As we mentioned earlier, from dimensional reducing (and taking the T-dual
of) the M2- and M5-brane solutions in M-theory (1.3.2), (1.3.3) we obtain
various extremal Dp-brane solutions of type IIA (IIB) string theory. From
these solutions it is then not hard to see that the metric reduces to that
of AdSp+2 � SD � p� 2 for p-brane solutions in the theory of total spacetime
dimensions D, when we zoom in the regionr ! 0 near the location of the
brane.

Let's take the D3-brane solution in type IIB string theory for example.
This case is especially simple since the coupling constant of the D-brane world-
volume (open string) theory is dimensionless (1.3.29), or, equivalently, that the
dilaton of the spacetime solution is constant everywhere. There are apparently
two di�erent ways to describe the physics of this system; one of string theory
and one of the D-brane theory. First of all, as we have seen earlier, each of
them has its \low-energy" description, namely the supergravity and the U(N )
gauge theory forN coincident D-branes respectively. We would like to know
when each of them is a valid description.

Let's begin with the gravitation side. First we note that, because of the
in�nite redshift factor

p
gtt near the horizon, classically the modes near the

horizon r ! 0 never climb up the gravitational potential well and therefore
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decouple from the rest of the spacetime. From the gravitational point of
view it is thus valid to take the \decoupling limit" and focus on the near
horizon geometry AdS5 � S5. Secondly, from the relation between the radius
of curvature and the string length and the ten-dimensional Planck length

R
`s

� � 1=4 ; � � gs N � g2
Y-M N

R

` (10)
P

� N 1=4 ;

we see that the� 0 corrections and the quantum gravitational e�ects are con-
trolled by parameters � and N respectively, and that the supergravity is a
valid description if

� � 1 ; N � 1 :

On the open string side, for the gauge theory description to be valid we need
� 0 ! 0 while keeping the W-boson mass, proportion tor=� 0, �xed. This leads
us again to the near-horizon limit r ! 0 where we can consistently truncate
the D-brane world-volume theory to SU(N ) gauge theory.7 Furthermore, it
can be shown that the perturbative analysis of theSU(N ) Yang-Mills theory
is valid when

� � 1 :

Therefore, for largeN; the supergravity theory on the AdS5� S5 background
and the SU(N ) super-Yang-Mills theory discussed above are two e�ective the-
ories describing the system at complementary regimes: the former valid when
� � 1 and the latter when � � 1. This motivates the AdS/CFT conjec-
ture, which in this speci�c case of D3 branes states that the ten-dimensional
type IIB supergravity theory on the AdS5 � S5 background is dual to the
N = 4 SU(N ) super-Yang-Mills theory.

More generally, this conjecture says that the closed string theory on a
AdSp+2 � K background is dual to a conformal �eld theory living on the
conformal boundary @(AdSp+2 ) of AdSp+2 . Or, a little bit more concretely, it
states

Zstring (� 0) = he
R

� 0;i O i
i ;

where� 0 denotes the boundary condition of the �elds on the conformal bound-
ary and Oi denote the dual operators in the CFT.

Of course this is an account of the conjecture at the level of caricature.
There is �rst of all the issue of regularisation of the AdS space on the LHS of

7Notice that we have omitted the U(1) part of the U(N ), which correspond to the center-
of-mass degree of freedom and decouples from the rest of the theory.
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the above equation. Secondly there are various interesting and useful gener-
alisations of the above conjecture. This is by itself a vast subject and much
more than what we will need later.

Instead we will simply remark that, �rst of all, the most remarkable aspect
of this conjecture is that it relates a gravitational theory to a theory without
gravity. In this sense having a theory of quantum gravity is not too di�erent
from solving the �eld theory. Secondly, this is the �rst full-blown example of
the principle of holography [20, 21], motivated by the black hole thermodynam-
ics, stating that the degrees of freedom of a (d + 1)-dimensional gravitational
theory is encoded in thed-dimensional boundary. In the AdS/CFT setting
the extra dimension turns out to be the scaledimension.

1.3.5 S-duality

As some alert readers might have noticed, as we introduced the branes in
subsection 1.3.2 by �rst presenting the two-brane and �ve-brane solutions in
eleven-dimensional supergravity and then dimensionally reducing them, we ac-
tually haven't explicitly discussed the extended objects in the type IIB super-
string theory. In this section we will study the type IIB branes by T-dualising
Table 1.3 that appeared when we discussed the reduction of M-theory branes
to type IIA objects, and show how a non-perturbative string duality can be
revealed in this way.

As explained in subsection 1.1.3, the perturbative string T-duality maps
type IIA string theory on a circle to type IIB string theory on a dual circle.
Furthermore, it exchanges the Neumann with the Dirichlet boundary condition
for the open strings, and therefore exchange D-branes of odd and those of even
dimensions. Following the world-sheet discussion on the T-duality earlier it's
not hard to see that it indeed maps the p-form �eld potentials under which
the D-branes are charged accordingly.

We have also learned that M-theory compacti�ed on a small circle is dual to
type IIA string theory at weak coupling. Applying subsequently a T-duality,
one is led to the conclusion that M-theory compacti�ed on a torus is dual
to type IIB theory on a circle. Following the Kaluza-Klein reduction and T-
duality rules we can then trace the charged objects of the three di�erent theory
in a straightforward way. See Table 1.4 for the map under this duality chain.
Here we call S1

(1) the M-theory circle and S1
(2) the T-duality circle. Branes

wrapping at least one of the two circles will be labeled with the number in the
parenthesis and \� " means they extend only in the directions transversal to
both S1

(1) and S1
(2) . The label (i,j) behind the KK-monopole denotes whether

the solution is homogeneous along one of the circle directions (i) and under
which Kaluza-Klein gauge �eld they are charged (j).
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Table 1.4: From M- to type IIB theory. Extended charged objects.

M-theory
reduce on S1

(1)
���������! IIA

T-dualise along S1
(2)

������������! IIB

M5(1,2) D4(2) D3 ( � )
M2(� ) D2(� ) D3(2)
M2(1,2) F1(2) p(2)

M2(1) F1 ( � ) F1(� )
M2(2) D2(2) D1( � )

p(2) p(2) F1(2)
p(1) D0(� ) D1(2)

M5(2) NS5(2) NS5(2)
M5(1) D4( � ) D5 (2)

KK(1,2) KK( � ,2) NS5(� )
KK(2,1) D6 (2) D5( � )

Of course, if both circles are small, nothing can stop us from exchanging the
two circles S1

(1) and S1
(2) , which means we now �rst reduce along the second and

then T-dualise along the �rst circle. From Table 1.4 we see something rather
amusing: this simply exchange and fundamental with the D-string, and NS5
and D5 branes, while leaving D3 branes untouched! This exchange is actually
a part of a much larger duality group, namely the modular group PSL(2; Z)
of the torus on which we compactify M-theory on. This means, apart from
exchanging the two cycles, we can also consider an arbitrary change of basis.
Let's begin with a torus, described as the complex planeC1 with the following
identi�cation

z � z + v1 � z + v2 : (1.3.30)

A linear change of basis will take the form
�

v1

v2

�
!

�
a b
c d

� �
v1

v2

�
: (1.3.31)

To preserve the identi�cation (1.3.30) we should consider only integral changes
of basis, and to keep the volume and orientation invariant we should have
~v1 � ~v2 = Im(�v1v2) invariant. These conditions show that the modular group
of a torus is

SL(2; Z) =
�


 =
�

a b
c d

� �
�
� ad � bc= 1 ; a; b; c; d2 Z

�
: (1.3.32)
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Figure 1.2: Three di�erent models for the same hyperbolic space: the upper-half plane,
the hyperboloid and the Poincar�e disk. The red region drawn in the upper-half plane is a
fundamental domain H 1=P SL(2; Z) under the modular group P SL(2; Z).

It takes a point in the upper-half plane � 2 H 1 = f z 2 CjImz > 0g to another
point in the upper-half plane by


 (� ) =
a� + b
c� + d

; (1.3.33)

where � =
R

B dzR
A dz encodes the angle between the two one-cycles which we call

the A- and the B -cycle, or in other words the complex structure of the torus.
If we want to be more precise, notice that
 and � 
 =

� � a � b
� c � d

�
give the same

map H 1 ! H 1, therefore the modular group of the complex structure of a
torus is really PSL(2; Z) = SL(2; Z)=(
 � � 
 ).

Considering the mapping of the type IIB �elds under the exchange of the
two circles S1

(1) and S1
(2) , which is the so-called S-transformation corresponding

to the following SL(2; Z) element

S =
�

0 � 1
1 0

�
;

we are led to the guess that the two-component �eld has to transform as

B =
�

C(2)

B (2)

�
! 
B

when the circles are changed as (1.3.31), while the chiral four-form potential
remains invariant. Indeed, the low energy type IIB supergravity has an even
larger symmetry which is broken at the quantum level to SL(2; Z). To see
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this, de�ning also the �eld combination, the \axion-dilaton", as

� = � 1 + i� 2 = C0 + ie� � ; T =
1
� 2

�
j� j2 � 1

� 1 1

�
: (1.3.34)

Then it's not hard to see that the IIB supergravity action (1.2.5) can be
rewritten as

2� 2S(IIB) =
Z

d10x
p

� g
�

R �
1
12

H T
��� T H ��� +

1
4

Tr( @� T @� T � 1) �
1
4

j ~F (5) j2
�

�
1
4

Z
C(4) ^ B T ^ SB (1.3.35)

where we have gone to the Einsetin frame by rescaling the metric asg�� !
e� � =2g�� to isolate the � dependence in the axion-dilaton combination � .
From

T ! 
 T 
 T when � !
a� + b
c� + d

; (1.3.36)

and the fact that SL(2; Z) �= Sp(2; Z), namely 
S
 T = S, we see that the
above action is manifestly invariant under the S-duality transformation

B ! 
B ; � !
a� + b
c� + d

g�� ! g�� ; C(4) ! C(4) :

Note that at this level we don't have any reason to require
 2 SL(2; Z). Any

 2 SL(2; R) is su�cient to ensure the invariance of the above supergravity
action. But since we have seen the geometric origin of this symmetry from
our M-theory derivation, we conclude that the real symmetry group should
be the discreet torus modular groupPSL(2; Z). Or, another way to see this
is the Dirac quantisation condition (1.3.5) which has to be satis�ed by branes
and strings. We simply cannot map one D5 brane to \0.32 D5 + 6.7292 NS5"
branes without destroying the Dirac quantisation.

Notice that, unlike the T-duality, this \S-duality" is non-perturbative by
nature since we can map from smallgs to the large coupling regime. Especially,
from the brane tensions (1.3.20) and (1.3.21) we see that D1 string becomes
the light degrees of freedom instead of the fundamental string after the S-
transformation. And similarly for NS5 and D5 branes. This duality suggests
that various di�erent objects in string theory should probably be treated at
the equal footing, and string theory is really about \strings" only at a corner
of the moduli space of the theory.
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Figure 1.3: S-duality as the modular group of M-theory torus.

Digression Upper Half-Plane
The upper-half plane is de�ned in the obvious way as

H 1 = f � 2 Cj Im� > 0g : (1.3.37)

As depicted in Figure 1.2, it is equivalent to the hyperbolic space, namely the
Euclidean AdS2 space de�ned as

� T2 + X 2
1 + X 2

2 = � 1 ; T > 0 ; (1.3.38)

and to the Poincar�e Disk
f z 2 Cj jzj2 < 1g (1.3.39)

and also to the coset space
SL(2; R)

U(1)
: (1.3.40)

This can be seen using the map

T =
1
� 2

�
j� j2 � 1

� 1 1

�
(1.3.41)

=
�

T + X 1 X 2

X 2 T � X 1

�

=
2

p
3

1
1 � j zj2

0

@
jz + e

5�i
6 j2

p
3Rez � 1

2 jz � i j2

p
3Rez � 1

2 jz � i j2 jz � i j2

1

A

= � T
�

1 0
0 1

�
� ; � � � 0(� )� 2 SL(2; R) ; (1.3.42)
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where

� 0(� ) =
�

cos� sin �
� sin � cos�

�
(1.3.43)

is any element of theU(1) group that stabilses the point � = i . Notice that the
above map is of course not unique, since one can use theSO(2; 1) symmetry
of the space to obtain other equivalent maps. For instance, the complicated-
looking map given above between the Poincar�e disk and the upper half plane
is in fact simply the M•obius transformation

z = i
� � + e� i�

3

� + e
i�
3

�
;

but any other M•obius transformation of the form

z = ei�
�

� + �� 0

� + � 0

�
; � 0 2 H 1 (1.3.44)

will equally do the job.
All these four di�erent models for the space H 1 will later make their ap-

pearances in di�erent part of the thesis.
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In the previous part of the thesis we have introduced various basic aspects
of superstring theory. In this part we will discuss the properties of these
theories compacti�ed on the manifolds with special holonomy, in particular
the Calabi-Yau three-folds and the K3 manifolds.

There are various motivations to study superstring or M-theory on some
small, compact \internal" manifolds. First of all, the world we see are not
ten- or eleven-dimensional. One way to connect string theory to the \reality"
we see around us is therefore to take some of the ten or eleven dimensions to
be extremely small. The other possibility, the so-called brane world scenario,
is to assume that we live on a lower dimensional sub-manifold of the total ten-
or eleven-dimensional spacetime. At the time of writing, both of them seem
to be worth investigating.

More particularly, there are various reasons to study compacti�cations with
unbroken spacetime supersymmetry. First is the analytic control over the
system supersymmetry grants us. It's fair to say that, studying generic non-
supersymmetric compacti�ctions quantitatively is at the time of writing still
out of control.

Last but not least, we also want to study these compacti�cations for purely
theoretical purposes. As we have seen in the example of type IIB S-duality
and as will see later in this chapter, more string dualities become manifest
upon compacti�cation on these special supersymmetry-preserving manifolds.
Compacti�cation can therefore be seen as an element of the net connecting all
di�erent string theories. Furthermore, as we will often see in the discussions
about Calabi-Yau three-folds, strings are amazing probes for geometry com-
pared to point particles and compactifying string theory on a particular kind
of manifolds often o�ers great insights into the nature of these manifolds.

For the purpose of the present thesis, discussing compacti�cation is indis-
pensable since many of the properties of the lower-dimensional theories we
will study in details later could be best understood as the properties of the
internal manifolds.

This part is organized as follows. We will assume that the reader has some
familiarity with the de�ning properties of Calabi-Yau and K3 manifolds. A
self-contained small review of them can be found in Appendix A. In chapter
2 we will discuss the Calabi-Yau compacti�cation and chapter 3 the K3 com-
pacti�cation. In both chapters we will describe the compacti�cation �rst from
a world-sheet and then from a spacetime point of view. These discussions
will be quite general, and we will leave the more speci�c topics, namely the
(multi-) black hole solutions of the low-energy supergravity theories and the
microscopic counting of the BPS states, for later chapters.





2 Calabi-Yau Compacti�cations

In this chapter we will discuss superstring theories compacti�ed on Calabi-Yau
three-folds, leading toN = 2 supersymmetry in four dimensions. Some discus-
sions of the basic properties of these manifolds can be found in appendix A. We
will begin with a world-sheet analysis, meaning studying the (2,2) supercon-
formal theory, describing a string moving in the Calabi-Yau space. Along the
way we will introduce various concepts useful for studying the ground state-
sof a supersymmetric conformal theory, which we will often rely on for the
studying of supersymmetric spectrum of a black hole system in string theory.

On the other hand, the geometric intuition will also be indispensable for
understanding the compacti�ed string theory. We will therefore switch to a
spacetime perspective after basic concepts have been introduced from a world-
sheet viewpoint. In particular we will discuss the structure of the geometric
moduli space of the Calabi-Yau manifolds in details.

After that we are ready to introduce the low energy e�ective actions in lower
dimensions, and discuss their range of validity.

2.1 (2,2) Superconformal Field Theory

In the beginning part of the thesis we have introduced the superstring theory as
a two-dimensional conformal theory, considered to have critical central charge
equals to 15 and thus correspond to a total of ten spacetime dimensions. So-
called compacti�cation, can therefore be thought of having a product CFT
with a factor with central charge c = 6 (four spacetime dimensions) and an
\internal" factor with central charge c = 9. Furthermore, as we have seen in
the superstring example, world-sheet supersymmetries are intimately linked
to spacetime supersymmetries. Since we would like to end up with a lower-
dimensional theory with unbroken spacetime supersymmetry, as we will see
shortly it turns out that choosing the internal CFT to have (2,2) world-sheet

45
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supersymmetry will serve the purpose. In other words we have a total string
theory of M 4 � [(2; 2); c = 9] in mind and will now concentrate on the latter
\internal" part.

2.1.1 N = 2 Superconformal Algebra

The two-dimensional N = 2 superconformal algebra is rather similar to the
N = 1 version we have seen in (1.1.10). The extra supersymmetry means the
presence of the second superconformal currentG, and an R-current J under
which they are charged. In terms of their Fourier modes the algebra reads

[L m ; L n ] = ( m � n)L m+ n +
c

12
m(m2 � 1) � m+ n;0

[Jm ; Jn ] =
c
3

m � m+ n;0

[L n ; Jm ] = � m Jm+ n

[L n ; G�
r ] = (

n
2

� r ) G�
r + n

[Jn ; G�
r ] = � G�

r + n

f G+
r ; G�

s g = 2L r + s + ( r � s)Jr + s +
c
3

(r 2 �
1
4

) � r + s;0

and as before we have two possible periodic conditions for the fermions
8
><

>:

2r = 0 mod 2 for R sector

2r = 1 mod 2 for NS sector:

(2.1.1)

Example Consider the non-linear sigma modelwith action

S =
1

2�� 0

Z

�
d2z

 
1
2

g�� (X )@X� �@X� + g�� (X )( ~ � �D ~ � +  � D � )

+
1
4

R���� ~ � ~ �  �  �

!

; (2.1.2)

where D and �D is the holomorphic and anti-holomorphic pull-back of the
covariant derivative with respect to the metric g�� .

For this action to have (2,2) supersymmetry, the kinetic term and its su-
persymmetric partner must be able to be written in the superspace form as

S = �
1

8�� 0

Z
d2z d4� K (� i ; �� �{) ; (2.1.3)
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where � i and �� �{ are the chiral and anti-chiral super�elds, satisfying

D+ � i = �D+ � i = 0

and the opposite R-charge counterpart for �� �{. And we have used here the
convention

D� =
@

@��
+ � � @ ; Q� =

@
@��

� � � @

and their holomorphic counterpart.
In the superspace form it is immediately clear that the presence of (2,2)

supersymmetry imposes the K•ahlerity condition on the target space. The
action (2.1.2) is then indeed equivalent to (2.1.3) with the K•ahler metric gi �| =
@i @�| K .

Moreover, as in (1.2.7) we can include in the action the topological coupling
to the B-�eld

2�i
Z

B (2) : (2.1.4)

We say this coupling is topological because the action only depends on the
cohomology classes ofB (2) . Furthermore, since an action always appears in
the path integral in the form of e� S, we conclude that shifting the B-�eld by
an element of the integral cohomology classes of the target space must be a
symmetry of the theory.

Apart from supersymmetry we would like to require conformal symmetry
as well. As we have seen in the superstring case, at the leading order of� 0,
the vanishing of the beta function imposes that the target space is Ricci 
at,
at least in the absence of dilaton gradient or the H-
ux, which we will not
consider in the present thesis. Recalling the fact that a compact manifold
admitting a Ricci 
at metric must be a Calabi-Yau manifold (A.0.13), the
conformal symmetry of the superconformal �eld theory imposes the Calabi-
Yau condition on the target space.

We would like to stress that this theory is by far not the only possible
\internal CFT" on one can compactify the superstring on. But it is certainly
an obvious candidate and indeed leads to rich structure and analytic control.

2.1.2 Chiral Ring

To build up a representation for the above algebra, just like in theN = 1 case
we are especially interested in the \highest weight state" annihilated by all
the positive modes

L m j� i = Jn j� i = G�
r j� i = 0 for all n; m; r > 0 : (2.1.5)
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The reason for this is that we can build a representation by acting with creation
operators on these highest weight states. We say they have conformal weight
h and chargeq if they have eigenvaluesL 0j� i = hj� i , J0j� i = qj� i under the
zero index operators. In the context of state-�eld correspondence, a highest
weight state is said to be created by a \primary �eld" � , such that j� i = � j0i .

Analogous to the case of superstring, more care should be taken for the
Ramond sector, because in this case there exist zero index fermionic modes
G�

0 . We will call a state an R-ground state if G�
0 j� i = 0. From the f G+

0 ; G�
0 g

commutation relation we see that R-ground states always have the weight

h(Ramond ground state) =
c

24
: (2.1.6)

Furthermore, from the hermiticity condition ( G�
r )y = G�

� r we see that the
above is also a su�cient condition that the state is an R-ground state. For
the NS sector, it will turn out to be useful to further re�ne the concept of
primary �elds into chiral primary �elds. A �eld is called a chiral primary �eld
if it is a primary �eld which satis�es the condition

G+ (z)� c(w) � regular ; (2.1.7)

or, using the mode expansionG� (z) =
P

r G�
r z� r � 3

2 , in the operator language
the above equation is equivalent to

G+
� 1=2j� ci = 0 : (2.1.8)

Furthermore, from the f G+
� 1=2; G�

1=2g and f G+
� 3=2; G�

3=2g commutation rela-
tions, we see that the conformal weight and the R-charge of a chiral primary
satisfy

0 � hc =
qc

2
�

c
6

: (2.1.9)

From the OPE between two chiral primaries and the conservation of the
R-charge, it's not hard to see that the product also satis�es the chiral primary
condition h = q

2 . This suggests that chiral primary �elds form a ring, called
the \chiral ring", with the Yukawa coupling given by

� i;c � j;c = Ck
ij � k;c : (2.1.10)

Similarly, there is also an anti-chiral ring, with anti-chiral primaries de�ned
as

G�
� 1=2j� ai = 0 : (2.1.11)

and satis�es
0 � ha = �

qa

2
�

c
6

: (2.1.12)
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Combining the left- and right-moving sector, we have the following four
rings (c,c), (a,c), (c,a) , (a,a) in a (2,2) superconformal �eld theory. Their
signi�cance for us will be illustrated in the following non-linear sigma model
example.

Example It is a usual phenomenon that the supersymmetric ground states
of a theory are given by the cohomology of a relevant space, at least in the
limit in which the string tension is large in the case of 2-d CFT. We will now
see how this comes about in our non-linear sigma model example. We have
seen in the last subsection that the consistency of the CFT requires the target
space to be Calabi-Yau, and will therefore assume that this is the case in the
following discussion.

As in the case of superstring theory we have seen before, the Ramond ground
states are spacetime fermions with de�nite chirality. In the non-linear sigma
model example, using the K•ahlerity of the target spaceM , or equivalently
N = 2 supersymmetry, we have an extra grading on these spacetime fermions.
In other words, writing out the action (2.1.3) in components and from the
supersymmetry transformation we read out the action of the zero modes of
the world-sheet current

G+
0 =  i D i ; G�

0 =  �{D �{ (2.1.13)

and similar for the right-moving part. From the chiral and anti-chiral multiplet
structure it is easy to see that the fermionic �elds carry the following R-charges
under (J; ~J ):

 i (1; 0)
 �{ (� 1; 0)
~ i (0; 1)
~ �{ (0; � 1) :

(2.1.14)

From quantising the fermions

f  � ;  � g = g�� ; (2.1.15)

we can choose i to be the creation and  �{ the annihilation operators on the
left-moving side. This choice amounts to a choice of the chirality of the Weyl
spinors. Similarly one can now choose the right-moving ground states to have
the same or the opposite chirality, namely, apart from  �{j0; 0� i = 0 we also
impose ~ �{j0; 0+ i = 0 or ~ i j0; 0� i = 0.

In the �rst case we see that the ground states correspond to the cohomology
classH n� r;s (M )


 �1��� �n f �| 1��� �| r
i 1��� i s

~ �| 1 � � � ~ �| r  i 1 � � �  i s j0; 0+ i : (2.1.16)
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where we have used the unique harmonic (0,n) form of the Calabi-Yau (A.0.14)
to lower the indices. From the index structure one can see that these states
have the same sign for the R-charges on the left- and right-moving sides.

We will see in the next subsection that there is a symmetry of the super-
conformal algebra which relates R-ground states to NS chiral primary �elds.
In particular, the R-ground states discussed above correspond to (c,c) �elds
with conformal weights and R-chrages equal to

(2h; 2~h) = ( q;~q) = ( s; r ) : (2.1.17)

Similarly, there are also ground states of the following form

f �| 1��� �| r i 1��� i s
~ �| 1 � � � ~ �| r  i 1 � � �  i s j0; 0� i : (2.1.18)

They correspond to the cohomology classH r;s (M ) and the corresponding NS-
NS �elds are (c,a) �elds with

(2h; � 2~h) = ( q;~q) = ( s; � r ) : (2.1.19)

Notice that since c = 3n for n-complex-dimensional target space, the (anti-
)chiral primary condition jqj � c

3 = n (2.1.9), (2.1.12) is indeed in accordance
with the correspondence between the CFT chiral ring and the cohomology
ring of the target space.

Let's now focus on the case of Calabi-Yau three-folds. We are especially
interested in the ring elements with h + ~h = 1. This is because, by combining
them with the appropriate superconformal currents G, we can build from
them marginal operators with total conformal weight 2 and which are neutral
under R-symmetry. These marginal operators can be then used to deform
the superconformal theory. Here we shall remind the readers that marginal
operators are the operators that don't become trivial nor dominant when

owing to the IR �xed point, and can therefore be thought of as taking a
conformal �eld theory to another \nearby" CFT.

From the above analysis we see that in the CY three-fold case, the marginal
operators are given by the elements in the (c,c) ring corresponding to elements
in H 2;1(M ) and those in (c,a) ring corresponding to elements inH 1;1(M ). The
former ones correspond to deforming the complex structure (the shape) of the
Calabi-Yau manifold, and the second one the K•ahler form (the size) of it.
This can be seen from the expression for their corresponding harmonic forms
(2.1.16) and (2.1.18) as follows. Roughly speaking, they correspond to the
complex structure and the K•ahler part of the metric deformation:

f ij � �g ij ; f i �| � �g i �| : (2.1.20)
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ring cohomology deformation

(c,c) H 2;1(M ) complex structure
(c,a) H 1;1(M ) K•ahler form

Table 2.1: Summary of the relation between chiral rings, marginal deformation and the
cohomology class of the target space.

It will turn out to be important to have some further knowledge about the
structure of the space of all deformations, namely the moduli space of the
theory. In principle we can now compute the moduli space metric from the
OPE's of the marginal operators (the Zamolodchikov metric). First of all it's
easy to show that the space of the (c,c) and the (c,a) part of the deformation
is locally a direct product. Namely

M = M complex � M K•ahler (locally) :

Furthermore, it can be shown that, by employing the tt � equation for example
[22], the moduli spaces are of the special K•ahler kind which we de�ned in
(A.0.12). But since we will need the geometric picture repeatedly in later
analysis, we will postpone the derivation and later derive it in a way that
makes its geometric meaning directly manifest.

2.1.3 Spectral Flow

Another important property of the N = 2 superconformal algebra is that it
has an inner automorphism, which means that the algebra remains the same
under the following rede�nition

L n ! L n + �J n + � 2 c
6

� n;0

Jn ! Jn + �
c
3

� n;0 (2.1.21)

G�
r ! G�

r � � :

An isomorphism of the algebra implies that of a representation. Namely,
when the transformation of the operators is induced by a similarity transfor-
mation Ô ! UÔU � 1, then there is a corresponding transformation of the
representation j� i ! Uj� i .

Now we will transform the states in the way mentioned above by means of
a vertex operator insertion

U� = e� i�
p

c
3 H ; (2.1.22)
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Figure 2.1: The relationship between the NS- and the R- sector ground states under the
spectral 
ow[23].

where H is the free boson from bosonising the R-current

J (z) = i

r
c
3

@H : (2.1.23)

The net e�ect is just to shift the U(1) charge of every state by� � c
3 , and to

change the periodicity of the fermionic current G� (z).
To sum up, beginning with a state j� i with weight h and R-chargeq, the

state U� j� i transformed by U� : H ! H � will have

h� = h � �q +
c
6

� 2

q� = q �
c
3

� : (2.1.24)

This operation is called the \spectral 
ow" of N = 2 CFT relating di�erent
representations of the algebra. In particular, as promised before, this symme-
try relates the R-ground states to the NS sector (anti-)chiral primary states.
Indeed, from the above relation (2.1.24) it's easy to see that a� = 1=2 
ow
takes chiral primary states to Ramond ground states, and another� = 1=2 
ow
takes them again to anti-chiral primary states, and vice versa for the� = � 1=2

ows. In this sense there is really a unique notion of \ground states" in N = 2
superconformal �eld theories.

2.1.4 Topological String Theory

In this part of the discussion, we will concentrate on our main example, namely
the Calabi-Yau sigma model with c = 9. We will be very schematic on this
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subject, since this is not our main topic of interest and also because there
exists already a fair amount of excellent summary and review literature on
the topic. See for example [24, 25, 26].

As we have just discussed, a �eld� (c;a) in the (c,a) chiral-anti-chiral ring
satis�es

(G+ + ~G� )� (c;a) � 0 (2.1.25)

and accounts for the deformation of the K•ahler moduli in the target Calabi-Yau
space. Furthermore the operator which annihilates it satis�es the nilpotency
condition (G+ + ~G� )2 � 0. Similarly a chiral-chiral primary �eld � (c;c) satis�es

(G+ + ~G+ )� (c;c) � 0 (2.1.26)

with ( G+ + ~G+ )2 � 0 and accounts for the deformation of the complex struc-
ture moduli.

A question one might ask now is: since we will be mainly interested in this
part of the theory, why not use the nilpotent operators as BRST operators
and focus on the BRST cohomology? But we need one more step before this
can be done, sinceG� and ~G� have conformal weights 3=2 but we need �elds
of weight 1 so that we can integrate them around a loop on the world-sheet to
get a conserved charge. This is where the spectral 
ow property of the theory
comes to help. By introducing a coupling term

�
1
2

Z

�
! J = �

i
p

3
2

Z

�
! @H ; (2.1.27)

with ! being the spin connection, we can \twist" the theory by

T ! T �
1
2

@J ; (2.1.28)

and especially

L 0 ! L 0 �
1
2

J0 : (2.1.29)

This twist shifts one of the two G� to have dimension (1,0) and the other
dimension (2,0), depending on the sign of the twist. Choosing the opposite
(same) sign for the left- and right-movers, we obtain the so-called A- (B-)
model topological string theory, with the original (c,a) ((c,c)) ring as now the
BRST cohomology. This is summarised in Table 2.2.

It is not di�cult to check that the energy-momentum tensor is Q-exact,
which means the theory is invariant under a continuous change of world-
sheet metric and therefore the name \topological". But this is not yet the
whole story. In order to get an interesting theory we still have to couple it
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top. string cohomology deformation

B-model H 2;1(M ) complex structure
A-model H 1;1(M ) K•ahler form

Table 2.2: Summary of the relation between BRST cohomology of the A- and B-model
topological string theory and the cohomology class of the target space.

to \topological gravity" on the world-sheet [27], namely to sum over classes
of conformally inequivalent metrics. For concreteness let's now focus on a
L 0 ! L 0 � 1

2J0 twist. In this case the BRST-charge Q =
H

G+ and G� sat-
is�es T � f Q; G� g and JG � = � G� , therefore the U(1) current now plays
the role of the conserved current for the ghost number andG� that of the
anti-ghost. Coupling to topological gravity in this case then follows in close
analogy with the procedure of computing higher genera amplitudes of bosonic
string theory. We refer the reader who needs more background on this topic
to, for example, [1]. Recall that the higher-genus vacuum has anomalous ghost
number � 3� = 6g � 6 [28] due to the presence of a non-trivial moduli space
for the genus-g Riemman sueface, which has dimCM g = 3g � 3. We need
therefore 3g� 3 insertions of anti-ghost on each (left- and right-moving) sector
to produce a ghost-neutral amplitude. Or said in another way, to produce the
correct measure factor for the moduli space. Therefore we de�ne the genus-g
amplitude for topological strings to be

Fg =
Z

M g

h
3g� 3Y

i =1

G� (� i ) ~G� (� i ) i ; (2.1.30)

where the plus (minus) sign corresponds to the A- (B-)model and� i stands
for the Belmatri di�erential. Now we are ready to de�ne the (perturbative)
topological strings partition function as

Z top := exp ( Ftop ) = exp

0

@
1X

g=0

g2g� 2
top Fg

1

A ; (2.1.31)

where gtop will be referred to as the topological string coupling constant.
For future use let's also discuss here the expansion of the above partition

function. As we have mentioned above, the A-model partition function is,
loosely speaking, a function of the K•ahler modulitA = B A + iJ A , in a notation
that will be explained in more detail later (2.2.14). Around the semi-classical
limit t ! 1 , or the target space large-volume limit, the A-model free energy
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has the following expansion[29, 30]1

Ftop = Fpert + F (0)
GW + FGW (2.1.32)

Fpert = � i
(2� )3

6g2
top

DABC tA tB tC �
2�i
24

c2A tA (2.1.33)

F (0)
GW = �

1
2

� log[M (e� gtop )]

FGW =
X

� 2 H 2 (X; Z)

X

g� 0

Ng;� g2g� 2
top e2�i� �t = FGV = log ZGV

=
X

� 2 H 2 (X; Z)

X

g� 0

X

m2 N

� �
g

1
m

�
2i sinh(

mgtop

2
)
� 2g� 2

e2�im� �t

= log ZDT

ZDT =
X

� 2 H 2 (X; Z)

X

m2 Z

nDT (�; m ) ( � e� gtop )m e2�i� �t ;

where
M (q) =

Y

n� 1

(1 � qn )n (2.1.34)

is the MacMahon function and � = � (X ) is the Euler characteristic of the
target Calabi-Yau space X . Ng;� is called the Gromov-Witten invariants
which are rational numbers counting holomorphic curves, while the� �

g and
nDT (�; m ), called the Gopakumar-Vafa [31, 32] and the Donaldson-Thomas
invariants respectively, have the physical interpretation of counting wrapped
M2 branes and D6-D2-D0 bound states respectively.

Especially, one can show from the above formula that the Gopakumar-Vafa
partition function ZGV takes the following suggestive product form [32, 33]

ZGV (gtop ; t) =
Y

� 2 H 2 (X; Z)

 
1Y

r =1

�
1 � e� rg top e2�i� �t

� r� �
0

�
1Y

g=1

2g� 2Y

`=0

�
1 � e� (g� ` � 1)gtop e2�i� �t

� (� 1)g+ `
�

2g� 2
`

�
� �

g

!

;

(2.1.35)

and renders itself intelligible as the partition function of second quantised M2
branes. Finally we remark that the equivalence of Gromov-Witten partition
function with the Donaldson-Thomas partition function is a partially proven
conjecture. See [34, 35, 36, 37] for relevant discussions.

1Note that we omit all the perturbative terms and MacMahon factors in our de�nition of
ZDT and ZGV .
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2.1.5 Elliptic Genus and Vector-Valued Modular Forms

Elliptic genus is a useful tool to obtain structured and controllable infor-
mation about the spectrum of a conformal theory with (2; 2) world-sheet
supersymmetry[38, 39]. It is de�ned as

� (�; z ) = Tr RR (� 1)F e2�izJ 0 e2�i� (L 0 � c
24 ) e� 2�i �� ( ~L 0 � c

24 ) ; (2.1.36)

where (� 1)F = e�i (J0+ ~J0 ) , and the subscript denotes the fact that the trace
should be taken with the R-R boundary condition. It has also the interpre-
tation as a path integral of the theory on the torus with appropriate U(1)
coupling to \label" the left-moving R-charge. This Wilson line coupling is
absent on the right-moving side. From the [~J0; ~G�

0 ] and [~L 0; ~G�
0 ] commuta-

tion relations we see that only states annihilated by ~G�
0 , namely states with

the right-movers at their R-ground states, contribute to the index. Super-
symmetry therefore guarantees its rigidity property which often renders it
computable. A special case of this is the Witten index� (�; 0) = Tr RR (� 1)F .

Furthermore, the invariance of the spectrum under the spectral 
ow has
interesting implications for the elliptic genus. To shorten the equations we
will use in this part of the discussion the symbols

ĉ =
c
3

q = e2�i� ; y = e2�iz

e[x] = e2�ix :

A short manipulation of (2.1.36) using the spectral 
ow relation (2.1.24) shows
that the elliptic genus has the following two properties. First of all

� (�; z + `� + m) = e� �i ĉ(`2 � +2 `z ) � (�; z ) ; (2.1.37)

and secondly

� (�; z ) =

ĉ
2 � 1X

� = � ĉ
2

h� (� ) � � (�; z ) (2.1.38)

h� (� ) =
X

n2 Z+

c� (n) q� 1
2ĉ � 2+ n =

X

n2 Z+

c(n �
� 2

2ĉ
) qn� 1

2ĉ � 2
(2.1.39)

� � (�; z ) =
X

`2 Z

q
ĉ
2 (`+ �

ĉ )2
y(� + ĉ`) : (2.1.40)

The restriction � 2 (� ĉ
2 ; ĉ

2 ] can be understood as a consequence of the fact
that one unit of spectral 
ow, namely � = 1 in (2.1.24), shifts the U(1) charge
by a unit of ĉ.



2.1 (2,2) Superconformal Field Theory57

From the above equation we see that the elliptic genus for a unitary (2,2)
CFT has the following form

� (�; z ) =
X

n2 Z+ ; `+ ĉ
2 2 Z

c(n; ` )qn y` =
X

n2 Z+ ; `+ ĉ
2 2 Z

c(n �
`2

2ĉ
)qn y` : (2.1.41)

Notice that L 0� 1
2ĉJ 2

0 is indeed the (up to a multiplicative factor and addition of
a constant) unique combination linear in L 0 that is invariant under the spectral

ow (2.1.24). Especially, from Figure 2.1.3 and recalling that n = L 0 � c

24,
we see that the coe�cients c(n � `2

2ĉ) = 0 for n � `2

2ĉ < � c
24. The functions

h� = � ĉ
2
(� ) has therefore q-expansion beginning fromq� c

24 . We will call the

part of the elliptic genus with negative arguments for c(n � `2

2ĉ) the polar part

� � (�; z ) =
X

n� ` 2
2ĉ < 0

c(n �
`2

2ĉ
)qny` ; (2.1.42)

or equivalently

h�
� (� ) =

X

n� ` 2
2ĉ < 0

c(n �
`2

2ĉ
) qn� 1

2ĉ � 2
: (2.1.43)

The physical and mathematical signi�cance of this special \polar part" of the
elliptic genus will be seen later when we discuss the elliptic genus for the black
hole CFT in section 6.4.4.

This nice structure brought to us by the spectral 
ow, or related to it
the spacetime supersymmetry, can be made more transparent by thinking
about the action of an one-dimensional free Abelian group, namely an one-
dimensional lattice, endowed with aZ-valued bilinear form (`; ` ) = ĉ`2 (recall
that ĉ is an integer for a (2,2) non-lieanr sigma model on a Calabi-Yau manifold
of any dimension). Let's call this lattice �. The dual lattice � � is then de�ned
as the lattice of all vectors in � 
 Z R with integral inner products with all
vectors in the original lattice �. In the case at hand, in the integral basis of
the one-dimensional lattice � � , we see that the lattice � is the lattice of the
points ĉZ. In this basis in which all points in � � have integral coe�cients, the
bilinear form becomes

(� j� ) =
1
ĉ

� 2 : (2.1.44)
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We can now rewrite (2.1.38)-(2.1.40) as

� (�; z ) =
X

� 2 � � =�

h� (� ) � � (�; z ) (2.1.45)

� � (�; z ) =
X

� 2 � +�

q
( � j � )

2 y� (2.1.46)

= e[�
ĉ
2

z2

�
]

X

� 2 � +�

e[
�
2

�
� +

z
�

ĉ
�
� � +

z
�

ĉ
�
] : (2.1.47)

From the last expression and using the Poisson resummation formula we get
the modular transformation of the above theta-function

� � (�
1
�

;
z
�

) = e[
ĉ
2

z2

�
]

r
1
ĉ

p
� i�

X

� 02 � � =�

e[(� j� 0)] � � 0(�; z ) : (2.1.48)

We would like to know the modular property of the full elliptic genus as well.
The z-independent part of the transformation must be compensated by the
transformation of h� (� ), since the Witten index � (�; 0) = ( � 1)F = � (X )
is clearly modular invariant. Using this fact and the R-charge conjugation
symmetry of the CFT, we get the following transformation rule

� (
a� + b
c� + d

;
z

c� + d
) = e[

ĉ
2

cz2

c� + d
] � (�; z ) : (2.1.49)

This can also be understood as the modular transformation of the path in-
tegral with an extra coupling to the U(1) current. The property (2.1.37),
(2.1.41), (2.1.49) is exactly the de�nition of a weak Jacobi form of indexĉ=2
and weight zero. The elliptic genus of a (2,2) SCFT therefore enjoys many
special properties of a weak Jacobi form. Here we will list one important fact
that will be needed later.

The spaceJ2� ;� of all weak Jacobi forms of even weight and any index is
known to be a ring of all polynomials in the following four functions � 0;1(�; z ),
� � 2;1(�; z ), E4(� ),E6(� ) [40, 41], whereE4; E6 are the usual Eisenstein series
and � 0;1; � � 2;1 are the weak Jacobi forms of index one and weight 0 and� 2
given by

� 0;1(�; z ) =
� 12;1(�; z )

�( � )
= y� 1 + 10 + y + O(q)

� � 2;1(�; z ) =
� 10;1(�; z )

�( � )
= y� 1 � 2 + y + O(q)

� 12;1(�; z ) =
1

144

�
E 2

4E4;1 � E6E6;1
�

� 10;1(�; z ) =
1

144

�
E6E4;1 � E4E6;1

�
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and the discriminant is

� = � 24 =
E 3

4 � E 2
6

1728
: (2.1.50)

This gives great constraint of the form the elliptic genus can take. For
example, the space of weak Jacobi forms of weight zero and index one is one-
dimensional. Together with the fact that � (�; z = 0) = � (K 3) = 24 for the
case of Calabi-Yau two-fold this completely �xes the K3 elliptic genus to be

� K 3(�; z ) = 2 � 0;1(�; z ) =
X

n2 Z+ ;`2 Z

c(4n � `2)qny` = 2y� 1 + 20 + 2 y + O(q) :

(2.1.51)
For the properties of elliptic genus with Calabi-Yau manifolds as the target

space, see [42, 39]. See also [43, 42] for a geometric de�nition of the elliptic
genus without reference to a superconformal theory.

The above lattice formulation can be readily generalized to higher dimen-
sional lattices, with possibly not positive de�nite bilinear forms. For future
use we now digress brie
y to discuss them.

For a lattice � with a non-degenerate bilinear form of signature ( � + ; � � )
we can de�ne a modular form with values in the group ring C[� � =�]. In other
words, in analogy with the concept of a modular form for an one-dimensional
lattice, we have vector-valued modular forms in the higher-dimensional cases.
Here we will only discuss them in terms of their componentsh� for each vector
� 2 � � =�.

The novel property is that, for a negative-de�nite lattice, convergence of the
series requires that the theta-functions can be written as a sum ofe[ ��

2 (xjx)]
instead ofe[ �

2 (xjx)]. For a lattice with mixed signature we therefore have both
holomorphic and anti-holomorphic couplings.

De�nition For a lattice � with a non-degenerate bilinear form ( j) and signa-
ture ( � + ; � � ) , given a maximally positive de�nite subspace in � 
 R, namely,
given an element in the Grassmannianv 2 G(� + ; � � ), we de�ne the (Siegel
or Siegel-Narain) theta-function as

� � (� ; �; � ) =
X

� 2 � +�

e[
�
2

(� + � )2
+ +

��
2

(� + � )2
� � (� +

�
2

j� )] (2.1.52)

for � 2 � � =� ; �; � 2 � 
 R ;

wherex2 := ( xjx) and notice that the projection into the positive and negative
part depends onv 2 G(� + ; � � ).

Using the higher-dimensional version of Poisson resummation, one can show
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that the modular property of the above theta-function is

� � (�
1
�

; � �; � ) =
1

p
j� � =� j

(
p

� i� ) � +
(
p

i �� ) � � X

�

e[� (� j� )] � � (� ; �; � ) ;

(2.1.53)
where the pre-factor

p
j� � =� j = jVol(�) j is the volume of the unit cell of

the lattice. For the details of this computation and the generalisation to
degenerate lattices, see [44].

2.1.6 Mirror Symmetry and Non-perturbative E�ects

The alert readers might have already noticed that, the di�erentiation between
the (c,c) and the (c,a) ring is rather ad hoc in our analysis of the chiral ring
structure in the Calabi-Yau non-linear sigma model. And in fact also as a
warning to the reader, the conventions do vary in the literature. There is of
course nothing to stop us from 
ipping the sign of the R-current on one (let's
say the right-moving) side and exchanging what we callG+ and G� while
keeping the left-movers untouched. Although a trivial isomorphism from the
world-sheet point of view, it implies something rather drastic on the geometric
side. Namely it exchanges what we call theH n� r;s and H r;s cohomology
classes, wheren is again the complex dimension of the Calabi-Yau manifold.
In particular, the Euler character changes its sign for three-folds, as� (CY 3) =
2(h1;1 � h1;2) ! � � .

But since the world-sheet theory remains the same, there must be a pair
of Calabi-Yau three-folds with exchanging H 3� r;s and H r;s . This symmetry
is called the \mirror symmetry". Geometrically, the easiest way to think
about this symmetry is to think of the Calabi-Yau pair as a T3 �bration over
a three-real-dimensional base space, with possibly singular �bre at various
points. The mirror symmetry is then implemented by doing three T-dualities
along the �bre directions. As we have discussed in the previous chapter, a
T-duality exchanges type IIA with type IIB superstring theory. This mirror
symmetry must therefore also exchange type IIA and IIB strings living on the
Calabi-Yau space. In other words, given a mirror pair (X; Y ) of Calabi-Yau
three-folds with

h2;1(X ) = h1;1(Y ) ; h2;1(Y ) = h1;1(X )

and a pair of string theories IIA and IIB, there are only two instead of four
independent theories one can write down. They are, schematically

( IIB =X ) ' ( IIA =Y )
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and

( IIB =Y ) ' ( IIA =X ) :

Later we will also see that there is indeed a corresponding relationship
between the spacetime low-energy e�ective theories.

Combining with di�erent properties of the complex structure and the K•ahler
moduli space, mirror symmetry has been very useful in predicting properties
of the theory in di�erent parts of the moduli space, relating classical and
quantum geometry. In particular, it predicts that the conformal �eld theory
is well-behaved on the special submanifold in the moduli space where classical
geometric intuitions fail, namely when the internal manifold goes through the
so-called 
op transitions. This is where we again see how strings are superior
to point particles as probes for spacetime. But in the following analysis we will
concentrate on parts of the moduli space where these non-perturbative e�ect
do not occur. In particular, from now on we will stay well inside the K•ahler
cone and away from conifold points. In other words, we will only consider
the part of the moduli space where all the homology cycles are \large" in the
string unit.

2.2 Spacetime Physics

2.2.1 Moduli Space and Special Geometry

As we discussed earlier, the (2,2) SCFT's naturally come in families, related
to each other by marginal deformations of the theory. We have also seen that
these deformations, in the non-linear sigma model case, have the interpretation
of deforming the target Calabi-Yau space. Indeed Calabi-Yau manifolds also
come in families, meaning we can continuously deform the size and the shape
of these internal manifolds without changing the topological properties of the
space. As we have noticed in our discussion of the chiral ring, we can separate
these deformations into two kinds. First is the shape, or the complex structure
deformation, corresponding to �g ij � f i �k �̀ 
 �k �̀

j , given by the harmonic three-
form f (3) 2 H 1;2(X; C) and using the (up to a factor) unique (3,0)-form of
the Calabi-Yau X to contract the indices. Second is the size, or the K•ahler
deformation. Combining it with the NS-NS two-form potential we get �B i �| +
i�g i �| � f i �| , where f (2) 2 H 1;1(X; C). The requirement that the deformation
should be given by harmonic forms can be understood as the preservation of
the Ricci-
atness of the metric. We have also argued that the moduli space is
locally a direct product of these two separate moduli spaces. We will therefore
study them separately now.
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Complex Structure Moduli

First we look at the complex structure moduli. A change in the complex
structure means a di�erent decomposition of the tangent (or equivalently the
cotangent) bundle into holomorphic and anti-holomorphic part. Especially,
under an in�nitesimal change of complex structure, the Calabi-Yau (3,0) form

 becomes a linear combination of a (3,0) and a (2,1) form. We can therefore
think of 
 as a section of a H 3(X; C) bundle over the moduli spaceM complex .
We will call it the Hodge bundle EH . This bundle is naturally endowed with
the following symplectic structure h; i : H 3(X; C) � H 3(X; C) ! C, given by

h� 1; � 2i = �h � 2; � 1i =
Z

X
� 1 ^ � 2 ; (2.2.1)

which has the geometric interpretation as the intersection number of the dual
three-cycles of �1 and � 2. Furthermore, it de�nes a natural hermitian metric
on H 3(X; C)

(� 1; � 2) = ih� 1; � 2i = (� 2; � 1) � :

But this is not yet the full story. Since the complex structure 
 is only de�ned
up to a constant, or said di�erently, a rescaling of it will change the section in
EH while it really doesn't mean a change of the complex structure ofX , we
should introduce a line bundle L to account for the redundancy. Using the
above hermitian metric, is now natural to de�ne the metric on L to be eK ,
where

K = � log(
 ; 
) = � log
�
ih
 ; �
 i

�
:

In other words, due to the extra rescaling symmetry, the complex structure
three-form 
 should be thought of a section of EH 
 L .

When the (3,0)-form is rescaled as 
 ! ef 
 with a local holomorphic
function f , we see that the \K•ahler potential" K scales likeK ! K � f � �f . In
particular, this means that a K•ahler metric invariant under a local rescaling
of the (3,0)-form can be de�ned on the moduli spaceM complex using K as the
K•ahler potential. See appendix A for properties of K•ahler manifolds. The
resulting K•ahler metric is sometimes called the Weil-Peterson metric.

Furthermore, the connection

r = @+ @K (2.2.2)

satis�es the desired property r (ef 
) = ef r 
. In particular, it should take
value in H 2;1(M; C). Finally, it follows from the pairing of the cohomology
classes that

h@
 ; 
 i = 0 ; (2.2.3)
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since@
 has only a (3 ; 0)- and a (2; 1)-form part. These properties mean that
M complex is a (local) special K•ahler manifold de�ned in (A.0.12).

Since a rescaling of 
 does not have any physical signi�cance, it will be
convenient to de�ne a \unit vector"


 =



p
ih
 ; �
 i

= eK =2 
 ; (2.2.4)

satisfying

(
 ; 
 ) = ih
 ; �
 i = 1 ;

and a \central charge" function Z : H 3(X; Z) � M complex ! C, whose name
will be justi�ed later, as

Z (�; 
) = h� ; 
 i ; (2.2.5)

which in the present case is just
R

� 
 , where we have used the same symbol �
for the Poincar�e dual of the three-form � and 
 for the pull-back of 
 .

From the behaviour of 
 under a K•ahler transformation, we see that 
 ,
and thereforeZ , are sections ofL 1=2 
 �L � 1=2 and have therefore the following
covariant derivatives

D
 = ( @+ iQ)
 ; (2.2.6)

where the connection is given by

iQ =
1
2

(@K � @K) = i Im( @K) : (2.2.7)

In Coordinates

After this rather abstract derivation of the special K•ahler properties of M complex ,
to have a better feeling of what is really going on let's now un-package the
information by choosing a local coordinates onM complex . Of course, writing
things out in components in a local coordinate system does not bring new
information. The main reason for the following formulation is really to make
it easier for the readers to connect to the existing literature.

For this purpose we have to choose a basis for the middle-cohomology
H 3(X; Z) of the Calabi-Yau space X , namely a coordinate system for the
�bre of the Hodge bundle EH . From the anti-symmetric intersection of the
homology H3(X; Z) we see that we can always choose a real basis (� I ; � J )
for H 3(X; Z), and the corresponding basis (A I ; BJ ) of H3(X; Z), which is or-
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thonormal in the following sense

h� I ; � J i = �h � J ; � I i =
Z

X
� I ^ � J = � J

I = #( A I \ BJ ) (2.2.8)
Z

A I
� J = �

Z

B J

� I = � I
J ;

Z

A I
� J =

Z

B J

� I = 0

I; J = 0 ; :::; h2;1 :

We can then write the (3,0)-form in terms of these coordinates as2


 = � X I � I + FI � I : (2.2.9)

These coordinates then determine the complex structure. Actually it over-
determines it. To see this, recall we said earlier that an in�nitesimal change
of complex structure turns the (3,0)-form into a linear combination of a (3,0)-
part and a (2,1)-part, and the dimension of the moduli space is therefore
dimCM complex = h2;1 and not 2h2;1 + 2. Together with the fact that the overall
scale does not have a physical signi�cance, which is the reason we why intro-
duced the line bundleL in the above construction, we can regardX I 's as the
homogeneous coordinates for the projective space of in�nitesimal variation of
the complex structure, and FI as FI (X ). Locally, where X 0 does not vanish,
we can then use the coordinates, called the \special coordinates", de�ned as

tA =
X A

X 0 ; A = 1 ;� � � ; h2;1 ;

as the coordinates of the complex structure moduli spaceM complex . But as we
will see later, it will often be useful to work with the homogeneous coordinates
X I instead.

In these coordinates, the K•ahler potential reads

e�K = 2Im( X I �FI ) ;

and the K•ahler metric is given by

gI �J = @I @�J K = �
ihr I 
 ; �r �J

�
 i
i h
 ; �
 i

= � ihDI 
 ; �D �J
�
 i : (2.2.10)

The condition (2.2.3) which follows from the cohomology pairing and which
is a part of our de�nition of special K•ahler geometry (A.0.12), gives in these
coordinates

h@I 
 ; 
 i = � FI + X J @J FI = 0 ;

2Warning: Some authors use the normalized three-form 
 = X I � I � FI � I as the de�nition
for

�
X I

F I

�
, corresponding to the \gauge choice" 2Im( X I �FI ) = 1.
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which implies that FI is homogeneous of degree 1 as a function ofX 's. We
can therefore de�ne

F (X ) =
1
2

X I FI ;

and it's easy to check that it satis�es

@I F (X ) = FI

X I @I F (X ) = 2 F (X ) : (2.2.11)

This homogeneous functionF of degree 2 is the so-called \prepotential".
Speci�cally, for later use we de�ne

FIJ = @I @J F (X ) ;

then
FI = FIJ X J : (2.2.12)

Notice that our choice of basis (2.2.8) is only �xed up to a symplectic trans-
formation. To see this, note that in our \orthonormal" basis, the symplectic
form on H 3(X ) ' H3(X ) in the matrix representation is just

�
0 1

� 1 0

�
;

where 1 is the (h1;2 + 1) � (h1;2 + 1) unit matrix. Then an integral change of
basis given bySp(2h2;1 + 2 ; Z), namely matrices

�
A B
C D

�

with A; B; C; D being (h2;1 + 1) � (h2;1 + 1) matrices satisfying

AT C � CT A = 0

B T D � D T B = 0

AT D � CT B = 1 ;

always leaves the above symplectic matrix invariant.
Under the above change of basis, the coordinatesX I and FI transform as

a symplectic vector

V =
�

X I

FI

�
!

�
A B
C D

� �
X I

FI

�
:

From the fact that F (X ) = 1
4V T

�
0 1
1 0

�
V we see that the prepotential is not

invariant under the symplectic transformation. This is another reason why we
chose to de�ne the special geometry without reference to such a prepotential.
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K•ahler Moduli

After discussing the complex moduli we now turn to the K•ahler Moduli of the
Calabi-Yau three-fold. As we mentioned earlier in section 2.1.2, the K•ahler
moduli space of a Calabi-YauX is given by its cohomology classH 1;1(X ). Re-
call that in the case of complex structure, we double the spaceH 2;1(X ) into
H 2;1(X ) � H 1;2(X ) and further enlarge it with H 3;0(X ) � H 0;3(X ) to construct
the symplectic bundle. Here we will do a similar thing. To construct the sym-
plectic bundle for the K•ahler moduli space M K•ahler , we �rst double H 1;1(X )
into H 1;1(X ) � H 2;2(X ) and further enlarge it with H 0;0(X ) � H 3;3(X ). In
other words, we consider aH 2� (X; C) bundle over M K•ahler .

Again similar to the complex structure case, we want to employ the sym-
plectic pairing of H 2� (X; C) and thereby see that M K•ahler is again a special
K•ahler manifold. But this time the geometric meaning of such a pairing will
not be as clear. What must stay true is that the pairing should be between
the cohomology classes that are Hodge dual to each other. In order for the
pairing to be symplectic, we now de�ne a map

�� = ( � 1)n � for � 2 H (n;n ) (X; C)

and requires it to act component-wise on a general � 2 H 2� (X; C). The
symplectic product h; i : H 2� (X; C) � H 2� (X; C) ! C is then given by

h� 1; � 2i = �h � 2; � 1i =
Z

X
� 1 ^ �� 2 : (2.2.13)

The next step will be to �nd a section which gives the K•ahler potential
(A.0.12). Since a deformation in the K•ahler moduli changes the complexi�ed
(with the B-�eld) K•ahler form

t = B + iJ 2 H 1;1(X; C) (2.2.14)

to a nearby vector in H 1;1(X; C), a natural way to build such a section 
 in
the H 2� (X; C) bundle will be


 = � et = �
�

1 + t +
1
2!

t ^ t +
1
3!

t ^ t ^ t
�

: (2.2.15)

Then the K•ahler potential

e�K = ih
 ; �
 i =
4
3

Z
J ^ J ^ J = 8 vol( X ) (2.2.16)

is given by the Calabi-Yau volume, and the normalised section is


 = � eK =2 et =
� et

q
4
3J 3

(2.2.17)
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Finally, another condition h@
 ; 
 i = 0 for special K•ahler manifold is now
obviously true, from the simple fact that @(� et ) = @t
. We therefore conclude
that moduli space M K•ahler is again a special K•ahler manifold, and the same
properties (2.2.2)-(2.2.7) we discussed forM complex carry straightforwardly to
this case.

As the reader might have noticed, for convenience we have actually already
used the special coordinates, given byt 2 H 1;1(X; C), in the de�nition of
(2.2.15) . To formulate the special geometry in homogeneous coordinates as
before, we introduce the basis� A for H 1;1(X; Z) and the dual basis � A for
H 2;2(X; Z) de�ned by

R
X � A ^ � B = � B

A , with A = 1 ;� � � ; h1;1. For this basis
we then de�ne the triple-intersection number of the dual four-cycles as

Z

X
� A ^ � B ^ � C = DABC : (2.2.18)

Furthermore we write � 0 = 1 and � 0 = � J ^ J ^ JR
X J ^ J ^ J as the basis forH 0;0(X; Z)

and H 3;3(X; Z).
In other words, for the special geometry of the K•ahler moduli we use

� 0 = 1

� A 2 H 1;1(X; Z)

� A 2 H 2;2(X; Z)

� 0 = �
J ^ J ^ JR

X J ^ J ^ J
(2.2.19)

satisfying

h� I ; � J i = � J
I ; I; J = 0 ;� � � ; h1;1

as the symplectic basis ofH 2� (X; Z).
Again, for the convenience of the reader we would like to make contact with

the convention involving the prepotential used in a large proportion of the
existing literature.

Using the projective coordinatesX I , we can introduce the following section
of the even cohomology bundle


 = � X 0e
1

X 0 X A � A = � X I � I + FI � I ; (2.2.20)

which reduces to the de�nition (2.2.15) when the special coordinates

X A

X 0 = tA ; X 0 = 1
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is used.
In these coordinates the K•ahler potential is again given by

e�K = 2Im( X I �FI ) ;

and one can check that the prepotential reads

F (X ) =
1
2

F I X I =
1
6

DABC
X A X B X C

X 0 ; (2.2.21)

which is again a homogeneous function of degree two.
As we will comment more on it later, while the metric of the complex struc-

ture moduli space is exact, that of the K•ahler moduli space receives perturba-
tive and non-perturbative corrections. Here we can see the resemblance of the
leading prepotential for the K•ahler moduli space (2.2.21) and the leading per-
turbative topological strings amplitude (2.1.33). As we will see later, the rest
of Ftop will also have its role in the prepotential. Speci�cally, the symmetry of
the shift of the B-�eld

RetA ! RetA + constant ;

known as the PQ (Peccei-Quinn) symmetry, constrains the form of the pertur-
bative correction to the prepotential. But non-perturbatively this symmetry
is broken and not observed by non-perturbative corrections.

This �nished our discussion about the moduli space of Calabi-Yau three-
folds. For a point of entry into the literature on special geometry, we refer to
[45, 46, 47, 48], or various reviews [49, 50, 51, 29].

2.2.2 Four- and Five-Dimensional Low Energy Supergravity Theory

When one considers a Calabi-Yau three-fold as a part of the spacetime, from
the decomposition of spinors under the rotation groupSpin(6) ' SU(4) into
representations of the holonomy groupSU(3) as 4 = 3 � 1, we see that the
manifold admits a \Killing spinor" satisfying r k � = 0. In the absence of a
dilaton gradient or a background H (3) = dB (2) 
ux, the existence of such
a Killing spinor means unbroken spacetime supersymmetry. Furthermore,
from the above decomposition we see that a quarter of the supersymmetry
is preserved. Starting from a ten- or eleven-dimensional theory with 32 super-
charges, this leads to eight remaining supercharges after compacti�cation to
four- or �ve-dimensions.
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Four Dimensional Supergravity

Let's �rst look at the supersymmetry algebra in four dimensions. The minimal
supersymmetry algebra reads

f Q� ; Q� g = � 2P� � �
�� ; [P � ; Q� ] = 0 ;

where Q's are Majorana fermions with four degrees of freedom,Q = Qy� 0,
� � 's are gamma matrices furnishing a representation of the Cli�ord algebra,
P� is the spacetime momentum vector and�; � are the spinor indices. By
writing out the gamma matrices explicitly, one can easily see that theQ anti-
commutators give one pair of fermionic creation and annihilation operators
when P� is massless (lightlike), while the physical �elds must be annihilated
by the rest two of the Q's. On the other hand, when P� is massive (timelike)
the Q anti-commutators give two pairs of fermionic annihilation and creation
operators and the physical �elds are annihilated by none of theQ's.

For the case of 4N supercharges, the generalisation of the above supersym-
metry algebra is

f QA
� ; Q

B
� g = � 2� AB P� � �

�� ; [P � ; QA
� ] = 0 A; B = 1 ;� � � ; N :

Just as before, whenP� is massless,QA gives a pair of fermionic creation
and annihilation operators for eachA 2 f 1;� � � ; N g. As mentioned above, for
the Calabi-Yau compacti�cation we have N = 2 and therefore two pairs of
fermionic creation and annihilation operators. As a result, anN = 2 massless
multiplet has the following helicities

j; j +
1
2

; j +
1
2

; j + 1

and accompanied by their CPT conjugate if the multiplet is not conjugate to
itself. In particular, as will be seen shortly, there are three massless multiplets,
corresponding to j = � 1

2 ; 0 ; 1, which will be relevant for the �elds content of
the low energy e�ective theory obtained by compactifying type II string thoery
on Calabi-Yau three-folds. These are

hypermultiplet ( � 1
2 ; 02; 1

2) + ( � 1
2 ; 02; 1

2)
vector multiplet ( � 1; � 1

2
2; 0) + (0 ; 1

2
2; 1)

supergravity multiplet ( � 2; � 3
2

2; � 1) + (1 ; 3
2

2; 2)

To obtain the massless spectra of the lower-dimensional theory, we have
to compactify the massless spectra of type II superstring listed in Table 1.1.
Using the fact that the Laplacian factorizes into

r 10d = r 4d + r C-Y ;
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IIA/CY massless spectrum
number multiplet bosonic �eld content

1 supergravity multiplet G�� ; (C� )
h1;1 vector multiplet ( C�i �| ); Gi �| ; B i �|

h2;1 hypermultiplet Ci �|k ; Gij

1 (universal) hypermultiplet Cijk ; � ; B ��

IIB/CY massless spectrum
number multiplet bosonic �eld content

1 supergravity multiplet G�� ; C�ijk

h2;1 vector multiplet C�i �|k ; Gij

h1;1 hypermultiplet C��i �| ; Ci �| ; Gi �| ; B i �|

1 (universal) hypermultiplet C; � ; B �� ; C��

M-theory/CY massless spectrum
number multiplet bosonic �eld content

1 supergravity multiplet G�� ; (A �i �| )
h1;1 � 1 vector multiplet � a; (A �i �| )

h2;1 hypermultiplet Gij ; A ij �k
1 (universal) hypermultiplet V; A ijk

Table 2.3: Summary of the massless spectrum of the type IIA, type IIB superstring theories
compacti�ed on Calabi-Yau three-folds. The parenthesis denotes the fact that the gauge �eld
in the supergravity multiplet, the graviphoton �eld, is actually a linear combination of the
(1+ h1;1) gauge �elds in the parenthesis. Similarly, in the case of M-theory compacti�cation,
the h1;1 vectors A �i �| split into one supergravity and ( h1;1 � 1) vector multiplet gauge �elds
upon dimensional reduction.

we see that the four-dimensional massless spectrum is given by the cohomology
classes of the internal manifold. These massless �elds, grouped in terms of the
N = 2 multiplets, is given in Table 2.3. Note that we have used the self-duality
of the C(4)

+ of type IIB theory and the fact that a two-form is dual to a scalar
�eld in four dimensions through ?4dC(2) = d� in obtaining this table.

But we are not done yet with the supersymmetry algebra. For the cases
of extended supersymmetry with N > 1, it's possible to have central exten-
sions of the above algebra. Without breaking the Lorentz invariance, namely
without incorporating extended sources, the most general form is

f QA
� ; Q

B
� g = � 2� AB P� � �

�� � 2iZ AB � �� ; [P � ; QA
� ] = [ Z; Q] = [ Z; P ] = 0 :

(2.2.22)
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By taking the charge conjugation of the above anti-commutation relation and
use the Majorana condition Q = Qy� 0 = QT C we see that the central charge
matrix is anti-symmetric,

Z AB = � Z BA :

In the case that N is even, the central charge matrix can therefore be written
as a block-diagonal form with the i -th black being

�
0 Z i

� Z i 0

�
; i = 1 ;� � � ;

1
2

N :

Suppose now that the momentum vector is timelike with massM , the anti-
commutation relation implies that the eigenvalues of the central charge matrix
satis�es

M � j Z i j ; i = 1 ;� � � ;
1
2

N : (2.2.23)

This is called the BPS (Bogomolny-Prasad-Sommer�eld) bound on the mass
respective to the charges.

Analogous to the case without central extensions, thef Q; Qg anti-commutator
gives two pairs of fermionic creation and annihilation operators for eachA 2
f 1;� � � ; N g if none of the BPS bound is saturated, just as in the massive case
in the algebra without central extensions. Now for eachi for which the BPS
bound is saturated, two pairs of fermionic creation and annihilation operators
are removed. When all of the 1

2N BPS bound are saturated there is just one
pair of fermionic creation and annihilation operators for eachA 2 f 1;� � � ; N g,
and we have the same representation of this algebra as the massless one in
the case with no central charges. To sum up, the relationship between the
BPS bound and the unbroken supersymmetry in four dimensions is that the
saturation of each BPS bound implies four preserved supersymmetry.

For example, whenN = 4 we have two BPS bounds

M � j Z1j � j Z2j : (2.2.24)

When only one of the BPS bounds are saturated, we have six fermionic creation
operators and the multiplet therefore contains 26 states. Especially each state
is annihilated by 4 of the total 16 supercharges and is therefore called 1=4-BPS.
When both of the bounds are saturated, a multiplet contains 24 states just like
in the massless case and the states are said to be 1=2-BPS for obvious reasons.

Back to the N = 2 case at hand, now there is only one BPS bound

M � j Z1j ;

and in this case the central charge is given by the graviphoton charge, namely
the gauge �eld in the supergravity multiplet.
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After discussing the massless �eld content of the type II string theory com-
pacti�ed on a Calabi-Yau, we are now ready to reduce the 10-dimensional low
energy supergravity action (1.2.3), (1.2.5) and obtain the 4-dimensional low
energy e�ective action. The resulting bosonic action for the supergravity and
vector multiplets is

16�G (4)
N L = L Eins + L scalar + L vector

L Eins = R ?4 1

L scalar = � gA �B dtA ^ ?4 d�t
�B A = 1 ;� � � ; n

L vector = �
1
2

F I ^ GI I = 0 ;� � � ; n ; (2.2.25)

where?4 denotes the Hodge dual in four dimensions andn is the number of the
vector multiplet �elds which is given in Table 2.3 in terms of the topological
data of the internal Calabi-Yau manifolds. Furthermore, GI is given by the
requirement that

F = F I 
 � I � G I 
 � I = ?10 F (2.2.26)

when the Hodge dual in the Calabi-Yau space is taken to be

?C-Y 
 = i 


?C-Y r I 
 = i r �I 
 : (2.2.27)

3 From the expression of the ten-dimensional gravity coupling constant in
terms of the string theory data (1.2.8) and following the standard Kaluza-Klein
procedure, we conclude that the four-dimensional gravity coupling constant is
given by

G(4)
N � (` (4)

P )2 �
(`sgs)2

V(s) (CY)
;

where V(s) (CY) = Vol(CY) =(`s)6 is the volume of the internal manifold in
string unit.

Not surprisingly, this action is exactly the tree-level action of N = 2, D=4
supergravity action, constructed using the superconformal tensor calculus. See
for superconformal supergravity [52, 48] and [53] for the dimensional reduction.
See also, for example, [49] and references therein for more details.

Again, for completeness we will now rewrite the above action, written in the
form as in [54], in a probably more familiar form in terms of the coordinates
and prepotential.

3Using this de�nition, one also has to take the complex conjugate of the coe�cient,
?a
 = ia � 
 for example, in order to have the the bilinear

R
� ^ ?� positive de�nite.
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For the scalar part of the vector-multiplet action, using the homogeneous
property of the prepotential (2.2.11)-(2.2.12), we can show that the scalar �eld
metric (2.2.10) can be explicitly written as

gI �J = eK N IJ + e2K X �I X J

where

N IJ � 2ImFIJ ; X I � X J N IJ

satis�es

X � �X � X I �X I = �X I X I = � e�K :

Notice that this metric given in terms of the projective coordinates X I has

one degenerate direction, namelygI �J X I X
�J

= 0. The reader should remember
that this indeed has to be the case, because the moduli space is really only
parametrized by the n-scalars tA and therefore we have to project out the
unphysical direction corresponding to rescaling 
 ! � 
.

Put the above equations together, given a prepotentialF (X ), the scalar
action is

L scalar =
1
2

�
N IJ

X � X
+

X �I X J

(X � X )2

�
dX I ^ ?4dX

�J
:

As for the vector part of the action, de�ne the \coupling matrix" N IJ such
that

FI = N IJ X J

r �K F �I = N IJ r �K X
�J

; (2.2.28)

which is solved to be

N IJ = F IJ + i
X I X J

X � X
with X � X = X I X I .

Using its property (2.2.28), the Hodge star relation can be written in terms
of coupling matrix N IJ as

?C-Y (� I � N IJ � J ) = i (� I � N IJ � J ) :

Now it's straightforward to solve the self-duality condition (2.2.26) and rewrite
the vector part of the action as

L vector =
1
2

�
ReN IJ F I ^ F J + Im N IJ F I ^ ?4F J �

=
1
2

�
N F + ^ F + + N F � ^ F � �

;
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where we have split the �eld strength into the self-fual and the anti-self dual
part

?4F � = � iF � ;

and the reality of the �eld strength implies F � = ( F + ) � .
We will not discuss the hypermultiplet part of the action since we will not

need it later. Let's just remark that it decouples from the supergravity mul-
tiplet and vector multiplet part of the action discussed above, in the sense
that the hypermultiplet action, including the coupling constants of it, only
depends on hypermultiplet �elds. Furthermore, the scalar manifold of the hy-
permultiplet action is not special K•ahler but the so-called quaternionic K•ahler
manifold. The relationship between the scalar manifold of the vector- and the
hyper-multiplet sectors as predicted by mirror symmetry has to be seen by
further compactifying down to three dimensions, using the so-called c-map.

Five-dimensional Supergravity

We have just discussed the four-dimensional low-energy e�ective action of type
II string theory compacti�ed on Calabi-Yau three-folds, obtained by com-
pactifying the ten-dimensional type IIA and IIB supergravity theories to four
dimensions. We can also consider the �ve-dimensional low energy e�ective ac-
tion of M-theory compacti�ed on Calabi-Yau manifold. This can be done by
Kaluza-Klein reduce the eleven-dimensional supergravity action (1.2.1) to �ve
dimensions, since the eleven-dimensional supergravity is supposed to be the
low-energy description of M-theory. Not surprisingly, the result is the same as
the action of the N = 1, d=5 supergravity [55].

First let's look at the massless spectrum of the theory. Again splitting the
eleven-dimensional spacetime indices into the internal ones (i; j; �{; �| ) and the
�ve-dimensional ones (�; � ), we get the �ve-dimensional spectrum as recorded
in Table 2.3. Note that the scalar �elds � a are now real instead of complex,
since there is no B-�eld in M-theory. More speci�cally, the h1;1 scalars given
by the K•ahler moduli

J = J A � A ; � A 2 H 1;1(X; Z)

is now divided into the volume factor V = 1
3!DABC J A J B J C and (h1;1 � 1)

scalars� a ; a = 1 ;� � � ; h1;1 � 1, which are coordinates of the co-dimension one
hypersurface inside the K•ahler moduli space satisfyingV(� ) = 1. The former
goes in the (universal) hypermultiplet while the latter make up the (h1;1 � 1)
real scalars of the (h1;1 � 1) vector multiplets of the theory. In particular, since
the hypermultiplet part of the action decouples from the rest, the volume of
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Calabi-Yau space in eleven-dimensional Planck unit plays no important role
in the physical solution.

The vector and supergravity multiplets part of the bosonic action is [56]

16�G (5)
N L = L Eins + L scalar + L vector + L C-S

L Eins = R ?5 1

L scalar = � hab d� a ^ ?5 d� b a; b= 1 ;� � � ; h1;1 � 1

L vector = �
1
2

aAB F A ^ ?5F B A; B = 1 ;� � � ; h1;1

L C-S =
1
3!

DABC AA ^ F B ^ F C ; (2.2.29)

where?5 denotes the Hodge dual in �ve dimensions. To understand the scalar
metric hab and the gauge couplingaAB , let's consider the natural metric on
the J A -space

gAB =
@

@JA
@

@JB
K =

Z

CY
� A ^ ?� B ; (2.2.30)

where K is again given by (2.2.16):

e�K =
4
3

Z
J ^ J ^ J = 8V(J ) :

Then hab and aAB are given by, up to a convention-dependent coe�cient, the
induced metric on the hypersurfaceV = 1 and the restriction of gAB on the
same hypersurface respectively.

4D-5D Connection

As we discussed in the previous chapter, M-theory compacti�ed on a circle is
dual to type IIA string theory. Taking the low-energy limit on both sides com-
pacti�ed on a Calabi-Yau manifold, it implies that a solution in the above �ve-
dimensional supergravity theory gives rise to a solution in the four-dimensional
supergravity theory when reduced on a circle. Of course, the above statement
can also be understood just using the usual Kaluza-Klein reduction of the
�ve-dimensional supergravity theory without reference to string or M-theory.
Speci�cally, a four-dimensional solution can be \lifted" to a �ve-dimensional
solution with a U(1) symmetry, with the presence of this U(1) isometry assur-
ing the absence of higher Kaluza-Klein modes. To see how it works, let's do
some dimensional analysis �rst.

Recall the relation between the string length, the eleven-dimensional Planck
length and the radius of the M-theory circle (1.2.9), and the usual Kaluza-Klein
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relation

` (5)
P �

` (11)
P

(V(M) )1=3
; ` (4)

P �
` (10)

P

(V(s) )1=2
;

and the expression of the ten-dimensional Planck length (1.2.8). From the
above relations together with the fact that

V(s) (` s)6 = V(M) (` (11)
P )6 ; (2.2.31)

where V(s) and V(M) are the Calabi-Yau volume in string and M-theory units
respectively, we conclude that

RM � (V(s) )1=3 ` (5)
P ; ` (5)

P � (V(s) )1=6 ` (4)
P ; (2.2.32)

with the volume V denotes the volume at the spatial in�nity.
Being careful with the coe�cients not listed above, this suggests that a

four-dimensional solution ds2
4D , AA

4D , , A0
4D , tA gives a �ve-dimension solution

ds2
5D = 2 2=3V2=3 (d � A0

4D )2 + 2 � 1=3V� 1=3ds2
4D

AA
5D = AA

4D + RetA (d � A0
4D )

Y A =
ImtA

V1=3
(2.2.33)

where the right-hand side of the equations are given by four-dimensional quan-
tities, for example V = V(s) . This can be checked by a careful comparison of
�ve- and four-dimensional action.

This is the so-called 4D-5D connection reported in [57, 58], see also related
earlier work [59, 60]. Very often this connection turns out to be a useful way to
generate new BPS solutions in �ve dimensions, by simply uplifting the known
four-dimensional BPS solutions. See for example the discussions in chapter 5.
Nevertheless, it should be stressed that, of course this procedure only gives
solutions with at least one U(1) isometries in �ve dimensions.

2.2.3 Range of Validity and Higher Order Corrections

It is important to consider when the low-energy e�ective action discussed above
is actually \e�ective", namely a good description of the physics occurred. In
particular, we would like to know when the classical BPS solutions give a
reliable account of the system. For this purpose there are a few scales that are
relevant, and we will discuss them beginning with type II compacti�cation.

First of all, before compacti�cation we want the D-branes not to be too
light in the ten-dimensional Planck units. In other words, we have to consider
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the correction by the creation and annihilation of virtual D-branes unless the
D-brane tension (1.3.20) in ten-dimensional Planck unit (1.2.8)

� Dp-brane (` (10)
P )1+ p � g

p� 3
4

s (2.2.34)

is large. Secondly, to suppress the four-dimensional quantum gravitational
e�ect, we need the typical length scale, the radius of curvature near the horizon
for example, to be large in the four-dimensional Planck unit. This gives a
condition on the charges

S(�) � 1

and thus require that we considerlarge charges�, since the horizon area scales
as charge squared. Thirdly, the� 0 stringy correction of the 4d Lagrangian is
controlled by the size of the internal manifold in string unit. As a consequence,
in order to suppress them we need to stay in the regime where the following
is true,

V(s) � 1 ;

namely the large radiusregime. Finally, for the suppression of the stringy e�ect
on the spacetime scale, in particular at the scale of the black hole horizon, we
cannot go all the way to the decompacti�cation limit V(s) ! 1 either. In other
words, we need the horizon to be very large in the string scale. In formulas
this means that we require

S(�) ( ` (4)
P )2

`2
s

� S(�)
g2

s

V(s)
� 1 ;

and also because going to the decompacti�cation limit means bad spectrum
contamination from the KK-modes.

After discussing the range of validity for various kinds of corrections, let's
now take a look at the nature of the corrections. As mentioned before, away
from the singularities, local supersymmetry dictates a decoupling between the
hypermultiplets Lagrangian from the rest, namely the supergravity and vector
multiplets degrees of freedom. Speci�cally, as we have seen implicitly in the
derivation of the BPS solutions, these solutions are speci�ed by the supergrav-
ity and vector multiplets degrees of freedom alone and the hypermultiplets can
have any vev in these solutions.

In both type IIA and IIB compacti�cations, the dilaton �eld sits in the uni-
versal hypermultiplet, as recorded in Table 2.3. Therefore the good news is
that we don't have to worry about gs-corrections in the supergravity and vec-
tor multiplets Lagrangian. In string theories we have to consider� 0-corrections
as well. In the compacti�cation setting, the � 0-corrections to the lower-
dimensional e�ective theory is controlled by the size of the internal manifold
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in string unit V(s) = 1
6DABC J A J B J C , which is given by the K•ahler mod-

uli. The conclusion one can draw from this fact is the non-renormalizability
property that the e�ective action of the type IIB compacti�cation is exact
in both � 0 and gs, while the e�ective action of the type IIA compacti�ca-
tion receives both the perturbative world-sheet loop � 0-corrections and the
non-perturbative world-sheet instanton � 0-corrections. This gives us the pos-
sibility to compute the type IIA higher-order in � 0-corrections employing the
mirror symmetry discussed in the last section.

There is a special family of corrections, the F-term corrections, which is
independent of the hypermultiplet �elds and is therefore relevant for the cor-
rection of black hole entropies. These are studied in [61, 62, 63]. It can be
shown that this family of corrections is computed by the topological string
theory discussed in the last section [64, 24]. In particular, as discussed above
(2.2.34), at the strong string coupling regime of type IIA string theory, which
is better described in the language of M-theory, the correction to the four-
dimensional F-term has its ten- (or eleven-) dimensional origin as the loop
integral of virtual D2-D0 bound states which are light in the large gs limit
[31, 32]. This identi�cation gives the expression of the topological strings free
energy in terms of the so-called \Gopakumar-Vafa invariants" enumerating
D2-D0 bound states as mentioned in (2.1.32).

Furthermore, the relation between the F-term correction and the topological
strings leads to a natural conjecture between black hole BPS degeneracies and
the topological strings, called the OSV conjecture [65], which in our convention
reads

ZBH (pI ; � I ) :=
X

qI

D(pI ; qI )e� �� I qI = jZ top (tA ; gtop )j2 (2.2.35)

tA =
ipA + � A

ip0 + � 0 ; gtop =
4�

ip0 + � 0 ;

where the right-hand side is the topological strings partition function de�ned
in (2.1.31). We will not go into the details about the higher-order derivatives
nor OSV conjectures, since there are already many excellent reviews in the
literature. See for example, [49, 50, 29] and references therein.
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After discussing the Calabi-Yau compacti�cation of string theories in details,
we will be brief in the K3 compacti�cation since many of the basic ideas are
fairly similar to the Calabi-Yau case. By discussing the M-theory/type II
string theory compacti�cation on K3 manifolds, we will also introduce the
toroidally compacti�ed heterotic string theories, which are related to K3 com-
pacti�ed M-theory/type II string theory by dualities.

This chapter is organized as follows. First of all, we assume some basic
knowledge about the generic topological properties ofK 3 manifolds. The
readers who are not familiar with them can resort to Appendix A. In the
�rst section we again begin with a world-sheet perspective, introducing the
(4,4) superconformal �eld theory which is relevant for describing the internal
CFT with K3 as the target space. With the knowledge that the marginal
deformation of the CFT is given by the moduli space of the target space, in
section 3.2 we derive the form of the moduli space using a spacetime viewpoint.
In section 3.3 we dimensionally reduce type II string theory onK 3 � T2 and
study the low-energy e�ective theory in four dimensions. From the form of the
charge lattice and the moduli space we motivate the existence of a toroidally
compacti�ed heterotic string theory which is dual to type II superstring on
K 3 � T2, and spell out the correspondence of conserved charges in di�erent
frames on the heterotic-IIA-M-IIB chain connected by various dualities.

3.1 (4,4) Superconformal Field Theory

As we mentioned earlier, a Calabi-Yau manifold with n complex dimensions
can be de�ned as a K•ahler manifold with SU(n) holonomy. In particu-
lar, a K3 manifold has SU(2) holonomy and is therefore also hyper-K•ahler.
By decomposing the four dimensional spinor in representations ofSO(4) =
SU(2) � SU(2), we see that the holonomy preserves 1=2 of the total thirty-

79
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two supersymmetries, as opposed to 1=4 in the case of Calabi-Yau three-folds.
From our experience with the relationship between spacetime and world-sheet
supersymmetry, it is therefore not surprising that the relevant superconformal
�eld theory now turns out to have (4 ; 4) instead of (2; 2) world-sheet super-
symmetries.

The action of the non-linear sigma model is again given by (2.1.2), sup-
plemented with the coupling to the B-�eld (2.1.4). Instead of the N = 2
superconformal algebra (2.1.1), we have now the following (small)N = 4
superconformal algebra

[L m ; L n ] = ( m � n)L m+ n +
c

12
m(m2 � 1) � m+ n;0

[J i
m ; J j

n ] = � 2i� ijk J k
m+ n +

c
3

m � m+ n;0 � ij

[L n ; J i
m ] = � m J i

m+ n

[L n ; G��
r ] = (

n
2

� r ) G��
r + n (3.1.1)

[J i
n ; G� +

r ] = � i
�� G� +

r + n ; [J i
n ; G� �

r ] = � G� �
r + n � i

��

f G� +
r ; G� �

s g = 2 � �� L r + s + ( r � s)� i
�� J i

r + s +
c
3

(r 2 �
1
4

) � r + s;0 � �� ;

where �; � = � , i = 1 ; 2; 3, � i are the Pauli matrices and the superscripts
\ �� " of the fermionic currents G�� denote the way they transform under the
R-symmetry group SU(2). Again we have two possible periodic conditions for
the fermions 8

><

>:

2r = 0 mod 2 for R sector

2r = 1 mod 2 for NS sector:

(3.1.2)

This N = 4 superconformal algebra shares some important features with
the N = 2 superconformal algebra (2.1.1). First of all, there is a natural
embedding of theN = 2 algebra into the N = 4 algebra given by

Jm ! J 3
m ; G+

r ! G++
r ; G�

r ! G+ �
r : (3.1.3)

As for the representation, a highest weight state is again de�ned by

G��
r jh; qi = J i

n jh; qi = L n jh; qi = 0 for all r; n > 0

L 0jh; qi = hjh; qi ; J 3
0 jh; qi = qjh; qi : :

As before, a special is played by the \massless representation", meaning
states which are in addition annihilated by

J +
0 ; G��

0 (3.1.4)
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for states in the R-sector and

J +
0 ; G� +

� 1=2; G+ �
� 1=2 (or J �

0 ; G++
� 1=2; G��

� 1=2 ) (3.1.5)

for states in the NS-sector, where we have de�nedJ � = 1p
2

�
J 1 � iJ 2

�
: These

are the counter-part of the R-ground states and the chiral primaries in the
N = 2 case respectively, and it can again be seen from various commutation
relations that an unitary massless representation satis�es

0 � h =
c

24
; jqj �

c
6

in the R-sector (3.1.6)

and

0 � h =
jqj
2

�
c
6

in the R-sector : (3.1.7)

Finally, there is again an automorphism of this N = 4 algebra which gen-
eralises the spectral 
ow of theN = 2 algebra (2.1.24) to

L n ! L n + �J n + � 2 c
6

� n;0

J 3
n ! J 3

n + �
c
3

� n;0 ; J �
n ! J �

n� 2� (3.1.8)

G� +
r ! G� +

r � � ; G��
r ! G��

r � � :

This in particular implies that the elliptic genus has again the theta-function
decomposition as in (2.1.38).

There are of course also di�erences between theN = 4 and N = 2 non-
linear sigma models. One important distinction is that, unlike the case for
the Calabi-Yau three-folds, the Ricci 
at metric is now an exact solution but
not just in the leading order of � 0, due to the non-renormalisation theorem
brought to us by higher supersymmetries. In theN = 4 case there is again a
notion of mirror symmetry, but since now the complex structure and K•ahler
moduli are in the same cohomologyH 1;1(X; R), the discussion of the mirror
symmetry becomes more involved and we will not include it in the present
thesis. See [66] for some discussions ofN = 4 superconformal algebras and
[67, 68] for its representations relevant in the present context.

3.2 Moduli Space of K3

Two major di�erences between the moduli space of Calabi-Yau two-and three-
folds are that for the K3 case, �rst of all there is no clear separation between
the complex and K•ahler moduli space; now both of them are in the same
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cohomology classH 1;1(S;R). Secondly, as we have mentioned before, a K3
manifold is not only K•ahler but also hyper-K•ahler, which means it has not
only one complex structure but a whole S2 of possible complex structures,
rotated to each other by elements ofSU(2).

Keeping these facts in mind, a simple counting gives the dimension of the
moduli space of the non-linear sigma model:

dim M � = dim H 1;1(S;Z) + 2 dim H 1;1(S;Z) + dim H 2(S;Z) � 2 = 80 ;

where the �rst three terms account for the moduli space for the K•ahler mod-
uli, the complex structure moduli, and the B-�eld respectively, and the 2 is
subtracted to account for the fact that each metric comes with a sphere of
complex structures.

To see the structure of this 80-dimensional moduli space, let's �rst concen-
trate on the complex structure and K•ahler moduli. From

Z

S
J ^ J;

Z

S

 ^ 
 > 0

Z

S

 ^ 
 =

Z

S
J ^ 
 = 0 ;

whereJ is the K•ahler form and 
 = 
 1 + i 
 2 is the complex structure, we see
that J , 
 1 and 
 2 are three vectors that are all mutually perpendicular, with
respect to the bilinear (A.0.18) on the spaceH 2� (S;R) �= R4;20 (A.0.21)

(�; � ) =
Z

S
� ^ � (3.2.1)

and that are all spacelike. In other words, J , 
 1 and 
 2 de�nes a three-
dimensional plane insideH 2(S;R) �= R3;19. Furthermore, a rotation of the
three vectors corresponds to a rotation of theS2 possibilities of complex struc-
tures and therefore does not correspond to a change in the geometry. In other
words, the complex structure and K•ahler moduli space of K3 is locally a Grass-
mannian times the positive half of a real line representing the volumeV of the
K3. Globally, the moduli space is

O(� 3;19)nO(3; 19; R)=
�
O(3; R) � O(9; R)

�
� R+ ;

where O(� 3;19) is the automophism group of the lattice � 3;19.
Now we want to incorporate the moduli space for the B-�eld, which is not

considered in the above discussion. Given a choice of B-�eld two-form and the
volume V , de�ne a map � : H 2(S;R) �= R3;19 ! H 2� (S;R) �= R4;20 and an
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additional vector � 4 by

� (� ) = � � (B; � )� 0

� 4 = � 0 + B +
�
V �

1
2

(B; B )
�

� 0 ;

where � 0; � 0 are the dual basis forH 0(S;Z); H 4(S;Z) introduced in (A.0.21).
It can be checked easily that� 4 is perpendicular to all � (� ) with � 2 H 2(S;R)
and that � (J ), � (
 1), � (
 2) are again three mutually perpendicular space-
like vectors, but now in the larger spaceR4;20. Furthermore, the spacelike
four-dimensional plane spanned by� (J ), � (
 1), � (
 2) and � 4 contains the
same information as the three-dimensional plane spanned byJ; 
 1; 
 2, when
a choice ofB; V and � 0 is given. On the other hand, the B-�eld moduli can
be thought of as the moduli of embeddingR3;19 �= H 2(S;R) into the larger
spaceR4;20 �= H 2 � (S;R).

Let's now consider an integral shift of the B-�eld

B ! B + � ; � 2 H 2(S;Z);

which must be a symmetry of the theory. Equivalently, it can be seen as a
change in the choice of� 0

� 0 7! � 0 + � �
(�; � )

2
� 0

together with the following shift of the two-form

� 7! � � (�; � )� 0 :

In other words, when the B-�elds are incorporated, the symmetry group in-
volves the whole automorphism group of the larger latticeH 2� (S;Z) �= � 4;20.
Putting the above together, we then conclude that the moduli space of the
K 3 non-linear sigma model given by a Grassmannian as

M � = O(� 4;20)nO(4; 20; R)=
�
O(4; R) � O(20; R)

�
: (3.2.2)

See [69, 70, 71] and references therein for discussions about the above moduli
space.

3.3 Four-Dimensional Theories and Heterotic String Du-
alities

As mentioned before, the SU(2) holonomy of K3 leads to the breaking of
half of the supersymmetries. At the low energy limit, type II string theories
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compacti�ed on a K3 manifold therefore yield six-dimensional supergravity
theories with sixteen supercharges. However, we will be interested in four-
dimensional theories instead of six-dimensional ones.

For concreteness, we will begin with considering type IIA string theory com-
pacti�ed on the internal manifold K 3� T2 down to four dimensions. The torus
has trivial holonomy and thus does not break supersymmetry any further. The
four-dimensional theory has nowN = 4 supersymmetry and we anticipate to
obtain some N = 4, d=4 supergravity theory at low energy. We will there-
fore begin this section by discussing the generalities of theseN = 4 ; d = 4
supergravity theories.

3.3.1 N = 4; d = 4 Supergravity

There are two kinds of supermultiplets relevant in N = 4 ; d = 4 supergrav-
ity theories, namely the supergravity and the matter multiplets. From their
bosonic �eld contents we then expect the bosonic �eld content of our low
energy e�ective action to be

�
g�� ; Am=1 ;��� ;6

� ; �
�

and n �
�
A � ; � m=1 ;��� ;6�

;

where � is a complex scalar andm is an SU(4) = SO(6) R-symmetry index.
Furthermore, the 2 and 6n scalars parametrise the scalar manifold [72]

SL(2)
U(1)

�
SO(6; n)

SO(6) � SO(n)
:

To study the supergravity theory obtained by the IIA/ K 3 � T2 compacti�-
cation, �rst we would like to determine the number of matter multiplets in the
theory. We will do this by counting the number of scalars by dimensionally
reducing the massless �elds of type IIA string theory (Table 1.1) using the
harmonic forms of the internal manifold. The result is

80 g; B on K 3
4 g; B on T2

2 C(1)

44 C(3)

2 C(3) to spatial one-forms and dualize to scalars
2 � ; B �� (axion-dilaton)

134 = 2 + 6 � 22 ;
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which implies in this casen = 22, namely that the massless �eld content of the
four-dimensional theory is oneN = 4 supergravity multiplet together with 22
matter multiplets.

One can easily check that there are 28 vector �elds upon compacti�cation,
which again decompose into a supergravity multiplet together with 22 matter
multiplets. With respect to these vector �elds, there are 28 electric and 28
magnetic conserved charges, forming a charge lattice

�
P
Q

�
2 � 6;22 � � 6;22 : (3.3.1)

The Grassmannian part of the scalar manifold

SO(6; 22)
SO(6) � SO(22)

can be thought of as the moduli space of di�erent ways to separate the above
charges into the \left-moving" and \right-moving" parts, such that

P2
L � P2

R = P2 (3.3.2)

and similarly for the electric charges. Explicitly, we can therefore parametrise
this part of the moduli space by a 28� 6 matrix � m=1 ;��� ;6

a=1 ;��� ;28, such that

Pm
L = � m

a Pa (3.3.3)

and similarly for the Q's. Notice that � is only de�ned up to rotations which
leave all P2

L invariant.
For a very simple example of a moduli space which is a Grassmannian, let's

consider string theory compacti�ed on a circle with radius R and consider the
states with winding number w and momentum k along the circle. Then the
left- and right-charges are

PL = k=R + wR

PR = k=R � wR ; P 2
L � P2

R = P2 = 4kw :

Notice that P2
L � P2

R does not depend on the radiusR while both PL and PR

do.
The GrassmannianSO(1; 1; R) is an one-dimensional space parametrised by

a real number � as
�

PL

PR

�
=

�
cosh� sinh �
sinh � cosh�

� �
k + w
k � w

�
: (3.3.4)



86 3. K3 Compacti�cation

Then we see that the modulus of the compacti�cation circle, in this case the
radius R, is related to � by

cosh� =
1
2

(R +
1
R

) ; sinh � = �
1
2

(R �
1
R

) : (3.3.5)

Finally let's turn to the �rst factor of the scalar manifold

SL(2)
U(1)

�= H 1 : (3.3.6)

As discussed in section (1.3.5), this is nothing but the upper half-plane and
we will parametrise it by � 2 C; Im� > 0 as in (1.3.41).

In our present setting of IIA/ K 3� T2 compacti�cation, this complex scalar
� is the complexi�ed K•ahler moduli of the torus. As we will see in the follow-
ing subsection, it becomes the complex structure moduli in the IIB/K 3 � T2

compacti�cation and the axion-dilaton moduli in the heterotic/ T6 compacti-
�cation, when we apply a chain of dualities.

In terms of these scalars (�; � ) and the conserved charges (P; Q), we can
now write down the solutions to this supergravity theory. We will leave the
details for the Part V of the thesis.

3.3.2 Heterotic String Dualities

In the previous subsection we have seen that the low-energy supergravity the-
ory obtained from compactifying type IIA string theory on K 3 � T2, has a
scalar manifold which contains the GrassmannianSO(6; 22)=SO(6) � SO(22).
This is exactly how the moduli space of a conformal �eld theory compacti�ed
on a � 6;22 lattice looks like locally. Notice that there is one unique (up to
isomorphism) lattice of this signature (or any � � + ;� �

with � � � � + = 0 mod
8) which is even self-dual , or sometimes called unimodular. And an even,
self-dual lattice is exactly the kind of lattice required for the one-loop mod-
ular invariance of the conformal �eld theory. Including four free bosons on
both sides corresponding to the four non-compact dimensions, this putative
conformal �eld theory should have (10; 26) bosons on the left- and right- mov-
ing sector respectively. Notice that they are the critical dimensions, namely
the required number of free bosons in order to have total central charge zero
with the ghosts included, for N = 1 and N = 0 world-sheet supersymmetry
respectively. We therefore conclude that only the left-moving sector of this
putative conformal �eld theory has world-sheet supersymmetry. Such confor-
mal �eld theories are called heterotic string theories. One way of interpreting
such a conformal �eld theory geometrically is to say that it has ten spacetime
dimensions and the rest of the 16 right-moving bosons are always compacti�ed
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on an internal sixteen dimensional even self-dual lattice. In this language, the
observation is that the massless �elds of type IIA string theory compacti�ed
on K 3� T2 is the same as that of heterotic string compacti�ed onT6. In more
details, one can see from matching the low-energy supergravity theory that the
complex scalar� in the supergravity multiplet is now the axion-dilaton �eld
of heterotic string, and the 28 vectors are the 16 gauge bosons present in the
massless spectrum of the heterotic string theory and the other 12 coming from
compactifying the metric and the B-�eld on the six-torus.

This motivates the conjecture of the following string duality [73, 74]

IIA =K 3 � T2 is dual to heterotic=T6 :

The U-duality group of the theory is conjectured to be

SL(2; Z) � SO(6; 22; Z) ;

where the presence of the �rst factor can be seen from the presence of the
modular group of T2 in the type IIA picture, which then translates into the
S-duality (strong-weak-coupling duality) of the heterotic string. This is very
reminiscent of the interpretation of the S-duality group of type IIB string
theory as the torus modular group in the type M-theory as we saw in section
1.3.5. This group acts on the charges and moduli as

�
P
Q

�
!

�
a b
c d

� �
P
Q

�
; � !

a� + b
c� + d

;
�

a b
c d

�
2 PSL(2; Z)

(3.3.7)
while leaving the Grassmannian moduli� invariant.

The second group, on the other hand, is nothing but the T-duality group of
the � 6;22 compacti�cation of the heterotic string, or equivalently the automor-
phism group of the charge lattice � 6;22. In particular, this group rotates the
electric and magnetic charges separately and does not create a mix between
them. For convenience we will refer to them in the heterotic language as the
S- and the T-duality group respectively in the future.

Of course, one can combine the dualities between M- and type IIA, IIB
string theories discussed earlier in section 1.3.1 and 1.3.5 with the above new
IIA-heterotic dualities and thereby construct a new web of dualities: [73, 74]

IIA =K 3 � T2 � IIB =K 3 � T2 � M-theory=K 3 � T2 � S1 � heterotic=T6 :

For later reference we will now write down the charged objects giving the
charges

� P
Q

�
2 � 6;22 � � 6;22 in the above di�erent duality frames. Seperating

the charge lattice into four parts

� 6;22 �= � 3;19 � � 1;1 � � 1;1 � � 1;1 �= H 2(K 3; Z) � � 1;1 � � 1;1 � � 1;1 (3.3.8)



88 3. K3 Compacti�cation

magnetic and electric charges (P,Q) 2 � 6;22 � � 6;22

het/ IIA/ M-th/ IIB/
S 1

(2) � S 1
(3) � S 1

(4) � T 3 S 1
(2) � S 1

(3) � K 3 S 1
(1) � S 1

(2) � S 1
(3) � K 3 S 1

(1) � S 1
(3) � K 3

� 1;1 p(4) D0 p(1) F1(1)
F1(4) D4 (K3) M5(1,K3) NS5(1,K3)

� 1;1 p(2) p(2) p(2) D1(1)
F1(2) NS5(2,K3) M5(2,K3) D5(1,K3)

� 1;1 p(3) p(3) p(3) p(3)
F1(3) NS5 (3,K3) M5(3,K3) KKM( 1̂)

� 3;19 qA D2(� A ) M2( � A ) D3(1; � A )

� 1;1 NS5(̂4) D2(2,3) M2(2,3) F1(3)
KKM( 4̂) D6 (2,3,K3) TN(2,3,K3) NS5(3,K3)

� 1;1 NS5(̂2) F1(3) M2(1,3) D1(3)
KKM( 2̂) KKM( 2̂) KKM( 2̂) D5(3,K3)

� 1;1 NS5(̂3) F1(2) M2(1,2) p(1)
KKM( 3̂) KKM( 3̂) KKM( 3̂) KKM( 3̂)

� 3;19 pA D4(2; 3; CAB � B ) M5(1; 2; 3; CAB � B ) D3(3; CAB � B )

Table 3.1: A chain of dualities relating the charged objects in the di�erent N = 4 ; d = 4
string theories, where � A 's are a basis of the twenty-two dimensional lattice H 2(K 3; Z) �=
� 3;19 with the bilinear given by CAB =

R
K 3 � A ^ � B .

with respective bilinear form given by CAB =
R

K 3 � A ^ � B ; A; B = 1 ;� � � ; 22
and U =

�
1 0
0 1

�
(A.0.20), and using the duality relations between charged

objects summarised Table 1.3 and Table 1.4, we obtain the following Table 3.1
of charged objects of the theory (3.3.8) in its di�erent frames.

Since di�erent duality frames gives di�erent perspectives in counting states,
we will use this table extensively when we later derive the microscopic degen-
eracies of BPS states of this theory.
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Multi-Holes and Bubbling
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This part of the thesis contains two chapters.
In chapter 4 we �rst discuss various important properties, including the at-

tractor mechanism and the presence of walls of marginal stability for multi-hole
solutions, of the supersymmetric solutions of theN = 2, D=4 supergravity
theories discussed earlier in section 2.2.2. Later in section 4.4 we explicitly
work out the details of these solutions using a type IIA compacti�cation lan-
guage.

After we have introduced the necessary background, in chapter 5 we move on
to discussing properties of the lift of these solutions to �ve-dimensions using
the ideas discussed in section 2.2.2. In particular we will study closely the
case in which the M-theory limit is taken. Finally we focus on speci�c choice
of charges such that the �ve-dimensional solution is smooth and horizonless.
This chapter is based on the results reported in publication [75].





4 Black Holes and Multi-Holes

In section 2.2.2 we have introduced thed = 4, N = 2 supergravity theory as
the low-energy e�ective theory of type II compacti�cation, together with the
four-dimensional supersymmetric algebra and the concept of BPS states. In
this section we will discuss the BPS solutions of this supergravity theory. In
particular we will focus on stationary solutions, including the supersymmetric
black hole and multi-hole solutions. As we will see, these solutions exhibit
very interesting properties, which constitute part of the motivations for the
research presented in the present thesis. Among them are the black hole
attractor mechanism and the phenomenon of walls of marginal stability for
multi-hole solutions.

This chapter is organised as follows. In the �rst section we present the
generic stationary BPS solutions in a symplectic-invariant formulation. In
the second section we discuss the attractor mechanism for solutions with a
single black hole. In section three we focus on multi-hole solutions which
contain multiple black holes, and summarise their angular momentum, moduli
dependence and other existence criteria. In section four, we �rst unwrap the
equations in the previous sections and rewrite them in components given a
basis of the symplectic bundle, so that we obtain the set of equations ready to
be used in actual calculations. After that, we specialise in the type IIA setup
and present the explicit solutions in details, which will be needed for the next
chapter.

4.1 General Stationary Solutions

Here we are mainly interested in the stationary solutions of theN = 2, D=4
supergravity theories described in section 2.2.2, satisfying the BPS bound and
preserving some supersymmetries. Using the stationary and 
at base space

93
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Ansatz

ds2 = �
�

S(~x)
(dt + ! )2 +

S(~x)
�

dxi dxi ; (4.1.1)

where S : R3 ! R+ is a positive-de�nite function and ! = ! i ; dxi is a spatial
one-form. The supergravity and vector multiplet part of the action (2.2.25) can
be written in a not manifestly spacetime covariant but manifestly symplectic
invariant form [54]

� 16�G (4)
N L = ( G; G) � 4

r
�
S

(Q+ d� +
�

2S
?d! ) ^hG; Im( e� i� 
 )i + tot. der. :

(4.1.2)
This action in a very concise form takes some explanation. First of all, the
? without any subscript refers to the Hodge star with respect to the three-
dimensional 
at metric of the base space,d refers to the derivative in R3, and
� : R3 ! R is at this point an arbitrary function. Also recall that 
 is the
normalised version of the section of the symplectic bundleE times the line
bundle L de�ned in (2.2.4) as


 =



p
ih
 ; �
 i

= eK =2 
 ; (4.1.3)

and Q is the connection one-form (2.2.7) for it.
Finally, G is a spatial two-form taking value in the symplectic bundle E over

R3. Especially it is a spatial two-form times an element ofH 3(Y ) in the type
IIB and a spatial two-form times an element of H 2� (X ) in the type IIA setup.
It is given by the spatial part F of the �eld strength F in ten dimensions
(2.2.26) as

G = F � 2

r
S
�

Im ? D (e� i� 
 ) + 2

r
�
S

ReD (e� i� 
 ! ) ;

where
D = d + i

�
Q + d� +

�
2S

? d!
�

and the spatial three-form (G; G) is de�ned as

(G; G) =
�
S

1

1 � � 2

S2 ! 2

Z

C-Y
G ^ ?G �

� 2

S2 (G ^ ! ) ^ ?(G ^ ! ) +
�
S

G ^ ?(! ^ ?G) :

Finally we remark that, to justify the metric Ansatz (4.1.1) one should
actually treat the above action (4.1.2) as an e�ective action that has to be
supplemented by a constraint [76].
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From the form of the e�ective action (4.1.2) we see that a local minimum
of the action is given by

Q + d� +
�

2S
? d! = G = 0 ; (4.1.4)

which leads to the following solution of the metric, the scalars and the gauge
�elds in terms of a set of harmonic functions , namelyH : R3 ! H 3(X; R) for
type IIB and H : R3 ! H 2� (X; R) for type IIA compacti�cations:

2

r
S
�

Im( e� i� 
 ) = � H (4.1.5)

d! = ?hdH; H i (4.1.6)

A = 2

r
�
S

Re(e� i� 
 ) (dt + ! ) + A d (4.1.7)

where the Dirac part of the gauge �eld is given by

dA d = ?dH : (4.1.8)

The Dirac part of the gauge �eld is easy to solve since the equation is linear
and we have already seen the solution to the single-monopole case in our
construction of the Taub-NUT space (1.3.10). In what follows we will therefore
refer to this part of the gauge �elds simply as A d and focus on other more
complicated parts of them.

By imposing the condition that metric approaches that of a 
at Minkowski
space with the usual normalisation and that

R
S2

( i )
F = � i around a point source

of charge � i , we see that the harmonic functions are given by the charges and
the asymptotic moduli as

H =
X

i

� i

r i
+ h =

X

i

� i

j~x � ~xi j
� 2Im(e� i� 
 )j1 ; (4.1.9)

where ~xi is location of the i -th center in the 
at 3d base and \ 1 " denotes
that the expression should be evaluated at spatial in�nity. In other words,
the constant term in the harmonic function is determined in terms of the
asymptotic moduli and the total charges of the solution.

Recalling that the central charge function is de�ned as (2.2.5)

Z (�; 
 ) = h� ; 
 i (4.1.10)

for � is a combination of three- (even-) forms in the type IIB (IIA) language.
From the form of (4.1.5) we now de�ne

Z (�) = Z (�; 
 � (�))
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with 
 � (�), the so-called attractor moduli, satisfying the equation

2

r
S(�)

�
Im( e� i� 
 � (�)) = � � :

Contracting (4.1.5) with h; 
 i we then get

Z (H (~x)) = ei� (~x)

r
S(H (~x))

�
; (4.1.11)

and from the boundary condition, in particular the correct fall-o� of the an-
gular momentum one-form ! , we conclude that

ei� j1 =
Z (�; 
 1 )
jZ (�; 
 1 )j

: (4.1.12)

Furthermore, from 4:1:11 one can see that the solution saturates the BPS
bound

M = jZ (�; 
 )j1

where � =
P

i � i is the total charge, and therefore preserves four unbroken
supersymmetry.

Our exposition here is similar to that in [54]. See also [77] for another
construction of these stationary solutions, with R2 corrections included.

4.2 Extremal Black Holes and Attractor Mechanism

In this section we will focus on the static black hole solutions. Especially we
will discuss an important property of them, namely the attraction mechanism
for the scalar �elds of the theory, in more details.

Using (4.1.11) one can now write (4.1.5) as

� 2Im( �Z (H )
 � (H )) = H : (4.2.1)

It's then obvious that the solution of scalar �elds is invariant under a rescaling
of the harmonic functions, namely


 � (�H ) = 
 � (H ) 8 � 2 R :

Especially, considering now a solution with only one center and with arbitrary
asymptotic moduli 
 j1

H =
�
r

� 2Im(e� i� 
 )j1 :
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In this case we see that the solution is spherically symmetric and static with
! = 0. From the fact that

jZ (H (~x)) j2 =
S(H (~x))

�
= �

1
g00

! 1 as r ! 0

we also conclude that there is an event horizon at the centerr = 0. Further-
more one can read out the area of the spherical horizon, which is

A = 4S(�) : (4.2.2)

Therefore S(�) = A
4 = � jZ (�) j2 is the macroscopic Bekenstein-Hawking en-

tropy of this extremal black hole, a fact that justi�es our choice of notation.
For the thermodynamical properties of extremal black holes and the semi-
classical analysis of them, see for example [78] and references therein.

Near the center r ! 0, the equation for the moduli 
 (4.2.1) gives

� 2Im( �Z (�) 
 � (�)) = � : (4.2.3)

The magic of the above equation is, no matter what the asymptotic mod-
uli 
 j1 is, near the center of a black hole the moduli is always �xed to be
at the \attractor point" or \attractor value" given by the above equation

 jr ! 0= 
 � (�). This is the so-called attractor mechanism for a single black
hole solution and (4.2.3) is called the attractor or the stabilisation equation
[79].

To understand the attractor mechanism better, it's illuminating to look at
the so-called attractor 
ow equation, which is obtained by taking the derivative
of (4.1.5). Using the covariant derivative (2.2.7) we get

dH =

r
S
�

f [Q + d� +
i
2

d log(
S
�

)] e� i� 
 + ie� i� D
 + c.c.g

Contracting the above equation with DA 
, and writing D
 = dzB DB 
 and
using the K•ahler metric (2.2.10), we get

@zA

@r
= ei� 1

r 2

r
�
S

gA �B �D �B
�Z :

From this we see that the phase of the central charge is constant along the
radial evolution, and the radial evolution of the central chargeZ (�; 
 ) is given
by

@jZ j
@r

=
1

2jZ j

� �Z Dr Z + c.c.
�

=
1
r 2

r
�
S

jDZ j2 � 0
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Figure 4.1: The magnitude of the central charge jZ (� ; � )j in K3 � T 2 compacti�cation as
a function of the torus modulus � , with the rest of the moduli already �xed at the attractor
point. The contour lines are the constant jZ (� ; � )j line and the function has a unique
minimum at the attractor value � � .

wherejDZ j2 = gA �B DA Z �D �B
�Z . This means that the value of the central charge

always increases when one moves further and further away from the black hole
center in the spatial directions, or from the attractor point the in the moduli
space. Furthermore, except for the point at in�nity r ! 1 , the only place
where the inequality is saturated is at the attractor point (or at the black
hole horizon in the spacetime picture), whereDZ = 0. Indeed the attractor
equation can be derived by requiring that the moduli renders the central charge
to be at a local �xed point. To see this, note that DZ = h� ; D
 i = 0 requires
that the moduli must be such that

� = a
 + a� �


for some complex numbera. Contracting the above equation with h; �
 i gives
the value of a and then gives the attractor equation (4.2.3). In particular,
for the type IIB setup the above equation has a simple geometric explanation
that the moduli adjust themselves as one approaches black hole horizon such
that the charge � 2 H 3(X; Z) 2 H 3;0(X ) � H 0;3(X ).

4.3 Properties of Multi-holes

Many qualitative new features emerge when one considers more general solu-
tions with more than one centers [54, 77, 80]. First of all, the solution will
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no longer have theSO(3) spherical symmetry and will in general no longer
be static. In other words, the rotation one-form ! , determined by (4.1.6) and
boundary condition ! ! 0 as j~xj ! 1 , will generically no longer vanish in
the interior of the spacetime. As we will see later, this can be understood
as due to the fact that, an electron and a monopole at di�erent locations in
the space create an electromagnetic �eld which induces an \intrinsic" angular
momentum of the spacetime. Furthermore, there is a integrability condition
for ! (4.1.6) [54]

d d! = d ?hdH; H i = hd ? dH; H i = 0 ; (4.3.1)

which can be regarded as the condition for the absence of closed timelike curves
(CTC's) near the line segments connecting pairs of centers. This condition
gives constraints on the possible locations of the centers and in turn constraints
on the boundary condition for the scalars for a multi-hole solution with a
certain charge distribution to exist.

In this section we will discuss the above-mentioned properties of these super-
symmetric stationary solutions with multiple centers, which will be important
in our future discussion.

4.3.1 Walls of Marginal Stability

As mentioned above, solutions with more than one center has to satisfy the
integrability condition for the rotation one-form (4.3.1).

Plugging in the expression for the harmonic function (4.1.9), one obtains
one equation for each center

X

j

h� i ; � j i
r ij

= �h � i ; hi (4.3.2)

where r ij = j~xi � ~xj j and h = � 2Im(e� i� 
 )j1 , and the sum of the equations
for all centers is trivially satis�ed

X

i

X

j

h� i ; � j i
r ij

= 0 = �
X

i

h� i ; hi : (4.3.3)

In particular, for the case with two centers there is just one integrability
condition which gives

r12 = j~x1 � ~x2j =
h� 1; � 2i

2
M

Im( Z1 �Z2)j1
(4.3.4)

where
M = jZ (�; 
 )j1 = jZ (� 1; 
 ) + Z (� 2; 
 )j1
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is the ADM mass of the solution and Z1j1 = Z (� 1; 
 )j1 . This shows that a
solution with two centers with non-zero intersection (Dirac-Zwanziger) prod-
uct h� 1; � 2i 6= 0 is really a bound state of the two centers, since their distance
cannot be adjusted freely but instead is constrained to be a certain �xed value.

Furthermore, an interesting consequence of this is that the solution only
exists in some part of the moduli space. More explicitly, from the fact that
the distance must always be a positive number, we see that the moduli space
is divided into two parts by the wall

Im( Z1 �Z2)j1 = 0 ; (4.3.5)

and it is only possible to have a solution with centers of these charges at the
side of the wall which satis�es

h� 1; � 2i Im( Z1 �Z2)j1 > 0 : (4.3.6)

We will therefore call this co-dimenional one wall (4.3.5) \the wall of marginal
stability for charge � 1 and � 2".

The presence of the wall of marginal stability can be understood in the
following way. A necessary condition for a bound state of two particles to
decay is that the mass of the bound state is the same as the sum of the mass
of each individual constituent

M = M 1 + M 2 , j Z1 + Z2j1 = jZ1j1 + jZ2j1
, Im( Z1 �Z2) = 0 ; Re(Z1 �Z2) > 0 :

From this we conclude that the condition of a physical wall of marginal stability
should be further implemented by the requirement that the two central charges
are aligned rather than anti-aligned.

After determining the location of the walls of marginal stability in the mod-
uli space, we still need to determine which side is the stable and which side is
the unstable side. We will provide a heuristic derivation of it here.

Let us consider the scenario that the asymptotic moduli are �xed at the
attractor value of the total charge 
 j1 = 
 � (� = � 1 + � 2), then the attractor
equation (4.2.3) gives

Im( Z1 �Z2)j1 = �
1
2

h� 1; � 2i when 
 j1 = 
 � (�) :

For this speci�c choice of the background moduli, we know that there ex-
ists a single black hole solution in which the background moduli is constant
throughout the whole space. In other words there is no attractor \
ow" in
this case. By arguing that this con�guration should be more energetically
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favorable than any other solution with spatial gradient of the scalar �elds, in-
cluding the two-centered solution considered above, we require that the total
attractor point must lie on the unstable side of the wall, and derive (4.3.6) as
a condition for existence of a speci�c two-centered solution.

4.3.2 Angular Momentum of the Spacetime

Another qualitatively new feature of the multi-hole solution with mutually
non-local centers (h� i ; � j i 6= 0) is that the spacetime is no longer static but
rather stationary with angular momentum. This can be seen from the expres-
sion for ! (4.1.6) and can be understood as a consequence of the fact that
there are now electrons and monopoles at di�erent points in the space and the
electromagnetic �elds therefore give contribution to the angular momentum.

Let's now solve for ! . From (4.1.6) and using the integrability constraint
one obtains

d! =
X

i;j

h� i ; � j i
2

?
�

dr � 1
i

r j
�

dr � 1
i

r ij
� (i $ j )

�
:

Recall that the star without subscripts denotes the Hodge star in three-
dimensional 
at base space. It is therefore enough to solve! pair-wise as

! =
X

i;j

1
2

! ij =
X

i<j

! ij

where

d ! ij = h� i ; � j i ?
�

dr � 1
i

r j
�

dr � 1
i

r ij
� (i $ j )

�
:

Using again the elliptic coordinates as we have used for Eguchi-Hanson
space (1.3.18) for the two centers~xi and ~xj , with now 2a = r ij , then the
above equation together with the boundary condition that ! ! 0 at spatial
in�nity gives

! ij =
h� i ; � j i

2r ij

cosh� � 1
cosh2 � � cos2 �

sin2 � d :

From the asymptotic fall-o�

! ij !
h� i ; � j i

r
sin2 � d 

we conclude that the conserved angular momentum of the spacetime is

~J =
1
4

X

i;j

h� i ; � j i
~xi � ~xj

j~xi � ~xj j
:
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Furthermore, by solving for ! without using the integrability condition, one
can show that there will in general be closed timelike curve (CTC) around the
line segment~xi � ~xj in the R3 base, and the length of the line segment such
that this does not happen is exactly the length ordained by the integrability
condition. One can therefore also interpret the integrability condition (4.3.2)
as the physical constraint of the impossibility of time machines.

4.3.3 Split Attractor Flow

In (4.1.5)-(4.1.8) we have seen how to solve for the solution given a con�gu-
ration of centers with particular charges and background moduli. In (4.3.2)
we saw that not all arbitrary con�gurations permit a solution, because the
integrability condition does not always permit a solution for any given back-
ground moduli. In fact the situation is even more subtle than that. Namely,
the satisfaction of the integrability condition alone is not su�cient to establish
the existence of a solution. This is because there is another condition that the
solution must satisfy to qualify as a physical solution, namely that the central
charge function Z (H ; 
 ) does not hit a zero anywhere in the space

S(H (~x))
�

= jZ (H ; 
 )j2 > 0 for all ~x 2 R3 : (4.3.7)

In general, this is of course a very di�cult condition to check, because it
is a non-local condition in the sense that it has to be satis�ed everywhere in
the space. In relation to this di�culty we quote here the very useful split
attractor 
ow conjecture, which states that a solution exists if and only if a
split attractor 
ow tree exists in moduli space, which starts at the asymptotic
value of the scalars and terminates at the attractor points of each constituent
back hole. See [54, 30] for more details.

4.4 In Coordinates

In the previous sections in this chapter, we have written down general sta-
tionary supersymmetric solutions of d = 4 ; N = 4 supergravity theories,
including the static single-hole solutions and the rotating multi-hole solutions.
All this was done in a symplectic-invariant formulation. In practice, when we
are working with a speci�c theory we often need to express the solutions in
components, in order to be able to directly interpret them.

In this section we will therefore take up the straightforward task of un-
wrapping the equations in previous sections and rewriting them in terms of
components using a speci�c basis for the symplectic bundle. These rewritten
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equations are then ready to be used in actual calculations. Speci�cally, we
work out in detail the solutions for the supergravity theory one gets from type
IIA compacti�cations, which will be needed in the next chapter of this part of
the thesis.

As discussed in [80], a solution can be explicitly written in terms of a single
function, called the entropy function

S(�) = � jZ (�) j2 = � jZ (�; 
 � (�)) j2 ;

where the attractor moduli 
 � (�) of charge � are given by the attractor equa-
tion (4.2.3). Given such an entropy function, the full solution basically follows
from just replacing the charge vector � with the harmonic functions H . Let's
begin with writing down the moduli, the charge, and the harmonic functions
in components. Using (2.2.4), (2.2.9) and (2.2.20)


 = eK =2 (� X I � I + FI � I )

and write the charge vector as

� = pI � I + qI � I (4.4.1)

and similarly for the harmonic functions

H (~x) = H I (~x)� I + H I (~x)� I ; (4.4.2)

we obtain the magnetic part of the attractor 
ow equations in components by
contracting (4.1.5) with h; � I i

H I = 2eK =2 Im( �ZX I ) :

Furthermore, from

1
�

@
@HI

S(H ) =
@

@HI
jZ (H )j2 = 2eK =2 Re( �ZX I )

we get the full solution for the scalar �elds

2eK =2 �ZX I (H (~x)) = iH I +
1
�

@
@HI

S

) tA (H (~x)) =
X A

X 0 =
iH A + 1

�
@

@HA
S

iH 0 + 1
�

@
@H0

S
: (4.4.3)

On the other hand, the vector �elds are given by contracting (4.1.7) with
h; � � I i

A I =
1
S

@S
@HI

(dt + ! ) � A I
d ; dAI

d = ?dH I : (4.4.4)



104 4. Black Holes and Multi-Holes

As an illustration and for later use, let's work out the entropy function for
the type IIA case (2.2.17) with


 = � eK =2 e� t :

First of all, the electric part of the attractor equation is obtained by con-
tracting (4.2.3) with h; � I i :

2eK =2 Im
�

�Z
(t2)A

2

�
= qA (4.4.5)

2eK =2 Im
�

�Z
(t3)
6

�
= � q0 ; (4.4.6)

where we have used the short hand notation (t2)A � DABC tB tC and t3 =
DABC tA tB tC . De�ne the variable yA and L by [81]

@
@q0

� S
�

� 2 = 4( p0)2L

@
@qA

� S
�

� 2 = 4p0[� yA (
y3

6
) + pA L] ; (4.4.7)

and using

2eK =2 �ZX I = ip I +
1
�

@
@qI

S ; tA =
X A

X 0 ;

the electric half of the attractor equation (4.4.5) can be written as

(y2)A = � 2qA +
(p2)A

p0

L = �
q0

2
�

p � q
2p0 +

p3

(p0)2 : (4.4.8)

Plugging them back into (4.4.7) we �nally obtain the expression for the entropy
function

S(�) = 2 �
p

p0Q3 � (p0)2 L 2 ; (4.4.9)

where Q3 = ( y3

6 )2.
This entropy function, as promised, gives now the full solution including the

scalar �elds and vector �elds

tA (H (~x)) =
�

H A

H 0 �
L

Q3=2
yA

�
+ i

S
2�

yA

H 0Q3=2
(4.4.10)

A0(H (~x)) = 2
� �

S

� 2(H 0)2L(dt + ! ) � A0
d (4.4.11)

AA (H (~x)) = 2
� �

S

� 2H 0 [� Q3=2yA + H A L](dt + ! ) � AA
d ; (4.4.12)
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where yA (H ), L (H ) and S(H ) are given by (4.4.8) and (4.4.9) but now with
the chargespI ; qI replaced by the corresponding harmonic functionsH I ; H I .

But often we will �nd the above form of the attractor equation clumsy to
use. It is easy to see that the equations (4.4.8) is not ready to be solved
when p0 = 0. More generally, from the form of the entropy function (4.4.9),
we have to worry about the warp factor of the spacetimeS(H (~x)) vanishes
near the regionH 0 ! 0, or from the scalar solution (4.4.10) we have to worry
that the Calabi-Yau decompacti�es near this region. But actually these are
just consequences of the speci�c variables (4.4.7) we have used. It is therefore
sometimes desirable to use a di�erent set of variables to write our solutions
with.

Instead of de�ning variables yA and L as in (4.4.7), we now de�ne instead
�A and ` by [75]

@
@q0

� S
�

� 2 = 4 `

@
@qA

� S
�

� 2 = 4[ �Q 3=2(pA + p0�A ) + pA `
p0 ] ; (4.4.13)

where Q3=2 is given by �A and ` to be

Q3=2 = ` + ( p0)2�

� =
q0

2
�

� � q
3

�
p�2

12
: (4.4.14)

Again we have used the shorthand notationp�2 = DABC pA �B �c.
Now the attractor equations in terms of these new variables�A and ` are

DABC pB �C = � qA �
p0

2
(�2)A

` = � (p0)2 q0

2
� p0 p � q

2
+

p3

6
; (4.4.15)

and the entropy function becomes

S(�) = 2 �
p

2�` + ( p0)2� 2 :

Especially

S(�) = 2 �

r
p3

6
q̂0 = 2 �

r
p3

6
(q0 �

1
2

D AB qA qB ) when p0 = 0 ; (4.4.16)

where D AB is the inverse ofDAB = � DABC pC .
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The full solution for the scalar and the vector �elds now reads

tA (H (~x)) = Q� 3=2f (� `� A + H 0H A � ) + i
S
2�

(H A + H 0�A )g

A0(H (~x)) = 2
� �

S

� 2`(dt + ! ) � A0
d

AA (H (~x)) = 2
� �

S

� 2[ (�Q 3=2�A � H 0H A � ](dt + ! ) � AA
d ;

where �A , Q3=2 and ` are again solutions to (4.4.15) with the chargespI ; qI

replaced by the harmonic functions H I ; H I . From the above form of the
solution we see that the region withH 0 ! 0 is not more prone to singularity
than other regions, and verify the claim we made earlier that these are better
variables to use in these situations.



5 More Bubbling Solutions

This chapter of the thesis is based on the result reported in publication [75],
in which we construct families of asymptotically 
at, smooth, horizonless so-
lutions with a large number of non-trivial two-cycles (bubbles) of N = 1
�ve-dimensional supergravity with an arbitrary number of vector multiplets.
They may or may not have the charges of a macroscopic black hole and contain
the known bubbling solutions as a sub-family. We do this by lifting various
multi-center BPS states of type IIA compacti�ed on Calabi-Yau three-folds,
discussed in detail in section 4, and taking the decompacti�cation (M-theory)
limit. We also analyse various properties of these solutions, including the
conserved charges, the shape, especially the (absence of) throat region and
closed timelike curves, and relate them to the various properties of the four-
dimensional BPS states. We �nish by brie
y commenting on their degeneracies
and their possible relations to the fuzzball proposal of Mathuret al.

5.1 Introduction

The four-dimensional multi-center BPS solutions of type II string theory com-
pacti�ed on a Calabi-Yau three-fold have been derived in [82, 54, 77, 83, 80],
and their lift to M-theory was, after the indicative work [59, 60], explicitly
written down in [57] (see also [84]). Recently, this idea of the 5d lift of 4d
multi-center solutions have contributed to the understanding of black ring en-
tropy [57, 85, 86], the relationship between the Donaldson-Thomas invariants
and topological strings [34], and the OSV conjecture [30]. Indeed, with dif-
ferent choices of charges and Calabi-Yau background moduli, one can expect
to have a large assortment of BPS solutions toN = 1 (8 supercharges) �ve-
dimensional supergravity with various di�erent properties by simply lifting
various multi-center solutions to �ve dimensions.

On the other hand, Mathur and collaborators have proposed a picture of
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black holes di�erent from the conventional one. According to this proposal,
the black hole could actually be a coarse-grained description of a large num-
ber of smooth, horizonless supergravity solutions (\microstates", \proto-black
holes") which have the same charges as that of a \real black hole". (see [87],
[88] and references therein). A question one might then ask is, do there exist
some solutions in the zoo of the lifted multi-center solutions which possess this
property? If yes, how many of them are there? And how to classify them?

To construct a solution like this via the 4d-5d connection, �rst of all in order
to have the right global feature at spatial in�nity (that it should approach
Rt � R4 but not Rt � R3 � S1), one would need to take the decompacti�cation
limit in which the M-theory circle is in�nitely large at spatial in�nity. In this
limit the �ve-dimensional description is also the only valid one. Furthermore,
for the smooth and horizonless feature we have to restrict ourselves to D6
or/and anti-D6 branes as the centers in 4D. To obtain non-trivial charges
we then turn on the world-volume 
uxes on these centers. Finally we lift
the solutions with these charges and background to �ve dimensions. In this
way we have indeed obtained a large number of asymptotically 
at, smooth
and horizonless solutions, to �ve-dimensional supergravity theories with an
arbitrary number of vector multiplets, which may have the total charge of
that of a black hole. Actually, if we restrict to the STU Calabi-Yau and
make a special Ansatz of the K•ahler moduli, we retrieve the known bubbling
solutions of [89, 90, 91].1 In a recent paper, through a more explicit study of
the above-mentioned solutions, Bena, Wang and Warner [94] have constructed
the �rst smooth horizonless solutions with charges corresponding to a BPS
three-charge black hole with a classical horizon. Indeed, to understand this
recent development has been the original motivation of the present work.

To be able to have a solution like this in the case of a general Calabi-Yau
compacti�cation further heightens the contrast between the picture of a black
hole of Mathur et al and the conventional one . Unlike the torus case, a general
Calabi-Yau with its complicated topological data is generically the biggest
origin of a large black hole entropy [95, 96]. As we have mentioned, to have
a horizonless solution lifted from four dimensions forces us to consider only
rigid centers, i.e., those without any (classical) internal degrees of freedom
associated to them. To reconcile these two pictures therefore seems to be
much more challenging in the case of a general Calabi-Yau compacti�cation.
The authors of [92] have proposed a following picture: while the system is

1 In [92] it has been observed that, if one adds a constant term to one of the harmonic
functions in the Bena-Warner et al bubbling solutions, which corresponds to de-decompactify
the extra dimension, and then reduce it, one would get a 4D multi-center solution. See also
[93] for a related discussion.
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described by a D-brane bound state at weak string coupling, it expands into
a multi-particle system when we turn on the gs and is thus described by a
multi-centered supergravity solution, and further grows into a �ve-dimensional
system when the string coupling is increased even further. While this picture
has been carefully studied and tested in the case with the total chargenot
corresponding to that of a classical black hole [97], we don't seem to have
much evidence to argue the same for the case with black hole total charges.
In other words, a priori we don't see the reason why the D-brane bound state
must open up into a multi-center con�guration instead of staying together and
form a black hole in the conventional sense, asgs is slowly turned on. To sum
up, how one would be able to reconcile the two pictures of black holes remains
mysterious.

This part of the thesis is organised as follows: in section 5.2 we repeat
some de�nitions and and collect the formulas pertaining to the type IIA com-
pacti�cation moduli space, the 4d multi-hole solutions and their lift to �ve
dimensions, as discussed in the previous part of the thesis. In section 5.3` we
construct our bubbling solutions in 3 steps. First we work out the 4d solu-
tion in the M-theory , large IIA Calabi-Yau volume limit, and lift it to �ve
dimensions. Secondly we rescale the �ve-dimensional coordinates to make it
commensurable with the �ve-dimensional Planck units. Finally we put in the
charge vectors of D6 and anti D6 with 
uxes and arrive at the �nal form of
the bubbling solutions.

In section 5.4 we analyse in full details the various properties of these so-
lutions. A large part of the analysis holds also for generic lifted multi-center
solutions in the decompacti�cation limit, and some furthermore also holds for
generic values of background moduli. Therefore, along the way we have also
derived various properties of all the lifted multi-center solutions; or to say,
the properties of various con�gurations of charged objects in type IIA string
theory in the very strong coupling limit. Speci�cally, in 5.4.1 we work out the
asymptotic metric, read o� the �ve-dimensional conserved charges, including
the electric charges of the M-theory C-�eld, and the two angular momentaJL

and JR , for generic centers. In 5.4.2 we focus on the metric part and �rst study
the condition for the absence of closed timelike curves (CTC's). Here we �nd
a map between diseases: a CTC pathology in 5D corresponds to an imaginary
metric pathology in 4D. We also analyse the possibility of having a throat-like
(i.e. AdS-looking) metric in some part of the space. We conclude, also inde-
pendent of the details of how the charges get distributed, that a multi-center
con�guration with charges not giving any black hole can never have a region
like that, at least in the regime where supergravity is to be trusted. We also
check that, for our speci�c 
uxed D6 and anti-D6 composition, the metric
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is smooth (at worst with an orbifold singularity when there are stacked D6)
and horizonless everywhere, and we do this by establishing that the metric
approaches that of a(n) (orbifolded) 
at R4 � Rt in the vicinity of each center.
In 5.4.3 we brie
y discuss the role of the large gauge transformation of the
M-theory three-form potential in our setting. We end this part of the thesis
with discussions about future directions and some more speculative discussions
about the degeneracy of \black holes" or "proto-black holes".

5.2 The Lift of Multi-Center Solutions

The lift [57] to �ve dimensions, reviewed in section 2.2.2, of the multi-center
solution described in the previous chapter, is the starting point of our con-
struction of the new bubbling solutions. In this section we will collect the
relevant de�nitions and equations regarding the N = 2, D=4 stationary BPS
solutions and their lift to �ve dimensions. In the present part of the thesis we
will describe these theories as the low-energy e�ective theories of type IIA and
M-theory compacti�ed on a Calabi-Yau manifolds, although strictly speak-
ing we do not need to know the microscopic origin of these lower-dimensional
supergravity theories.

Our basic strategy is as follows. First we recall that, using the basis (2.2.19)
of the second cohomologyH 2� (X; Z) and the symplectic product h; i on them
given by (2.2.13), in terms of the components (4.4.1) and (4.4.2), the general
multi-hole solutions in four dimensions are given by (4.1.1), (4.4.8)-(4.4.12),
or equivalently (4.4.14)-(4.4.17), with the harmonic functions given by the
charges and the asymptotic moduli as (2.2.17) and (4.1.9). Using the dictio-
nary of lifting a four-dimension solution to �ve dimensions (2.2.33), we can
then write down the corresponding �ve-dimensional solution.

Anticipating a rescaling of coordinates later when the M-theory limit is
taken, we will begin with writing the four-dimensional quantities in a boldface
font and with an explicit subscripts \(4)" whenever it is needed. Especially,
the harmonics functions are written as

H = H� � � + H� � � =
NX

i =1

� i

j~x � ~xi j
+ h (5.2.1)

h = h� � � + h� � � = � 2Im
�

(e� i� 
) j1
�

; (5.2.2)

where � j1 is the phase of the total central charge at spatial in�nity , Z (� =P
i � i )j1 =

�
ei� jZ (�) j

�
j1 (4.1.12). Using the lift dictionary (2.2.33), the met-
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ric part of the �ve-dimensional solution is given by

ds2
5d = 2 2=3(V(s) )2(d � A0

4D )2 + 2 � 1=3(V(s) ) � 1ds2
4d (5.2.3)

= � (22=3Q) � 2[ (dt + ! (4) + 2L(d + ! 0
(4) )]

2

+(2 2=3Q)[
1

H0 (d + ! 0
(4) )

2 + H0dxadxa] ; (5.2.4)

where the 4d and 5d warp factorsS(~x), Q(~x) and the 5d rotation parameter
L(~x) appearing here are functions of theR3 coordinates xa and are given by
the above harmonic functions as

S = 2 �
p

H0Q3 � (H0L)2

L = �
H0

2
�

HA HA

2H0 +
DABC HA HB HC

6(H0)2

Q3 = (
1
6

DABC yA yB yC )2

DABC yB yC = � 2HA +
DABC HB HC

H0 ; (5.2.5)

and the cross terms in the 5d metric are determined up to coordinate rede�-
nition by

d! (4) = ?3
(4) hdH; Hi

d! 0
(4) = ?3

(4) dH0 ;

where the ?3
(4) is the Hodge dual operator w.r.t. the 
at R3.

Furthermore, as discussed in the previous chapter, for the four-dimensional
solution to be physical we have to require the integrability condition (4.3.2)
and the positivity of the entropy function (4.3.7). As we will show later, in the
�ve-dimensional picture the latter condition manifests itself as the condition
of the absence of closed timelike curves.

5.3 Construct the Bubbling Solutions

After reviewing the formulae we need, now we can construct the bubbling
solutions in three steps: �rst taking the limit, second rescaling the solution,
and �nally specifying the centers.

5.3.1 M-theory Limit

First of all, in order to get an asymptotically 
at metric in 5d, it is clear that
one should take the decompacti�cation limit in which the M-theory radius
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RM goes to in�nity. From the expression of the radius in the �ve-dimensional
Planck unit (2.2.32), we see that we should take the type IIA decompacti�ca-
tion limit J (s) ! 1 , while keeping

J (M) � J (s) ` (11)
P

RM

� J (s)
� `s

RM

� 2=3

�nite.
Therefore, we will now stipulate the background moduli to be

B A j1 � bA �nite

J A(s) j1 � j A ! 1 :

In this limit the constant terms h in the harmonic functions take a especially
simple form (the general expressions can be found in Appendix B):

h0 , hA ! 0 (5.3.1)

hA ! �
p0

jp0j
(j 2)Aq

4
3 j 3

(5.3.2)

h0 !
1

jp0j
DABC pA j B j C

q
4
3 j 3

= �
pA

p0 hA : (5.3.3)

5.3.2 Rescale the Solution

It seems that we are done with the background moduli and all still left to
be done is to choose the appropriate charges and �ll them in the harmonic
functions. But there is a subtlety which is a consequence of the large (IIA)
Calabi-Yau volume limit that we are taking. One can see this already from the
expression for the constant terms in the harmonic functions (5.3.2), (5.3.3):
these remaining constants go to in�nity in this limit! Indeed, as a result, the
three-dimensional (apart from the time and the 5th dimension) part of the
metric goes to (H 0Q)j1 dxadxa ! 1 dxa dxa

j~xj at spatial in�nity, while it goes to

zero in the timelike direction: � gtt = 2 � 4=3 1
Q2 ! 0.2 This is a clear signal

that we are using a set of coordinates not appropriate for the �ve-dimensional
description.

To �nd the right coordinates, let's remind ourselves that the four-dimensional
metric is measured in the four-dimensional Planck units, while the extra warp
factor V� 1 rescale the metric to be measured in the �ve-dimensional Planck

2See the next section for detailed asymptotic analysis.



5.3 Construct the Bubbling Solutions113

length when the the solution gets lifted (see (5.2.3) ), whose ratio (2.2.32) goes
to in�nity in the present large-IIA-volume limit. Therefore, in order to obtain
a coordinate system natural in �ve dimensions, we should rescale all the coor-
dinates with a factor � � (V(s) )1=6 and accordingly the harmonic functions as
well. Let's de�ne

� �
1
2

(
4
3

j 3)1=6

xa � � xa

t �
1

2�
t

f H; L; Q; ! g �
1
�

f H; L; Q; ! (4) g

S �
1

� 2 S

One can easily check that the lifted �ve-dimensional metric (5.2.4) can be
written in the above rescaled coordinates and functions in exactly the same
form:

2� 2=3ds2
5d = � Q� 2 [dt +

!
2

+ L(d + ! 0)]2

+ Q[
1

H 0 (d + ! 0)2 + H 0dxadxa] : (5.3.4)

The only di�erence the rescaling makes to the metric is that the warp factor
Q(~x) approaches a �nite constant (= � 1) even in the decompacti�cation limit
we are working in.

Let's now pause and summarise. What we have done so far is to obtain a
large number of BPS solutions of �ve-dimensional supergravity with n-vector
multiplets, by lifting the four-dimensional solutions in the limit that the extra
direction is in�nitely large. These solutions might have singularities or/and
horizons, depending on the charges of each center and their respective lo-
cations. For later use, we will now spell out explicitly the �ve-dimensional
solutions.

The metric part of the solution is given by (5.3.4) and (4.4.8)-(4.4.9), (4.1.6)
and (4.4.4)

d! 0 = dA0
d = ?dH0 ; (5.3.5)

where ? is again the Hodge star with respect to the 
at R3 base given byxa.
The harmonic functions are given by, in their most explicit form:
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H 0(~x) =
X

i

p0
i

r i

H A (~x) =
X

i

pA
i

r i

HA (~x) =
X

i

qA;i

r i
+ hA ; hA = �

jp0j
p0

2 (j 2)A

( 4
3 j 3)2=3

(5.3.6)

H0(~x) =
X

i

q0;i

r i
+ h0 ; h0 = �

pA

p0 hA =
2

jp0j
DABC pA j B j C

( 4
3 j 3)2=3

where r i = j~x � ~xi j:

Notice that now the remaining constant terms hA , h0 are insensitive to the
rescaling of j . We can therefore as well interpret the j to be the M-theory
asymptotic K•ahler moduli j A = lim j~xj!1 J A(M ) (~x), which we keep as �nite.

Since the integrability condition (4.3.2) is going to play an important role
in the analysis in the following section, we also rewrite it as

h� i ; H i i = 0 ,
X

j

h� i ; � j i
r ij

= � hA ~pA
i ; (5.3.7)

where

H i � (H �
� i

r i
)j~x= ~xi (5.3.8)

~pA
i � pA

i � p0
i
pA

p0 ; r ij = j~xi � ~xj j : (5.3.9)

Notice that the right hand side of (5.3.7) would in general have a much more
complicated dependence on the charges of the centers, if we hadn't taken the
M-theory limit.

Now we turn to the vector multiplets. Using the 4d solution (4.4.10) and
(4.4.12), the 4d-5d dictionary (2.2.33) now gives the lifted solution

Y A =
yA

Q1=2
(5.3.10)

AA
5D = �

yA

Q3=2
(dt +

!
2

) + (
H A

H 0 �
L

Q3=2
yA )(d + ! 0) � AA

d (5.3.11)

where AA
d again denotes the Dirac monopole part of the gauge �eld

dAA
d = ?dHA : (5.3.12)
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In a form more familiar in the �ve-dimensional supergravity literature, these
solutions can be equivalently written as

2� 2=3ds2
5D = � Q� 2 e0 
 e0 + Qds2

base (5.3.13)

F A
5D = dAA

5D = � d(Q� 1Y A e0) + � A ; (5.3.14)

where

ds2
base = H 0dxadxa +

1
H 0 (d + ! 0)2 (5.3.15)

e0 = dt +
!
2

+ L(d + ! 0) (5.3.16)

� A = ?base� A = d[
H A

H 0 (d + ! 0)] � ?3dH A : (5.3.17)

For example, taking one D6 charge the base metric becomes that of the
Taub-NUT space (1.3.7). Taking two D6 charges at di�erent points the base
metric is that of the Eguchi-Hanson gravitational instanton (1.3.19).

5.3.3 Specify the 4D Charges

Now we would like to know what kind of 4d charges for the centers we should
take, in order to obtain an asymptotically 
at, smooth, horizonless solution
when lifted to �ve dimensions. We now argue that the only possibility is the
multi-center con�gurations composed of D6 and anti-D6 branes with world-
volume 
uxes turned on, and with the constraint that the total D6 brane
charge equals to� 1.3 This can be understood as the following: if we take D2
or D4 branes or their bound states with other branes, the uplift to M-theory
will have also M2, M5 brane sources and thus won't have the desired smooth
and horizonless virtue. In other words, the uplifted metric near a D2 or D4
center will not be 
at. One might also wonder about the possibility of adding
D0 branes into the picture. First of all, in contrast to the usual scenario [98],
a D0-D6 bound state doesn't exist in the large volumeJ (s) j1 ! 1 limit we
are taking, irrespective of the (�nite) value of the background B-�eld. But
one could still imagine a multi-center KK monopole-electron-antimonopole-
positron juxtaposition living in the large coupling limit. But this time the
metric near the D0 centers is not smooth; more speci�cally, the metric in the
5th direction blows up while remaining 
at in the R3 direction. In summary,
in order to get a smooth and horizonless solution, we have to restrict our
attention to D6 and anti-D6 branes with world-volume 
uxes.

3Furthermore, each center must have D6 charge � 1, if one also wants to exclude orbifold
singularities at the center. But we will keep the formulae as general as possible and do not
specify the D6 charges of each center.
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From the part of the D6 world-volume action coupling to the RR-potential
[99, 100] Z

� 7

eB + F ^ C ; C 2 H 2� (X; R) ; (5.3.18)

one sees that the world-volume 
ux induces a D4-D2-D0 charge. Speci�cally,
neglecting the B-�eld which can always be gauged into world-volume 
uxes
locally on the six brane, the charge vector of a center ofp0

i D6 and with

world-volume two-form 
ux f i
p0

i
= f A

i
p0

i
� A turned on is

� i = p0
i e

f i
p0

i = p0
i + f i +

1
2

f 2
i

p0
i

+
1
6

f 3
i

(p0
i )2 : (5.3.19)

Thus the total charge vector is4

� = p0 + pA � A + qA � A + q0� 0

=
NX

i =1

� i =
NX

i =1

p0
i +

NX

i =1

f i +
NX

i =1

1
2

f 2
i

p0
i

+
NX

i =1

1
6

f 3
i

(p0
i )2 : (5.3.20)

As mentioned earlier, we are especially interested in the casep0 = � 1, since
this condition ensures asymptotic 
atness. More speci�cally, only for the case
p0 = � 1 the metric approaches that of Rt � R4 in spatial in�nity without
identi�cation.

Simply �lling these charges into the harmonic functions in the last sub-
section gives us, as we will verify later, a metric that is asymptotically 
at,
smooth and horizonless everywhere, and may or may not have the conserved
charges of those of a classical black hole.

5.4 The Properties of the Solution

5.4.1 The Conserved Charges

4D and 5D Charges

When lifting a four-dimensional solution to �ve dimensions, the charged ob-
jects in IIA get mapped into charged objects in M-theory. The Kaluza-Klein
monopoles and electrons, namely the D6 and D0 charges, show themselves as

4 In the case of stacked D6 branes, we only turn on the Abelian 
uxes. The reason for
this restriction is that for non-Abelian F , the induced D4-D2-D0 charges are proportional
to Tr F , Tr F ^ F and Tr F ^ F ^ F respectively. In this case one can easily see that the
corresponding solution will in general develop a singularity or a horizon.
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Taub-NUT centers and the angular momentum in the �ve-dimensional solu-
tion. Especially we expectq0 � � JL . The (induced) D4 charges, as can be
seen in (5.3.14), parametrize the magnitude of the part of the �eld strength
that is self-dual in the Gibbons-Hawking base. In the type IIA language, in the
case with non-zero D4 charges, one also has non-zero B-�eld in various regions
in space. When lifted to M-theory they give a new contribution to the vector
potential and we expect those to modify the de�nition of the electric charges.
Therefore, as suggested in [58],qA; (5D ) and JL will get extra contributions
involving pA through the Chern-Simons coupling and the Poynting vectors of
the gauge �eld. An inspection of the �ve-dimensional attractor equation for a
5d black hole

S5D = 2 �
q

Q3 � J 2
L (5.4.1)

Q3 = (
y3

(5D )

6
)2 ; DABC yB

(5D )y
C
(5D ) = � 2qA; (5D ) ; (5.4.2)

and comparing it to the four-dimensional ones (5.2.5) with p0 = 1 suggests
that, when pA becomes non-zero,qA; (5D ) and JL must get an extra contribution
as

� 2qA; (5D ) ! � 2qA; (5D ) +
(p2)A

p0 (5.4.3)

JL ! JL �
pA qA

2p0 +
p3

6 (p0)2 : (5.4.4)

We will now verify this through explicit asymptotic analysis, while more
discussion related to the role ofpA charges can be found in section 5.3.

The Asymptotic Analysis

Now we would like to work out the asymptotic form of the solution. We are
interested in it for the following two reasons. First of all we would like to verify
that our metric is indeed asymptotically 
at; secondly we would like to read o�
all the conserved charges of these solutions. The following asymptotic analysis
applies to all the solutions in the form of that presented in the end of the last
section, i.e., to all the solutions of the N = 1 �ve-dimensional supergravity
obtained by lifting four-dimensional solutions in the decompacti�cation limit.
5

5Apart from the fact that we are assuming in this subsection that the sign of the total
D6 charge is positive, to avoid messy phase factors everywhere. The adaptation to the case
in which p0 < 0 is straightforward.
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Let's �rst look at the metric part. In the limit r = j~xj ! 1 we have the
various quantities in the metric approaching6

Q = 1 + O(r � 1)

H 0 =
p0

r
+ O(r � 2)

! 0 = p0 cos�d� + O(r � 1)

L =
1
r

[ (�
q0

2
�

pA qA

2p0 +
DABC pA pB pC

6(p0)2 ) +
r̂
p0 � (

NX

i;j =1

h� i ; � j i
4

(~xi � ~xj )
j~xi � ~xj j

)]

+ O(r � 2) ;

where the second term in the last equation is derived from the dipole term in
the expansion and we have used the integrability condition (5.3.7) to put it in
this form.

We have now a natural choice of coordinates of theR3 factor of the metric.
This is because the dipole term picks out a unique direction in the spatial
in�nity. Let's now choose the spherical coordinate in such a way that the
vector

~JR =
X

i;j

~J ij =
X

i;j

h� i ; � j i
4

~xi � ~xj

j~xi � ~xj j
(5.4.5)

points at the north pole. The second term inL can then be written as 1
p0

~JR �r̂ =
1
p0 JR cos� .

Finally, solving the ! equation asymptotically gives us

1
2

! =
1
r

JR sin2 �d� + O(r � 2) ; (5.4.6)

up to trivial coordinate transformations.
After a change of coordinater = � 2=4, the metric at in�nity now reads

2� 2=3ds2
5D = �f dt +

4
� 2 [p0JL (

1
p0 d + cos �d� ) + JR (d� +

1
p0 cos�d )] + O(� � 4)g2

+ p0f d� 2 +
� 2

4
[d� 2 + sin 2 �d� 2 + (

1
p0 d + cos �d� )2] + O(� � 2)g ; (5.4.7)

6One has to be a bit careful with the order of taking the two limits r ! 1 and j A ! 1 .
Here we restrict ourselves to the range 1 � r � R M

` (5)
P

! 1 , in other words, where the

spacetimes remains appearing to be �ve-dimensional. In this range one can indeed ignore
the extra constant terms h0 , hA (see Appendix B).



5.4 The Properties of the Solution 119

with

JL = �
q0

2
�

pA qA

2p0 +
DABC pA pB pC

6(p0)2 (5.4.8)

JR = j
X

i<j

h� i ; � j i
2

~xi � ~xj

j~xi � ~xj j
j (5.4.9)

being the two angular momenta, corresponding to theU(1)L exact isometry
and the U(1)R asymptotic isometry, generated by � 3

L = @ and � 3
R = @�

respectively, as the unbroken part of theSU(2)R � SU(2)L isometries (1.3.14)-
(1.3.15) .

Indeed we see that, the metric approaches that of a 
at space without
identi�cation when jp0j = 1. In that case it can be more compactly written as

2� 2=3ds2
5D = � [dt +

4
� 2 (JL � 3;L + JR � 3;R )]2

+ ( d� 2 +
� 2

4
(� 2

1;L + � 2
2;L + � 2

3;L )) + ::: (5.4.10)

= � [dt +
4
� 2 (JL � 3;L + JR � 3;R )]2 + ( d� 2 +

� 2

4
(� 2

1;R

+ � 2
2;R + � 2

3;R )) + ::: (5.4.11)

where the � 's are the usual SU(2)L and SU(2)R invariant one-forms of S3

(1.3.11)-(1.3.12).
After working out the angular momenta we now turn to the electric charges

of the 5d solutions. From the gauge �eld part of the action of N = 1 5d
supergravity (2.2.29), we see that the conserved electric charges are then given
by the Noether charge

qA(5D ) = �
16�G (5)

N

VS3

Z

S3
1

@L
@FA

=
1

VS3

Z

S3
1

aAB ?5 F B �
1
3

DABC F B ^ AC ;

where the gauge couplingaAB is given by the scalar solution by (2.2.30) and
VS3 denotes the volume of a unit 3-sphere.

We need to know the asymptotic behaviour of the vector potential and the
�eld strength in order to compute the charges. They are given by

AA
5D =

pA

p0 d �
j A

( 1
6 j 3)1=3

dt + O(� � 2) (+gauge transf.) (5.4.12)

F A
5D = � d(

yA

1
6y3

) ^ dt + O(� � 2)d� + O(� � 3)d� ^ � : (5.4.13)
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From these equations it is clear that the Chern-Simons term does not con-
tribute to the charges, and from

aAB F B
5D = �

1
2

d
� yB

y3=6

� �
@

@yB

� (y2)A

y3=6

� �
j y 3

6 =1
^ dt + :::

= �
1
2

d(y2)A ^ dt + :::

= ( qA �
(p2)A

2p0 ) (
�
2

) � 3dt ^ d�::: : (5.4.14)

we get after integration

qA(5D ) = qA �
(p2)A

2p0 : (5.4.15)

This �nishes our analysis of the conserved charges of our solutions. As
mentioned earlier, the expressions for the charges and for the the asymptotic
metric (5.4.7), (5.4.8), (5.4.9) and (5.4.15) apply to all solutions lifted from
four dimensions in the in�nite radius limit, i.e., all the solutions presented in
section 5.3.2. For the speci�c case we consider in the last section (let's focus
on the casep0 = +1), they are given simply by the D6 charge and the 
ux of
each center as

qA(5D ) = qA �
(p2)A

2p0 =
X

i

( ~f 2
i )A

2p0
i

(5.4.16)

JL =
X

i

~f 3
i

6(p0
i )2 (5.4.17)

JR = j
1
4

NX

i;j =1

p0
i p0

j

f 3
ij

6
~xi � ~xj

j~xi � ~xj j
j (5.4.18)

where

~f A
i � f A

i � p0
i (

X

j

f A
j ) (5.4.19)

f A
ij �

f A
i

p0
i

�
f A

j

p0
j

=
~f A
i

p0
i

�
~f A
j

p0
j

: (5.4.20)

As we will see later, ~f A
i has the physical interpretation as the quantity

invariant under the gauge transformation, and p0
i p0

j f A
ij has the interpretation

as the 
uxes going through the ij -th \bubble".
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5.4.2 The Shape of the Solution

After analysing the solution at in�nity, now we would like to know more about
the metric part, i.e. the shape, of these solutions. First of all we would like
to spell out the criterion that the metric is free of pathological closed timelike
curves. Having black hole physics in mind, we would also like to see if the
solution exhibits a throat (AdS-looking) behaviour in some region. These
two parts of the analysis, unless otherwise stated, apply to general solutions
presented in section 5.3.2.

There is another region of special interest here. Namely, we would like
to explicitly verify our claim that the metric, provided that the CTC-free
condition is satis�ed, is smooth and horizonless near each center. As discussed
in section 5.3.3, this property only pertains to the special charges (D6 or anti-
D6 with 
uxes) that we have chosen.

Closed Timelike Curves

Before jumping into the equations, let's �rst make a detour and look at the
four-dimensional metric (4.1.1) we started with. Apart from the integrability
condition (5.3.7), it's apparent that we also need to impose the condition

(
S(~x)
2�

)2 = H 0Q3 � (H 0)2L 2 > 0 ; (5.4.21)

in order to have an everywhere real metric in four dimensions. Indeed, in the
case this is not satis�ed, the volume of the internal Calabi-Yau goes through
a zero and things stop making sense in all ten dimensions.

A look at the 5d metric:

2� 2=3g  = (
S(~x)
2�

)2(
1

H 0Q
)2 ; (5.4.22)

makes it clear that as long as the 4D metric is real everywhere, the lifted
metric has its 5th direction always spacelike. Furthermore, from

(
S(~x)
2�

)2 = H 0Q3 � (H 0)2L 2 > 0 ) H 0Q > 0 ; (5.4.23)

it also ensures that the warp factor in front of the R3 part of the metric is
always positive, and therefore another danger for CTC is also automatically
eliminated. In more details, this is because the harmonic functions are real by
default, and it's really the Q, or rather the yA , attractor 
ow equations that
are not a priori endowed with a real solution.
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Now we can worry about the more subtle � Q� 2( !
2 )2 part of the metric.

Looking at the equation for !

d! = ?3hdH; H i ; (5.4.24)

one sees that the danger zone is the region very close to a center, since it's the
only place wheredH and H blow up. But as we will see later, the integrability
condition always guarantees that ! actually approaches zero at least as fast
as the distance to the center under inspection. We can therefore believe that
this term poses no threat. To sum up, what we �nd is

4d metric real , 5d metric no CTC : (5.4.25)

Of course, mapping one problem to the other does not really solve anything.
Indeed, at the moment the author does not know of any systematic way of
checking this condition. Especially, the integrability condition, while often
ensures the real (4d) metric condition (5.4.21) to be satis�ed near a center, is
in general not su�cient to guarantee that it is satis�ed everywhere. 7 On the
other hand, this is how it should be, since: givenN centers, the naive moduli
space of their locations grows like (R3)N , the number of distances between
them grows like N 2, but the number of integrability condition grows only like
N . Given the possibility that one can always a priori add one more pair of
centers with opposite charges while still keeping the total charge unaltered, it
seems extremely unlikely to be able to obtain a reasonable moduli space for
BPS states with a given total charge, if there are no rules of the game other
than the integrability condition.

We �nish this subsection by noting that our discussion here about the closed
timelike curves, especially the conclusion (5.4.25), applies to all 4D-5D lift so-
lutions irrespective of the background moduli. That is, it applies even without
taking the decompacti�cation limit.

The Throat Region

In section 5.4.1 we have seen that, when we look at the asymptotic region:

h �
1
r

�
r ij

r 2 ; (5.4.26)

7 In the four-dimensional context, a conjecture about the equivalence between the ex-
istence of a solution with an everywhere well-de�ned metric with given background and
charges, and the existence of a split attractor 
ow connecting the asymptotic moduli and
the attractor points of all the centers, has been proposed and studied in [83], [101], and
[30]. If this conjecture is indeed true, it provides us a more systematic way of studying the
existence of multi-centered solutions.
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the harmonic function can be expanded, in the order of decreasing magnitude,
as

H = h +
�
r

+ dipole terms + quadrupole terms + ::: ; (5.4.27)

where the non-vanishing constant termsh are of order one in our renormal-
ization (see section 5.3.2 ).

If the (coordinate) distances r ij of each pair of centers are all much smaller
than one, namely r ij � 1 8 i; j , one can consider another region in which

1
r

� h ;
1
r

�
r ij

r 2 : (5.4.28)

In other words, when the centers are very close to each other, one can zoom
in a bit more from the asymptotic region so that the constant terms become
subdominant, while still not getting substantially closer to any of the centers
than the others, and can still see the conglomeration of centers (the blob) as
an entity without seeing the structure of distinct centers.

In this region, the harmonic functions are expanded, again with descending
importance, as

H =
�
r

+
�

h + dipole terms
�

+ quadrupole terms + ::: ; (5.4.29)

and attractor 
ow equation is given by

DABC yB yC =
1
r

(� 2qA +
(p2)A

p0 ) + ::: : (5.4.30)

De�ne yA
bh to be the solution to the equation (y2

bh)A = � 2qA + (p2 )A
p0 and

Q3
bh = ( y3

bh
6 )2, one arrives at

Q =
Qbh

r
+ :::: (5.4.31)

At the same time,

L =
1
r

JL + ::: =
1
r

�
�

q0

2
�

p � q
2p0 +

p3

6(p0)2

�
+ :::: : (5.4.32)

Notice that, unlike in the asymptotic region, the dipole contribution to L is
sub-leading because now1

r � h. Again using the integrability condition to
relate the dipole contribution of L to the magnitude of ! , one sees that! as
well is of minor importance in this region.
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Now the 5th dimension part of the metric reads

g  = 2 2=3 (
Q
H 0 �

L 2

Q2 ) =
1

(p0)2Q2
bh

(
Sbh

2�
)2 + ::: ; (5.4.33)

where
Sbh = 2 �

q
p0Q3

h � (p0)2J 2
L (5.4.34)

is a constant equal to the (classical) black entropy with the charges corre-
sponding to that of the total charges of our multi-center con�guration.

Putting everything together, we �nd that the metric in the region (5.4.28)
looks like8

2� 2=3ds2
5D = � (

r
rbh

)2dt2
bh + (

rbh

r
)2dr2 + 2 r (

JL

r 3
bh

) dtbh � 3;L

+ r 2
bh

�
� 2

1;L + � 2
2;L + � 2

3;L � (
J 2

L

r 3
bh

)2� 2
3;L )

�
; (5.4.35)

where rbh �
p

Qbh and we have rescaled the time coordinatetbh = tp
Qbh

.

One can now readily recognise this metric as theAdS2 � S3 near horizon
metric of a BMPV black hole9 [103]. Therefore we can identify the region
(5.4.28) as a sort of near horizon region of the multi-center BPS solution.

So far it all seems very satisfactory: the 5D solutions obtained from lifting
multi-center 4D solutions have a throat region which looks like the near horizon
limit of a classical black hole with charge given by the total charge of the 4D
centers via the prescription we give in section 5.4.1. But we should not forget
that the analysis here depends on the existence of the region (5.4.28). Indeed,
it's obvious that this region cannot exist for all choices of charges: when the
total charge does not give a classical black hole, namely whenS2

bh < 0, the
existence of this region together with (5.4.33) would imply the presence of a
CTC, or equivalently, an imaginary metric in 4D, in this region. One thus
conclude that the region (5.4.28) can only exist when the total charge of all
the centers together corresponds to that of a black hole. This also justi�es our
notation ybh; Qbh; tbh; rbh.

In other words, when the total charge doesn't give a black hole, at least one
pair of the centers must be far away from each other:

9 i; j s.t. r ij � h or r ij > h if S2
bh < 0 :

8For the readability we have imposed in the this equation that the total monopole charge
p0 = 1. It's trivial to put back all the p0 factors, and the metric one obtains in the case of
jp0 j 6= 1 is that of an orbifolded BMPV near horizon geometry.

9Or, more precisely, an identi�cation of AdS3 � S3 which leaves a cross term dt � 3;L

behind [102]. Also the S3 is squashed in such a way that its area again gives the black hole
entropy.
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This argument applies actually not only to multi-center solutions in the
large volume limit with arbitrary charges, but also to those with arbitrary
background moduli j; b, with the only di�erence being that we have to include
in general much more complicated constant terms in the harmonic functions
(see Appendix B) to estimate the lower bound on the distances between the
centers. Therefore we conclude that, for a choice of charges such that the
total charge doesn't give a black hole, the centers cannot get arbitrarily close
to each other, at least as long as we stay in the regime where the supergravity
description is to be trusted RM

` (11)
P

� 1, J (M ) � 1 , gs � 1 ,J (s) � 1, apart

from other conditions discussed in section 2.2.3. What happens to these multi-
center con�gurations with total charge of no black holes, when RM

` (11)
P

= g2=3
s is

lowered beyond the supergravity regime is described in terms of microscopic D-
brane quiver theory and the higgsing thereof in [97]. From the �ve dimensional
point of view, it would be interesting to re�ne the result of [34] in a similar
spirit.

We �nish our throat examination with two remarks. First of all, the re-
verse of what we just said is not always true: when the total charge does
correspond to that of a classical black hole, the centers don't have to sit very
close to each other. We can also imagine them to be far apart and still have
a well-de�ned metric. For example, the centers can split themselves up into
two blobs far away form each other, with each blob having its throat region
and can therefore be coarse-grained as an AdS-fragmentation kind of scenario
[104],[105]. Furthermore, it should be clear that our analysis given above does
not exclude the presence of any kind of throat other than the \common throat"
encompassing all the centers as we discussed here. Especially, when the total
charge of a subset of the centers corresponds to the charge of a black hole, one
might also expect the presence of a \sub-throat" encompassing just the subset
in question, given that the other centers are su�ciently far away. The most
well-known example of this phenomenon is that of the black ring geometry,
which can be seen as the uplift of a D6 and a D4-D2-D0 center in the M-
theory limit[86, 57, 85]. In the case that the total charge corresponds to that
of a D6-D4-D2-D0 black hole (the case of small D0 charge), one has indeed a
common throat of the BMPV type we discussed above. But apart from that,
if one zooms in further near the D4-D2-D0 center there is anotherAdS3 � S2

\sub-throat" region, which is locally the same as the uplift of the D4-D2-D0
near horizon geometry and which gives the Bekenstein-Hawking entropy of
the black ring10. For the special case ofT6 compacti�cation, a related issue is
discussed in the dual D5-D1-P language in [106, 59].

10 which is the same as the entropy of the D4-D2-D0 blak hole.
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Finally, the presence of a throat region opens the possibility to learn more
about the CFT states these solutions correspond to: by treating the throat
region as an asymptotically AdS spacetime, we can employ the AdS/CFT
dictionary to read o� the relevant vevs of these proto-black holes, see for
example [107]. It will be interesting to see what kind of CFT states our
bubbling solutions (including the known ones of Bena-Warneret al) correspond
to.

Near a Center

While much of the discussion above applies generally to all the lifted solutions
in the large radius limit and depend only on the total charges, the solution
near a center is of course strongly dependent on how the charges are allocated.
Indeed, as we discussed in section 5.3.3, we've chosen the speci�c D6 and anti-
D6 with Abelian world-volume 
uxes as our centers because we'd like the
metric to be free from horizons and singularities. Now we will explicitly verify
this by analysing the metric near a center. Therefore, unlike most of the
equations in the previous subsections, our discussion here applies only to the
charges we described in section 5.3.3:

� =
NX

i =1

� i = 1 +
NX

i =1

f i +
NX

i =1

1
2

f 2
i

p0
i

+
NX

i =1

1
6

f 3
i

(p0
i )2 : (5.4.36)

In the region very close to theith center, where

1
r i

�
1

r ij
; h0; hA ;

we can expand the harmonic functions as

H =
� i

r i
+ H i + O(

r i

r 2
ij

) ; (5.4.37)

with H i de�ned below (5.3.7).
If we plug this into the attractor 
ow equation, and notice that the possible

1
r i

term cancels because our choice of charges has the virtue

� 2qA;i +
(pi )2

A

p0
i

= 0 ; (5.4.38)

we get
DABC yB yC = � 2cA;i + O(

r i

r ij
) ; (5.4.39)
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where

cA;i = HA;i +
1
p0

i
H 0

i qA;i �
1
p0

i
DABC pB

i H C
i

= hA +
X

j

p0
j

r ij

(f 2
ij )A

2

is a constant.
The condition that the R3 part of the base metric is positiveQH 0 > 0 can

be satis�ed if
p0

i cA;i < 0: (5.4.40)

Assuming that our choice of locations and 
uxes satis�es this condition, we
have a solution

yA = yA
i + O(

r i

r ij
) where

(y2
i )A

2
= � cA;i

) Q3 = Q3
i + O(

r i

r ij
) = (

y3
i

6
)2 + O(

r i

r ij
) :

With a similar expansion and exploit the integrability condition (5.3.7) at
the i th center and the explicit expression of the charges (5.3.19), we get

L = O(
r i

r ij
)

! 0 = p0
i cos�d� + O(

r i

r ij
)

d! = ?3hdH; H i = ?3dr i O(
1
r i

)

) ! = O(r i ) :

Notice here that the �rst equation guarantees that (5.4.40) is enough to
ensure that there is no closed timelike curve near this center.

With everything put together, we obtain the metric near the i th center:

2� 2=3ds2
5D = � dt02 + d� 2 +

� 2

4
[d� 2 +sin 2 �d� 2 +(

1
p0

i
d +cos �d� )2] ++ O(

r i

r ij
) ;

where we have rescaled the coordinates ast0 = t
Q i

, � 2 = 4p0
i Qi r i . Therefore we

conclude that metric approaches that of aC2=Zp0
i

orbifold, and has nothing
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more singular than a usual orbifold singularity. Speci�cally, the solutions with
only p0

i = � 1 for all the centers will be completely smooth everywhere.
Furthermore, one sees that theU(1)L isometry generated by� 3

L = @ has a
�xed point at the center. Thus a non-trivial two-cycle which is topologically a
sphere (the bubbles) is formed between any two centers and therefore the name
\bubbling solutions" (or rather the \sausage network" solutions). These two-
cycles can support 
uxes and indeed, the 
uxes going through theij th bubble
is p0

i p0
j f A

ij , with f A
ij de�ned as (5.4.20) [89]. Furthermore, the amount of 
uxes

going through the bubbles constrains the distance between them through the
integrability condition (5.3.7), which in this case reads

X

j

1
r ij

p0
i p0

j

f 3
ij

6
= � hA ~pA

i = � hA ~f A
i : (5.4.41)

5.4.3 Large gauge Transformation

It is well known that there is a redundancy of description, namely a gauge
symmetry, in type IIA string theory or equivalently M-theory, which is related
to the large gauge transformation of the B-�eld and the three-form potential
C(3) respectively. Physically, this large gauge transformation can be incurred
by the nucleation of a virtual M5-anti-M5 pair and thus the formation of
a Dirac surface in �ve dimensions [108]. This shift of C(3) also shifts the
de�nition of the charges, but leaves all the physical properties of the solution
intact.

While this is a generic feature for all choices of charge vectors and all back-
ground moduli one might begin with, what we are going to do here is just to
check this gauge symmetry explicitly for our bubbling solutions.

Indeed, in our case, the transformation

f A
i ! f A

i + p0
i aA ; aA 2 Zb2 (X ) (5.4.42)

will in general change the charges (5.3.19) of the con�guration, especially the
total D4 charge will transform like

pA ! pA + aA (5.4.43)

in the casep0 = 1. Especially, one can always exploit this symmetry to put
pA = 0. It's trivial to check that the quantities Q; L; !; ! 0 in the metric
are also invariant under this transformation, since all the combinations of
harmonic functions involved can equally be written in terms of the \invariant

ux parameters" ~f i and f ij de�ned in (5.4.19) and (5.4.20). Especially, all
the conserved charges are invariant under the transformation. On top of that,
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we see that the right hand side of the integrability condition (5.3.7) is also
invariant. 11 We can therefore conclude that the metric part of the solution
has a symmetry (5.4.42).

Furthermore, a look at the gauge �eld (5.4.12) tells us that this trans-
formation indeed corresponds to a large gauge transformation of theAA

5D ;
equivalently, in the full eleven and ten dimensions, it corresponds to

C(3) ! C(3) + aA d ^ � A (M-theory) ; B ! B + aA � A (IIA) : (5.4.44)

Indeed, a look at the D6 brane world-volume action (5.3.18) makes it clear
that the transformation (5.4.42) can be seen as turning on an extra integral
B-�eld. This explains the origin of this extra symmetry.

5.5 Conclusions and Discussion

What we have done in this part of the thesis is to motivate and present a large
number of asymptotically 
at, smooth, and horizonless solutions to the �ve-
dimensional supergravity obtained from the Calabi-Yau compacti�cation of M-
theory. We also analysed their various properties and along the way described
various properties of generic �ve-dimensional solutions obtained from lifting
the multi-center four-dimensional solutions.

A natural question to ask is the degeneracies of such solutions. From
our analysis it is obvious that these bubbling solutions we describe have the
same degeneracies as their four-dimensional counterparts. Especially, these
are charged particles without internal degrees of freedom; their degeneracies
have to come from the non-compact spacetime.

Relatively little is known about the degeneracies of such states, though.
The core of this supergravity problem is really that, although we have the
integrability condition (5.3.7) to constrain the type of the solutions we can
have, generically it is not enough. Indeed, while in many cases this condition
alone can exclude the existence of a bound state of given charges and back-
ground moduli, generically the fact that it can be satis�ed does not mean that
the solution has to exist. Another criterion a valid solution has to conform
to is the real metric condition (5.4.21), which gets translated in �ve dimen-
sions as the no CTC condition. Though the integrability condition helps to
exclude the presence of an imaginary metric near a center, in general it does
not guarantee anything. For the purpose of counting bubbling solutions and

11 In general, in the four-dimensional language, this also implies that the existence of a
BPS bound state of given, �xed charges such that ~pA

i = pA
i � pA

p0 p0
i 6= 0 for every center, is

insensitive to the shift of B-�eld in the large volume limit.
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also for the greater ambition of counting multi-center degeneracies in general,
it would be extremely useful to have a systematic way to see when the inte-
grability is enough and when we have to impose additional conditions, and
of what kind. Please see section 4 for a conjecture (the split attractor 
ow
conjecture) pertaining to this issue.

For the case that is of special interest, that is the case in which the total
charge is that of a black hole, the problem is also of special di�culty. The
situation is described in [97] as the following: if we tune down the string
coupling, at certain point the distances between the centers will be of the
string length (recall that ` (4)

P � ls gsr

( ( J ( s) ) 3

6 )

) and the open string tachyons will

force us to end up in a Higgs branch of the D-brane quiver theory and thus
a wrapped D-brane at one point in the non-compact dimensions. But in the
other direction, for the case with a black hole total charge at least, things are
much more complicated. As one increases thegs, a priori the state doesn't
necessarily have to open up, but rather it can just collapse into a single-
centered black hole, or any other kind of possible charge splittings. Therefore,
seen from this cartoon picture, the D-brane degeneracy really has to be the sum
of degeneracies of all of the allowed charge splittings. While at the same time,
if the total charge doesn't give a black hole, from the real metric condition
(5.4.21) we see that the system has to split up whengs is tuned up, since these
charges only have multi-centered con�gurations as supergravity embodiments.

Now let's come back to the quest of smooth, horizonless solutions with black
hole charges. We have argued that the bubbling solutions we presented seem
to be the only kind of solutions which can be lifted from four dimensions
with these virtues. In any case it would be interesting to �nd explicit BPS
solutions to the 5D supergravity of M-theory on Calabi-Yau without any exact
U(1) isometry. For example, some wiggly ring structure or other things our
imagination permits. These can of course never be obtained by lifting 4D
solutions.
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5.6 Appendix 1: Reproduce the old Bubbling Solutions

The known bubbling solutions are given by (See [89, 90, 91, 94])
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(K A r L A � L A r K A ) (5.6.2)

Let's now see how our solutions contain these as a special case.
Firstly, apply the formulae to the special 3-charge (STU) case

DABC = j� ABC j A; B; C = 1 ; 2; 3 :

In general, the attractor 
ow equation (5.2.5) is di�cult to solve, but not
in this case:
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Q3 = (
1
6

DABC yA yB yC )2 = ( y1y2y3)2

y2y3 = � H1 +
H 2H 3

H 0 and permutations

) Q3 = ( � H1 +
H 2H 3

H 0 )( � H2 +
H 1H 3

H 0 )( � H3 +
H 1H 2

H 0 ) : (5.6.3)

Secondly we take the special Ansatz that the K•ahler form is the same in
the asymptotics for all the three directions:

J 1j1 = J 2j1 = J 3j1 = j ! 1 ; (5.6.4)

and that the background B-�eld is �nite

B A j1 = bA � j : (5.6.5)

In this case we have
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Now, if we rename the coordinates and quantities appearing in our solution
as

V = H 0

L A = � HA

K A = H A

M = �
H0

2


 =
1
2

!


 0 = ! 0

� = L

) Q3 = Z1Z2Z3 ;

one can easily check that our solution (5.3.4) reduces to

ds2
5d = 2 2=3ds2

5d(b) ;

and the equations for and relations between quantities de�ned in our solutions
correctly reproduce those appearing in the known bubbling solutions.
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5.7 Appendix 2: Constant Terms for General Charges
and Background

Z = < � ; 
 >

=
1

q
4
3J 3

�
p0 (B + iJ )3

6
�

p � (B + iJ )2

2
+ q � (B + iJ ) � q0

�

h = � 2Im
�

(e� i� 
) j1
�

=
2

q
4
3 j 3

1

jp0 (b+ ij )3

6 � p�(b+ ij )2

2 + q � (b+ ij ) � q0j
Imf

[p0 (b� ij )3

6
�

p � (b� ij )2

2
+ q � (b� ij ) � q0]

�[
(b+ ij )3

6
+

(b+ ij )2

2
+ ( b+ ij ) + 1] g

h0 =
2

q
4
3 j 3

1

jp0 (b+ ij )3

6 � p�(b+ ij )2

2 + q � (b+ ij ) � q0j

f
p0

6
(j 3 � 3jb2) + pjb � qj g (5.7.1)

hA =
2

q
4
3 j 3

1

jp0 (b+ ij )3

6 � p�(b+ ij )2

2 + q � (b+ ij ) � q0j

f bA [
p0

6
(j 3 � 3jb2) + pjb � qj ]

+ j A [
p0

6
(b3 � 3j 2b) �

p(b2 � j 2)
2

+ qb� q0]g (5.7.2)

hA =
2

q
4
3 j 3

1

jp0 (b+ ij )3

6 � p�(b+ ij )2

2 + q � (b+ ij ) � q0j

f
(b2 � j 2)A

2
[
p0

6
(j 3 � 3jb2) + pjb � qj ]

+ ( jb)A [
p0

6
(b3 � 3j 2b) �

p(b2 � j 2)
2

+ qb� q0]g (5.7.3)



134 5. More Bubbling Solutions
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This part of the thesis is based on the result reported in publication [108].
Other publications in the same period on closely related topics are [109, 110,
30]. An important follow-up publication which re�nes our results is [111].

The goal of the present part of the thesis is to gain a better understanding
of the microstates of D4-D2-D0 black holes in IIA string theory compacti�ed
on a Calabi-Yau manifold. These microstates are counted by a (generalized)
elliptic genus of a (0,4) conformal �eld theory. By exploiting a spectral 
ow
that relates states with di�erent charges, and using a generalised Rademacher
formula, we �nd that the elliptic genus has an exact asymptotic expansion
in terms of semi-classical saddle-points of the dual supergravity theory. This
generalizes the known "Black Hole Farey Tail" of [112] to the case ofN = 2,
d = 4 black holes in string theory.





6 A Farey Tail for Attractor Black
Holes

6.1 Introduction

One of the main successes of string theory has been the microscopic explana-
tion of black hole entropy. The microstates for extremal BPS black holes are
well understood in theories with 16 or more supercharges. This includes the
D1-D5-P system in type IIB theory on K 3 � S1 for which the microstates are
represented by the elliptic genus of a (4,4) CFT with target space given by a
symmetric product of K 3 [113, 43]. The elliptic genus for this target space
can be explicitly computed, leading to a concrete and exact expression for the
number of BPS-states.

The D1-D5-P system has a well understood dual description in terms of type
IIB theory on K 3� AdS3 � S3. A rather remarkable result is that the elliptic
genus has an exact asymptotic expansion, which has a natural interpretation
as a sum over semi-classical contributions of saddle-point con�gurations of
the dual supergravity theory. This exact asymptotic expansion, together with
its semi-classical interpretation, has been coined the Black Hole Farey Tail
[112, 111]1. Although the Farey tail was �rst introduced in the context of the
D1-D5 system, it applies to any system that has a microscopic description in
terms of a (decoupled) 2d conformal �eld theory and has a dual description as
a string/supergravity theory on a spacetime that contains an asymptotically
AdS3.

The aim of this part of the thesis is to apply the generalised Rademacher
formula [111] to black holes in theories with eight supercharges and in this way

1 In the paper [108] we based our analysis on the Farey Tail expansion developed in [112],
which was later improved in [111]. In this part of the thesis I will use the \Modern Farey
Tail" of [111] without any derivation and refer the reader to the paper and the PhD thesis
of fellow student Jan Manschot for further details.
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extend the Farey Tail to N = 2 (or \attractor" in a slight abuse of language)
black holes. Speci�cally, we consider M-theory compacti�ed on a Calabi-Yau
three-fold X and study the supersymmetric bound states of wrapped M5-
branes with M2-branes. These states correspond to extremal four dimensional
black holes after further reduction on a circle. For this situation a microscopic
description was proposed quite a while ago by Maldacena, Strominger and
Witten (MSW) [95], who showed that the black hole microstates are repre-
sented by the supersymmetric ground states of a (0,4) conformal �eld theory.
These states are counted by an appropriately de�ned elliptic genus of the (0,4)
CFT.

The interest in attractor black holes has been revived in recent years due
to the connection with topological string theory discovered in [61, 65] and
subsequently studied by many di�erent authors. As was discussed in (2.2.35),
it was conjectured by Ooguri, Strominger and Vafa (OSV) in [65] that the
mixed partition function of 4d BPS black holes is given by the absolute value
squared of the topological string partition function. Earlier, in a separate de-
velopment, a di�erent connection between BPS states and topological strings
was discovered by Gopakumar and Vafa (GV) [32], who showed that topolog-
ical string theory computes the number of �ve-dimensional BPS-invariants of
wrapped M2 branes in M-theory on a Calabi-Yau. The GV-result di�ers from
the OSV-conjecture (2.2.35) in the sense that the topological string coupling
constant appears in an S-dual way. Recently, this aspect of the OSV con-
jecture have been considerably clari�ed in the work of Gaiotto, Strominger,
and Yin [114]. These authors used the CFT approach of MSW to show that
the elliptic genus of the (0,4) CFT has a low temperature expansion which
(approximately) looks like the square of the GV-partition function. The OSV
conjecture then follows from the modular invariance of the elliptic genus, which
at the same time naturally explains the di�erent appearances of the coupling
constant.

In this part of the thesis we will show that elliptic genus of the (0,4) SCFT
can be written as a generalised Rademacher series (or the \Modern Farey tail"
expansion) similar to that of the previously studied (4,4) case.2 An important
property of the SCFT is the presence of a spectral 
ow that relates states
with di�erent charges, and implies that the elliptic genus can be expanded
in terms of theta functions. The presence of these theta functions signal the
presence of a set of chiral scalars in the SCFT, while from a spacetime point
of view their appearance naturally follows from the Chern-Simons term in
the e�ective action. We �nd that the (modern) Farey tail expansion contains
subleading contributions to each saddle point that can be interpreted as being

2Some related results were obtained independently in [30, 110, 109].
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due to a virtual cloud of BPS-particles (actually, wrapped M2-branes) that are
\light" enough such that they do not form a black hole by themselves. The
degeneracies of these particles are, in the large central charge limit, given in
terms of the Gopakumar-Vafa invariants. In this way we see that the results
of [114] naturally �t in and to some extent follow from our Attractor Farey
Tail.

The outline of this part of the thesis is as follows: in section 6.2 we review
the bound states of wrapped M5 and M2 branes in M-theory on a Calabi-Yau
three-fold and explain the emergence of the spectral 
ow. We then discuss the
decoupling limit and the near horizon geometry and describe the dimensionally
reduced e�ective action onAdS3. In section 6.3 we turn to the M5 brane world-
volume theory and its reduction to the (0,4) SCFT. Here we also de�ne the
generalised elliptic genus which counts the graded black hole degeneracies. In
section 6.5 we interpret our result from the dual supergravity perspective and
discuss its relation to the OSV conjecture. Finally in section 6.6 we conclude
by summarising this part of the thesis and raise some open questions.

6.2 Wrapped M-branes and the Near Horizon Limit

To establish the notation, in this section we describe the BPS bound states of
wrapped M5 and M2 branes in M-theory on a Calabi-Yau from a spacetime
point of view. We will derive a spectral 
ow symmetry relating states with
di�erent M2 and M5 brane charges, �rst from an eleven-dimensional perspec-
tive and subsequently in terms of the e�ective three dimensional supergravity
that appears in the near horizon limit.

6.2.1 Wrapped Branes on Calabi-Yau and the Spectral Flow

Consider M-theory on a Calabi-Yau threefold X and a circle R3;1 � X � S1,
and an M5-brane wrapping a 4-cycleP with [ P] = pA SA in the Calabi-Yau
three-fold X . Here f SA=1 ;��� ;h1;1 g is a basis of integral 4-cyclesH4(X; Z) in X ,
whereh1;1(X ) is the second Betti number of the Calabi-Yau manifold. In order
for this �ve-brane to be supersymmetric, the 4-cycleP has to be realized as a
positive divisor. Therefore we will assume thatP is a smooth ample divisor so
that classical geometry is a valid tool for our analysis. There is a line bundle
L with

c1(L ) = [ P] = pA � A := P (6.2.1)

associated to this divisor, where� A 2 H 2(X; Z) is a basis of harmonic 2-forms
Poincar�e dual to the four-cycles SA , such that the position of the four-cycle P
can be thought of as the zero locus of a section of this line bundle.
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The wrapped M5-brane reduces to a string in the remaining �ve dimensions.
In addition there are �ve-dimensional particles corresponding to M2-branes
wrapping a two-cycle [�] = qA � A , where � A is a basis ofH2(X; Z) dual to
f SA g, i.e. � A \ SB = � A

B . These particles carry chargesqA under the U(1)
gauge �elds AA which arise from the dimensional reduction of the M-theory
3-form A (3) , as summarised in Table 2.3,

A (3) =
X

A

AA ^ � A : (6.2.2)

Such an ensemble of strings and particles can form a BPS bound state which
leaves four of the eight supersymmetries unbroken.

Eventually we are interested in the BPS states of the 4d black hole that
is obtained by further compactifying the string along an S1. These states
carry an additional quantum number q0 related to the Kaluza-Klein momen-
tum along the string. From the four dimensional perspective, the quantum
numbers (pA ; qA ; q0) are the D4, D2 and D0 brane charges in the type IIA
compacti�cation on X . In this part of the thesis we will be switching back
and forth between a spacetime perspective from eleven (M-theory), ten (type
IIA), �ve (M-th/CY), four (IIA/CY), or even three dimensions ( AdS3), and
a world-volume perspective of the M5-brane or its reduction to a world-sheet.

Before going to the world-volume description of the M5-brane and its re-
duction to a string, let us describe the spectral 
ow symmetry of BPS states
from the spacetime perspective.

First recall that, as discussed in section 2.2.2 and 4, a supergravity solution
with U(1) isometry of the low-energy e�ective action obtained from compact-
ifying M-theory on a Calabi-Yau space X can be thought of as the \lift" of
a four-dimensional solution of the N = 2 ; d = 4 supergravity theory and is
speci�ed by 2h1;1 + 2 harmonic functions H I ; H I : R3 ! R, I = 0 ;� � � ; h1;1.
There is a symmetry between di�erent solutions whose corresponding set of
harmonic functions are related by [75, 115]

H 0 ! H 0

H A ! H A � H 0kA

HA ! HA � DABC H B kC +
H 0

2
DABC kB kC

H0 ! H0 + kA HA �
1
2

DABC H A kB kC +
H 0

6
DABC kA kB kC ; (6.2.3)

where DABC is the triple-intersection number for the basis � A introduced in
(2.2.18). From (4.4.17) or equivalently (4.4.10), and (2.2.33), we see that the
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above transformation in particular leaves the geometry part of the solution
invariant and induces a shift in the �ve-dimensional vector �eld by

AA ! AA � kA d ; (6.2.4)

where  2 [0; 1) is the coordinate of the M-theory circle S1. In particular, for
the case at hand we haveH 0 = 0 and the above transformation corresponds
to the following shift of charges

pA ! pA

qA ! qA � DABC kB pC (6.2.5)

q0 ! q0 + kA qA �
1
2

DABC kA kB pC ; (6.2.6)

which leaves the geometry part of the solution invariant.
From M-theory point of view, the above symmetry among solutions of the

�ve-dimensional supergravity can be understood in the following way. The
low energy action of M-theory (1.2.1) contains the Chern-Simons coupling

SCS = �
1
3!

Z
A (3) ^ F (4) ^ F (4) ; (6.2.7)

whereF (4) = dA(3) = F A ^ � A is the four-form �eld strength. As a result, the
M2-brane charge is de�ned as (here we work in 11D planck units)

qA =
Z

S2 � S1 � D A

(� F + C ^ F ) : (6.2.8)

The charge thus contains a Chern-Simons type contribution depending ex-
plicitly on the A (3) -�eld. This term can be written as a volume integral of
F ^ F and hence is invariant under small gauge transformations that vanish
at in�nity. However, it can still change under large gauge transformations
corresponding to shifts in A (3) by a closed and integral three-form

A (3) ! A (3) �
X

A=1 ;��� ;h1;1

kA d ^ � A ; (6.2.9)

which gives exactly the shift of the lower-dimensional gauge �eld (6.2.4) upon
dimensional reduction. This transformation should be an exact symmetry of
M-theory. The value of the chargeqA , though, is not invariant but instead re-
ceives an extra contribution proportional to the M5-brane chargepA . Namely,
using

Z

SA � S2 � S1
d ^ � B ^ F = DABC

Z

S2
F C = DABC pC ; (6.2.10)
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one �nds that
qA ! qA � DABC kB pC (6.2.11)

under a large gauge transformation of theA (3) �eld.
Alternatively, this shift of the conserved charges can also be understood

from a type IIA point of view. From Table 2.3 we see that the integral shift
of the three-form �elds now translates into a shift of internal Neveu-Schwarz
B-�eld

B (2) ! B (2) �
X

A=1 ;��� ;h1;1

kA � A ; (6.2.12)

which should be an exact symmetry of string theory. From the Wess-Zumino
part of the D-brane action (1.3.28) of a D4 brane wrapping the four-cycleP
with [ P] = pA SA , we see that the presence of the factorch(F ) = eF + B causes
the shift of the induced D2, D0 brane charges (6.2.5,6.2.6) when the B-�eld is
shifted3.

It will turn out to be convenient to introduce the symmetric bilinear form

DAB = � DABC pC = �
Z

P
� A ^ � B ; (6.2.13)

where � A should be understood as the pullback of the harmonic 2-forms from
the ambient Calabi-Yau X to the 4-cycle P. Notice that the extra minus sign
in the de�nition implies that the anti-self-dual directions now have positive
signatures.

By the Lefschetz hyperplane theorem, which states that the inclusion map
H 2(P) ! H 2(X ) is surjective and H 1(X ) and H 1(P) are isomorphic, this
form is non-degenerate. In fact, according to the Hodge index theorem it
has signature (h1;1 � 1; 1). Thus, for every positive divisor P we obtain a
natural metric DAB on H 2(X; Z) which turns it in to a Lorentzian lattice
� = � h1;1 � 1;1.

Generically this lattice is not self-dual (or equivalently, unimodular), namely
that the inverse metric D AB is not integral. We will call the dual lattice,
de�ned as the set of all vectorsvA 2 Rh1;1 � 1;1 such that the inner product
with all vectors in � take integral values, � � .

This dual lattice can be naturally identi�ed with the lattice H 4(X; Z) and
the Dirac quantization condition suggests that M2-brane charges takes value
in � � , whose bilinear formD AB is given by the inverse ofDAB . However, due
to the presence of the Freed-Witten anomaly the M2 brane charge gets shifted
and the above statement is no longer true.

3Notice that our convention de�nes the D0 brane to be the objects that couples to � C (1)
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The shift of the charges can be understood as the fact that when the di-
visor is not spin, namely when the second Whitney class is non-vanishing or
equivalently when [P] = c1(L ) is odd, the U(1) gauge �eld on it has to have a
non-trivial holonomy in order for it to have a Spinc structure, and as a result
the M2-brane charge does not satisfy the usual Dirac quantization condition,
but rather [116, 10]

qA 2
1
2

DABC pB pC � � � ; or just q 2 � � +
p
2

: (6.2.14)

In terms of the bilinear form DAB the 
ow equations (6.2.5) and (6.2.6) read

qA ! qA + DAB kB ; (6.2.15)

q0 ! q0 + kA qA +
1
2

DAB kA kB : (6.2.16)

In this form one can see explicitly that the following combination of charges

q̂0 = q0 �
1
2

D AB qA qB (6.2.17)

is the unique combination (up to additive constant and multiplication fac-
tors) that is invariant under the combined spectral 
ow of qA and q0. This
phenomenon is familiar from our study of the spectral 
ow symmetry of the
N = 2 superconformal algebra in section 2.1.3 and 2.1.5, where the 
ow-
invariant combination L 0 � 1

2ĉJ 2
0 plays a similar role.

From (6.2.5) we see that the spectral 
ow transformation amounts to shifting
the vector q by an element k 2 �. Note that due to the integrality of the
symmetric bilinear DAB one has � � � � . In general, � is a proper subset of
� � , which means that not all charge con�gurations (� � ) are related to each
other by spectral 
ow (�). Explicitly, any given M2 charge vector q 2 � � + p=2
has a unique decomposition

q = � + k +
p
2

; � 2 � � =� ; k 2 � (6.2.18)

where � 6= 0 for generic charges.
From the above argument we conclude that the combined spectral 
ow

transformations (6.2.15) and (6.2.16) constitute a symmetry of M-theory/string
theory. This gives a non-trivial prediction on the BPS degeneracies that the
number of BPS statesdP (qA ; q0) should be invariant under these transforma-
tions.

We can now compare this microscopic prediction with the macroscopic result
and see that it indeed passes the consistency check. The leading macroscopic
entropy of the 4d black hole with chargespA , qA and q0 is given by (4.4.16)

S = 2 �
p

q̂0D (6.2.19)
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where

6D �
Z

X
P ^ P ^ P = DABC pA pB pC : (6.2.20)

is the norm of the vector p 2 �. From this we see that the entropy formula
is indeed consistent with our prediction that the entropy must be invariant
under the spectral 
ow.

Finally, we would like to point out that the spectral 
ow (6.2.15) can be
induced spontaneously by the nucleation of a M5/anti-M5 brane pair with
magnetic chargekA , where the M5 loops through the original (circular) M5
brane before annihilating again with the anti-M5 brane. We will make use of
this comment in the next section where this same process is translated to the
near horizon geometry.

Figure 6.1: An M5 brane loops through the original (circular) M5 brane and then
annihilates again with an anti-M5 brane.

6.2.2 The Near-Horizon Geometry and Reduction to Three Dimen-
sions

In the decoupling near-horizon limit, the spacetime physics can be entirely
captured by the world-volume theory of the brane . In this limit the 11-
dimensional geometry becomes

X � AdS3 � S2 ; (6.2.21)

with the K•ahler moduli J = J A � A 2 H 1;1(X ) of the Calabi-Yau �xed by the
attractor mechanism to be proportional to the charge vector P = pA � A .

More explicitly, the attractor equation reads (2.2.33), (4.4.17)

J A

V1=3
=

pA

D 1=3
;
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where V denotes the volume of the Calabi-Yau in the eleven-dimensional
Planck unit

V =
1
6

Z

X
J ^ J ^ J =

1
6

DABC J A J B J C : (6.2.22)

As explained in section 2.2.2, the volumeV sits in the universal hypermultiplet
and is not �xed by the attractor equation. Furthermore, from the relation
between the eleven- and �ve-dimensional Newton's constant and the expression
for the �ve-dimensional solution (2.2.33), (4.4.17)

` (5)
p � ` (11)

p V� 1=3 ; ` � ` (5)
p D 1=3 ; (6.2.23)

we see the ratioV=D turns out to be related to the curvature radius ` of the
AdS3 and S2 as

`

` (11)
p

�
�

D
V

� 1=3

: (6.2.24)

Therefore, for the �ve-dimensional supergravity to be a valid description
we need the universal hypermultiplet scalar to satisfyD � V � 1. For our
purpose it will be useful to consider a further reduction along the compactS2

to a three dimensional theory on the non-compactAdS3 spacetime. In the low
energy limit, this theory contains the metric and the U(1) gauge �elds AA as
the massless bosonic �elds.

From the �ve-dimensional perspective, the �ve-brane 
ux of M-theory back-
ground gets translated into a magnetic 
ux F A = dAA of the U(1) gauge �elds
through the S2: Z

S2
F A = pA :

The eleven-dimensional Chern-Simons term of theA (3) -�eld can therefore be
reduced in two steps. First to �ve dimensions, where it takes the form (2.2.29)

16�G (5)
N SCS =

1
3!

Z

AdS 3 � S2
DABC AA ^ F B ^ F C ;

and subsequently, by integrating over the S2, to three dimensions, where it
turns into the usual (Abelian) Chern-Simons action for the gauge �elds on
AdS3. In combination with the standard kinetic terms, we get

16�G (3)
N S =

Z
d3x

p
g

�
R �

2
`2

�
�

aAB

2

Z
F A ^ ?FB +

Z
DAB AA ^ dAB

as the terms in the bosonic action relevant for our discussion, whereaAB =R
X � A ^ � � B is given in (2.2.30). The 3d Newton constant is given by

1

G(3)
N

�
`2

(` (5)
p )3

�
D
`

: (6.2.25)
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We will end this section by some discussions about the spectral 
ow in the
setting of the attractor geometry. First we note that the spectral 
ow argu-
ment in the previous section can be carried to the three-dimensional setting by
dimensional reduction . The M2-brane chargeqA is de�ned now as an integral
over a circle at spatial in�nity of the AdS3 as

qA =
Z

S1

�
� aAB ? FB + DAB AB

�
:

Again one easily veri�es that it changes as in (6.2.15) as a result of a large
gauge transformationAA ! AA � kA d in three dimensions. The chargeq0 is
related to the angular momentum in AdS3. To understand the shift in q0 under
spectral 
ow, one has to determine the contribution to the three-dimensional
stress energy tensor due to the gauge �eld.

As mentioned above, the spectral 
ow has a nice physical interpretation in
terms of the nucleation of an M5/anti-M5 brane pair. Let us now describe
this process in the near horizon geometry. The following argument is most
easily visualized by suppressing the (Euclidean) time direction and focusing
on a spatial section ofAdS3, which can be thought of as a copy of Euclidean
AdS2 and hence is topologically a disk (1.3.5). Together with theS2 it forms
a four dimensional space. First, recall that a wrapped M5 brane appears as a
string-like object in this four dimensional space. Since an M5-brane is magnet-
ically charged under the �ve-dimensional gauge �eldsAA , it creates a "Dirac
surface" of AA . Of course, the location of the Dirac surface is unphysical and
can be moved by a gauge transformation. Now suppose at a certain time an
M5/anti-M5-brane pair nucleates in the center of AdS2 in a way that the M5
and the anti-M5 branes both circle the equator of theS2. Subsequently, the
M5 and the anti-M5 branes move in opposite directions on theS2, say the M5
brane to the north pole and anti-M5 to the south pole. In this way the M5 and
anti-M5 brane pair creates a Dirac surface that stretches between them. Even-
tually both branes slip o� and self-annihilate on the poles of the S2. What
they leave behind now is a Dirac surface that wraps the wholeS2 and still sits
at the origin of the AdS2. To remove it one literally has to move it from the
center and take it to the spatial in�nity. Once it crosses the boundary circle,
its e�ect is to perform a large gauge transformation that is determined by the
charge kA of the M5 brane of the nucleated pair. We conclude that spectral

ow can thus be induced by the nucleation of pairs of M5 and anti-M5 branes.
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Figure 6.2: A large gauge transformation: (i) An M5-anti-M5 pair wrapping the
equator of the S2 nucleates at the center of theAdS2. (ii) The M5 and anti-M5
begin to move in the opposite directions in theS2, while still stay at the center of the
AdS2. (iii) A Dirac surface wrapping the whole S2 is formed. (iv) Finally one moves
the Dirac surface from the bulk of the AdS2 towards the spatial in�nity across the
boundary.

6.3 The (0,4) Superconformal Field Theory

The existence of the bound states of M2-branes to the M5-brane can be seen
in an elegant way from the point of the view of the �ve-brane world-volume
theory. This world-volume theory is a six-dimensional (0,2) superconformal
�eld theory whose �eld content are �ve scalars, two Weyl fermions, and a
tensor �eld with self-dual 3-form �eld strength H [117]. The spacetimeA (3) -
�eld couples to H through the term

Z

W
A (3) ^ H (6.3.1)

where W = P � S1 � Rt denotes the world-volume of the �ve-brane.
In a bound state the M2-brane charges are dissolved into 
uxes ofH in the

following way: the self-dual tensorH that carries the chargesqA has spatial
components

H  = � D AB qA � B ^ d ; (6.3.2)

with  being again the coordinate of theS1 and the two-cycles� A should be
understood as their pull-back from the Calabi-Yau X to the divisor P. The
timelike components follow from the self-duality condition. Combining the
formulas (6.2.2) and (6.3.2), one sees that this produces the right coupling

Z

W
A (3) ^ H = qA

Z

Rt

AA
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of the U(1) gauge �elds AA to the chargesqA .
When we take the scale of the Calabi-Yau to be much smaller than the

radius of the M-theory circle, the M5 world-volume theory naturally gets re-
duced along the 4-cycleP to a two-dimensional conformal �eld theory with
(0; 4) supersymmetry. As usual the superconformal symmetries are identi�ed
with the supersymmetric isometries of theAdS3 � S2 manifold. In this case
the right-moving superconformal algebra contains \small" N = 4 supercon-
formal algebra (3.1.1) as a sub-algebra. In particular theSU(2) R-symmetry
corresponds to the rotations of theS2 factor.

6.3.1 Counting the Degrees of Freedom

Let us now �nd the degrees of freedom of the CFT by dimensionally reducing
the massless �elds of the �ve-brane theory on the divisor P in the Calabi-
Yau which the M5 brane wraps. Our treatment here follows closely that of
[95, 118]. Here we assume some familiarity with basic algebraic geometry.
Especially we will use some formulas which we haven't introduced before,
including the adjunction formula, Kodaira vanishing theorem, and Lefschetz
hyperplane theorem, which can be found in the chapter (I), section two of
[119].

First let's begin with the �ve scalar �elds, which in the original �ve-brane
theory correspond to the locations of the �ve-brane in the remaining �ve spa-
tial dimensions normal to the world-volume. Upon dimension reduction, three
of them correspond to the center of mass location of the string in the three
non-compact directions transversal to it, and simply reduce to three scalar
�elds of the CFT which have both left- and right-moving components. The
remaining two scalars, let's call themX 1 and X 2, now correspond to the po-
sition of the cycle P inside the Calabi-Yau. In other words, they correspond
to the deformations of P in the Calabi-Yau while keeping the homology class
invariant. In order to reduce the complex scalarX 1 + iX 2 we have to know
the space of deformations ofP.

Since the four-cycle can be thought of as the zero locus of a section of the
line bundle L , this space isPH 0(X; L ). From the Hirzebruch-Riemann-Roch
theorem (A.0.11), which gives

w =
X

k

(� 1)kdimH k (X; L ) =
Z

X
ch(L ) Td(X )

=
Z

X
eP (1 +

1
12

c2(X )) = D +
1
12

c2 � P ;

and the fact that dimH k (X; L ) = 0 for k > 0 from the Kodaira's vanishing the-
orem (recall that we have assumedP to be a positive divisor in section 6.2.1),
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we obtain the complex dimension of the space of in�nitesimal deformations of
P

dimCPH 0(X; L ) = D +
1
12

c2 � P � 1 := N ; (6.3.3)

and notice that the space is projective because sections related by a complex
multiplication have the same zero locus. We therefore conclude that the com-
plex scalar X 1 + iX 2 reduces toN complex scalars which are both left- and
right-moving.

As the next step we dimensionally reduce the chiral two-form on the �ve-
brane to the string world-sheet. Rewriting the two-form �eld using the basis
f wI g of H 2(P)

b(2) = � I wI ; I = 1 ;� � � ; b2(P) ; (6.3.4)

then the self-duality condition on db(2) = H implies that the scalars � I is
left-moving when wI is anti-self-dual and right-moving if wI is self-dual.

To compute the dimension of the self-dual and anti-self-dual part ofH 2(P)
we have to �rst collect a few facts about the topology of the divisor P. First
of all, from the adjunction formula we have

TP =
TX jP
Lj P

; (6.3.5)

which combines with the composition rule for Chern classes gives the Chern
classes for the divisorP

c(TP) =
1 + c2(X )

1 + P
= 1 � P + c2(X ) + P2 ; (6.3.6)

where we have used the fact thatX is a Calabi-Yau and therefore has vanishing
�rst Chern class. Explicitly, this gives

c1(P) = � c1(L ) = � P ; c2(P) = c2(X ) + P2 : (6.3.7)

On the other hand, the Lefschetz hyperplane theorem tells us thatb1(P) =
b1(X ) = 0. Combining these facts with the Gauss-Bonnet theorem (A.0.8)
and the signature index theorem (A.0.10), we conclude that the numbers of
right- and left-moving bosons obtained by reducing the chiral two-form to the
two dimensional world-sheet, which are the same as the dimensions of the self-
and anti-self-dual part of H 2(P), are

bR
2 =

1
2

(� + � ) � 1 = 2D +
1
6

c2 � P � 1 = 2N + 1

bL
2 =

1
2

(� � � ) � 1 = 4D +
5
6

c2 � P � 1 :
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Especially, the direction proportional to the K•ahler class of the divisor P is
the only direction in H 1;1(P) that is self-dual, a statement that can be checked
by using the Hirzebruch-Riemann-Roch theorem (A.0.11) with the bundleV
taken to be the bundle of (q;0) forms on P and get

h2;0(P) = N = D +
1
12

c2 � P � 1

h1;1(P) = bL
2 + 1 = 4 D +

5
6

c2 � P : (6.3.8)

Finally we will reduce the two Weyl spinors. By decomposing the spin
bundle on the ambient Calabi-Yau spaceX into the product of the spin bundles
on P and its normal bundle [118], we see that the fermionic zero modes are
all right-moving and given by zero-forms and holomorphic two-forms onP.
Namely that there are

4
�
h2;0(P) + 1

�
= 4( N + 1) (6.3.9)

real right-moving fermionic degress of freedom and no left-moving ones.
This ends our derivation of the massless �elds of the two-dimensional con-

formal �eld theory. In particular, putting all the bosons and fermions together
we get the following counting of the left- and right-moving central charges of
the CFT

cR = 6D +
1
2

c2 � P

cL = 6D + c2 � P = � (P) ;

where the equality between the left-moving central charge and the Euler char-
acteristic follows from the expression for the Chern classes of the divisorP
(6.3.7) and the Gauss-Bonnet theorem (A.0.8).

6.3.2 The Universal Sigma Model

For the discussion of the BPS states of the CFT it will be useful to separate
the CFT into two factors of heterotic sigma models. The �rst factor, which
we call the universal sigma model following [118], is the heterotic sigma model
obtained by reducing the �ve-brane theory on the part of cohomology classes
of P which are images of the injective mapH 2(X ) ! H 2(P) induced by the
inclusion map P ! X . This separation is useful because the universal factor
is the one containing the information about conserved charges. One way to
understand this is the following. Although the two-form �eld b(2) reduces also
on the two-cycles in P which do not correspond to any element inH2(X )
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(6.3.4), the corresponding charges are not conserved due to the existence of
the membrane instantons which wraps the three-ball inX that have the two-
cycle in P as boundary. Notice that as dimH 2(P) is generically much larger
than dimH 2(X ), the universal part of the CFT actually accounts for only a
small portion of the central charges.

The �ve �ve-brane world-volume scalars give rise to three left- and right-
moving bosons in the universal sector, corresponding to the position of the
brane in the three non-compact transversal directions. On the chiral two-form
side, from the fact that the K•ahler form direction, which is given by J � pA � A

at the attractor point (6.2.2), is the only self-dual direction inside H 1;1(P),
we conclude that the chiral two-form �eld b(2) on the world-volum reduces to
a single right-moving boson andh1;1(X ) � 1 left-moving bosons. Explicitly,
following (6.3.2), the M2 brane chargesqA can be thought of as the H-
uxes
through the following two-cycles

� qA D AB � B =
p � q
6D

(pB � B ) + ( � qA D AB �
p � q
6D

pB )� B

= q� � � + qa
+ � + ;a ; a = 1 ;� � � ; h1;1(X ) � 1 (6.3.10)

q2 = D AB qA qB = q2
+ � q2

� :

Notice that we have separated the charges, which can now be thought of
the charges under theU(1) gauge �elds on the world-sheet, into the right-
moving (q� ) and left-moving (q+ ) parts. The way to separate them, namely
the choice of a vector inside the GrassmannianO(h1;1 � 1; 1)=O(1) � O(h1;1),
is independent of the moduli of the divisorP. In general it will depend on the
K•ahler moduli of the Calabi-Yau but for convenience we have �xed it to be at
the attractor value given by the total M5 charges.

Finally we will look at the fermions. From the decomposition of the spin
bundle (6.3.9), we see that the spinor which is (projectively) covariantly con-
stant along P is independent of the moduli ofP and therefore belongs to the
universal factor of the sigma model.

Putting everything together, we conclude that the �eld content of the uni-
versal sigma model we are interested in includes three left- and right-moving
scalars from the non-compact direction, (h1;1 � 1; 1) compact scalars from re-
ducing the chiral two-form �elds, and four right-moving fermionic zero modes.
Especially the right-moving degrees of freedom form aN = 4 scalar multiplet,
which we will sometimes refer to as the \universal" hypermultiplet. We can
therefore interpret this universal part of the CFT as a (0; 4) heterotic sigma
model, with the target space beingR3 � S1 and with the left-moving Narain

model of gauge group
�
U(1)

� h1;1 � 2.
The presence of the four fermion zero modes, which can be thought of as
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the Goldstinos of the broken supersymmetry, makes the criterion for a state
to be supersymmetric somewhat more involved. To see this we have to know
more about the superconformal algebra of the right-moving (supersymmetric)
side of the CFT. Now with the presence of the universal scalar multiplet, the
superconformal algebra is not just the \small" N = 4 SCA written down in
(3.1.1) but is enlarged into the A �; 1 SCA [120, 110, 66, 121]. Especially, in
the ~� = 0 sector for the center of mass degrees of freedom inR3, we have on
top of (3.1.1) an extra piece of superconformal algabra which includes

[J i
n ; Q� +

r ] = � i
�� Q� +

r + n ; [J i
n ; Q� �

r ] = � Q� �
r + n � i

��

[Un ; Um ] = n� n+ m;0

[Un ; G��
r ] = nQ ��

n+ r

f Q� +
r ; Q� �

s g = � �� � r + s;0 and other f Q; Qg = 0

f Q� +
r ; G� �

s g = � �� Ur + s and other f Q; Gg = 0 ; (6.3.11)

where Q�� (�z) are now the fermionic currents and U(�z) is the U(1) current
corresponding to the right-moving part of the M2 charge (6.3.10). Notice
that, here and in the following discussion we write all the operators without
the tilde's for the readability of the formulas , despite of the fact that they are
the right-movers. We hope that the fact that only the right-moving sector is
supersymmetric will prevent any possible confusion.

In the sector in which all states have not only ~� = 0 but also U0j0i =
q� j0i = 0, the G's and the Q's decouple and the states that preserve unbroken
supersymmetries are those annihilated byG��

0 as well as by all positive modes.
This is in direct analogy with the Ramond ground states we discussed in
(2.1.6), except for now the four Goldstino'sQ�� act non-trivially as two pairs
of creation and annihilation operators and produce a short multiplet with
four BPS states. It's easy to check that this short N = 4 multiplet does not
contribute to the N = 2 elliptic genus de�ned in (2.1.36) but does contribute
to the modi�ed version of it when we insert the factor F 2 = ( J 3

0 )2 in the
trace, where J 3 is the U(1) current of the R-symmetry group SU(2)R . We
will therefore insert this factor when we later de�ne the generalised elliptic
genus for the present theory.

Now we turn to the more interesting cases with non-vanishing right-moving
M2 chargeq� . If we \bosonize" the U(1) current and write U(�z) = i �@', then
such a state can be thought of as being created from a state withU0j0i = 0
by adding a vertex operator

jq� i = eiq � ' j0i : (6.3.12)

Then using the [U; G] commutator we see that the supersymmetry condition
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gets modi�ed into

0 = eiq � ' G��
0 j0i =

�
G��

0 � q� Q��
0

�
jq� i ; (6.3.13)

while the other four combination of G��
0 and Q��

0 generate the four-component
short multiplet which contributes to the modi�ed elliptic genus.

Another consequence of the modi�cation of the supersymmetry condition
by the presence of the right-moving charges is a change of the value of the
conformal weight of the BPS states. Instead of (2.1.6)

1
4

� �� f G� +
0 ; G� �

0 gj0i = ( �L 0 �
cR

24
)j0i = 0 ; (6.3.14)

we now have
1
4

� �� f G� +
0 � qQ� +

0 ; G� �
0 � qQ� �

0 gjq� i = ( �L 0 �
cR

24
�

1
2

q2
� )jq� i = 0 ; (6.3.15)

where

q2
� =

Z

P
q� � � ^ q� � � =

(p � q)2

6D
: (6.3.16)

The above relation between the conformal weight and the right-moving charges
will be important when we discuss the modular properties of the modi�ed
elliptic genus later.

In the general cases in which we also have charges~� 6= 0 in the non-compact
R3 directions, there are terms other than those listed in (6.3.11) in theA �; 1

superconformal algebra which will play a role. They can be found in, for
example, [121, 66]. Incorporating these extra charges and repeating exactly
the same analysis as above, we conclude that for a BPS state with right-moving
chargeq� ; ~� the following relation is satis�ed

( �L 0 �
cR

24
�

1
2

q2
� �

1
2

~� 2)jq� ; ~� i R = 0 : (6.3.17)

Similarly there is also a 1
2~� 2 contribution to the L 0 eigenvalue.

The spectral 
ow relations (6.2.15) (6.2.16) are implemented in the (0,4)
CFT as a symmetry of the superconformal algebra. It is given by

~L n ! ~L n + k� Un +
1
2

k2
� � n;0

Un ! Un + k� � n;0 (6.3.18)

for the bosonic part of the right-moving side, and

L n ! L n + ka
+ An;a +

1
2

k2
+ � n;0

An;a ! An;a + kb
+ Dab � n;0 ; a; b= 1 ;� � � ; h1;1(X ) � 1 (6.3.19)
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for the left-moving side. In the above formulae, the projection of the large
gauge transformation parameterk into the left- and right-moving component
is again given by (6.3.10), with qA now replaced byDAB kB , and the metric

Z

P
� + ;a ^ ?� + ;b = �

Z

P
� + ;a ^ � + ;b = Dab (6.3.20)

is given by the restriction of DAB onto the hypersurface inH 2(X ) orthogonal
to the K•ahler form. Note that these transformations leave L 0 � 1

2A2
0 and

�L 0 � 1
2U2

0 invariant.

6.4 A Generalised Elliptic Genus

The generating function of BPS bound states for a �xed M5-brane charge
pA can be identi�ed with a generalised elliptic genus of the CFT (see also
[30, 110, 109]). More precisely, we want to compute the partition function

Z 0
P (�; y ) = Tr R

h
F 2(� 1)F e�ip �qe2�i� (L 0 � cL

24 )e� 2�i �� ( �L 0 � cR
24 )e2�iy �q

i
; (6.4.21)

where y 2 � 
 R can be thought of as being the \potential" for the M2
chargesq, F = J 3

0 and the F 2 insertion is needed to absorb the four leftover
right-moving fermionic zero modes as we explained in section 6.3.2.

The purpose of this subsection is to discuss the following three properties of
the generalised elliptic genus that we will need in order to give the microstates
contributing to this index a gravitational interpretation.

6.4.1 The Modi�ed Fermion Number

First we will explain the necessity for the extra e�ip �q phase insertion. The pres-
ence of it is closely connected to the presence of the Freed-Witten anomaly we
discussed before. In particular, both e�ects are absent if [P] = c1(L ) = pA � A

is even. We will understand it in terms of the consistency of the conformal
theory OPE, while other explanations can be found in [30, 122]. Later we will
also see explicitly that the inclusion of this factor is crucial for the modular
properties of the generalised elliptic genus.

Note that the shift (6.2.14) only a�ects the right-moving part of the charges
q� , we will therefore concentrate our analysis on them. Consider the spectral

ow vertex operators eik � ' acting on the state jq� i , from the OPE between
eik � ' (�z0) and eiq � ' (�z) one has

eik � ' (�z) jq� i = �z(k�q) � jq� + k� i : (6.4.22)
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The OPE will pick up a phase exp (2�i (k � q) � ) = exp(2 �ik �q) = ( � 1)k�p when
z circles around the origin. Locality of the OPE requires projection onto the
states with even k � p, which explains why the elliptic genus needs to contain
a factor (� 1)p�k for it to be modular invariant. For convenience we include
however a factor e�ip �q = e�ip �� e�ip �k in our de�nition of the elliptic genus,
where � and k are given by the unique decomposition of the M2 charge vector
(6.2.18). The term (p � � ) could be interpreted as an additional overall phase
or as a fractional contribution to the fermion number.

6.4.2 The Modular Properties

Eventually our aim is to show that the partition function has an asymptotic
expansion in terms of semi-classical saddle-points of the three-dimensional
supergravity theory. A crucial ingredient for this to work is the property of
Z 0

P (�; y ) that it is a modular form. To be more precise, it is a modular form
of weight (0; 2). To show this, let us introduce a generalised partition function

WP (�; y; z ) = Tr R

h
e2�izF e�ip �qe2�i� (L 0 � cL

24 )e� 2�i �� ( �L 0 � cR
24 )e2�iy �q

i
(6.4.23)

such that

Z 0
P (�; y ) = �

1
4� 2 @2

z WP (�; y; z )jz=1 =2 :

The function WP (�; y; z ) can be thought of as a generalised partition function
of the (0,4) CFT on a torus with Wilson lines parametrized by y and z. It
should be independent of the choice of cycles on the torus, and hence be of
weight (0; 0) under the modular transformations

� !
a� + b
c� + d

; �� !
a�� + b
c�� + d

; y+ !
y+

c� + d
; y� !

y�

c�� + d
; z !

z
c�� + d

:

In the above formula y+ ; y� are the Wilson line parameters coupling to the left-
and right-moving charges respectively and are again given by the projection of
the vector y 2 � 
 R into the positive- and negative-de�nite part as in (6.3.10).
This together with the fact that @z has weight one proves thatZ 0

pA (�; y A ) has
weight (0; 2).

As mentioned above, the partition function Z 0
P (�; y ) contains a continuous

degeneracy in the BPS states due to the zero-modes in theN = (0 ; 4) \uni-
versal" multiplet, which can be thought of the momenta in the R3 part of the
S1 � R3 target space of the universal sigma model. Macroscopically they cor-
respond to the center of the mass degrees of freedom of the M5 brane which
decouple from the rest of the degrees of freedom. We wish to extract this
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degeneracy by de�ning

Z 0
P (�; y ) = ZP (�; y )

Z
d3~� (e2�i� e� 2�i �� )

1
2 ~� 2

(6.4.24)

where ZP (�; y ) can be thought of as the trace among the BPS states with
charges ~� = 0 . The Gaussian integral is proportional to Im( � ) � 3=2 and
therefore has weight

� 3
2 ; 3

2

�
. We can therefore conclude thatZP (�; �� ; y ) has

weight
�
� 3

2 ; 1
2

�
.

6.4.3 The Theta-Function Decomposition

The spectral 
ow symmetry discussed in section 6.2.1, or equivalently the
isomorphism of the superconformal algebra discussed in (6.3.18) and (6.3.19),
implies the presence of extra structures in the generalised elliptic genus. As
we shall see, similar to the case of the elliptic genus of a (2; 2) CFT (2.1.45),
these structures are most manifest when we write the generalised elliptic genus
in a decomposed form in terms of the theta functions.

First of all, since we have argued that the elliptic genusZP (�; y ) only receives
contribution from BPS states with ~� = 0, using (6.3.15) we can rewrite it as

ZP (�; y ) = Tr R

h
F 2(� 1)F e[� (L 0 �

cL

24
) �

��
2

q2
� + ( qjy +

p
2

)]
i

(6.4.25)

in the shorthand notation introduced in section 2.1.5. Recall that the bilinear
(j) : (� 
 R) � (� 
 R) ! R , �rst de�ned in (6.2.13), is given by �

R
P � ^ �

and of Lorentzian signature. A direct consequence of this is that the partition
function depends on �� in a speci�c way, namely the anti-holomorphic part is
entirely captured by the \heat equation"

�
@�� +

1
4�i

@2
y�

�
ZP (�; �� ; y ) = 0 : (6.4.26)

In particular, this implies that the anti-holomorphic part of ZP (�; y ) con-
tains redundant information which is already encoded in the Wilson line (y)-
dependence of it. It will turn out that by decomposing the elliptic genus
in terms of the theta-functions we can indeed isolate the holomorphic factor
factor which is all we need to determine the degeneracies of BPS states.

Secondly, we are interested in the BPS degeneraciesdP (qA ; q0), but on the
other hand the spectral 
ow symmetry implies a relation among those degen-
eracies for di�erent charges (qA ; q0). A generating function for BPS degen-
eracies in terms of spectral 
ow invariant combinations of charges is therefore
desirable. It will turn out that such generating functions are exactly the co-
e�cients h� (� ) of the generalised elliptic genusZP (�; y ) in its theta-function
decomposition.
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To begin let us write the type IIA D0 brane charge, proportional to the �ve-
(or three-)dimensional angular momentum along the M-theory circle, as

q0 = ( L 0 �
cL

24
) � ( �L 0 �

cR

24
)

= Q0 +
1
2

q2 �
�
24

;

where we have usedcL = � (P). From the CFT point of view, 1
2q2 is the

contribution of the universal factor U(1) currents to the S1 momentum, and
central charge contribution corresponds to the ground state energy ofAdS3,
while Q0 is the contribution from the bosonic zero-modes of the part of the
CFT which is not \universal", together with the contribution from the left-
moving excitations,. On the other hand, from the type IIA point of view this
is also a natural split. Considering the D2 brane charges as 
uxes on the D4
brane we recognise the second term as induced by thech(F ) factor in the
anomalous brane coupling (1.3.28), while the third one induced by the A-roof
genus curvature factor, leavingQ0 being the number of pointlike D0 branes
together with the contribution from the part of the world-volume 
ux which
does not correspond to conserved D2 brane charges.

In terms of the spectral 
ow invariant combination q̂0 (6.2.17), we have

L 0 �
cL

24
= q̂0 +

1
2

q2
+ : (6.4.27)

Using this and the decomposition of the M2 charges (6.2.18), we can again
rewrite the generalised elliptic genus (6.4.25) as

ZP (�; y ) =

Tr R

h
F 2(� 1)F e[� q̂0] e[

�
2

(� + k +
p
2

)2
+ �

��
2

(� + k +
p
2

)2
� + ( � + k +

p
2

jy +
p
2

)]
i

� 2 � � =� ; k 2 � : (6.4.28)

The statement of spectral 
ow that each k 2 � gives the same contribution
to ZP (�; y ), can be now translated into the following statement

ZP (�; y ) =
X

� 2 � � =�

� � (�; y ) h� (� ) (6.4.29)
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in which

h� (� ) = Tr q= � + p=2
�
F 2(� 1)F e[� q̂0]

�
=

X

q̂0+ cL
24 � 0

d� (q̂0) e2�i� q̂0

� � (�; y ) =
X

q2 � +�+ p
2

e[
�
2

q2
+ �

��
2

q2
� + ( qjy +

p
2

)]

= e[
p
4

(y +
p
2

)] � � (� ; � y �
p
2

;
p
2

) ; (6.4.30)

where � � (� ; �; � ) is the Siegel theta function we introduced in (2.1.5).
As promised, now we see that the entire information about BPS degeneracies

contained in the generalised elliptic genus is encapsulated in the holomorphic
modular forms h� (� ), whose Fourier coe�cient d� (q̂0) depends only on the
spectral invariant combination ( �; q̂0) of the charges (q0; qA ).

In order to evaluate the saddle-point contribution to h� (� ) we will need to
know its modular property. The modular transformation of � � (�; y ) can be
computed by Poisson resummation, which has been performed in (2.1.53) and
gives

� � (�
1
�

;
y
�

) =
1

p
j� � =� j

(
p

� i� )h1;1 � 1 (
p

i �� ) � (6.4.31)

e[
1
2�

y2
+ �

1
2��

y2
� ] e[�

p2

4
]

X

� 2 � � =�

e[� (� j� )] � � (�; y ) : (6.4.32)

While the extra exponential factors involving e[ y2

2� ] are expected as given
by the modular transformation of the generalised elliptic genus in analogy
with the elliptic genus case (2.1.49), the� -prefactors together with the knowl-
edge that ZP (�; y ) has weight (� 3

2 ; 1
2) shows that f h� (� )g transforms as a

vector-valued modular form of weight � h1;1+2
2 . See section 2.1.5 for a small

introduction of these the vector-valued modular forms. More explicitly, it
transforms as

h� (�
1
�

) =
p

j� � =� j (
p

� i� ) � (h1;1+2) e[
p2

4
]

X

� 2 � � =�

e[� (� j� )] h� (�; y ) ;

(6.4.33)
where

p
j� � =� j = jVol(�) j is the volume of a unit cell of the lattice �.

The T-transformation of the theta-functions can also be computed. Recall
that the lattice � is not necessarily even and this makes the computation a
bit more involved than usual. Representing a lattice vectork 2 � as an inte-
gral two-cycle imbedded in the hypersurfaceP, then the adjunction formula
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together with the Riemann-Roch theorem gives

Q � Q + Q � P = 2g � 2 ; (6.4.34)

and it turn shows that k2 � (pjk) = 0 mod 2. A direct computation then
shows

� � (� + 1 ; y) = e[
(� + p=2)2

2
]� � (�; y ) ; (6.4.35)

which implies the T-transformation for the vector-valued modular form h� (� )

h� (� + 1) = e[�
(� + p=2)2

2
] h� (� ) : (6.4.36)

6.4.4 The (Modern) Farey Tail Expansion

After decomposing the BPS-states-counting elliptic genus of the low-energy
CFT into combinations of theta-functions, we are now ready to employ some
important mathematical properties of our vector-valued modular functions
h� (� ) in order to give the elliptic genus a spacetime interpretation. The treat-
ment of this part of the story in the original paper [108] of the present author
is not completely correct in the most general cases and was later improved in
the publication [111]. We will refer to this paper and the PhD thesis of fellow
student Jan Manschot for further details and simply summarise the results we
need here.

Suppose we have a weightw vector-valued modular form f � (� ), where � 2
� � =� for some lattice �, which transforms under � = PSL(2; Z) modular
transformation as

f � (
a� + b
c� + d

) = ( c� + d)w M (
 ) �
� f � (� ) ; 
 =

�
a b
c d

�
2 PSL(2; Z) :

(6.4.37)
Given the Fourier expansion

f � (� ) =
X

n� 0

D � (n) qn� � � ; (6.4.38)

recall that the polar part of f � (� ) is given by (2.1.43)

f �
� (� ) =

X

0� n� � �

D � (n) qn� � � : (6.4.39)

The special property which will be useful for us us that the full vector-valued
modular form is determined by its polar part alone.
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This property will give us an expression for the BPS partition function
which looks like, at the cartoon level and ignoring regularisation,

ZP (�; y ) �
X

� 1 n�

Z �
P (

a� + b
c� + d

;
y

c� + d
) ; (6.4.40)

where the coset �1 n� denotes � � � + 1, with each term in the sum lending
itself to a natural interpretation in terms of the dual gravitational theory.

The full expression including all the details, however, is substantially more
involved. It reads

f � (� ) =
1
2

D � (� � ) +
1
2

X

0� n� � �

lim
K !1

X

(� 1 n�) K

 

(c� + d) � w e[
a� + b
c� + d

(n � � � )] Rw

�
2�i jn � � � j

c(c� + d)

�

� M � 1(
 ) �
� D � (n)

!

; (6.4.41)

where

Rw(x) =
1

�(1 � w)

Z x

0
e� z z� w dz (6.4.42)

and X

(� 1 n�) K

=
X

jcj;jdj� K
(c;d)=1

: (6.4.43)

Please see [111] and the PhD thesis of Jan Manschot for the derivation of the
above formula.

Now we can apply this formula on our characterh� (� ) of the elliptic genus,
where the transition matrix M (
 ) can be read o� from the T- and S-transformation
of h� (� ) that we calculated in (6.4.36) and (6.4.33). From this procedure and
combining again with the appropriate theta-functions we obtain an expression
for the generalised elliptic genusZP (�; y ) which is in its spirit given by (6.4.40).
In the following section we will give this expansion a physical meaning in terms
of geometries.

6.5 Spacetime Interpretation of the Attractor Farey Tail

So far the generalised Rademacher formula appears to be just a mathematical
result. What makes it interesting is that it has a very natural interpreta-
tion from the point of view of a dual gravitational theory. In this section we
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discuss the interpretation of the Farey tail expansion �rst in terms of the ef-
fective supergravity action, and subsequently from an M-theory/string theory
perspective. We will �rst discuss the gravitational interpretation of the gen-
eral formula presented in section 6.4.4, and then turn to the present case of
the N = 2 black holes.

6.5.1 Gravitational Interpretation of the Generalised Rademacher
formula

Microscopic systems described by a 2d CFT have a dual description in terms
of a string- or M-theory on a space that containsAdS3 as the non-compact
directions. This is becauseAdS3 is the unique space whose isometry group
is identical to the 2d conformal group. The miracle of AdS/CFT is that the
dual theory contains gravity, which suggests that the partition function of the
2d CFT somehow must have an interpretation as a sum over geometries in
the classical limit. The full dual theory is de�ned on a space that is 10- or
11-dimensional, but except for the three directions ofAdS3 are the only non-
compact dimensions. Hence, by performing a dimensional reduction along
the compact directions we �nd that the dual theory can be represented as a
(super-)gravity theory on AdS3. The e�ective action therefore contains the
Einstein action for the 3d metric

SE =
1

16�G 3

Z

AdS

p
g(R �

2
`2 ) +

1
8�G 3

Z

@(AdS )

p
h(K �

1
`

)

where we have included the Gibbons-Hawking boundary term. Herè repre-
sents the AdS-radius. According to the AdS/CFT dictionary, the 3d Newton
constant G3 is related to the central chargec of the CFT by [123]

3`
2G3

= c : (6.5.1)

The dictionary also states that the partition function Z (� ) of the CFT is equal
to that of the dual gravitational theory on (a quotient of) AdS3, whose bound-
ary geometry coincides with the 2d torus on which the CFT is de�ned. The
shape of the torus is kept �xed and parametrized by the modular parameter
� .

The rules of quantum gravity tell us to sum over all possible geometries
with the same asymptotic boundary conditions. For the case at hand, this
means that we have to sum over all possible three dimensional geometries
with the torus as the asymptotic boundary. Semi-classically, these geometries
satisfy the equations of the motion of the supergravity theory, and hence are
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locally AdS3. There indeed exists an Euclidean three geometry with constant
curvature which has T2 with modular parameter � as its boundary. It is the
BTZ black hole, which is described by the Euclidean line element

ds2 = N 2(r )dt2
E + ` � 2N � 2(r )dr2 + r 2(d� + N � (r )dtE )2

with

N 2(r ) =
(r 2 � � 2

2 )( r 2 + � 2
1 )

r 2 ; N � (r ) =
� 1� 2

r 2 :

Here � = � 1 + i� 2 is the modular parameter of the boundary torus. Using
(6.5.1), one can compute the Euclidean action of this solution and obtain
[124]

S = �
�c
6

Im
1
�

:

For the present purpose of counting BPS states, one needs to consider ex-
tremal BTZ black holes. With the Minkowski signature this means that its
mass and angular momentum are equal. After analytic continuation to a Eu-
clidean complexi�ed geometry, one �nds that the action has become complex
and equalsi� c

12� .
Note that a torus with modular parameter � is equivalent to a torus with

parameter a� + b
c� + d , since they di�er only by a relabelling of the A- and B -cycles.

But the Euclidean BTZ solution labelled by a� + b
c� + d in general di�ers from the one

labelled by � , with the di�erence being that these three-dimensional geometries
�ll up the boundary torus in distinct ways. Namely, for the above BTZ solution
the torus is �lled in such a way that its A-cycle is contractible. After a modular
transformation, this would become the 
 (A) = cA + dB cycle. In fact, the
BTZ black hole is related to thermal AdS3 with metric

ds2 = ( r 2 + `2)dt2
E +

dr2

r 2 + `2 + r 2d� 2 (6.5.2)

after interchanging the A- and B -cycles and with tE and � periodically iden-
ti�ed as

tE � tE + 2 �n� 2 ; � � � + 2 �n� 1 :

In this case the B -cycle is non-contractible, while the A-cycle is now con-
tractible. Notice that in this metric it is manifest that � ! � + 1 gives the
same geometry. The Euclidean action for this geometry isS = i� c

12� .
The classical geometries with a given boundary torus with modular param-

eter � can now be obtained from either the thermal AdS background or the
BTZ background by modular transformations. For de�niteness let us take
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Figure 6.3: (i) Thermal AdS3, with the B-cycle being contractible. (ii) BTZ black
hole, with the A-cycle being contractible. (iii) The geometry with the (A+B)-cycle
being contractible.

the thermal AdS as our reference point, so that the classical action for the
geometry obtained by acting with an element 
 of the modular group is

S = i�
c

12

�
a� + b
c� + d

�
:

One easily recognizes that these solutions precisely give all the leading con-
tributions in the Farey tail expansion corresponding to e[� cL

24
a� + b
c� + d ] factor in

(6.4.41). In fact, these terms occur with a multiplicity one since they repre-
sent the vacuum of the SCFT. The other terms in the expansion should then
be regarded as dressing the Euclidean background with certain contributions
that change the energy of the vacuum. These contributions were already given
an interpretation as coming from virtual particles that circle around the non-
contractible cycle in the previous work on black hole Farey tails [112]. In fact,
in the next section we will give a further justi�cation of this interpretation for
the case of the attractor black holes. Speci�cally, by using the arguments of
Gaiotto et al.[114], we �nd that the subleading contributions are due to a gas
of wrapped M2-branes which carry quantum numbers corresponding to the
charges and the spin in theAdS3 geometry. The truncation to the polar terms
can in turn be interpreted as imposing the restriction that the gas of particles
are not heavy enough yet to form a black hole. TheAdS3 geometry carries a
certain negative energy which allows a certain amount of particles to be present
without causing gravitational collapse. However, when the energy surpasses a
certain bound then a black hole will form through a Hawking-Page transition.
In the case of theAdS3=CFT2 correspondence such an interpretation was �rst
proposed by Martinec [125].

Recall that the way we obtain the generalised Rademacher formula for the
�ve-brane CFT is essentially to apply it (6.4.41) on the characters h� (� ),
while the theta-functions are then combined with the resulting expression and
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are therefore present in each thermal or BTZ background. The origin of the
presence of the theta functions lies in the chiral bosons on the world-sheet of
the string reduction of the M5-brane. From a spacetime perspective, on the
other hand, the theta functions arise due to the presence of gauge �elds and in
particular the presence of the Chern-Simons term in the action, as discussed
in section 6.2.1. In fact, the partition function of a spacetime e�ective theory
that includes precisely such Chern-Simons terms in addition to the usual Yang-
Mills action was analyzed in detail by Gukov et al. in [126]. These authors
showed that the partition function indeed decomposes in to a sum of Siegel-
Narain theta functions. There the �� -dependence arises because one of the
gauge �eld components is treated di�erently from the others, to ensure that
the partition function indeed converges. In this part of the thesis we will not
give further details of this calculation. A more recent discussion in which parts
of this calculation were carefully worked out is [109].

6.5.2 Wrapped M2-branes

In the previous subsection, we have interpreted the sum over modular orbits
of the most polar term as the sum over gravitational background, and the
appearance of the theta functions as the e�ect of the spectral 
ow symmetry
induced by the gauge Chern-Simons term in the action. In this subsection we
would like to further give a spacetime interpretation to the rest of the polar
terms

X

q̂0< 0

d� (q̂0) e[q̂0
a� + b
c� + d

] Rw

�
2�i jn � � � j

c(c� + d)

�
(6.5.3)

in (6.4.41) as a dilute gas of wrapped M2 branes. In particular one would
like to give a more detailed accounting of those polar states from the point
of view of string theory on CY� S2 � AdS3. In fact, a nice physical picture
of a large class of these states was given in [114] in terms of M2 and anti-M2
branes which �ll up Landau levels near the north and south pole of theS2

respectively. In a dilute gas approximation, their macroscopic computation
gives rise to the following contribution to the elliptic genus Z :

Zgas(�; y ) = e[�
cL

24
] Zsugra(� )ZGV (�; 1

2p� + y)ZGV (�; 1
2p� � y) : (6.5.4)

Let's now explain the di�erent factors in the above formula. First of all,
the presence of the factore[� cL

24 ] is due to the fact that the supergravity
partition function should be computed with the NS boundary condition, since
the AdS3 circle is contractible. Second,Zsugra(� ) denotes the contribution of
the supergravity modes, which is basically given by the MacMahon function
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(2.1.34) as [114, 109, 127]

Zsugra(� ) = M (q) � � (6.5.5)

where � is the Euler number of the Calabi-Yau manifold in question (A.0.16).
Finally, the two (reduced) Gopakumar-Vafa partition functions (2.1.35) ac-
count for the contribution from the wrapped M2 and anti-M2 charges, since
it's known that the Gopakumar-Vafa invariants � q

g counts wrapped mem-
branes with charge q 2 H2(X; Z) when the non-compact directions are 
at
�ve-dimensional Minkowski space [31, 32]. Using the relationship between the
Gopakumar-Vafa partition function and topological string partition function
discussed in section 2.1.4, together with the modular invariance of the ellip-
tic genus ZP (�; y ), the expression (6.5.4) provides a justi�cation of the OSV
conjecture (2.2.35) when the gas approximation is to be trusted [114].

As is clear from the form of the Gopakumar-Vafa partition function (2.1.35),
what it counts are non-interacting wrapped membranes. From the point of
view of the world-sheet SCFT, the M2/anti-M2 brane gas describes a collec-
tion of states that is freely generated by a collection of chiral vertex operators.
It is clear that (6.5.4) su�ers from various kinds of limitations. The dilute gas
approximation will eventually break down, there could be other BPS con�g-
urations that contribute, the Landau levels can start to �ll out the entire S2,
the SU(2) quantum numbers are bounded by the level of theSU(2) current
algebra, etc. Furthermore, it also does not exhibit the right behavior under
spectral 
ow.

Therefore, the gas expression (6.5.4) is really only valid in the limit in
which the �ve-branes charges are large and membranes charges are small. In
this limit, the factor

d� (q̂0) e[q̂0
a� + b
c� + d

] ; q̂0 < 0 (6.5.6)

can be thought of as counting the degeneracies of a gas of charged particles
in the appropriate thermal AdS3 or BTZ background, which are made of
membranes wrapping internal cycles and are not heavy enough to form a
black hole. The latter statement can be seen directly from the expression for
the black hole entropy (6.2.19).

Finally, the extra factor Rw

�
2�i jn� � � j

c(c� + d)

�
in (6.5.3) should be thought of as

a regularising factor for the gravitational path integral. Again we refer to the
PhD thesis of fellow student Jan Manschot for further details.
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6.6 Summary and Conclusion

In this part of the thesis we present the Farey tail expansion forN = 2 D4-
D2-D0 black holes. The central idea of this expansion is to �rst truncate
the partition function so that it includes only particular low excitation states,
and then sum over all images of it under the modular group. Each term can
be interpreted as representing the contribution of a particular (semi-)classical
background. The formula can thus be regarded as partly microscopic (as the
states counted in the "tail") as well as macroscopic (as the sum over classical
backgrounds). We would like to emphasize that in this expansion, there is no
one to one correspondence between microstates and gravitational backgrounds
and the major part of the entropy is carried by one particular black hole
background.

The supergravity interpretation of the Farey expansion involves a natu-
ral complete collection of backgrounds of a given type. It is natural to ask
whether the expansion can be re�ned by including more general macroscopic
backgrounds. It is indeed likely that such re�nements exist, but one expects
that their contribution will follow a similar pattern: one has to truncate the
microscopic spectrum even further and replace the contribution of the omitted
states by certain classical backgrounds. Here one can think of various type
of backgrounds, such as multi-centered solutions, bubbling solutions that de-
form the horizon geometry, black rings...etc. A large class of such solutions is
known, but the list is presumably incomplete, and it remains an interesting
problem to use them in a systematic manner.



Part V

N = 4 Dyons
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In this last part of the thesis we focus on one single theory, namely the
heterotic string compacti�ed on six-torus, or equivalently the type II string
theory compacti�ed on K 3 � T2. An introduction of the basic properties of
K3 manifolds and the basic features of the low-energy e�ective theory of the
IIA/ K 3 � T2 compacti�cation can be found in chapter 3.

There are two chapters in this part of the thesis. In the �rst one we discuss
the microscopic degeneracies of the BPS states of this theory. In section 7.1
we review the counting of 1=2-BPS and 1=4-BPS states using various duality
frames and in particular the derivation of the dyon-counting formula. This
counting formula turns out to have various seemingly unrelated mathematical
properties. In section 7.2 we will review them using the theme of a generalised
(Borcherds-) Kac-Moody algebra as the connecting point of these di�erent
properties.

After introducing the mathematical background we need, in chapter 8 we
will present our study of the BPS spectrum of the theory. This chapter is
based on the publications [128, 129]. First we address the issue of the mod-
uli dependence of the spectrum. The main tool used here is theN = 4,
d = 4 supergravity e�ective theory and the walls of marginal stability of cer-
tain multi-centered solutions in this theory. Second we study the ambiguity
of choosing a contour of integration, when one attempts to retrieve the ac-
tual BPS degeneracies from its generating function. In section 8.4 we show
that the contour-dependence of the dyon degeneracies is related to its moduli-
dependence, and show how an appropriate choice of contour can incorporate
the moduli-dependence of the spectrum into the counting formula. After that
we turn to the role of the Borcherds-Kac-Moody algebra in the BPS spectrum
of the theory. First we argue that, with an appropriate identi�cation of the
simple roots and the highest weight, the counting formula is related to a cer-
tain character formula for the Verma module of the algebra. Second we argue
that the Weyl group of the algebra plays the role of the group of a discretised
version of attractor 
ows of the theory, with the walls of marginal stability
identi�ed with the walls of the Weyl chambers. Finally we comment on some
arithmetic properties of this discrete attractor 
ow.

In this part of the thesis we will focus on the cases which are relatively well-
understood, namely we will assume that the total charges of the states, given
by two vectors P and Q in the 28-dimensional charge lattice (3.3.1), satis�es
the following \co-prime condition"

g.c.d(PaQb � PbQa) = 1 ; a; b= 1 ;� � � ; 28 ; (6.6.7)

which ensures that the degeneracies are completely determined by the set
of three T-duality invariants ( P2=2; Q2=2; P � Q). Please see [120, 130, 131,
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132, 133] for discussions about the cases in which the above condition is not
satis�ed.



7 Microscopic Degeneracies and a
Counting Formula

Our main reason for being interested in theN = 4 ; d = 4 string theory com-
pacti�cation introduced in chapter 3 lies in the possibility of studying the
supersymmetric states in great details. In particular, the presence of many
supersymmetries and a long chain of dualities relating di�erent corners of mod-
uli space makes possible a microscopic understanding of the supersymmetric
spectrum of the theory, and this is something that cannot be said for a generic
N = 2 ; d = 4 string theory.

In this chapter we will review the microscopic counting of BPS states in
the present theory. In section 7.1 we recall the microscopic origin of the 1=2-
and 1=4-BPS states, and in particular we will see how a microscopic counting
formula for dyonic states can be derived using the known D1-D5-P degenera-
cies. In section 7.2 we review various mathematical properties of this counting
formula, which are connected to each other by their relations to a certain
Borcherds- (or generalised-) Kac-Moody algebra. These properties will be
important for our physical discussion in the next chapter.

7.1 Microscopic Degeneracies

In this section we will discuss the microscopic counting of the 1=2- and 1=4-
BPS states of the theory, exploiting the chain of dualities introduced in section
3.3.2.

7.1.1 1=2- and 1=4-BPS Solutions

The central charge in the N = 4 supersymmetry algebra can be written as

Ẑ =
1

p
� 2

(PL � �Q L )m � m ; m = 1 ; ::; 6 ; (7.1.1)
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where � = � 1 + i� 2 is the complex scalar which is a part of theN = 4 ; d = 4
supergravity multiplet introduced in (3.3.1). In the heterotic frame it is the
usual axion-dilaton �eld while in the IIA/ K 3� T2 frame the K•ahler moduli of
the torus, in the IIB/ K 3� T2 frame the complex moduli of the torus. And PL ,
QL denote the moduli-dependent left-moving charges given in (3.3.3). Here
and from now on all the moduli �elds should be understood as being evaluated
at spatial in�nity.

As mentioned in (2.2.24), there are two BPS bounds inN = 4 ; d = 4
supersymmetry algebra. Indeed, from

Ẑ yẐ =
1
� 2

jPL � �Q L j2 1 � 2iP m
L Qn

L � mn

and the fact that the operator iP m
L Qn

L � mn satis�es

(iP m
L Qn

L � mn )2 = jPL ^ QL j2 � Q2
L P2

L � (QL � PL )2 ; (7.1.2)

one concludes thatẐ yẐ has the following two eigenvalues

jZP;Q j2 =
1
� 2

jPL � �Q L j2 + 2 jPL ^ QL j (7.1.3)

and jZ 0
P;Q j2 =

1
� 2

jPL � �Q L j2 � 2jPL ^ QL j :

Therefore the 1=4-BPS states of the theory satisfy

M P;Q = jZP;Q j > jZ 0
P;Q j ;

while states that preserve half of the supersymmetries must have

jPL ^ QL j = 0 , P k Q : (7.1.4)

7.1.2 Microscopic Degeneracies of 1=2-BPS States

Let's begin with the microscopic counting of states which preserve half of
the supersymmetries. From the supersymmetry algebra we have seen that
the electric and magnetic charges have to be parallel to each other (7.1.4).
Together with the co-prime condition (6.6.7) this means that we can always
�nd the S-duality transformation such that the charges are purely magnetic,
namely now we can put Q = 0 without loss of generality. The microscopic
degeneracy therefore becomes a function of only one T-duality invariantP2=2.

In other words, to count these 1=2-BPS states it is enough to count the
perturbative heterotic string states, for example the momentum and winding
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modes along the internal six-torus listed in Table 3.1. Recall that the right-
moving sector of the heterotic string theory, which is the same as the open
bosonic string theory, has non-vanishing zero point energy level� 1. The
mass shell condition and the level matching condition of the heterotic string
therefore reads

m2 = NL +
1
2

P2
L = NR � 1 +

1
2

P2
R : (7.1.5)

Furthermore, supersymmetry requires the supersymmetric (left-moving) side
of the string to be at its ground state, namely NL = 0. Combining these we
conclude the right-moving oscillator number is given in terms of the charges
as

NR = 1 +
1
2

(P2
L � P2

R ) = 1 +
1
2

P2 : (7.1.6)

Recall that 1
2P2 2 Z because the charge lattice �6;22 is even and self-dual

(unimodular).
There are 24 bosonic oscillators in the right-moving sector, which can be

understood as the 24 bosonic oscillators in the light-cone quantisation of the
bosonic string theory, which implies that the generating function of the de-
generacies of the above 1=2-BPS states is

X

P 2
2 2 Z

d(P) q1+ P 2

2 =
1Y

n=1

�
1

1 � qn

� 24

;

or equivalently

d(P) =
I

d�
e� �iP 2 �

� 24(� )
; (7.1.7)

where � (� ) is the Dedekind eta-function

� (� ) = q1=24
1Y

n=1

(1 � qn ) ; q = e2�i� :

The 1=2-BPS states in this context are sometimes called the Dabholkar-
Harvey states [134]. Notice that from the modular transformation of the
eta-function one can see that the asymptotic growth of degeneracy is

logd(P) �
p

P2=2 (7.1.8)

and scales linearly with the charges, which is slower than the quadratic growth
one expects for the Bekenstein-Hawking entropy of a four-dimensional black
hole. In this sense we say that 1=2-BPS states are \small" and form \small"
black holes.
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7.1.3 Microscopic Degeneracies of 1=4-BPS States

More interesting and more complicated are the dyonic states, meaning states
with both magnetic and electric charges non-vanishing in all duality frames
and therefore must preserve only four of the sixteen supercharges, as can be
seen from the supersymmetry algebra (7.1.4). In this part of the section,
following [135, 136], we will derive a microscopic formula counting these 1=4-
BPS states, which will be play an important role in the following chapters of
the thesis.

Under the assumption (6.6.7) that the degeneracies depend only on the
three quadratic invariants P2=2; Q2=2; P � Q, it is enough to understand the
degeneracies of the states with charges highlighted in Table 3.1. Namely, let's
now consider states with the following charges in the type IIB frame:Q1 D1
and Q5 D5 strings with k units of momenta along the �rst circle, together
with a Taub-NUT along the third circle and ~k units of momenta along that
direction, assuming that the size of the third circle is large compared to the
rest of the internal directions1.

One can immediately work out the three invariants for these charges

P2 = 2Q1Q5

Q2 = 2k

P � Q = ~k ;

and see that for givenP2=2; Q2=2; P � Q we can always �nd the corresponding
D1, D5 charges, and momentaQ1; Q5; k; ~k.

The advantage of studying this relatively simple system is that its micro-
scopic description is relatively well understood, namely the D1-D5-P system
in �ve dimensions. Especially, since we are interested in the index counting
the graded (in terms of bosons and fermions) degeneracies of the BPS states
which has rigidity properties upon deformations of the theory, we can map
the system to a regime with very di�erent coupling constants while still being
able to trust the counting from the microscopic theory.

Going back to the Table 3.1, let's �rst decompactify the circle S1
(3) , meaning

that we take the limit that the circle is very large in the four-dimensional
Planck unit and the theory becomes the �ve-dimensional theory obtained by
compactifying type IIB string theory on S1

(1) � K 3. In the �ve-dimensional
description, the KK monopole becomes a Taub-NUT space (1.3.7) with the

1Notice that we use Q1 and Q5 to denote the components of the charge vector corre-
sponding to D1 and D5 branes respectively, but not the actual number of branes wrapped.
The relevant subtlety here is that there is also the geometrically induced D1 charge when a
D5 brane is wrapped around the K3.
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S1
(3) -direction being the direction of the circle �bration. Secondly, we assume

that the internal circle S1
(1) is much larger than the size of theK 3 manifold,

then it was proposed that the six-dimensional world-volume theory of the
D5-D1 branes is reduced to a two-dimensional supersymmetric sigma model,
whose target space is the symmetric product ofP

2

2 + 1 copies of K 3 [137,
113, 138]. Furthermore, there are decoupled modes which are present even
when P2 = 0, corresponding to the closed string modes localised at the tip
of the Taub-NUT that may also carry momenta along the internal circle, and
the center of mass modes of the D1-D5 system, which may carry momenta
along the internal and the Taub-NUT circle. In other words, we can break the
theory into three separated parts David:2006yn,Dabholkar:2008zy

�( TN 1) � �( C.O.M.) � �( SQ1Q5+1 K 3) : (7.1.9)

From Table 3.1 we can see that the �rst part can be dualized to a perturbative
heterotic string system and is therefore again counted by the partition function

1
� 24(� )

=
1
q

Y

m� 1

1
(1 � qm )24 : (7.1.10)

The contribution of the second part is computed to be [135, 133]

1
(y1=2 � y� 1=2)2

Y

m� 1

(1 � qm )4

(1 � qm y)2(1 � qm y� 1)2 : (7.1.11)

Now let's look at the third factor of the CFT. Recall that the K3 elliptic
genus has the following Fourier expansion

� (�; z ) = Tr RR (� 1)F e2�izJ 0 e2�i� (L 0 � c
24 ) e� 2�i �� ( ~L 0 � c

24 )

=
X

n2 Z+ ;`2 Z

c(4n � `2)qny` ; (7.1.12)

with c(� 1) = 2 ; c(0) = 20.
The elliptic genus of the symmetric products ofK 3 has the following gen-

erating function given in terms of the Fourier coe�cients of the K3 elliptic
genus [43]

X

N � 0

pN � (SN K 3;q; y) =
Y

n> 0;m� 0;`

�
1

1 � pnqm y`

� c(4nm � `2 )

; (7.1.13)
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and this is the contribution from the symmetric product part of the CFT.
Identifying the CFT and the spacetime data as

k =
Q2

2
= L 0 � �L 0 = L 0 �

c
24

= momenta along internal circle

~k = P � Q = J0 = momenta along TN circle

and combining the three factors, we conclude that the generating function for
the degeneracies of the 1=4-BPS states is

X

P;Q

(� 1)P �Q D(P; Q) e�i (P 2 � + Q2 � +2 P �Q� ) =
1

pqy

Y

(n;m;` )> 0

�
1

1 � pnqm y`

� c(4nm � `2 )

p = e2�i� ; q = e2�i� ; y = e2�i� (7.1.14)

and (n; m; ` ) > 0 meansn; m � 0; ` 2 Z but ` < 0 when n = m = 0.
In particular, the above formula has been shown [139] to reproduce the

asymptotic growth which agrees with the macroscopic black hole entropy [140,
141]

S(P; Q) = �
p

P2Q2 � (P � Q)2 : (7.1.15)

This is the dyon counting formula, sometimes referred to as the Dijkgraaf-
Verlinde-Verlinde formula, conjectured more than ten years ago [139].

7.2 The Counting Formula and a Borcherds-Kac-Moody
Algebra

The above dyon counting formula (7.1.14) turns out to have many seemingly
unrelated mathematical properties, such as being an automorphic form, having
an in�nite product expansion, and being the \lift" of a modular form related
to the elliptic genus of K3. For later use we will now review the relevant
mathematical properties of the following object appearing at the right-hand
side of (7.1.14)

�(
) = pqy
Y

(n;m;` )> 0

�
1 � pnqm y`

� c(4nm � `2 )
(7.2.1)


 =
�

� � �
� � �

�
; p = e2�i� ; q = e2�i� ; y = e2�i� ;

using the presence of a Borcherds-Kac-Moody algebra as the theme connecting
these various properties.
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7.2.1 Dyons and the Weyl Group

In this subsection we will introduce a vector space of Lorentzian signature
which appears naturally in the dyon-counting problem. In particular we con-
sider the vector of quadratic invariants in this vector space, and de�ne a basis
for these \charge vectors". This basis de�nes a Lorentzian lattice of signature
(2; 1) and generates a group of re
ection with respect to them. We then brie
y
argue the physical relevance of this group while leaving the details for later
sections.

In the above formula (7.2.1) we have written the inverse partition function
� as a function of a 2 � 2 symmetric complex matrix 
. Indeed, anticipating
the important role played by the S-duality group PSL(2; Z) (3.3.7), it will
turn out to be convenient to introduce a space M 2(R) of 2 � 2 symmetric
matrices with real entries

M 2(R) =
�

X
�
�
� X =

�
x11 x12

x21 x22

�
; X = X T ; xab 2 R

�
: (7.2.2)

Besides the matrix 
, the left-hand side of the counting formula (7.1.14)
involves another matrix � P;Q constituted of the three T-duality invariants
(P2; Q2; P � Q)

� P;Q =
�

P � P P � Q
P � Q Q � Q

�
: (7.2.3)

Since this is the vector of invariants of charges that determine the counting
of states, in the following we will often refer to this vector � P;Q in the vector
spaceM 2(R) also as the \charge vector".

From the expression for the Bekenstein-Hawking entropy (7.1.15) for a 1=4-
BPS dyonic black hole, which is manifestly invariant under the S-duality group
(3.3.7), we see that the vector (P2; ; Q2; P � Q) naturally lives in a space of
Lorentzian signature (+ ; + ; � ) on which the S-duality group acts as a Lorentz
group PSL(2; Z) � SO+ (2; 1;Z), where the \+" denotes the time-orientation
preserving component of the group.

This motivates us to equip the vector space of 2� 2 symmetric real matrices
(7.2.2) with the following metric

(X; Y ) = � � ac � bd xab ycd = � detY Tr( XY � 1); (7.2.4)

where � is the usual epsilon symbol� 12 = � � 21 = 1 .
Especially, the norm of a vector is given by2

kX k2 = ( X; X ) = � 2detX : (7.2.5)
2The \-2" factor here and in many places later is due to the fact that we choose the

normalisation of the metric to be consistent with the familiar convention for Kac-Moody
algebras that the length squared of a real simple root is 2.
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One can immediately see that this is indeed a vector space of signature (2,1),
in which the diagonal entries of the 2� 2 matrix play the role of the light-cone
directions. As mentioned earlier, an element of the S-duality groupPSL(2; Z)
acts as a Lorentz transformation on this space: for any real matrix
 with
determinant one, one can check that the following action

X ! 
 (X ) := 
X
 T (7.2.6)

is indeed a Lorentz transformation satisfyingkX k2 = k
 (X )k2 .
Using this metric, the entropy of a dyonic black hole (7.1.15) becomes noth-

ing but given by the length of the charge vector � P;Q as

S(P; Q) = �

r

�
1
2

k� P;Qk2 : (7.2.7)

Similarly, the counting formula (7.1.14) can now (at least formally) be
rewritten as the following contour integral

D (P; Q) = ( � 1)P �Q
I

C
d


e�i (� P;Q ;
)

�(
)
: (7.2.8)

Next we would like to consider a basis for the charge vectors �P;Q . From the
fact that P2; Q2 are both even, it is easy to check that for any dyonic charge
which permits a black hole solution, namely for all (P; Q) with S(P; Q) > 0,
the charge vector � P;Q is an integral positive semi-de�nite linear combination
of the following basis vectors

� 1 =
�

0 � 1
� 1 0

�
; � 2 =

�
0 1
1 2

�
; � 3 =

�
2 1
1 0

�
: (7.2.9)

In other words, for all black hole dyonic charges we have

� P;Q 2 � + := f Z+ � 1 + Z+ � 2 + Z+ � 3g : (7.2.10)

As a side remark we note that there is another place where the positive
part � + of the lattice generated by the three vectors� 1;2;3 appears naturally.
Consider the integral vector

� =
�

2n `
` 2m

�
; n; m; ` 2 Z ; (7.2.11)

from the fact that the Fourier coe�cients of the K3 elliptic genus satis�es
c(k) = 0 for k < � 1 (2.1.51), one can easily show that the microscopic partition
function can be rewritten in the following suggestive form

�(
) = e� 2�i (%;
)
Y

� 2 � +

�
1 � e� �i ( �; 
)

� c(�k � k2=2)
; (7.2.12)
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Figure 7.1: The Coxeter graph of the hyperbolic re
ection group generated by (7.2.15).
See (8.9) for the de�nition of the Coxeter graph.

where

%=
1
2

3X

i =1

� i (7.2.13)

is the Weyl vector corresponding to the above basis vectors, a name that will
be justi�ed later in section 7.2.3.

The matrix of the inner products of the above basis is

(� i ; � j ) =

0

@
2 � 2 � 2

� 2 2 � 2
� 2 � 2 2

1

A : (7.2.14)

We can now de�ne in the Lorentzian vector spaceM 2(R) the group W
generated by the re
ection with respect to the spacelike vectors� 1;2;3:

si : X ! X � 2
(X; � i )
(� i ; � i )

� i ; i = 1 ; 2; 3 : (7.2.15)

This group turns out to be a hyperbolic Coxeter group with the Coxeter
graph shown in Fig 7.1. The de�nition and basic properties of Coxeter groups
can be found in the Appendix 8.9. We will from now on refer to this group
as the Weyl group, anticipating the role it plays in the Borcherds-Kac-Moody
algebra discussed in the following sections. In particular, we will denote as
� re

+ the set of all positive roots of the Weyl group (8.9.2)

� re
+ = f � = w(� i ); w 2 W; i = 1 ; 2; 3g \ � + = f Z+ � 1 + Z+ � 2 + Z+ � 3g ;

(7.2.16)
as it will turn out to be the set of all positive real (i.e. spacelike) roots of the
Borcherds-Kac-Moody algebra discussed in section 7.2.3.

The physical relevance of this group can be intuitively understood in the
following way. We have seen that the S-duality groupPSL(2; Z), which acts
like (3.3.7), is a symmetry group of the theory. We can further extend this
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Figure 7.2: The dihedral group D 3 , which is the symmetry group of an equilateral triangle,
or the outer automorphism group of the real roots of the Borcherds-Kac-Moody algebra (the
group of symmetry mod the Weyl group), is generated by an order two element corresponding
to a re
ection and an order three element corresponding to the 120 � rotation.

symmetry group with the spacetime parity reversal transformation

� ! � �� ;
�

P
Q

�
!

�
P

� Q

�
(7.2.17)

and thereby extend the group PSL(2; Z) to PGL(2; Z). From the point of
view of the Lorentzian spaceM 2(R) � R2;1, the above element, when acting
as (7.2.6), augments the restricted (time-orientation preserving) Lorentz group
with the spatial re
ection. Notice that the requirement that the inverse of an
element 
 2 PGL(2; Z) is also an element impliesdet
 = � 1. Explicitly, this
group acts on the charges and the (heterotic) axion-dilaton as

�
P
Q

�
!

�
P


Q


�
:= 


�
P
Q

�
; 
 =

�
a b
c d

�
2 PGL(2; Z)

� ! � 
 :=
a� + b
c� + d

� a�� + b
c�� + d

�
when ad � bc= 1 ( � 1) : (7.2.18)

As we will prove now, this is nothing but the semi-direct product of the
Weyl group W and the automorphism group of its fundamental domain (the
fundamental Weyl chamber), which is in this case the dihedral groupD3 that
maps the regular triangle whose boundaries are orthogonal tof � 1; � 2; � 3g
to itself. Explicitly, the D3 is the group with six elements generated by the
following two generators: the order two element corresponding to the re
ection

� 1 ! � 1 ; � 2 $ � 3 (7.2.19)

and order three element corresponding to the 120� rotation

� 1 ! � 2 ; � 2 ! � 3 ; � 3 ! � 1 (7.2.20)

of the triangle. See Figure 7.2.
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Recall that the usual S-duality group PSL(2; Z) is generated by the two
elements S and T, with the relation S2 = ( ST)3 = 1. In terms of 2 � 2
matrices, they are given by

S =
�

0 � 1
1 0

�
; T =

�
1 1
0 1

�
:

The extended S-duality group PGL(2; Z) is then generated by the above two
generators, together with the other one corresponding to the parity reversal
transformation (7.2.17)

R =
�

1 0
0 � 1

�
:

On the other hand, in terms of these matrices and thePGL(2; Z) action
(7.2.6) on the vectors in the vector spaceM 2(R) � R2;1, one of the three
generators of the Weyl groupW , corresponding to the re
ection with respect
to the simple root � 1, is given by

s1 : X ! X � 2
(X; � 1)
(� 1; � 1)

� 1 = R(X ) : (7.2.21)

For the dihedral group D3, the re
ection ( � 2 $ � 3) generator is given by

X ! RS(X ) (7.2.22)

and the order three 120� rotation generator is given by

X ! RSTR(X ) : (7.2.23)

From the expression for these three generators one can deduce the rest of
the elements ofW . For example, the re
ections s2; s3 with respect to the other
two simple roots � 2, � 3 are given by R conjugated by the appropriate power
(1 and 2 respectively) of the rotation generatorRSTR.

In particular, we have shown that the extended S-duality group can be
written as

PGL(2; Z) �= O+ (2; 1;Z) �= W o D3 : (7.2.24)

This means that the Weyl group is a normal subgroup of the groupPGL(2; Z),
namely that the conjugation of a Weyl group element with any element of
PGL(2; Z) is again a Weyl group element.

This relation between the symmetry of the root system of the present Weyl
group and the physical phenomenon of crossing the walls of marginal stability
will be further explored later in section 8.6.
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7.2.2 K3 Elliptic Genus and the Siegel Modular Form

In this subsection we will focus on the automorphic property of the microscopic
partition function �(
). As we have discussed in the previous subsection, the
theory has an extended S-duality groupPGL(2; Z), which acts naturally on
the argument 
 of the partition function as (7.2.6). We therefore expect �(
)
to transform nicely under this group action. But it will turn out that this
function has a much larger automorphic group Sp(2; Z) � SL(2; Z) under
which it displays a nice transformation property. We will now motivate and
explain the presence of this automorphic group from a mathematical point of
view. The material covered here can be found in, for example, [44, 142]

As it stands in equation (7.2.1), �(
) is a function of the 2 � 2 symmetric
complex matrix 
. But as c(n) grows with n, it is clear that in order for the
function to be convergent 
 should be restricted to lie in the Siegel upper-half
plane, obtained by complexifying the vector spaceM 2(R) introduced before
and taking only the future light-cone for the imaginary part


 2 M 2 + iV +

V + = f X 2 M 2; kX k2 < 0; Tr X > 0g : (7.2.25)

See Figure 8.1. In other words, �(
) should be considered as a function on
the spaceM 2(R) + iV + . But there is another equivalent presentation of this
space, namely the Grassmannian of a higher dimensional space

M 2 + iV + =
O(3; 2)

O(3) � O(2)
= f u 2 C5; hu; ui = 0 ; hu; �ui < 0g=(u � C� u) :

(7.2.26)
To see the second equivalence, simply observe that the real and imaginary
part of u are indeed two mutually perpendicular timelike vectors which span
a maximally timelike surface in the total space R3;2, a phenomenon we have
used in our discussion of the K3 moduli space in section 3.2. To see the �rst
equivalence, separate the �ve-dimensional oneR3;2 into R2;1 � R1;1 with the
inner product

h(X ; z+ ; z� ); (X ; z+ ; z� )i = kX k2 + 2z+ z� ;

then using the C� identi�cation we obtain the following one-to-one mapping
between a vector 
 2 M 2 + iV + and u 2 O(3;2)

O(3) � O(2) :


 ! u(
) = (
; 1 ; �
1
2

k
 k2) :

From this point of view, �(
) is a function on the coset space O(3; 2)=O(3) � O(2),
and it is therefore not surprising that �(
) should have automorphic proper-
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ties with respect to the automorphism group SO+ (3; 2;Z) �= Sp(2; Z)=f� 14g.
For the explicit map between these two groups, see for example [143].

To be more precise, what we have here is actually a special case of the
following theorem of R. Borcherds (Theorem 10.1 of [44]).

Theorem 7.2.1 Let g(� ) =
P

f (4n)qn be a meromorphic modular form with
all poles at the cusps of weight� s=2 for SL(2; Z) with integer coe�cients, with
24jf (0) if s = 0 . There is a unique vector%in a Lorentzian lattice � = � s+1 ;1

such that

F (
) = e� �i (
 ;%)
Y

� 2 � +

�
1 � e� �i (
 ;� ) � f (� 1

2 k� k2 ) (7.2.27)

is a meromorphic automorphic form of weightf (0)=2 for O(s + 2 ; 2;Z).
Furthermore, de�ne a rational quadratic divisor to be the following zero

locus

h(� ; 2r; 2s); u(
) i = h(� ; 2r; 2s); (
; 1 ; �
1
2

k
 k2)i = 0 ; r; s 2 Z (7.2.28)

for

h(� ; 2r; 2s); (� ; 2r; 2s)i > 0 ;

then all the zeros and poles ofF lie on the rational quadratic divisors with the
multiplicities of the zeros being

X

n> 0

f (�
n2

2
h(� ; 2r; 2s); (� ; 2r; 2s)i ) :

In some cases the above product formula is known to be the denominator
formula of a certain Borcherds-Kac-Moody algebra. In this case the vector%
is the Weyl vector of the algebra.

To see how this theorem applies to our �(
), let's �rst recall a few facts
about the elliptic genus of K3. As was discussed in section 2.1.5, the elliptic
genus has a theta-function decomposition given in (2.1.38). From the trans-
formation properties of the theta-function we conclude that h� (� )'s transform
as modular forms of weight� 1=2.

For the K3 case, we know the full answer in terms of Eisenstein series
(2.1.51). Now consider the case when the modular form in the above theorem
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is given by h� =2, where

2� 0;1(�; z ) = � K 3(�; z ) =
X

� =0 ;1

h� (� )� � (�; z )

= 2y� 1 + 20 + 2 y + O(q) ;

h� (� ) = c(4n � � 2)qn� � 2

4

� � =
X

`2 Z

q(`+ �
2 )2

y� +2 ` :

By taking f (n) = 1
2c(n) and comparing the result to (7.2.12) we see that

�(
) = ( F5(
)) 2 is a weight 10 automorphic form for the groupSO+ (3; 2;Z) �=
Sp(2; Z)=f� 14g, which is also the modular group of a genus two Riemann
surface. In other words, �(
) transforms as

�(
) !
�
det(C
 + D)

� 10 �(
) (7.2.29)

when

 ! (A
 + B )(C
 + D) � 1 ;

for 2 � 2 matrices of integral entries satisfying the symplectic condition

AB T = B T A ; CD T = D T C ; AD T � BC T = 12� 2 :

In particular, this gives a product formula for the Igusa cusp form of weight
10, which is one of the �ve generators of the ring of genus two modular forms
of all weights, as [143]

�(
) =
Y

(a;b) even

� 2
a;b(
) = e� 2�i (%;
)

Y

� 2 � +

�
1 � e� �i (�; 
)

� c(�k � k2=2)
(7.2.30)

where the product of the theta function is taken over all a; b 2 (Z=2Z)2 with
aT b = 0 mod 2.

Furthermore, using the second part of the above theorem, we see that all the
zeros of �(
) are of multiplicity two and lie on the rational quadratic divisor

1
2

h(� ; 2r; 2s); (
; 1 ; �
1
2

k
 k2)i = r (�� � � 2) + n� + m� + `� + s = 0 ;

with

1
2

h(� ; 2r; 2s); (� ; 2r; 2s)i = `2 � 4nm + 4rs = 1 ; `; n; m; r; s 2 Z : (7.2.31)
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In the counting formula (7.2.8), these zeros lead to double poles in the inte-
grand.

It is clear that all the above zeor are related to each other bySp(2; Z)
transformations. Indeed, when one identi�es 
 with the period matrix of
a genus two surface, the poles in 1=� occur precisely at those values of 

at which the genus two surface degenerates into two disconnected genus one
surfaces through the pinching of a trivial homology cycle. These degenerations
are labelled by elements ofSp(2; Z)=f� 14g and are characterized by the fact
that the transformed period matrix is diagonal. From this consideration and
from the knowledge that (
 ; � 1) describes such a degeneration, we see that
the location of the above rational quadratic divisor can also be written as

�
(A
 + B )(C
 + D) � 1; � 1

�
= 0 : (7.2.32)

7.2.3 The Borcherds-Kac-Moody Superalgebra and the Denomi-
nator Formula

After the discussion in the last two sections about the related mathemati-
cal properties of the counting formula, now we are ready to see how it is
associated with a Borcherds-Kac-Moody, or generalised Kac-Moody, superal-
gebra. A Borcherds-Kac-Moody superalgebra is a generalisation of the usual
Lie algebra by the following facts: (i) the Cartan matrix is no longer positive-
de�nite (\Kac-Moody"), (ii) there are also the so-called \imaginary" simple
roots with lightlike or timelike length (\Borcherds"), (iii) it is Z2-graded into
the \bosonic" and the \fermionic" part (\super"). We will summarise the
important properties of these algebras that we will use later. See [144] or the
appendix of [143] for a more systematic treatment of the subject.

Consider a setI = f 1; 2;� � � ; ng and a subsetS � I . A generalised Cartan
matrix is a real n � n matrix A = ( hi ; hj ) that satis�es the following properties

1. either A ii = 2 or A ii � 0 .

2. A ij < 0 if i 6= j , A ij 2 Z if A ii = 2 .

Furthermore we will restrict our attention to the special case of BKM
algebra without odd real simple roots, which means

3. A ii � 0 if i 2 S .

Then the BKM superalgebra g(A; S) is the Lie superalgebra with even gen-
erators h, ei , f i with i 2 I � S and odd generatorsei , f i with i 2 S, satisfying
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the following de�ning relations

[ei ; f j ] = � ij hi

[h; h0] = 0

[h; ei ] = ( h; hi ) ei ; [h; f i ] = � (h; hi ) f i

(adei )1� A ij ej = (ad f i )1� A ij f j = 0 if A ii = 2 ; i 6= j

[ei ; ej ] = [ f i ; f j ] = 0 if A ij = 0 :

Another important concept we need is that of the root space. For later
use we have to introduce more terminologies. Theroot lattice � is the lattice
(the free Abelian group) generated by � i , i 2 I , with a real bilinear form
(� i ; � j ) = A ij . The Lie superalgebra is graded by � by letting h, ei , f i have
degree 0,� i and � � i respectively. Then a vector� 2 � is called a root if there
exists an element ofg with degree � . A root � is called simple if � = � i ,
i 2 I , real if it's spacelike k� k2 > 0 and imaginary if otherwise. It is called
even (odd) if the elements in g with degree � are generated by the even (odd)
generators, andpositive (negative) if it is a positive- (negative-) semi-de�nite
linear combinations of the simple roots. It can be shown that a root is either
positive or negative, and either even or odd. Furthermore, theWeyl group W
of g is the group generated by the re
ection in � 
 R with respect to all real
simple roots. A Weyl vector %is the vector with the property

(%; �i ) = �
1
2

(� i ; � i )

for all simple real roots � i . It is easy to see that, for the case discussed in
section 7.2.1, the vector (7.2.13) is indeed the Weyl vector satisfying the above
condition.

Just as for ordinary Kac-Moody algebras, there is the following so-called
denominator formula

e(� %)
Y

� 2 � +

�
1 � e(� � )

� mult � =
X

w2 W

� (w)w(e(� %) S) ; (7.2.33)

where � + is the set of all positive roots, � (w) = ( � 1)` (w) where `(w) is the
length of the word w in terms of the number of generators, de�ned in (8.9.3)3.
There are di�erences between this product formula and the usual Weyl de-
nominator formula due to, �rst of all, the fact that it's \super". Concretely,

3Warning: the conventions of the signs of the above formula, in particular the signs of
the Weyl vector, do vary in the existing literature.
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we have used the following de�nition for the \multiplicity" of roots mult � :

mult � = dimg� (� dimg� ) when � is even (odd):

Furthermore, there is a correction term S on the right-hand side of the formula
due to the presence of the imaginary roots. The exact expression forS is rather
complicated for generic BKM superalgebras and can be found in [144, 143].

In the above formula, the e(� )'s are formal exponentials satisfying the mul-
tiplication rule e(� )e(� 0) = e(� + � 0). Taking e(� � ) ! e� �i (�; 
) , the left-hand
side becomes the product formula of (7.2.27) withmult � = f (� 1

2k� k2).
Now we will concentrate on the case discussed in the last subsection. We

have seen that (7.2.30)

�(
) 1=2 = e� �i (%;
)
Y

� 2 � +

�
1 � e� �i ( �; 
)

� 1
2 c(�k � k2=2)

: (7.2.34)

From the transformation property of the above automorphic form under the
Weyl group W introduced in (7.2.15), we can also rewrite it in a form as
the right-hand side of (7.2.33). From this equivalence one can therefore read
out the set of even and odd imaginary simple roots and therefore construct
a \automorphic-form corrected" Borcherds-Kac-Moody superalgebra, whose
denominator is the Siegel modular form �(
) 1=2 of weight �ve and have

mult � =
1
2

c(�k � k2=2) ; (7.2.35)

where c(n) is the Fourier coe�cient of the K3 elliptic genus.
By construction, the real simple roots can be chosen to be the basis of

the charge vector appearing in the dyon counting formula (7.2.9), while the
Weyl group is the one generated by the three re
ections with respect to them
(7.2.15). In particular, the part of the generalised Cartan matrix correspond-
ing to the simple roots is given by (7.2.14). The above expression for the root
multiplicity together with the property c(n) = 0 for n < � 1 is indeed consis-
tent with the fact that all real roots have length k� k2 = 2. The set of all real
positive roots is denoted as � re

+ as was announced in (7.2.16).
The fact that the dyons are counted with a generating function which is

simply the square of the denominator formula of a generalized Kac-Moody
algebra, and that the charge vectors naturally appear as elements of its root
lattice, strongly suggests a physical relevance of this superalgebra in the BPS
sector of the theory. Later we will see how features of this algebra appear in
a physical context and elucidate (part of) the role of this algebra.





8 Counting the Dying Dyons

8.1 Introduction

In the last chapter we have reviewed the microscopic counting of 1=2- and
1=4-BPS states, in particular the derivation of a dyon-counting formula and
various mathematical properties of the dyon-counting partition function.

Recently, various puzzles have been raised about this formula [145, 146].
First of all, a subtlety in checking their S-duality invariance has been ob-
served. Secondly, there is an ambiguity in choosing the integration contour
arising from the complicated pole structure of the modular forms that enter the
formulas. Finally, it has been noted that the BPS spectrum in the macroscopic
supergravity theory is subjected to moduli dependence due to the presence of
walls of marginal stability for some multi-centered bound states. See section
4.3.1 for a discussion of this phenomenon in theN = 2 context. Finally, ei-
ther by using a duality argument [145], or by studying a speci�c example in
great details [146], there have been some hints that all the above issues might
actually have something to do with each other.

The goal of the �rst part of the chapter is to address these issues and
provide a resolution to some of these puzzles. In particular, our aim is to
present a precise contour prescription that will lead to a counting formula
that is manifestly S-duality invariant and suitable for all moduli. To arrive
at this prescription for contours, an important role is played by the one-to-
one correspondence between various poles in the integrand of the counting
formula, and the di�erent decay channels in which a dyon can be split into
two 1=2-BPS particles. This correspondence between poles and bound states
was envisaged in [139], and was recently reiterated in [145, 146]. It turns out
that the only poles that can be crossed when the choice of contour is varied are
precisely the ones that admit such a correspondence. Moreover, we �nd that
the contributions of the poles exactly match the expected number of states

191
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corresponding to the two-centered con�gurations of BPS dyons (See also the
work by Sen around the same time [147]). The key observation which allows
us to identify the correct contour prescription is that the resulting integration
contour should render the counting formula explicitly S-duality invariant, and
should furthermore automatically take into account the (dis-)appearance of
the two-centered bound states when a wall of marginal stability is crossed.
This leads to a moduli-dependent degeneracy (or index-) formula that counts
all the living dyons in every region of moduli space. In particular, we note
that the walls of marginal stability have the property that for large black hole
charges (as opposed to \small black holes" with vanishing leading macroscopic
entropy), none of the two-centered bound states of 1=2-BPS particles can exist
when the background moduli are �xed at their attractor values. Using this fact
we also propose a second, moduli-independent contour prescription, which has
the property of counting only the \immortal dyons" which exist everywhere
in the moduli space.

The goal of the second part of this chapter is to explore the role of the
Borcherds-Kac-Moody algebra in the BPS spectrum. Despite the progress
mentioned above which has been made in understanding the dyonic spectrum
of the theory, so far no concrete interpretation is given to the appearance of
the Borcherds-Kac-Moody algebra. We will address the following two aspects
of this issue.

First of all, we note that the counting formula, now equipped with a moduli-
dependent contour, can be identi�ed with the character formula of a Verma
module of the algebra with an appropriate choice of highest weight depending
on the moduli. Speci�cally, the dictionary is such that the attractor moduli
corresponds to a Verma module of dominant highest weight. This sheds light
on the question of how the BPS states form a representation of the algebra.

Secondly, using the realisation that the walls of moduli stability of the super-
gravity theory are given by the walls of Weyl chambers of the Borcherds-Kac-
Moody algebra, we show that the discrete dependence of the BPS spectrum on
the moduli is described by the Weyl group of the algebra. From this we con-
clude that, just from the low-energy supergravity theory we should be able to
derive the existence of such a group as the group of a discretized version of the
attractor 
ow. More concretely, given a beginning point in the moduli space,
there is a unique sequence of Weyl re
ections, each represents the crossing of
a wall of marginal stability, which brings the moduli to their attractor values.
This path of wall-crossing is exactly the one taken by the usual attractor 
ow.
In particular this gives an order among possible decay channels, which has
the structure of an order given by an RG-
ow. We hope that this chapter
elucidates the relationship between the wall crossing, the counting formula,
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and the Borcherds-Kac-Moody algebra, in the context of theN = 4 dyonic
spectrum.

8.2 Dying Dyons and Walls of Marginal Stability

8.2.1 Determining the Walls

Earlier in this thesis we have seen in section 4.3 the phenomenon of moduli
dependence of solutions ofN = 2, d = 4 supergravity. Here we are interested
in the question whether there is a similar phenomenon in the presentN = 4,
d = 4 theory. Especially, we are interested in the bound states of two 1=2-
BPS objects since these are the only bound states whose degeneracies might
jump in di�erent regions in the moduli space, which can be understood either
by zero-mode counting or the fact that the corresponding walls of marginal
stability are of higher co-dimension in the moduli space in all other cases [148]

As discussed in chapter 4.3, a decay of a two-centered supergravity solution
is possible only when the background moduli at in�nity is such that the mass
satis�es the condition M = M 1 + M 2.

We want to determine when a dyonic bound state might decay in this theory.
First we concentrate on the speci�c decay channel of a dyonic, 1=4-BPS state
with charges (P; Q) splitting into two 1 =2-BPS particles with charges (P; 0)
and (0; Q). For this case, the condition for a wall of marginal stability is

M P;Q = M P;0 + M 0;Q ; (8.2.1)

which can be rewritten as

jZP;Q (� )j = jZP;0(� )j + jZ0;Q (� )j :

Notice that we have temporarily suppressed the dependence on the Narain
part of the moduli in our notation, which determines the left-moving part of
the chargesPL = � �P (3.3.3), since these �elds� do not transform under the
extended S-duality group PGL(2; Z).

Using the fact that the total central charge obeys

ZP;Q (� ) = ZP;0(� ) + Z0;Q (� ) ;

one �nds that the condition of marginal stability can only be satis�ed when
the phases of the central charges are aligned, a phenomenon that is already
familiar to us from chapter 4.3.

Using the explicit expression for the central charge (7.1.1), the above equa-
tion leads to the condition

� 1

� 2
+

PL � QL

jPL ^ QL j
= 0 ; (8.2.2)
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where

jPL ^ QL j =
q

P2
L Q2

L � (PL � QL )2

is the quantity de�ned earlier in (7.1.2).
The next step will be to consider the other ways in which a dyon can split

into two 1=2-BPS particles, and determine the corresponding walls of marginal
stability. The decay channels are determined by the fact that that a 1=2-BPS
state must satisfy the condition on their charges that the magnetic and electric
charges have to be parallel to each other (7.1.4). It is now easy to check that
every element of
 2 PGL(2; Z) gives the following split of charges

�
P
Q

�
=

�
P1

Q1

�
+

�
P2

Q2

�
= P
 
 � 1

�
1
0

�
+ Q
 
 � 1

�
0
1

�
; (8.2.3)

where �
P


Q


�
= 


�
P
Q

�

as before. Furthermore, from the quantisation condition of the charges one
can also show that the converse is also true [145]. Namely, for every possible
1=2-BPS split one can always �nd a (not unique) PGL(2; Z) element 
 such
that the charges can be written in the above form.

To determine the location of walls of marginal stability in the moduli space
for the two-centered solutions with the above charges, we can just plug in
the above split of charges into the marginal stability equation M = M 1 + M 2

and solve for the solution. But it will turn out to be a much more economic
way to study the transformation of the central charge matrix (7.1.1) under
the extended duality group PGL(2; Z) (7.2.18). It is easy to check that this
transformation has the e�ect of shifting the phase of the central charges by

ZP;Q (� ) =

(
ei� 
 ZP
 ;Q 
 (� 
 ) for det
 = 1

ei� 
 �ZP
 ;Q 
 (� 
 ) for det
 = � 1
(8.2.4)

with some charge-independent phase� 
 which depends on the group element

 and the axion-dilaton � . Due to the fact that the phase shift is independent
of the charges, all magnitudes of the relative phases will be duality invariant.
In particular, we have

jZP;Q (� )j = jZP
 ;0(� 
 ) + Z0;Q 
 (� 
 )j = jZP
 ;0(� 
 )j + jZ0;Q 
 (� 
 )j :

This shows that the position of the walls of marginal stability corresponding
to the charge splitting (8.2.3) are simply the PGL(2; Z) image of the one for
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the bound state of the purely electric and purely magnetic 1=2-BPS states.
Namely, the walls of marginal stability for all two-centered 1=2-BPS splits are

� 
; 1

� 
; 2
+

(PL � QL ) 


jPL ^ QL j 

= 0 ; (8.2.5)

where PL;
 ; QL;
 ; � 
 are given by (7.2.18) as before.
The above formula might not look too complicated, but we should keep in

mind that these are really in�nitely many equations since PGL(2; Z) is not a
�nite group. Inspired by the fact that all the quantities involved in the above
equation have simple transformation rules under the extended S-duality group,
we would like to look for a way to organise the above equations of walls of
marginal stability in a form that is directly an equation on the un-transformed
�elds PL ; QL and � .

First note that, from the fact that

� P;Q =
�

P
Q

�
�
�
P Q

�

we see that the three-dimensional charge vector �P;Q transforms as

� P;Q ! 
 (� P;Q ) = 
 � P;Q 
 T

under the S-duality transformation (7.2.18)
�

P
Q

�
! 


�
P
Q

�
:=

�
P


Q


�
; 
 =

�
a b
c d

�
2 PGL(2; Z) : (8.2.6)

Since the S-duality group leaves the Narain moduli� invariant, we conclude
that the same transformation rule holds for

�
PL � PL PL � QL

PL � QL QL � QL

�
! 


�
PL � PL PL � QL

PL � QL QL � QL

�

 T :

Especially, the norm of the this vector � j PL ^ QL j is invariant under the
transformation. For the axion-dilaton, from our experience with the S-duality
of type IIB supergravity (1.3.36), we have seen that the following matrix also
transforms under PSL(2; Z) in the same way as the charge vector

1
� 2

�
j� j2 � 1

� 1 1

�
! 


1
� 2

�
j� j2 � 1

� 1 1

�

 T ;

and it is trivial to check that the same transformation rule extends to the
extended duality group PGL(2; Z).
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In particular, if we choose the following combination of these two vectors

Z =
1

p
jPL ^ QL j

�
PL � PL PL � QL

PL � QL QL � QL

�
+

p
jPL ^ QL j

� 2

�
j� j2 � 1

� 1 1

�
; (8.2.7)

then it transforms as
Z ! 
 (X ) = 
 Z 
 T

under an extended S-duality transformation.
As a side remark, let us note that the above somewhat awkward-looking

normalisation has the advantage that now the mass of a dyon, which involves
134 moduli �elds (7.1.3), is nothing but the norm of this single vector

M 2
P;Q = jZP;Q j2 = �

1
2

kZk2 :

But we are going to see in a moment that it is only the direction, not the
length, of the vector Z which determines the existence or not of a certain two-
centered solution. For convenience we will therefore de�ne a \unit vector" X
by

X =
Z

M P;Q
=

Z
q

� 1
2kZk2

: (8.2.8)

Apparently this vector also transforms in the same way asZ under the PGL(2; Z)
transformation.

With this notation, the walls of marginal stability for the ( P; 0), (0; Q) split
of charges (8.2.2) lie on the co-dimensional one space characterised by the
following equation �

X; � 1
�

= 0 ;

and similarly for other splits (8.2.5)
�

 (X ); � 1

�
=

�
X; �

�
= 0 ; � = 
 � 1(� 1) :

Now we have achieved the goal of organising the equations of walls of
marginal stability as equations directly constraining the untransformed quan-
tities PL ; QL and � .

To discuss in more details the possible relationship between the contour
dependence of the integral and the physical walls of marginal stability, it
is necessary to label these walls. As we mentioned before, the map (8.2.3)
betweenPGL(2; Z) elements and the split of charges into two 1=2-BPS charges
is not one-to-one. For example, the element which simply exchanges what we
call the \1st" and the \2nd" decay products will not give a di�erent split of
charges. On the other hand, from the expression for the walls of marginal
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stability (8.2.9), we see that the element 
 which gives 
 (� 1) = � � 1 will not
give a new physical wall. It can indeed be checked that these are also the
elements which give the same split of charges when using the map (8.2.3).
Using the fact that PGL(2; Z) is the group of symmetry for the root system
of the Coxeter (Weyl) group W (7.2.24) and by inspecting the action of the
dihedral group (7.2.19),(7.2.20), it is not hard to convince oneself that the
two-centered solutions with two 1=2-BPS charges discussed in this section are
actually given by the positive real roots of the Borcherds-Kac-Moody algebra.
So we arrive at the conclusion that the relevant two-centered solutions are in
one-to-one correspondence with the positive real roots of the Borcherds-Kac-
Moody algebra, whose walls of marginal stability are given by

(X; � ) = 0 ; � 2 � re
+ (8.2.9)

and whose decay products can be represented by the split of the charge vector
as

� P1 ;Q1 = P2
� � + ; � P2 ;Q2 = Q2

� � �

� P;Q = P2
� � + + Q2

� � � � (P � Q) � � ; (8.2.10)

where for a given� , the set of the two vectors� � is given by the requirement
that (i) they are both lightlike and future-pointing and perpendicular to the
root � , (ii) they lie in the weight lattice, which is in this case the lattice
generated by half (in length) of the simple roots � i =2, (iii) they have inner
product ( � + ; � � ) = � 1. See �gure 8.1. In particular, the combination P2

� and
Q2

� , which is related to the \oscillation level" of the heterotic string as (7.1.6)
and which determines the degeneracy of the 1=2-BPS states, can be thought
of as the \a�ne length" of the lightlike charge vector � P1 ;Q1 and � P2 ;Q2 of the
decay products. Conversely, given the charges of the two centers, the walls of
marginal stability is given by the requirement that the moduli vector X is the
linear combination of the two charge vectors �P1 ;Q1 and � P2 ;Q2 .

More concretely, what the above formula (8.2.10) means is the following:
given a spacelike vector, any future-pointing timelike vector can be split into
a component parallel to it and a future-pointing timelike vector perpendicular
to it. And the latter can be further split into two future-pointing lightlike
vectors lying on the plane perpendicular to the given spacelike vector. See
�gure 8.1. When the timelike vector is taken to be the original charge vector
� P;Q , the two future-pointing lightlike vectors are then the charge vectors of
the two decay products.

For instance, suppose� = 
 � 1(� 1) for some
 2 PGL(2; Z), then f � + ; � � g
is given by


 � 1(diag(0; 1)) ; 
 � 1(diag(1; 0)) :
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In this case one can show thatP2
� = P2


 and similar for the Q's, and the
ambiguity of relating a PGL(2; Z) element 
 to a speci�c decay channel lies
in the fact that there are di�erent 
 's that give the same setf � + ; � � g.

8.2.2 Stability Conditions from Supergravity Solutions

The meaning of the presence of a wall of marginal stability is that a BPS
bound state of two particles exists on one side of the wall and disappears
when crossing into the other side. After deriving the location of the walls
for these bound states, we would like to know on which side these states are
stable and on which side unstable. As discussed in section 4.3.1, this can either
be determined using the heuristic argument that the attractor moduli of the
single-centered black hole solution with the given total charges should lie on
the unstable side of the wall, or by analysing the integrability condition of the
supergravity solution. Now we will perform the latter analysis as a check. For
this purpose we need more information about the corresponding supergravity
solutions.

Let us now consider the four-dimensionalN = 4 supergravity theory de-
scribing the low energy limit of the heterotic string compacti�ed on a six-torus.
The metric part of a stationary solution reads

ds2 = � e� 2U (dt + ~! � d~x)2 + e2U d~x2

e2U = jP ^ Qj �
p

P2Q2 � (P � Q)2

~r � ~! = P � ~rQ � Q � ~rP ; (8.2.11)

where the indices are contracted using the standardSO(6; 22)-invariant 28� 28
matrix � AB , for example P2 � P A PB � AB .

The 56 harmonic functions appearing in the above solution are

PA (~x) = CA +
X

i

PA
i

j~x � ~xi j

QA (~x) = DA +
X

i

QA;i

j~x � ~xi j
;

with the 56 constants given by the asymptotic value of 23 complex scalar �elds
(the axion-dilaton moduli � and the 22 complex moduli projected from the
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aforementioned 6� 22 moduli) as1

CA = � Im
�

e� i� P;Q
@ZP;Q

@QA

�

DA = Im
�

e� i� P;Q
@ZP;Q

@PA

�
;

where the PA 's and the QA 's denote the total charges coming from all the
centers. From this expression one immediately sees that these coe�cients
satisfy QA CA = PA DA , since the central charge is linear in all charges.

For the speci�c two-center bound state with charges (P; 0), (0; Q) considered
earlier, the corresponding supergravity solution has harmonic functions given
by

PA = CA +
PA

j~x � ~xP j

QA = DA +
QA

j~x � ~xQ j
:

In this case the coordinate distance between the two centersj~xP � ~xQ j is
�xed by the integrability condition [54], obtained by taking the divergence of
the both sides of (8.2.11), and reads

P � Q
j~xP � ~xQ j

= � CA QA :

After some algebra this becomes

j~xP � ~xQ j = �
1

p
jPL ^ QL j

(� P;Q ; � 1)
(X; � 1)

:

Since the distance between the two centers is always a positive number, one
�nds that, in order for the bound state to exist, the expression on the r.h.s.
should better be positive as well. We therefore conclude that the bound state
only exists when

(� P;Q ; � 1)(X; � 1) < 0 ; (8.2.12)

and decays when one dials the background moduli to hit the wall where (X; � 1)
vanishes. More precisely, one �nds that the distance between the two centers
goes to in�nity, and the bound state no longer exists as a localisable state.

1By evaluating the N = 4 central charge operator Ẑ (7.1.1) in the eigen basis ofẐ y Ẑ , one
can write the BPS equations in a way analogous to the N = 2 case as in section 4.1. Only
22 complex moduli made out of the 6 � 22 real moduli �elds play a role in the solution. It is
indeed known that the N = 4 moduli space locally decomposes as a product of 22 vector-,
44 hyper-, and 1 tensor-multiplet scalars in the N = 2 language (see, for example, [149]).
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Using the PGL(2; Z) transformation as before, it is now easy to write down
for all the other two-centered solutions with 1=2-BPS centers the expression
for the coordinate distance between the centers

j ~xP� � ~xQ � j = �
1

p
jPL ^ QL j

(� P;Q ; � )
(X; � )

; (8.2.13)

and hence the stability condition reads

(� P;Q ; � )(X; � ) < 0 ; � 2 � re
+ : (8.2.14)

We have therefore achieved the goal of studying the stability condition for
all two-centered bound states of 1=2-BPS objects in the presentN = 4, d = 4
supergravity theory.

8.3 Contour Dependence of the Counting Formula

In section 7.1.3 we have derived the microscopic counting formula (7.1.14),
expressed in terms of the generating function 1=�(
). Formally, to extract
the actual degeneraciesD(P; Q) from the generating function we can invert
the formula into a contour integral (7.2.8).

But in this formula we have not speci�ed how the contour of integration
should be chosen. It would not be a problem if the integral were contour-
independent, but as it turns out it is not the case here. As discussed in (7.2.31),
the generating function 1=�(
) has poles lying on the rational quadratic divi-
sors which are related to each other bySp(2; Z) modular transformation. Due
to the presence of these poles, one has to be careful with choosing the contour
C: the counting formula will \jump" when the contour crosses one of these
poles. Therefore, strictly speaking the formula (7.2.8) forD (P; Q) is not just
a function of the chargesP and Q but also depends on the contour.

To determine what the appropriate contour should be, the symmetry of the
theory, in particular the extended S-duality PGL(2; Z) symmetry in this case,
will be provide us with important hints.

First recall the transformation of property of of charge vector � P;Q (8.2.6)
under the extended S-duality group

�
P � P P � Q
P � Q Q � Q

�
! 


�
P � P P � Q
P � Q Q � Q

�

 T :

Recall that PGL(2; Z) acts as a Lorentz plus spatial re
ection transformation
in the spaceM 2 of 2� 2 symmetric matrices. In particular, the inner product
of two vectors is invariant under such a transformation

(
 (
) ; 
 (� P;Q )) = (
 ; � P;Q ) :
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Together with the fact that �(
) is invariant under 
 ! 
 (
) (7.2.29), we
conclude that the integrand of the contour integral (7.2.8) is invariant under
the following S-duality transformation

(� 1)(P �Q) 

e�i (
 (
) ;
 (� P;Q ))

�( 
 (
))
= ( � 1)P �Q e�i (
 ;� P;Q )

�(
)
;

where we have also used the fact thatP2; Q2 = 0 mod 2 and as a consequence
(P � Q) 
 = P � Q mod 2. Therefore, if we ignore the ambiguity of the contour,
the degeneracy formula (7.2.29) indeed satis�es the physical condition of being
invariant under the duality group.

This fact is not yet su�cient, however, to prove the invariance of the degen-
eracies. Namely, due to the presence of the poles, the expression forD(P; Q)
fails to be S-duality invariant, unless the contour C is also transformed to a
new contour C
 . Explicitly, the equality

I

C
d
 ( � 1)P �Q e�i (
 ;� P;Q )

�(
)
=

I

C


d
 ( � 1)(P �Q) 

e�i (
 (
) ;
 (� P;Q ))

�( 
 (
))
(8.3.1)

only holds when the new contourC
 in the 
 (
)-plane is the same as C in the

-plane. If this is not true, in general di�erent contours cannot be deformed
into one another without picking up any residue and the answer we get for the
degeneracies will therefore not be S-duality invariant.

A natural guess for a remedy for the present situation is to let the contour
depend on the charges, and possibly also the moduli �elds, since these quan-
tities do transform under S-duality. Indeed, there is an important reason to
suspect that the dyon counting formula is moduli-dependent, since as we have
seen in the last section, certain multi-centered BPS solutions only exist in
some range of background moduli and decay when a wall of marginal stability
is crossed.

As a �rst step towards understanding the moduli dependence of the inte-
gration contour, we will now study the dependence of the degeneracyD(P; Q)
on the choice of the contour in the integral formula (7.2.8), by analysing the
contribution from the poles of the partition function 1 =�(
) to the integral.

Let us have a closer look at the possible choice of the contour, namely
a choice of three-cycle on which we perform the integral over in the three-
complex dimensional space parametrised by


 =
�

� � �
� � �

�
2 M 2(R) + iV + : (8.3.2)

Due to the fact that we are dealing with a modular form, the contour will have
to be inside a fundamental domain of theSp(2; Z) modular group. A natural
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Figure 8.1: (a) The imaginary part of the Siegel upper-half plane for the modular form
� is the future light-cone V + in the Minkowski space R2;1 , and we consider the space of
all contours to be a sheet of hyperboloid inside this light-cone, with all the points on the
hyperboloid having the same large distance from the origin. (b) A plane (X; � ) = 0 given by
a positive real root � always intersects the hyperboloid, or equivalently the upper-half plane
or the Poincar�e disk. And the root � de�nes two lightcone directions f � + , � � g perpendicular
to it, given by the intersection of the plane with the future light-cone.

choice of contour is to perform the integral over the real parts of� , � and � ,
while keeping the imaginary parts �xed. Speci�cally, the range of integration
of the real variables is

0 � Re�; Re�; Re� < 1 : (8.3.3)

The integration contour is thus a three-torus. The location of the contour is
determined by a choice of the imaginary parts. To make sure that 1=� has a
well-de�ned expansion up to high order, we will choose these imaginary parts
so that 
 lies well inside the Siegel upper-half plane, that is

�
1
2

kIm
 k2 = Im � Im� � (Im � )2 = " � 2 � 1 : (8.3.4)

To visualize the location of the poles relative to the contours, we note that the
above condition de�nes a sheet of a hyperboloid high up inside the future light-
cone. This is shown in Figure 8.1. As mentioned before, all the double poles
of the generating function 1=� are located at divisors given by the Sp(2; Z)
modular images of the divisor (
 ; � 1) = � 2� = 0 in the 
-space, where � 1

coincides with one of the simple real roots given in (7.2.9). As we have seen
before (7.2.31), these poles take the form

r (�� � � 2) + n� + m� + `� + s = 0 :
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The poles at divisors with r = 1 have exponentially dominant contribution
to the degeneracy formula (7.2.8) compared to the rest in the case of large
charges, as explained in the appendix of [139]. In [145] it was observed that
the contour space (8.3.4) does not intersect any of the poles havingjr j � 1.
Indeed, a look at the real part of the above equation reveals that, since all
the entries of jRe
 j run between 0 and 1, there is nothing to compensate the
large contribution from � 1

2kIm
 k2 � 1 contained in the real part of the term
� 1

2k
 k2 = �� � � 2. In other wods, these poles will always contribute to the
degeneracy formula no matter which contour we choose, since they lie lower
in the light-cone. Therefore, we never run into the danger of having a contour
which crosses one of these poles. For our purpose of studying the contour
dependence of the integral, it is hence su�cient to concentrate on the poles
with r = 0.

Since we are only interested in the poles inside the real domain of integration
(8.3.3), we can restrict our attention to the poles with r = s=0. It is easy to
see that an image of the pole (
; � 1) = 0 under PGL(2; Z) transformation is
another rational quadratic divisor, since the length condition (7.2.31)

1
2

k� k2 =
1
2

k
 � 1(� 1)k2 = 1

follows directly from k
 � 1(� 1)k2 = k� 1k2.
On the other hand, it can be shown, by classifying both entries ofPGL(2; Z)

elements and (k; `; m ) by their prime factorizations for example, that one can
always �nd a (not unique) PGL(2; Z) element 
 for each pole (7.2.31) with
r = s = 0 such that it is the image of the pole (
 ; � 1) = 0 under the group
transformation.

In other words, these poles can be written in the form

�

 
 
 T ; � 1

�
=

�

 (
) ; � 1

�
=

�

 ; 
 � 1(� 1)

�
= 0 for some 
 2 PGL(2; Z) ;

and its imaginary part

�
Im
 ; �

�
= 0 ; � = 
 � 1(� 1) for some 
 2 PGL(2; Z) :

de�nes a plane inside the spaceR2;1.
The fact that k� k2 > 0 implies that the normal vector to the plane is space-

like, and hence these planes always intersect the contour space hyperboloid
(8.3.4) along a hyperbola. Therefore, each plane divides the contours into two
sub-classes (Im
; � ) > 0 and (Im
 ; � ) < 0. See Figure 8.1. Whether the
corresponding poles contribute to the degeneracy formula for a given charge
con�guration will therefore depend on the contour we choose.
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Let us now determine the condition under which these poles contribute to
the integral, and, if they do contribute, what their contribution is. We �rst
concentrate on the double pole at (
 ; � 1) = 2 � = 0. Near the � = 0 divisor
the generating function has the limit

1
�( �; �; � )

=
1

4� 2

1
� 2

1
� 24(� )

1
� 24(� )

(1 + O(� 2)) : (8.3.5)

Notice that the last two factors in the limiting expression (8.3.5) are exactly
the generating function for the 1=2-BPS degeneracies (7.1.7). By plugging
the above expression into the degeneracy formula (7.2.8) and performing the
integration over the real part of � and � , one gets

(� 1)P �Q

4� 2 d(P)d(Q)
I

C�

d�
e� 2�i (P �Q)�

� 2 ;

where we have made use of (7.1.7). To evaluate the remaining integral over� ,
we �rst consider a contour with

�
Im
 ; � 1

�
= 2Im � > 0 :

For this case the contour is shown in the Figure 8.2. When the charges under
consideration satisfy �

� P;Q ; � 1
�

= � 2P �Q > 0 ;

one can deform the contour to the upper in�nity of the cylinder (Im � ! 1 )
where the integrand is zero without crossing any pole. One thus concludes
that the integral yields zero. On the other hand, in the caseP � Q > 0, the
contour can be moved to the lower in�nity (Im � ! �1 ) where the integrand
is again zero, but now by doing so we pick up the contribution of the pole

� 2�i@� (e� 2�i (P�Q)� )j � =0 = � 4� 2 (P � Q) ;

where the extra minus sign comes from the fact that we are enclosing the pole
in a clockwise direction. For the contours with Im� < 0, a similar argument
shows that the pole only contributes when (P � Q) < 0, but now with the
opposite sign as above due to the reverse orientation in which the pole is
enclosed. One therefore concludes that the contribution of this speci�c pole
to the degeneracy formula (7.2.8) is

(� 1)(P �Q)+1 jP � Qj d(P) d(Q) when
�
� P;Q ; � 1

��
Im
 ; � 1

�
< 0 (8.3.6)

and zero otherwise. The contributions of the other poles can be determined
directly in a similar fashion. However, they are more easily obtained by making
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Figure 8.2: In this �gure we show how the pole located at � = 0 contributes to the
degeneracy formula for contours with Im � > 0. (a) For charges with P � Q < 0, one can
deform the contour to the upper in�nity of the cylinder where the integrand goes to zero
without hitting the pole. (b) For charges with P � Q > 0, one can deform the contour to the
lower in�nity of the cylinder, and by doing so pick up the residue of the pole.

use of the fact that they are thePGL(2; Z) images of the� = 0 pole. Together
with the fact that the integrand is invariant under extended S-duality group
(8.3.1), it follows that the double pole of 1=� located at

(
 ; � ) = 0 ; � = 
 � 1(� 1) for some 
 2 PGL(2; Z) (8.3.7)

gives the contribution

(� 1)P
 �Q 
 +1 jP
 � Q
 j d(P
 ) d(Q
 ) when
�
� P;Q ; �

��
Im
 ; �

�
< 0 (8.3.8)

and zero otherwise. The equation (8.3.8) summarizes all the contour depen-
dence in the degeneracy formula (7.2.8).

As we will see, the jumps in the counting formula when a contour crosses
one of the poles are related to the decay of marginally bound 1=2-BPS par-
ticles. Speci�cally, we will argue that (8.3.6) precisely counts the number of
states associated with the bound state of a purely electric 1=2-BPS object and
a purely magnetic 1=2-BPS object, while (8.3.8) is associated with more gen-
eral dyonic bound states that are obtained by electric-magnetic duality. This
interpretation will be discussed in more details in section 8.4.

In order to make the above correspondence more precise, we will now discuss
the labelling of the poles susceptible to contour-dependence studied above.
As we mentioned earlier, the group element
 2 PGL(2; Z) associated with
a given such pole might not be unique. Indeed, the elements
 which gives

 � 1(� 1) = � � 1 will of course not give another equation. This redundancy
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is exactly the one we encountered in the last section when we were deriving
the labelling of the decay channels (8.2.14). Hence we conclude that these
poles are also labelled by the positive real roots of the Borcherds-Kac-Moody
algebra. In other words, the full contour-dependence of the integral (7.2.8)
can be summarised as follows: the hyperplanes

(Im
 ; � ) = 0 ; � 2 � re
+ (8.3.9)

cut the space of contours into di�erent regions, and the integral changes its
value by the amount (8.3.8) when one of the \walls of contours" is crossed.

8.4 The Contour Prescription and its Interpretation

8.4.1 A Contour Prescription

Let us now return to the problem of identifying the contour that should be
used in the counting formula, such that it counts the right number of states
for a given value of the moduli, and therefore by de�nition yields a duality-
invariant answer. The key observation which will allow us to �nd the correct
prescription is that the contour dependence due to the crossing of the pole
labelled by the positive real roots � should exactly match the physical decay
process of the corresponding dyonic bound state. For example, at the wall
of marginal stability of the bound state of an electric 1=2-BPS particle with
charge (P; 0) and a magnetic 1=2-BPS particle with charge (0; Q), one expects
the degeneracyD(P; Q) to be adjusted by a certain amount corresponding
to the degeneracy of this (P; 0), (0; Q) bound state. This degeneracy can be
found in the following way [145, 146, 30]. Firstly, each of the two centers has
its respective degeneracyd(P), d(Q), which is given by the 1=2-BPS partition
function of the theory as (7.1.7). Secondly, there is an extra interaction factor
due to the fact that the spacetime is no longer static. The conserved angular
momentum, after carefully quantizing the system [97], turns out to be

2J + 1 = jP � Qj : (8.4.1)

One therefore concludes that the jump in the counting formula when one
crosses the wall of marginal stability from the stable to the unstable side is
given by

D(P; Q) ! D (P; Q) + ( � 1)P �Q jP � Qj d(P) d(Q) : (8.4.2)

This jump in the degeneracy is precisely the contribution from the pole at
(
 ; � 1) = 2 � = 0 that we found in (8.3.6)! Similar jumps occur when one
crosses the walls of marginal stability for the other dyonic states labelled by
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positive real roots � . As explained in (8.2.10) and (8.3.8), both the jump in
degeneracies and the contribution of the pole are given by

(� 1)(P �Q) � +1 j(P � Q) � j d(P� ) d(Q� ) ;

where (P � Q) � , P2
� and Q2

� are given by � as (8.2.10)

� P;Q = P2
� � + + Q2

� � � � (P � Q) � = � P1 ;Q1 + � P2 ;Q2 � (P � Q) � ; � 2 � re
+ :

Since the amount of discontinuity matches between the contour side and
the supergravity side, now the aim is to �nd the contour prescription such
that the condition for contribution matches as well. Notice that it is a priori
not clear whether this would be possible or not, since there are in�nitely
many potential two-centered solutions and in�nitely many poles susceptible
to contour dependence. However, from the condition for two-centered solution
to exist (8.2.14) and for the poles to contribute (8.3.8), we see that this can
be done simply by choosing the contour of the integral (7.2.8) to be the three-
torus lying at

Im
 = " � 1X : (8.4.3)

Here " � 1 is taken to be small and positive to ensure that the series expan-
sion of 1=� converges rapidly. Moreover, as explained earlier, for su�ciently
small " the contour avoids all other poles except the ones given by the positive
real roots as (
 ; � ) = 0.

To sum up, this prescription gives the location of the contourC in terms of
the charges and moduli:

D (P; Q; �; � ) = ( � 1)P �Q
I

C(P;Q;�;� )
d


e�i (� P;Q ;
)

�(
)

C(P; Q; �; � ) = f Re
 2 T3; Im
 = " � 1X g ; (8.4.4)

where X is given in terms of total charges and moduli as (8.2.7), (8.2.8) and
" � 1 is some arbitrary small positive number.

Furthermore, from the fact that the contour transforms in the same way as
the charge vector under thePGL(2; Z) S-duality group

X ! 
 (X ) ; � P;Q ! 
 (� P;Q ) ;

we can now �nish the argument in (8.3.1) and show that the counting formula
(8.4.4), now coming with a contour prescription, is indeed consistent with the
S-duality symmetry of the theory.

A similar result also holds for the so-called CHL models [150, 151]. A dyon-
counting formula has been proposed for these appropriateZN orbifolds of the
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above theory for N = 2 ; 3; 5; 7 [152, 153, 154, 155, 156, 157]. In these theories,
the rank of the gauge group is reduced and theS-duality group is now the
following subgroup of SL(2; Z):

� 1(N ) =
��

a b
c d

�
2 SL(2; Z) j c = 0 mod N ; a; d = 1 mod N

�
:

Moreover, the family of the the contour-dependent poles of the proposed gen-
erating function 1

~� k ( ~
)
, which is now a modular form of a subgroup ofSp(2; Z),

and the ways in which a dyon can split into two 1=2-BPS particles, are both
modi�ed compared to the original theory. Nevertheless, we �nd that they can
again both be given by the elements of the reducedS-duality group � 1(N ),
and these poles again give the same jump of index as the decaying of these
bound states. In particular, following the same arguments we make exactly
the same proposal (8.4.3) for the integration contour for the dyon counting
formula of this class of models.

8.4.2 The Attractor Contour for Large Charges

For large charges corresponding to a macroscopic black hole, it is natural to
ask what happens to our prescription when one takes the moduli at in�nity
to be at the attractor value. Since the attractor values of the moduli are
completely determined by the charges, this procedure leads to a degeneracy
formula that is independent of the moduli. At the attractor point in moduli
space the following equations hold for the Narain moduli

PR jattr. = 0 ; QR jattr. = 0 ; (8.4.5)

and the axion and dilaton are given by

� 1jattr. =
P � Q
Q2 ; � 2jattr. =

jP ^ Qj
Q2 : (8.4.6)

In our favourite matrix notation, this reads

1
jPL ^ QL j

�
PL � PL PL � QL

PL � QL QL � QL

� �
�
�

attr.
=

1
� 2

�
j� j2 � 1

� 1 1

� �
�
�

attr.
=

1
jP ^ Qj

�
P � P P � Q
P � Q Q � Q

�
:

In this way, we �nd that at the attractor point our moduli-dependent con-
tour reduces to the following moduli-independent expression

Im
 = " � 1X jattr. = " � 1 � P;Qq
� 1

2k� P;Qk2
= �" � 1 � P;Q

S(P; Q)
: (8.4.7)
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Again the PGL(2; Z) invariance is manifest, since both sides transform in
the same way, and hence this prescription also leads to aS-duality invariant
counting formula. But what are the states that are being counted by this
formula?

In fact, we will now argue that these are precisely the 1=4-BPS states that are
not given by the bound states of two 1=2-BPS particles, and therefore cannot
decay. Namely, when one �xes the moduli to be at the attractor values, the
stability condition (8.2.14) reduces to

(� P;Q ; � )2 < 0 ;

which can clearly never be satis�ed. In other words, none of the bound states
of two 1=2-BPS particles can exist at the attractor moduli, which is a fact
consistent with the general phenomenon that an attractor 
ow always 
ows
from the stable to the unstable side, a fact that we are already familiar with
from our discussion of the walls of marginal stability of the N = 2 theory in
section 4.3.1.

In this sense, our moduli-independent contour prescription leads to a count-
ing formula which counts only the \immortal" dyonic states that exist every-
where in the moduli space. Notice further that this class of contours is not
de�ned for charges with negative discriminant, since they lie outside of the
Siegel domain. This is consistent with the fact that they do not have an at-
tractor point, and there is no single-centered supergravity solution carrying
these charges.

Finally we would like to brie
y comment on the role of the number " in
our proposed contours (8.4.3), (8.4.7). It can be seen as playing the role
of a regulator for the convergence of the generating function. To see this,
notice that when we take the contour according to our prescription (8.4.7),
the contribution

�
�
� D (P; Q) e� i� (
 ;� P;Q )

�
�
� = jD (P; Q)je� 2" � 1 � jP ^ Qj � eSe� 2" � 1S (8.4.8)

of certain large charges to the partition function is highly suppressed when
" � 1, and we are therefore left with a rapidly converging generating function.

8.5 Wall-Crossing and Representations of the Algebra

Now we would like to pause and ask ourselves the following question: what
does it mean that a di�erent choice of contour gives a di�erent answer for the
BPS degeneracy? After all, the counting formula (7.1.14) we derived using
the D1-D5 CFT does not seem to have any ambiguity. And since we know
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that the di�erence between di�erent answers are exactly accounted for by
the two-centered solutions in supergravity, what can we say about the states
corresponding to these solutions?

First we begin with the �rst question. Although the formula (7.1.14) might
look unambiguous, the ambiguity really lies in how we expand the right-hand
side of the equation. For example [146], the two possible ways of expanding
the following factor of the partition function

1
(y1=2 � y� 1=2)2

=
1

y(1 � y� 1)2 = y� 1 + 2y� 2 + � � �

=
1

y� 1(1 � y1)2 = y1 + 2y2 + � � � ;

corresponding to two possible ranges for the parametery > 1 and y < 1,
will give di�erent answers for the degeneracies. It is not hard to convince
oneself that this ambiguity of choosing expansion parameters is exactly the
same ambiguity as that of choosing integration contours when we invert the
equation. To be more precise, rewrite the equation (7.1.14) in the following
form as in section 7.2.3

X

P;Q

(� 1)P �QD(P; Q)e� �i (� P;Q ;
) =

0

B
@

1

e� �i (%;
)
Q

� 2 � +

�
1 � e� �i ( �; 
)

� mult �

1

C
A

2

;

apparently, we should expand the product factor in powers ofe� �i ( �; 
) when
(Im
 ; � ) < 0 and in powers ofe�i (�; 
) when (Im
 ; � ) > 0. Comparing with
the integral formula with contour prescription (8.4.4), we see that the inte-
gral formula amounts to the statement that the degeneraciesD(P; Q) given a
point in the moduli space is indeed counted by the above generating function,
provided that the right-hand side be expanded in powers ofe� �i (�; 
) when
(Im
 ; � ) < 0 and in powers ofe�i (�; 
) when (Im
 ; � ) > 0.

We can give the above prescription another interpretation which makes the
role of the Borcherds-Kac-Moody algebra more manifest. Let's consider the
Verma module M (L) of this algebra with highest weight L and its super-
character. Besides the denominator (7.2.33), the character formula also con-
tains a numerator. Using the formal exponential introduced in section 7.2.3,
the super-character reads

schM (L) =
X

� � L

sdim(M (L) � ) e(� ) (8.5.1)

=
e(� %+ L)

e(� %)
Q

� 2 � +

�
1 � e(� � )

� mult � =
e(L)

Q
� 2 � +

�
1 � e(� � )

� mult � ;
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where M (L) � denotes the weight-� sub-module of the Verma moduleM (L),
and \ � � L " means that L � � is a sum of simple roots. The \s" of \sdim"
denotes the fact that we are dealing with the graded characters counting the
graded degeneracies, taking the plus or minus sign depending on whether the
root involved is even or odd. Indeed, recall that in section 7.2.3 we have
de�ned the number mult � to be the graded multiplicities of the root � .

Let's now compare this character formula with the integral

(� 1)P �QD(P; Q; �; � ) =
I

C(P;Q;�;� )
d


 
ei �

2 (� P;Q ;
)

e� �i (%;
)
Q

� 2 � +

�
1 � e� �i ( �; 
)

� mult �

! 2

C(P; Q; �; � ) = f Re
 2 T3; Im
 = " � 1X g ; (8.5.2)

we note that the integrand is exactly the square of schM (L P;Q ), namely the
square of the super-character of the Verma module with highest weight

L P;Q = %+
1
2

� P;Q ; (8.5.3)

and the contour integral has the function of picking up the zero-weight sub-
module. Hence the dyon degeneracy (� 1)P �QD(P; Q) has the interpretation
of counting the (graded) number of ways the weight 2L P;Q can be written as
a sum of two copies of positive roots.

What we just saw is that the dyon degeneracies have a nice interpretation in
terms of positive roots of the algebra which seems to be free of ambiguities, so
we might wonder where the contour/moduli ambiguities we have seen from the
integral/supergravity viewpoint goes in this picture. The subtlety lies in the
fact that, the character formula (8.5.1) in terms of the formal exponentials
e(� ) satisfying e(� )e(� 0) = e(� + � 0) contains the same information as the
integral formula in terms of functions e�i (
 ;� ) of 
 only if we expand all the
expressions in the latter formula in powers ofe�i (
 ;� ) . From our discussion
above, this means that for this interpretation to be correct, one must make
the (unique) choice of simple roots, and thereby the choice of positive roots, in
the character formula such that the moduli vector X lies in the fundamental
Weyl chamber of the root system

X 2 W :=
�

x 2 � + 
 R; (x; � i ) < 0; � i 2 f simple rootsg
	

: (8.5.4)

A manifest but crucial fact to keep in mind here is that the character formula
(8.5.1) for Verma modules innot invariant under a change of simple roots.

What we have concluded from the above reasoning is that, for a super-
selection sector with given total charges, a di�erent choice of moduli corre-
sponds to a di�erent choice of positive roots in the algebra. This is never-
theless not very convenient. Instead we will use the equivalent description of
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letting the highest weight of the module be moduli-dependent while keeping
the simple roots �xed.

No matter whether we choose to keep the highest weight �xed and vary the
simple roots when we vary the moduli, or keep the simple roots �xed and vary
the highest weight, from our contour condition (8.5.4) it's clear that only in
the attractor region, characterised by

(X; � )(� P;Q ; � ) > 0 ; for all � 2 � re ;

does the counting formula corresponds to a Verma module of dominant highest
weight. Recall that a dominant weight is a vector lying in the fundamental
Weyl chamber and having integral inner product with all roots.

For a given set of total charges, a natural choice for the simple roots is
therefore such that the charge vector lies in of the fundamental domain2

� P;Q 2 W :

When the moduli do not lie in the attractor region, the corresponding Verma
module will not have dominant highest weight. Indeed, when considering a
point in the moduli space corresponding to another Weyl chamber

X 2 w(W) ; w 2 W ;

either from the contour integral (8.5.2) or from the character formula (8.5.1) we
see that the dyon degeneracy is encoded in the Verma module of the following
highest weight

L P;Q jw = %+ w� 1(L P;Q � %) , � P;Q jw = w� 1(� P;Q ) :

Notice that the ambiguity we discuss above does not involve the imaginary
positive roots, de�ned as those positive roots that are timelike or lightlike,
which give the majority of factors in the product formula, and are therefore
responsible for the asymptotic growth of the degeneracies. This is because,
because ourX is in the future lightcone by construction, the convergence
criterion

(X; � ) < 0 ; � 2 � im
+

is guaranteed to be met, independent of the choice ofX . This also justi�es the
fact that the Weyl group of a Borcherds-Kac-Moody algebra is the re
ection
group with respect to the real roots only.

2We ignore the special cases where the charge vector lies on the boundary of some fun-
damental domain, corresponding to the situation of having two-centered scaling solutions.
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Therefore, we arrive at the conclusion that crossing a wall of marginal sta-
bility corresponds to a change of representation of the BPS algebra microscop-
ically. More precisely, the change is such that the highest weight of the Verma
module is changed by a Weyl re
ection, and away from the attractor region,
the highest weight of the representation will no longer be dominant.

8.6 Weyl Chambers and Discrete Attractor Flow Group

Classically, a moduli space is a continuous space in which the vev's of the
moduli �elds of the theory can take their values. A distinct path in this space
for a given superselection sector, namely the total conserved charges, is the
attractor 
ow of a single-centered black hole solution with a given starting
point.

As we have established in section 8.2, the asymptotic values of these scalar
�elds play a role in the spectrum of BPS states through the presence/absence
of certain 1=4-BPS bound states of two 1=2-BPS objects. The walls of marginal
stability for these bound states divide the moduli space into di�erent regions
in which the BPS spectrum is predicted to be constant by our supergravity
analysis. This is because the spectrum only jumps when a wall of marginal
stability is crossed, and for the purpose of studying the BPS spectrum of the
theory we can identify the region bounded by a set of walls to be a point.

From the above consideration, it is useful to consider a \discrete attractor

ow", which brings one region in the moduli space to another. It is not di�cult
to see that such an operation forms a group. Recall that in this speci�c theory
we study, the walls of marginal stability are in one-to-one correspondence with
the positive roots of a Weyl groupW , or the positive real roots of a Borcherds-
Kac-Moody algebra introduced in section 7.2.3, as we have seen in section 8.2.
This implies that we should be able to identify the group of discrete attractor

ow to be the same Weyl group W . The aim of this section is to make
this statement precise, and to address the implication of having such a group
structure underlying the attractor 
ow.

8.6.1 Weyl Chamber and Moduli Space

To make the discussion more concrete let us visualise the situation. First
recall that given a point in the 134-dimensional moduli space, whether a given
two-centered solution exists only depends on the combination of the moduli
�eld encapsulated in the following \unit vector" (8.2.8)

X =
Z

q
� 1

2kZk2
:
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where

Z =
1

p
jPL ^ QL j

�
PL � PL PL � QL

PL � QL QL � QL

�
+

p
jPL ^ QL j

� 2

�
j� j2 � 1

� 1 1

�
:

This can be understood in the following way. Recall that the largest central
charge is related to the above vector as

jZP;Q j2 = M 2
P;Q = �

1
2

kZk2 (8.6.1)

and the fact that, in the N = 2 language of chapter 4, the attractor 
ow is a
gradient 
ow of the central charge jZP;Q j (see Figure 4.1), it is not surprising
that the relevant part of the moduli is encoded in its direction X .

Using the fact that the sheet of hyperbola of all future-pointing vector of
�xed norm kX k2 = � 2 is equivalent to the upper-half plane H 1 and the
Poincar�e disk (see Figure 1.2), we can therefore map the relevant part (the
X -space) of the moduli space ontoH 1 or the Poincar�e disk. Concretely, we
will use the map (1.3.41)

X =
1
� 2

�
j� j2 � 1

� 1 1

�

z = i
� � + e� i�

3

� + e
i�
3

�
: (8.6.2)

Now we are ready to draw the walls of marginal stability (8.2.9). First
we will begin with � 1, which corresponds to the two-centered solution with
charges (P; 0), (0; Q), for which the wall of marginal stability reads

(X; � 1) = 0 :

This gives an arc of a circle on the Poincar�e disk, which is a geodesic with
respect to the hyperbolic metric, and a straight line (a degenerate circle) in
the upper-half plane. See Figure 8.3.

As the next step, we will draw the walls given by other two roots � 2 and � 3

de�ned in (7.2.9). Notice that the three walls ( X; � i ) = 0, i = 1 ; 2; 3 bound
a triangle on the disk, and furthermore it is easy to show that the interior
of the disk satis�es (X; � i ) < 0. For example, the center of the triangle is

given by the normalised version%(
q

� 1
2k%k2) � 1 of the Weyl vector %satisfying

(%; �i ) = � 1.
As discussed in the previous section, given a charge vector one should choose

the simple roots such that � P;Q lies inside the fundamental Weyl chamber.



8.6 Weyl Chambers and Discrete Attractor Flow Group215

Figure 8.3: (i) The wall of marginal stability for the two-centered solution with charges
(P,0) and (0,Q), projected onto the two-dimensional slice of moduli space equipped with a
natural hyperbolic metric, and mapped to the Poincar�e disk and the upper-half plane. (ii)
The basic three walls (X; � i ) = 0.

For concreteness of the discussion and without loss of generality, we will now
assume that such a choice is given by the three simple roots we used in section
7.2.1, namely that the charge vector satis�es

(� P;Q ; � i ) < 0 ; i = 1 ; 2; 3

� 1 =
�

0 � 1
� 1 0

�
; � 2 =

�
0 1
1 2

�
; � 3 =

�
2 1
1 0

�
:

In other words, from now on we will consider charges such that the vector
� P;Q lies inside the large triangle in Figure 8.3. By the virtue of the relation
between the Weyl group and the extended S-duality groupW � PGL(2; Z),
we can always use the duality group to map a set of charges (P; Q) to another
set of charges for which the above is true.

By de�nition, all the other real roots, in particular all the other positive real
roots, are related to these three simple roots by a Weyl re
ection� = w(� i ).
We can thus draw the rest of the walls of marginal stability

(X; � ) = 0 ; � 2 � re
+

by re
ections of the triangle in Figure 8.3 with respect to the three sides. This
gives a tessellation of the Poincar�e disk as shown in Figure 8.4. Notice that
the �gure we draw can never be a faithful presentation of the real situation,
since the group tessellates the disk with an in�nite number of triangles.



216 8. Counting the Dying Dyons

By de�nition, the Weyl group divides the relevant part of the moduli space,
namely the X -space, into di�erent Weyl chambers bounded by the walls of
orthogonalities with the positive roots. In other words, for any point in the
moduli space, there exists a unique element of the Weyl groupw 2 W such
that the corresponding moduli vector X lies in the Weyl chamber

X 2 w(W) , (X; w (� i )) < 0 :

Because these walls, or mirrors, of the Weyl chambers are exactly the phys-
ical walls of marginal stability ( X; � ) = 0 corresponding to the split into two
centers (8.2.10), we conclude that the BPS spectrum does not jump when the
moduli move inside a given triangle. In other words, the Weyl chambers are
exactly the region in the moduli space where the BPS spectrum is constant,
and there is a di�erent dyon degeneracy associated to every di�erent Weyl
chamber w(W).

8.6.2 A Hierarchy of Decay

Now we would like to discuss what the group structure of the moduli space
discussed above implies for the dyon spectrum at a given moduli. In principle,
given a point in the moduli space we know exactly which two-centered solutions
exist by using the stability condition we worked out in section 8.2, namely that
the solution given by the above split of charges exists if and only if

(X; � )(� P;Q ; � ) < 0 : (8.6.3)

But in fact we know less than it might seem. It is because there are in�nitely
many decay channels, or to say that there are in�nitely many positive real
roots in the Borcherds-Kac-Moody algebra, so given a moduli vectorX , even
equipped with the stability condition we will never be able to give a list of
two-centered solutions within �nite computation time. In this subsection we
will see how the group structure changes this grim outlook.

First note that, in the central triangle, namely the fundamental Weyl cham-
ber, there is no two-centered bound states. This can be seen as follows. Recall
that we have chosen the simple roots such that

(� P;Q ; � i ) < 0 ; � i 2 f simple real rootsg ;

which implies
(� P;Q ; � ) < 0 ; for all � 2 � re

+

simply from the de�nition of the positive real roots. Now the same thing holds
for a point X 2 W inside the fundamental Weyl chamber, namely

(X; � ) < 0 ; for all � 2 � re
+ ;
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hence we see that the stability condition (8.6.3) will never be satis�ed for any
split of charges.

We therefore conclude that the fundamental Weyl chamber represents the
\attractor region" in the moduli space, namely the same region (chamber)
where the attractor point lies and in which none of the two-centered solutions
exists.

This is of course not true anymore once we move out of the fundamental
Weyl chamber. Consider for example the neighbouring Weyl chambers1(W),
obtained by re
ecting the fundamental chamber with respect to one of the
simple roots � 1. Because this re
ection takes � 1 ! � � 1 and permutes the
rest of the positive real roots (8.9.3), we conclude that

(X; � 1) > 0 ; (X; � ) < 0 for all X 2 s1(W); � 6= � 1 ; � 2 � re
+ ;

which is also obvious from the picture. This means that there is now one two-
centered solution corresponding to the split into charges (P; 0), (0; Q) (8.2.12)
and no others.

We can now go on with this process to every Weyl chamber in the (re-
duced) moduli space: go to the next-neighbouring chamber, and the next-
next-neighbouring, and so on, with the condition that the path doesn't walk
\backwards", or more precisely that the length function (see 8.9.3) of the
corresponding group element always increases.

In general, considering an arbitrary point on the disk

X 2 w(W)

for somew 2 W . For any group element, we can always decompose it as the
following \shortest word" in terms of the three group generators

w = si 1 si 2 � � � si n

i m 2 f 1; 2; 3g ; i m 6= i m� 1 for all m = 2 ;� � � ; n � 1 : (8.6.4)

From the fact that a re
ection with respect to the root w(� i ) is given by the
group elementwsi w� 1:

wsi w� 1�
w(� i )

�
= wsi (� i ) = � w(� i ) ;

we can describe the Weyl chamberw(W) as given by the following successive
re
ection of the fundamental Weyl chamber:

w0 = 1 ��!
� i 1

w1 �����!
w1 (� i 2 )

w2 � � � �������!
wn � 1 (� i n )

wn = w (8.6.5)
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where \ ��!
�

" means \re
ecting with respect to the wall ( �; X )=0 given by

the root � " and the intermediate group elementswm are given by

wm = si 1 � � � si m ; m � n :

In other words, for a given point in the moduli space and its Weyl chamber

X 2 w(W) ;

by following the above path from the attractor region W, or the fundamental
Weyl chamber, to w(W), we can read out the two-centered solutions which
exist at the point X 2 W . These are given by the charge splitting

� P1 ;Q1 = P2
� � + ; � P2 ;Q2 = Q2

� � �

� P;Q = P2
� � + + Q2

� � � � (P � Q) � � ;

with now
� 2 f wm� 1(� i m ) ; m = 1 ;� � � ; ng � � re

+ :

In other words, when we follow the journey from the attractor region W
to the Weyl chamber w(W) where the moduli is, namely when we follow the
inverse attractor 
ow to the point under consideration, we will successively
cross the walls of marginal stability corresponding to the roots� i 1 , w1(� i 2 ),
... , and �nally wn� 1(� i n ).

This gives a simple dictionary to read out the list of dying dyons for any
given point in the moduli space, provided that we know the shortest decom-
position of the group elementw in terms of a string of generators (\letters").

To complete the algorithm, we also give a very simple algorithm to determine
such a decomposition given an arbitrary lightlike, future-pointing vector X .
Given a point X , we would like to determine the shortest-length string

w = si 1 � � � si n

such that its corresponding chain of re
ection induces the following successive
mapping of the vector X into the fundamental Weyl chamber

w0 = 1 ��!
� i 1

w1 �����!
w1 (� i 2 )

� � � �������!
wn � 1 (� i n )

wn = w

X 0 2 W ��!
� i 1

X 1 �����!
w1 (� i 2 )

� � � �������!
wn � 1 (� i n )

X n = X 2 w(W) :

One can show that the string is determined as follows: suppose

X m = si 1 � � � si m X 0 ; m � n ; (8.6.6)
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then i m 2 f 1; 2; 3g is given by the condition

(� i m ; X m ) > 0 ; (8.6.7)

which has at most one solution for i m . We can go on with this process for
X m� 1 until the above equation has no solution anymore, corresponding to
when the three expansion coe�cients ofX 0 =

P 3
i =1 � i X

(i )
0 satisfy the triangle

inequality. This is when the decay ends and when the moduli 
ow to the
attractor region given by the fundamental Weyl chamber.

Notice that there is a hierarchy of decay (or a \death row") in this process.
Namely, considering another point in the moduli space which is in the Weyl
chamber wm (W) with m < n , applying the same argument as above shows
that the two-centered solutions existing in that Weyl chamber are given by
the �rst m positive roots in the above list. Speci�cally, this argument shows
that there is nowhere in the moduli space where the bound states given by
the root wn� 1(� i n ) exists without all the other n � 1 bound states given by
wm� 1(� i m ); m < n in front of it in the row.

This hierarchy among two-centered bound states clearly stems from the
hierarchy among elements of the groupW . Indeed, the ordering in (8.6.5) is
an example of what is called the \weak Bruhat order" wm < w m+1 among
elements of a Coxeter group. See (8.9) for the de�nition.

In our case this weak Bruhat ordering has an interpretation reminiscent of
the RG-
ow of the system. From the integrability condition (8.2.13)

p
jPL ^ QL j j ~xP� � ~xQ � j =

�
�
�
(� P;Q ; � )

(X; � )

�
�
� ;

now with � = f wm� 1(� i m ); m � ng, we see that the ordering of the decay is
exactly the ordering of the coordinate size of the bound state. In other words,
roughly speaking, the ordering we discussed above can be summarised as the
principle that the bound state which is the bigger in size are more prone to
decay than the smaller ones, which is a fact parallel to the usual RG-
ow
phenomenon. See Fig 8.5 for a simple example of the 
ow beginning from a
point in s1s3(W).

As was alluded to earlier, we can identify the path taken by such a string
of re
ections as the path taken by a discrete version of attractor 
ows. In
other words, if we identify all points in a given Weyl chamber, justi�ed by the
fact that all points there have the same BPS spectrum, the usual continuous
attractor 
ow reduces to the successive re
ections discussed above. To argue
this, note that the (single-centered) attractor 
ow also gives such a structure
of hierarchy among multi-centered solutions, because an attractor 
ow can
only cross a given wall at most once. Using theN = 2 language of chapter



8.6 Weyl Chambers and Discrete Attractor Flow Group221

Figure 8.5: (i) An example of a discrete attractor 
ow from X 2 s1s3(W ) to the attractor
region W , passing through two walls of marginal stability ( s1(� 3); X ) = 0 and ( � 1 ; X ) = 0.
(ii) The boundary of the disk can be identi�ed with the boundary of the light-cone, and in
turn be identi�ed with a compacti�ed real line using the map (8.7.1). In this way there is a
pair of rational numbers associated to each positive real roots, and a Weyl chamber is given
by such a pair with its mediant. Furthermore, the discrete attractor 
ow can be thought of
as a process of \coarse-graining" the rational numbers.

4, this is because for a single-centered solution, the quantity Im(�ZZ 0)=jZ j is
linear in 1=r, the inverse of the coordinate distance from the black hole, where
Z 0 is the central charge of another arbitrary charge at the moduli where the

ow is, and can therefore only pass zero at most once [83]. On the other hand,
such a hierarchy among solutions can only be a property of the structure of the
moduli space, since the stability condition is a local condition on the moduli
and is in particular path-independent. Hence we have to conclude that the
group and the 
ow must cross the walls in the same order. This justi�es our
claim that the group is simply the discretised group of attraction.
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8.7 Arithmetic Attractor Flows

The title of this section is very similar the title \Arithmetic and Attractors" of
the classic paper by Moore [149, 158]. As suggested in the title, in this section
we will discuss the arithmetic aspects of our newly de�ned discrete attractor
\
ow" group.

First let us again review the equation for the walls of marginal stability
(8.2.10), which states that for any positive real root � , the charge vector
� P1 ;Q1 , � P2 ;Q2 of the associated two-centered solution are given by the com-
ponent of the total charge vector � P;Q along the two lightcone direction � �

perpendicular to � . To be more precise, we de�ned the lightcone \unit vector"
� � to satisfy the following conditions : (i) k� � k2 = 0 (lightlike), Tr( � � ) > 0
(future-pointing) (ii) As matrices � � have integral entries on the diagonal
(weight condition) (iii) ( � + ; � � ) = � 1 (normalisation condition).

From the above conditions, it is not di�cult to see that the two-centered
solutions can equivalently be given by a pair of rational numbersf b=a; d=cg
satisfying ad � bc= 1, such that the lightlike vectors are given by

f � + ; � � g =

( �
b2 ab
ab a2

�
;
�

d2 cd
cd c2

� )

(8.7.1)

Notice that exchanging the two rational numbers amounts to exchanging
(P1; Q1) and (P2; Q2), which obviously does not give a new solution. Without
loss of generality, we now impose thata � 0; c � 0, while b; d can take any
sign.

To be more precise, given such a pair of rational numbers, the corresponding
positive roots is

� =
�

2bd ad+ bc
ad + bc 2ac

�
; (8.7.2)

and the corresponding charge splitting is
�

P1

Q1

�
= ( � cP + dQ)

�
b
a

�
;

�
P2

Q2

�
= ( aP � bQ)

�
d
c

�
: (8.7.3)

In other words, the above formula gives an alternative labelling of the two-
centered solutions of the theory by a pair of rational numbers

n b
a

;
d
c

o
; ad � bc= 1 ; a; c � 0 : (8.7.4)

In particular, the three simple roots (7.2.9) correspond to the three sets of
rational numbers f � 1

0 ; 0
1g, f 0

1 ; 1
1g, f 1

1 ; 1
0g respectively.
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Now we would like to know what the discrete attractor 
ow, de�ned in the
last subsection, looks like in terms of the presentation in terms of rational
numbers. From the �gure 8.5 it is obvious that, for a positive root bound-
ing the Weyl chamber w(W), one of the following two roots wOw� 1(� ) and
wO2w� 1(� ) must be negative, whereO is the order three generators of the
dihedral group corresponding to a rotation of 120� (7.2.20), and this must
be the root with respect to which the last re
ection in the sequence (8.6.5)
is. Therefore, from the computation which gives the following expression for
� wOw� 1(� ) and � wO2w� 1(� )

�
2b(d � b) bc+ ad � 2ab

bc+ ad � 2ab 2c(c � a)

�
;

�
2d(b� d) bc+ ad � 2cd

bc+ ad � 2cd 2a(a � c)

�
;

we conclude that given a two-centered solution corresponding to the pair ra-
tional numbers f b=a, d=cg with a; c � 0 and ad � bc = 1, we can read out
the next two-centered solution on the list of decadence (or the death row) as
another pair of rational numbers

n b
a

;
d � b
c � a

o
if c � a; bd� b2 ;

n d
c

;
b� d
a � c

o
if a � c; bd� d2 :

This rule is actually much simpler than it might seem. Consider the bound-
ary of the Poincar�e disk as a compacti�ed real line, namely with � 1

0 identi�ed,
then the map (8.7.3), (8.7.4) associates with each wall of Weyl chamber, or
equivalently wall of marginal stability, a pair of rational numbers satisfying
the above conditions. See Figure 8.5. Now what we saw above simply means:
�rstly, any triangle is bounded by a set of three rational numbers of the form

n b
a

;
b+ d
a + c

;
d
c

o
; ad � bc= 1 ; a; c � 0 : (8.7.5)

The middle element (b+ d)=(a + c) is called the \mediant" of the other two,
and can be easily shown to always lie between the two

b
a

<
b+ d
a + c

<
d
c

:

Secondly, the direction of the attractor 
ow is that it always 
ows to the
numbers with smaller jaj + jbj, jcj + jdj, and can therefore be seen as a 
ow of
coarse-graining the rational numbers.

As an illustration of the above statement, in Figure 8.6 we show the rational
numbers corresponding to the �rst three levels of inverse attractor re
ections
from the attractor region, corresponding to the �rst three levels of the weak
Bruhat tree.
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Figure 8.6: ( l) The (�rst three levels of the) weak Bruhat ordering of the group W ,
which corresponds to the hierarchy of the wall-crossing of the theory. ( r) The corresponding
coarse-graining of the rational numbers, which is a part of the Stern-Brocot tree generalised
to the whole real line.

Note that this is simply the generalisation of the Stern-Brocot tree to the
negative part of the real line, and notice that all the rationals are contained
in this tree. In particular, the Farey series is contained in the middle part of
the tree.

8.8 Summary and Conclusion

In this chapter we study the moduli dependence of the BPS dyon degeneracies
of a N = 4, d = 4 string theory, and its relationship to a counting formula
and a Borcherds-Kac-Moody algebra. In section 8.2 we study the stability
condition for a solution in the low-energy supergravity theory which describes
the bound state of two 1=2-BPS objects, to exist. We show that these are in
one-to-one correspondence with the positive real roots of the Borcherds-Kac-
Moody algebra. In section 8.3 we study the dependence of the dyon-counting
formula on the possible choices of integration contours, and chart the di�er-
ence between di�erent BPS degeneracies predicted using di�erent contours of
integration. In the following section we show how a moduli-dependent contour
prescription can relate the two ambiguities: that of choosing a contour and
that of choosing the moduli of the theory, such that the dyon-counting formula
correctly accounts for the moduli-dependence of the BPS spectrum.

After that we turn to the question of how a certain Borcherds-Kac-Moody
algebra is related to the above phenomenon, since we have seen in the previous
chapter that the counting formula is mathematically related to the denomina-
tor formula of this algebra. First we note in section 8.5 that the dyon-counting
formula can be seen as the (square of the) character formula for the Verma
module of the algebra, with an appropriate choice of highest weight which
depends on the moduli of the theory. Secondly, we use the correspondence be-
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tween the walls of marginal stability and walls of Weyl chambers of the algebra
to identify the Weyl group of the algebra as the group of a discretised version
of attractor 
ow, whose precise meaning is spelled out in section 8.6. Finally
we comment on the arithmetics of this attractor 
ow group, in particular how
a 
ow to the attractor region can be described as a process of coarse-graining
the rational numbers.

This study further clari�es the issue of the moduli dependence of the spec-
trum in this theory and elucidates (part of) the role of the Borcherds-Kac-
Moody algebra in structuring the BPS spectrum of the theory. Some interest-
ing generalisation would be to extend the above analysis to the case where the
\co-prime" condition on the charges (6.6.7) is not satis�ed and when other pos-
sible two-centered solutions are possible. The other generalisation is to study
the group and algebraic structure for the orbifolded N = 4 theory, namely
the CHL model[159]. Finally, a very interesting open question is to what ex-
tent these structures survive when supersymmetry is further broken down to
N = 2.

8.9 Appendix: Properties of Coxeter Groups

In this appendix we collect various de�nitions and facts about Coxeter groups.
The proofs of them can be found in [160, 161, 162]. Our presentation is very
similar to that of [163].

De�nition (Coxeter System) A Coxeter system (W; S) consists of a Cox-
eter group W and a set of generatorsS = f si ; i = 1 ;� � � ; ng, subjected to the
relations

s2
i = 1 ; ( si sj )m ij = 1 (8.9.1)

with

mij = mji � 2 for i 6= j : (8.9.2)

A Coxeter graph has n dots connected by single lines ifmij > 2, with mij

written on the lines if mij > 3.

Theorem 8.9.1 (Geometric Realization of Coxeter Groups) De�ne a
basis f � 1;� � � ; � ng of an n-dimensional vector spaceM . De�ne a metric by

(� i ; � i ) = ( � j ; � j ) 8 i; j

(� i ; � j ) = � (� i ; � i ) cos(
�

mij
) ;
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then the re
ection

si : x 7�! x � 2� i
(� i ; x)
(� i ; � i )

satis�es the de�nition of Coxeter group (8.9.1).
Notice that there are null directions of the metric � i + � j if mij = 1 and

the metric is not decomposable i� the Coxeter graph is connected.

De�nition (Length Function) De�ne the length function

` : W ! Z+ (8.9.3)

such that an element has length` if there is no way to write the element in
terms of a product of less than` generators. Forw 2 G, from

`(wsi ) � `(w) + 1

`(w) = `(ws2
i ) � `(wsi ) + 1

we see that
`(w) � 1 � `(wsi ) � `(w) + 1 :

Furthermore, the length function de�nes a distance function on the group
d : W � W ! Z+ as

d(w; w0) = `(w� 1w0) = d(w0; w) :

One can easily check that this is a metric, especially that the triangle inequality
is satis�ed.

De�nition (Roots of the Coxeter Group) De�ne the set of roots

� re =
�

w(� i ) ; w 2 W; i = f 1;� � � ; ng
	

especially� i 's are called thesimple roots3. A root

� =
X

i

a(i ) � i

is called a positive root if all a(i ) > 0 and a negative root if all a(i ) < 0. We
will denote them as � > 0 and � < 0 respectively.

3The notation � re is adapted to the fact that the real roots of the set of Borcherds-Kac-
Moody algebra is the set of roots of the Weyl Coxeter group.
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Theorem 8.9.2 A root of a Coxeter group is either positive or negative,
namely

� re = � re
+ [ � re

�

where
� re

+ = f � 2 � re j � > 0g ; � re
� = f � 2 � re j � < 0g :

Furthermore
� re

� = � � re
+ :

Theorem 8.9.3
`(wsi ) = `(w) + 1

i� w(� i ) > 0.

Corollary 8.9.4 A root is either positive or negative.

Theorem 8.9.5 For hyperbolic Coxeter group, the Tits cone, namely the im-
age of a connected fundamental domain under the group action, is the future
light-cone. Projected onto a constant length surface, this gives a tessellation
of the hyperbolic space.

De�nition (Bruhat Order)
Given the Coxeter system (W; S) and its set of re
ections R = f wsi w� 1j w 2

W ; si 2 Sg, and let u; u0 2 W , then

1. u ! u0 means that u� 1u0 2 R and `(u) < ` (u0).

2. u � B u0 means that there existsuk 2 W such that

u ! u1 ! � � � ! um ! u0 (8.9.4)

De�nition (weak Bruhat order) Given two elementsu; u0 2 W , repeating
the above de�nition but now restrict further to u� 1u0 2 S, we obtain the
\weak Bruhat order" u � u0.

Two elements are said to becomparableif u � u0or u � u0and incomparable
otherwise. See [161] for more details.





A Mathematical Preliminaries

In this appendix we will collect various de�nitions and mathematical results
for the purpose of self-containedness. Nevertheless, we do not seek to prove
nor to explain them, since they can easily be found in various places in a
compact and readable form. See for example [164, 165, 166, 167, 6] for some
physics literature.

De�nition (complex manifold) A complex manifold is a topological space
M together with a holomorphic atlas. Equivalently, de�ne the almost complex
structure J to be a map between the tangent bundleJ : TM ! TM satisfying
J 2 = � 1 and its Nijenhuis tensor N : TM � TM ! TM

N [X; Y ] = [ X; Y ] + J [J X; Y ] + J [X; J Y ] � [J X; J Y ] :

Then
N=0 , J integrable , M Complex Manifold

In local coordinates, we can writeJ = � idz i 
 @
@zi + id �z�{ 
 @

@�z�{ .

De�nition (hermitian metric) A hermitian metric g : TM � TM ! R of
a complex manifold is a metric which satis�es

g(J X; J Y ) = g(X; Y ) :

In local coordinates it can be written in the form

g = gi �| dzi 
 dz| + g�{j d�z�{ 
 dzj

where the reality of the metric implies gi �| = gj �{.

Theorem A.0.6 Every complex manifold admits a hermitian metric.

229
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Figure A.1: The de�nition of (a) a �bre bundle (b) its structure group.

With the hermitian metric one can turn the complex structure J into a (1,1)-
form, called the K•ahler form

J = igi �| dzi 
 d�z�| � ig �|i d�z�| 
 dzi = igi �| dzi ^ d�z�| :

For a complex manifold with n complex dimension, the (n; n)-form

J ^� � � ^ J| {z }
n

is nowhere vanishing can therefore serve as a volume element.

De�nition (K•ahler manifold) A K•ahler manifold is a hermitian manifold
with closed K•ahler form dJ = 0. In local coordinates, this implies that the
metric can be written as

gi �| = @i @�| K

for some K•ahler potential K. In the overlap of di�erent coordinate charts,
the K•ahler potentials are related by K ! K + f (z) + �g(�z) for some (anti-
)holomorphic function f (�g) and therefore have the same metric.

De�nition (�bre bundle) A �bre bundle consists of data (E; B; �; F ), often
denoted by E ��! B , where E (total space) , B (base space) andF (�bre) are
di�erential manifolds, and � (projection) is a surjection � : E ! B such that
the \�bre at " p 2 B satis�es � � 1(p) = Fp ' F . A local trivialization � i in
an open neighbourhoodUi in B is a map � i : Ui � F ! � � 1(Ui ). A transition
function t ij : Ui \ Uj ! G, where G is a Lie group called the structure group,
satis�es � j (p; f ) = � i (p; tij (p)f ). A section v of a �bre bundle is a map
v : B ! E such that � (v(p)) = p for all p 2 B .

De�nition (vector bundle) A vector bundle E ��! B is a �bre bundle whose
�bre is a vector space.
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In analogy to the concept of parallel transport on a Riemannian manifold,
we can also de�ne such a connection on a vector bundle. Formally, suppose
�( E ) is the space of smooth sections ofE , then a connection is a mapD :
�( E ) ! �( E 
 T � B ) such that the Leibnitz' rule

D(f � ) = f D� + � 
 df

for any � 2 �( E ) and smooth function f on B . For a local coordinateea for E
such that any � 2 �( E ) can be locally written as � aea, the connection one-form
and the curvature two-form are given by the Cartan's structure equation

dea + ! a
b ^ eb = 0

d! a
b + ! a

c ^ ! c
b = Ra

b

De�nition (Chern class)
Given a complex vector bundleE ��! B , let R be its curvature two-form,

then the total Chern classis de�ned as

c(R) = det
�

1 +
i

2�
Rt

�
=

nX

i =0

t i ci (E ) ;

where ci (R) is called the i -th Chern class. It would be useful to diagonalise
the curvature two-form R into a diagonal n � n matrix of two-forms with
eigen-two-forms� 2�ix i =1 ;��� ;n . Then the Chern class can be written as

c(R) = det
�

1 +
i

2�
Rt

�
=

nY

i =1

(1 + x i t)

For example, for a n-(complex) dimensional �bre we have

c0(R) = 1

c1(R) =
i

2�
Tr R =

nX

i =1

x i

...

cn (R) = (
i

2�
)ndetR =

nY

i =1

x i :

Chern classes are topological invariants, meaning that all the curvatures in
the same cohomology class have the same Chern classes, which capture many
topological properties of a bundle. For example, whenE is a line bundle the
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�rst Chern class is the only non-trivial one. In this case the �rst Chern class
completely �xes the topology of the line bundle.

Chern classes satis�es the following property for the Whitney sum of two
bundles E and F , namely

c(E � F ) = c(E) ^ c(F ) : (A.0.1)

Digression More Characteristic Classes and Some Index Theorems
For future use we list here more relevant characteristic classes and some

index theorems related to them.

� The Chern character ch(R) = Tr exp( iR
2� ), is related to the Chern classes

as

ch(R) = Tr exp(
iR
2�

) = 2 n + c1(R) +
�

1
2

c2
1(R) � c2(R)

�
+ � � � : (A.0.2)

� For a real 2n-dimensional vector bundle with structure group O(2n),
the �eld strength R0 is anti-symmetric and can be diagonalise with 2n
imaginary eigenvalues (i2�x 1; � i 2�x 1;� � � ; i 2�x n ; � i 2�x n ). De�ne the
Pontrjagin class to be

p(R) = det( 1 +
R0

2�
t) = det( 1 �

R0

2�
t) =

nX

i =0

t i pi (R) ; (A.0.3)

By expressing both p(R) and c(R) in terms of the eigenvaluesx i , we
obtain the following relations

p1 = c2
1 � 2c2

p2 = c2
2 � 2c1c3 + 2c4 etc.

The special case in which the bundleE is the tangent bundle TM of
a manifold M will be especially useful for us. We will often omit writ-
ing out the tangent bundle explicitly and just denote the characteristic
classes by the manifoldM , for example, it should be understood that
c1(M ) = c1(TM ) etc.
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� The Dirac genus (A-roof genus) is de�ned as

Â (M ) =
Y x i =2

sinh(x i =2)
= 1 �

1
24

p1 + � � �

= 1 �
1
24

(c2
1 � 2c2) + � � � : (A.0.4)

� The Hirzebruch L̂� polynomial is de�ned as

L̂ (M ) =
Y x i

tanh(x i )
= 1 +

1
3

p1 + � � �

= 1 +
1
3

(c2
1 � 2c2) + � � � : (A.0.5)

� The Todd class is de�ned as

Td(M ) =
Y x i

1 � e� x i
= 1 +

1
2

c1 +
1
12

(c2
1 + c2) + � � � : (A.0.6)

� The Euler class is de�ned for an oriented real (2n)-dimensional �ber with
SO(2n) structure group as

e(M ) = x1 � � � xn = ( pn (M ) )1=2 = cn (M ) : (A.0.7)

� Gauss-Bonnet Theorem

For an even dimensional manifoldM

� (M ) =
Z

M
e(T(M )) =

X
(� 1)i bi ; (A.0.8)

where bi denotes thei -th Betti number.

� Signature Index Theorem

For a real (4n)-dimensional manifold M , the signature is given by the
dimension of the self-dual and anti-self-dual (under the Hodge star op-
eration) part of the middle cohomology as

� (M ) = dim H 2n
+ (M ; R) � dimH 2n

� (M ; R) ; (A.0.9)

and the index theorem states

� (M ) =
Z

M
L̂ (M ) : (A.0.10)
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� Hirzebruch-Riemann-Roch Theorem

The betti numbers of bundle-valued forms satisfy the following relation

w(M ; V ) =
dim MX

k=0

(� 1)k dimH k (M ; V ) =
Z

M
ch(V )Td(M ) : (A.0.11)

Finally we are ready to introduce the kind of manifold which will play
an important role in the discussion about the moduli space of Calabi-Yau
three-folds, namely the special K•ahler manifold. Historically a special K•ahler
manifold is �rst de�ned as the scalar manifold of the N = 2 ; d = 4 supergravity
theory. But since this kind of manifold appears also in other context, we
will proceed by �rst de�ne the manifold abstractly, and later show that the
N = 2 ; d = 4 supergravity scalar manifold is an example of them.

De�nition (Special K•ahler manifold) A (local) special K•ahler manifold
M is a n-(complex) dimensional manifold with a holomorphic Sp(2n+2,R)
vector bundle E over M , a line bundle L over M with (2 � times) the �rst
Chern class equal to the K•ahler form, and a holomorphic section 
 in L 
 E
such that the K•ahler form is given by

J = i@�@log[� ih
 ; �
 i ] (A.0.12)

and such that h@a
 ; 
 i = 0 , where h; i denotes the symplectic product [47, 45].

In order to de�ne the Calabi-Yau manifolds themselves, we still have to
introduce a last element, meaning the holonomy group of a manifold. With
the Levi-Civita connection we have a concept of parallel transport on an-
(complex) dimensional Riemannian manifold. When parallel transporting an
orthonormal frame around a closed loop, it doesn't come back to itself gener-
ically, but is rather related by a SO(2n) transformation to the original frame.
By combining di�erent closed loops it's not hard to see that holonomy forms
a group. There are special kinds of manifolds whose holonomy group does not
cover the the whole SO(2n) but only a subgroup of it. They will be called
manifolds with special holonomy. As we will see later, a smaller holonomy
group is crucial for having unbroken supersymmetry after compacti�cation.
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De�nition (Calabi-Yau manifold) A Calabi-Yau manifold is a compact
K•ahler manifold with vanishing �rst Chern class.

Theorem A.0.7 (Yau's Theorem) If X is a complex K•ahler manifold with
vanishing �rst Chern class and with K•ahler form J , then their exists a unique
Ricci-
at metric on X whose K•ahler form is in the same cohomology class as
J .

From the above theorem and from the fact that Ricci-
atness is a su�cient
condition for a vanishing �rst Chern class, we can conclude that an equivalent
de�nition of a Calabi-Yau manifold is a compact K•ahler manifold admitting
a Ricci-
at metric. This is a very powerful theorem since it is in general very
hard to �nd the explicit metric but relatively easy to compute the Chern class.

The Ricci-
atness also implies special holonomy properties. Consider the
integrability condition for parallel transporting a spinor

[r k ; r m ]� = �
1
4

Rkmpq 
 pq� ;

where 
 's are the gamma-matrices satisfying the Cli�ord algebra. From the
index structure of a K•ahler manifold we can already see that an� (complex)
dimensional K•ahler manifold has holonomy group U(n) � SO(2n). But this
is not enough to ensure the existence of a constant spinor whenn = 3. For
that we need a holonomy groupSU(n) � SO(2n). The vanishing of the U(1)
part of holonomy is given exactly by Ricci-
atness. Furthermore, employing
the covariantly constant spinors one can actually show the presence of another
equivalent relation, namely the existence of a nowhere vanishing, holomorphic
(n; 0) form.

We can now therefore gather the above facts and give four equivalent de�-
nitions of a Calabi-Yau manifold.

De�nition (Calabi-Yau manifold) A Calabi-Yau manifold is a compact,
complex, n (complex)-dimensional K•ahler manifold X which

has c1(TX ) = 0 (A.0.13)

, admits a Ricci-
at metric

, has holonomy groupSU(n)

, admits a nowhere vanishing holomorphic (n; 0) form :

Furthermore this holomorphic (n,0) form


 =
1
3!


 i 1��� i n dzi 1 ^� � � ^ dzi n (A.0.14)
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is harmonic and covariantly constant when the Ricci-
at metric is chosen.
Before going into the details of Calabi-Yau manifolds of di�erent dimensions,

we would like to end this appendix by discussing the cohomology structure of
Calabi-Yau manifolds.

Let's denote by hr;s the dimension of the vector space of harmonic (r; s)-form
on X. From the Hodge star operation we see that these Hodge numbers have
the symmetry hr;s = hn� r;n � s. Furthermore, from the complex conjugation
and K•ahlerity � = 2� @ = 2� �@ we have hr;s = hs;r . What is special about
Calabi-Yau manifolds compared to the usual K•ahler manifolds are, �rst of
all, hn;0 = h0;n = 1 as mentioned before. Moreover, Using the Ricci-
atness
it's not hard to show that hr; 0 = 0 for 0 < r < n , at least when the Euler
characteristic is non-zero. In the following we sum up the above properties in
the so-called Hodge diamond for Calabi-Yau two- and three-folds.

h0;0

h1;0 h0;1

h2;0 h1;1 h0;2

h2;1 h1;2

h2;2

=

1
0 0

1 20 1
0 0

1

(A.0.15)

h0;0

h1;0 h0;1

h2;0 h1;1 h0;2

h3;0 h2;1 h1;2 h0;3

h3;1 h2;2 h1;3

h3;2 h2;3

h3;3

=

1
0 0

0 h1;1 0
1 h1;2 h1;2 1

0 h1;1 0
0 0

1

We immediately see that the Euler numbers

� (X ) =
X

r;s

(� 1)r + shr;s

of these Calabi-Yau manifolds are

� (CY 2) = 24 ; � (CY 3) = 2( h1;1 � h1;2) : (A.0.16)

Notice that apart from the above discussion about the cohomology proper-
ties of Calabi-Yau n-folds in general, we have used an extra piece of information
for the two-folds. Namely we have put in h1;1 = 20. This is because there
is only one Calabi-Yau two-folds with SU(2) = Sp(1) holonomy group (so
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they are also hyper-K•ahler) but not a subgroup of it, in the sense that all
of them are di�eomorphic to each other. From now on we will refer to this
unique two-fold as K3 manifold and reserve the name \Calabi-Yau" for the
three-folds.

A construction of K3 manifolds of special interests is given by orbifolding
a T4. Let's for example consider an orbifold by Z2: (z1; z2) ! (� z1; � z2)
where z1;2 are the coordinates for the square torus. There are clearly 24 = 16
�xed points, each can be \blown up" by replacing the singularity with an
Eguchi-Hanson metric. See (1.3.19) for an description of the Eguchi-Hanson
space. This is a gravitational instanton and therefore the �rst Chern class
indeed vanishes. From the 16 harmonic anti-self-dual (1; 1)-form of the Eguchi-
Hanson metric, combined with the 4 (1; 1)- and one (0; 2)-, one (2; 0)-form from
the original torus, we indeed obtain the above Hodge diamond. Furthermore,
from the above analysis we also know the self-dual and anti-self-dual splitting
of the two-forms

b+
2 (K 3) = 3 ; b�

2 (K 3) = 19 : (A.0.17)

In the eigenbasis of the Hodge star operator on a four dimensional manifold
S, which satis�es ?2 = 1, the symmetric bilinear on the space of even-forms
satis�es

(�; � ) :=
Z

S
� ^ � = �

Z

S
� ^ ?� : (A.0.18)

Using the information about the dimensions of the eigenspace of the Hodge
star operator (A.0.17), we conclude that the signature of the space of middle
cohomology classes of the K3 surfaceS is (3,19), namely

H 2(S;Z) �= � 3;19 : (A.0.19)

Furthermore, we can incorporate the whole Hodge diamond (A.0.15) by intro-
ducing also the basis� 0 and � 0 for H 0(S;Z) and H 4(S;Z) respectively, which
is dual to each other in the sense that

R
S � 0 ^ � 0 = 1, and therefore enlarge

the lattice with an extra piece

U = � 1;1 =
�

0 1
1 0

�
: (A.0.20)

We therefore conclude that the space of integral cohomology classes of a K3
manifold is the following lattice

H 2� (S;Z) �= � 3;19 � � 1;1 �= � 4;20 : (A.0.21)

Finally let us remark that we have used the �xed point counting of the Z2

orbifold limit of the K3 manifold, and the fact that all K3 manifolds are dif-
feomorphic with each other and have therefore the same topological invariants,
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to obtain the signature (A.0.17). But one can also obtain it from using the
signature index theorem (A.0.10). See, for example, [6].

This situation is in stark contrast with that of Calabi-Yau three-folds, in
which case we don't even know whether the possibilities of di�erent Hodge
numbers are �nite. Or, in another (not incompatible) extreme, whether all
these possible Calabi-Yau's with di�erent Hodge numbers are actually all con-
nected by non-perturbative conifold transitions and in this sense there is only
one Calabi-Yau. For the purpose of our thesis we can just stick to thinking of
the space of all CY's as... rather complicated.
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Samenvatting (In Dutch)

Het spectrum van een theorie is een belangrijke sleutel tot inzichten in de
structuur van een theorie. Een beroemd voorbeeld daarvan is hoe het be-
grip van het spectrum van een waterstof atoom leidde tot het begrip van
kwantummechanica. Het is echter vaak moeilijk om het spectrum van een
complexe theorie zoals snaartheorie te bestuderen, wegens de perturbatieve
en niet-perturbatieve e�ecten in de theorie. Maar de situatie is ook niet zo
hopeloos als het lijkt. Er is een speciaal onderdeel van het spectrum dat vaak
niet gevoelig is voor deze e�ecten, namelijk het spectrum van de supersymme-
trische toestanden in de theorie. Dit onderdeel van het spectrum is daarom
vatbaar voor systematische analyse.

Een belangrijk onderzoeksprogramma in snaartheorie is het in kaart brengen
van het spectrum van supersymmetrische toestanden. Er zijn twee motivaties
hiervoor: ten eerste als een tussenstap tot het begrip van het volledige spec-
trum, en ten tweede om de entropie van een supersymmetrisch zwart gat te
verklaren. Snaartheorie is een kwantumtheorie met gravitatie. Dat betekent
vooral dat zware objecten tot een zwart gat kunnen ineenstorten, dat vol-
gens Bekenstein en Hawking een bepaalde entropie bezit. Het spectrum van
de supersymmetrische toestanden in snaartheorie geeft een antwoord op de
vraag: wat zijn de toestanden die verantwoordelijk zijn voor de entropie van
een supersymmetrisch zwart gat in de theorie? Het is inderdaad een triomf
van snaartheorie als een kandidaat van een complete theorie van kwantumgra-
vitatie geweest in het voorbij decennium, dat de theorie de eerste was die deze
vraag kwantitatief kon beantwoorden.

De inhoud van dit proefschrift maakt deel uit van het onderzoeksprogram-
ma van het bestuderen van het supersymmetrische spectrum in snaartheorie.
Er is vooral nadruk gelegd op de relatie met de toestanden van een super-
symmetrisch zwart gat. Het proefschrift heeft vijf onderdelen. De laaste drie
onderdelen zijn gebaseerd op de resultaten van het onderzoek verricht door de
promovendus in de voorbij vier jaar, terwijl de eerste twee meer algemeen van
aard zijn. Bovendien is er een appendix die de wiskundige kennis nodig voor
de rest van het proefschrift bevat. Het vereiste achtergrondmateriaal voor het
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begrijpen van de onderzoeksresultaten is opgenomen in dit proefschrift om dit
boekje toegankelijk te maken voor beginnende promovendi.

� Deel I

Deel I is een inleiding tot de basiskennis van verschillende aspecten van
snaartheorie die we later nodig hebben.

We beginnen in hoofdstuk 1.1 met een world-sheet perspectief en con-
centreren ons op de perturbatieve aspecten van de theorie van snaren,
inclusief de kwantisatie van de world-sheet theorie en het massaloze spec-
trum. Ook de T-dualiteit tussen IIA en IIB snaar theorie wordt vanuit
een world-sheet perspectief besproken.

In hoofdstuk 1.2 bestuderen we de lage energie e�ectieve theorie van de
snaartheorie die besproken is in hoofdstuk 1. Daarvoor is het world-sheet
perspectief niet meer geschikt en we schakelen over naar het ruimte-tijd
perspectief, waarin de ruimte-tijd (9+1)-dimensionaal is. We bestuderen
in dit hoofdstuk de tien-dimensionale supergravitatie theorie als de lage
energie e�ectieve theorie van snaartheorie en vooral de relatie tussen
verschillende grootheden in snaartheorie en anderzijds zijn lage energie
e�ectieve theorie.

�E�en van de belangrijkste instrumenten om het spectrum van snaartheorie
te bestuderen zijn de dualiteiten tussen verschillende snaartheori•een, de
complementaire beschrijvingen van dezelfde theorie in verschillende re-
gimes van koppelingsconstanten. Deze dualiteiten zijn niet-perturbatief
van aard. Bovendien zijn verschillende branen die niet direct zichtbaar
zijn in het perturbatieve spectrum van de snaren belangrijke bouwstenen
van zwarte gaten met ladingen. Deze niet-perturbatieve aspecten van de
theorie zijn daarvoor van wezenlijk belang voor het bestuderen van toe-
standen van zwarte gaten in de theorie. In 1.3 worden deze besproken.

� Deel II

Deel II is een inleiding tot de basiskennis van verschillende aspecten van
compacti�caties van snaartheorie tot vier dimensies.

We zijn geinteresseerd in compacti�caties tot vier dimensies omdat (3+1)
de dimensie is die we \zien" in ons dagelijks leven. Vooral zijn we geinte-
resseerd in 4d compacti�caties met resterende supersymmetrie. De reden
daarvoor, zoals was gezged in de eerste alinea in deze samenvatting, is
dat in dit geval we over meer analytsiche informatie over het spectrum
beschikken.
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Het tweede hoofdstuk is gewijd aan de zogeheten Calabi-Yau compacti�-
caties waar er acht (1=4) resterende supersymmetrie•en zijn en het derde
aan de K3 compacti�caties met zestien (1=2) resterende supersymme-
trie•en. De namen \Calabi-Yau" en \K3" verwijzen naar het soort in-
terne vari•eteiten waarop we onze snaartheorie compacti�ceren. Zoals
in deel I waarin de snaartheorie wordt ge•�ntroduceerd, beginnen we in
beide hoofdstukken met een world-sheet perspectief. Later schakelen we
over naar een ruimte-tijd perspectief waarmee de moduliruimte en de
lage energie e�ectieve theori•een besproken worden.

� Deel III

Dit deel van het proefschrift bevat twee hoofdstukken.

In hoofdstuk 4 bespreken we twee belangrijke eigenschappen, namelijk
het attractormechanisme en het bestaan van de muur van marginale sta-
biliteit, van de N = 2 ; d = 4 supergravitatie theorie die ge•�ntroduceerd
werd als de lage energie e�ectieve theorie van Calabi-Yau compacti�-
catie in hoofdstuk 2.2.2. In hoofdstuk 4.4 presenteren we de expliciete
oplossingen in deze supergravitatietheorie in het kader van type IIA com-
pacti�catie.

In hoofdstuk vijf worden de eigenschappen bestudeerd van de \lift" van
deze oplossingen tot vijf dimensies, op de manier geschetst in hoofd-
stuk 2.2.2. Speciale aandacht wordt besteed aan het geval waarin de
M-theorie limiet is genomen. Tenslotte concentreren we ons op de op-
lossingen die regulier en horizonloos zijn, en discussieren we in het kort
de implicatie van ons resultaat voor de aard van toestanden van zwarte
gaten in een theorie van kwantumgravitatie.

� Deel IV

Dit deel van het proefschrift is gebaseerd op de resultaten gepubliceerd
in het artikel [108]. Andere publicaties in dezelfde periode over gerela-
teerd onderwerpen zijn [109, 110, 30]. Een belangrijk vervolg waarin de
resultaten in [108] worden verbeterd is [111].

De doestelling van dit deel van het proefschrift is een betere kennis van
de microtoestanden van D4-D2-D0 zwarte gaten in IIA snaartheorie te
verwerven. Deze microtoestanden zijn geteld door een (veralgemeneend)
elliptisch genus.

Met hulp van de zogeheten \spectral 
ow" symmetrie die toestanden
met verschillende behoudende ladingen relateert en door het gebruik
van een veralgemeende Rademacher formule, heeft het elliptisch genus
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een interpretatie als een sommatie over de bijdrage van semi-klassieke
zadelpunten voor de partitiefunctie. Dit veralgemeent de "Black Hole
Farey Tail"voor N = 4, d = 4 zwarte gaten van [112] tot N = 2, d = 4
zwarte gaten.

� Deel V

In het laaste deel van dit proefschrift concentreren we ons op �e�en theorie,
de heterotische snaartheorie gecompacti�ceerd opT6, of zijn equivalente
beschrijving als type II snaartheorie gecompacti�ceerd opT2 � K 3.

Er zijn er twee hoofdstukken in dit deel. In hoofdstuk 7 wordt de mi-
croscopische telling van de BPS toestanden besproken, in het bijzon-
der de a
eiding van een microscopische tellingsformule. Deze formule
blijkt verschillende schijnbaar ongerelateerde wiskundige eigenschappen
te bezitten. In paragraaf 7.2 bespreken we die eigenschappen met het
bestaan van een Borcherds-Kac-Moody algebra als een knooppunt. Na-
dat we de nodigde wiskundige achtergrondkennis ge•�ntroduceerd heb-
ben, presenteren we in hoofdstuk 8 ons onderzoek naar het BPS spec-
trum van de theorie [128, 129]. Ten eersts behandelen we de moduli-
afhankelijkheid van het spectrum door de multi-centered oplossingen van
de lage-energie e�ectieve supergravitatie te bestuderen. Ten tweede be-
studeren we de contour-afhankelijkheid van de integraal waarmee we het
aantal BPS toestanden uit de genererende functie trachten te verkrij-
gen. Wegens deze afhankelijkheid is de tellingsformule niet compleet.
In paragraaf 8.4 argumenteren we dat de contour-afhankelijkheid en de
moduli-afhankelijkheid eigenlijk gerelateerd zijn met elkaar, en door een
geschikte keuze van contour is de tellingsformule bruikbaar voor alle
punten in de moduli-ruimte.

De tweede thema van dit hoofdstuk is de rol van de Borcherds-Kac-
Moody algebra. Ten eerste argumenteren we dat de tellingsformule ei-
genlijk beschouwd kan worden als een karakterformule van de Verma
module van de algebra met geschikte keuze van simpele wortels en hoog-
ste gewichten. Ten tweede geven we de Weyl-groep van de algebra een
interpretatie als de discrete groep van attractoren, ofwel de groep van
het muur-oversteken. Tenslotte geven we een paar opmerkingen over de
getaltheoretische aspecten van deze discrete attractor groep.
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supersymmetry algebra, 69

T-duality, 12, 15
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theta function, 59
Tits cone, 227
topological string partition function,
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