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Abstract
Since the completion of the Saccharomyces cerevisiae genome sequence about 75% of the
genes have been annotated and characterized. 25% remains uncharacterized, and many of the
annotated genes are only poorly characterized. Therefore, there is a great need for methods
that can generate specific hypotheses about the putative function of these genes. Here we
present a novel approach that enables the prediction of the function of genes based on the cor-
relation of the behavior of genes and functional groups in a large collection of gene expression
and fitness experiments. We applied T-profiler, a method that scores changes in the average
expression level of predefined groups of genes on multiple transcriptome and global fitness
datasets. We show functional association is accompanied by correlated gene-gene groups be-
havior. Based on the analysis of a test-set we were able to make reliable predictions for 64%
of all genes, which could be improved to 78% if a strict correlation cutoff was applied. In addi-
tion our method allows for the improvement of gene annotation, which can be shown by phe-
notypic analysis. Our method is implemented in a web application named FunKey, and was
used to predict functions for all uncharacterized genes.
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Introduction
The number of completely sequenced organisms is growing every day. According to recent in-
formation available on www.genomesonline.org over 1800 genomes have been sequenced. A
great challenge lies in making sense of the huge amounts of sequence information produced
by these projects. Especially the physiological role of individual genes cannot be inferred from
sequence information only. Since the unraveling of the first eukaryotic sequence of Saccha-
romyces cerevisiae [5], 4459 genes have obtained a functional annotation (process and func-
tion) according to Gene Ontology [100]. Despite the fact that S. cerevisiae is one of the most
studied eukaryotic organisms, the function of almost 25% of the genes remains enigmatic. In
addition, the function of many annotated genes is still poorly understood [6]. Clearly, there is
a need for large-scale methods that can generate predictions for the function of uncharacter-
ized and poorly characterized genes. Such predictions can then serve as a guideline for re-
searchers to investigate these genes at the lab bench and test proposals for their functions.

In the post-genomic era a variety of functional genomics methods have been developed that
can help elucidate the functional properties of genes. For the yeast Saccharomyces cerevisiae,
gene expression profiling [21, 22] and fitness profiling [17] are widely used. In recent years the
amount of data from such experiments has rapidly increased [8, 64, 92, 152]. Gene expression
profiles provide three different types of information. First, expression profiles can be used to
infer information about how gene expression is controlled [43, 88]. The combination of ex-
pression profiles and information obtained from global transcription factor binding assays
(ChIP-chip) [61, 62] has been especially useful to unravel transcriptional regulatory networks
[162, 180]. Second, functionally related genes that respond in concert can give information
about the physiological and functional changes in a cell [181]. Thirdly, gene expression profiles
may indicate the function of uncharacterized genes, for example, when their expression is
strongly correlated with the expression of functionally related genes [182]. This has been the
basis of various methods predicting function based on gene expression [72, 183-185].

Fitness profiling experiments examines the fitness of all yeast deletion mutants that grow com-
petitively in the presence of an inhibitor [8, 17]. Each of the deletion mutants is uniquely iden-
tified by a molecular ʻbar-codeʼ. These bar-codes are used to identify the amount of each
deletion mutant on a high density oligo array. Similar experiments are also performed by plat-
ing assays [63] and parallel analysis [186] using the deletion collection. Information obtained
from fitness profiling experiments is about the relative fitness of a deletion mutant under a par-
ticular condition. In analogy to gene expression profiles, functionally related genes that show
a reduced or a better fitness give information about the physiological and functional responses
to a stress or a compound treatment. [65]. In a similar way, the relative fitness of genes with a
known function that correlate with uncharacterized genes might give insight into the function
of these genes. A number of reports show that there is no clear correlation between gene ex-
pression and fitness profiles under similar stresses [8, 187]. This might imply that information
obtained from fitness profiling experiments is complementary to information derived from gene
expression profiles.
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Recently we introduced T-profiler [83], a method that uses the unpaired t-test to score changes
in the average activity of predefined groups of genes. This method can use gene sets as de-
fined by Gene Ontology [100] and MIPS to calculate the significance of co-expression of these
gene groups. T-profiler has the advantage that no arbitrary cutoffs on the level of gene ex-
pression have to be made. Furthermore the transformation to t-values comprises an internal
normalization allowing the comparison between heterogeneous gene expression data sets. It
also allows for a comparison between gene expression and fitness profile data [65]. We applied
T-profiler to a library of 936 gene expression profiles and 159 fitness profiling experiments from
various sources, and calculated the t-values for each gene group used. Next, we used the ob-
tained t-values to perform correlation analysis with all individual genes, over all experiments.
For the characterized genes, functional association is reflected in high correlation. We there-
fore tested whether correlation alone serves as an accurate functional prediction. We assessed
the reliability of our predictions by testing a set of well-characterized genes under strict condi-
tions. Depending on the correlation coefficient cut-off used we were able to make reliable pre-
dictions for 78% of the genes using combined gene expression and fitness profiles
Furthermore, analysis of gene groups suggests novel functions. The data were implemented
in a gene function prediction web-tool named FunKey. Using strict criteria FunKey reliably pre-
dicted a function for 169 dubious and uncharacterized genes.



Materials & Methods

T-profiler.
For a given gene group G, the t-value is given by the following formula:

where

Here mG is the mean expression log-ratio of the NG genes in gene group G; mGʼ is the mean
expression log-ratio of the remaining NGʼ genes; and s is the pooled standard deviation, as ob-
tained from the estimated variances for groups G and Gʼ.The associated two-tailed p-value can
be calculated from t using the t-distribution with N-2 degrees of freedom. We accounted for mul-
tiple testing by computing an E-value equal to the p-value multiplied by the number of gene
groups (Bonferonni correction). All t-values of groups with an E-value of 0.05 or smaller are con-
sidered to be significant. To reduce the influence of outliers, which may result in false positives
or false negatives, we discard the highest and lowest expression value in each gene group.
This method is similar to the jack-knife procedure [103].
Gene Ontology (GO)-based gene groups. GO-based gene groups contain the genes asso-
ciated with a specific GO category as well as all of its child categories (SGD, January 2007).
Only Gene Ontology groups with at least 7 members were used for calculation. This approach
resulted in a reduction of the original 3836 GO-based groups to 1346 GO-based gene groups,
which were used for T-profiler analysis. Significantly scoring GO-based gene groups directly
indicate which functions or cellular processes have changed as a result of altered gene ex-
pression. We only used categories that showed a significant t-value in at least 5 experiments
for our correlation analysis. This excludes gene-groups that showed no coherent regulation.
This resulted in 918 GO categories that were used for the correlation analysis.
MIPS –based gene groups. MIPS-based gene groups contain genes assigned by the MIPS
organization (ftp://ftpmips.gsf.de/yeast/catalogues, 15-02-2005). The groups can be divided
into three major categories based on function, protein complex and localization. We only used
the MIPS function gene groups with at least 7 members for our analysis. Significantly scoring
MIPS-based gene groups directly indicate which functions have changed as a result of altered
gene expression.
Motif-based gene groups. Motif-based groups are defined as groups of genes with a match
to a particular consensus motif within 600 base pairs upstream of the ORF [104], allowing no
overlap between neighboring ORFs. The consensus motifs used in T-profiler [83] are derived
from three different sources. First, motifs were extracted from the SCPD database
(http://cgsigma.cshl.org/jian /). Additionally, motifs were found by comparing the genome se-
quence of highly related yeast species [66]. Finally, motifs discovered in various microarray ex-
periments by the REDUCE algorithm [88] were added. Most of these motifs are similar or
identical to motifs described in the literature. In total, 153 motif groups have been included in
T-profiler calculations.
Gene groups based on transcription factor binding data. We used the transcription factor
binding (TFB) data, obtained by Harbison et al.[62] using ChIP-chip analysis, as input in T-pro-
filer. This data set contains ChIP-chip results of 203 transcription factors from experiments per-
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formed in rich medium (YPD). For 84 of these transcription factors, their binding to promoter
regions was also measured in at least 1 of 12 other environmental conditions. A gene was con-
sidered to be part of a TFB group if the p-value reported by the authors was smaller than 0.001.
In addition, TFB groups were required to have at least 7 gene members. This resulted in 252
TFB groups that were used for T-profiler analysis.
Data libraries
Our expression library of transcription profiles contains data of 936 hybridization experiments
carried out with S. cerevisiae from 19 publications (Table 1). This expression library contains
data from different DNA-array platforms such as Genefilter, Affymetrix, and spotted slides, and
includes experiments with gene deletion strains, synchronized cells for cell cycle analysis,
sporulating cells, and cells subjected to various physical and chemical perturbations.

Table 1 Description of the datasets used for FunKey

Author Description platform
Tai [189] Anearobic N-C-P-S chemostats gene expression
Boer [190] C-S-P-N chemostat limitation gene expression
Yoshimoto [46] Calcineurin gene expression
Daran-Lapujade [191] Carbon-limited chemostats gene expression
Spellman [58] Cell Cycle gene expression
Lagorce [120] Cell wall mutants gene expression
Boorsma [51] Cell wall perturbants gene expression
Sahara [192] Cold shift gene expression
Murata [193] Compounds and stress gene expression
Gasch [194] DNA damage gene expression
Gasch [40] Environmental stress gene expression
Bro [195] Lithium response gene expression
Harris [196] Map kinase gene expression
Fleming [197] Proteasome inhibitor gene expression
Devaux [198] regulation by PDR1 gene expression
Hughes [59] gene deletions and compounds gene expression
Chu [199] Sporulation gene expression
McCammon [200] TCA cycle mutants gene expression
Mnaimneh [165] Titratable promoter alleles gene expression
Zakrzewska [65] Chitosan fitness
Dudley [201] Compound & Conditions fitness
Brown [63] Compounds fitness
Wu [202] DNA - damage fitness
Parsons [64] Compounds fitness
Warringer [186] Compounds fitness
Birrel [203] DNA-damage fitness
Giaever [8] Conditions fitness

The expression library has been analyzed using T-profiler and the data have been uploaded
to a database named T-base, which can be found at <http://www.science.uva.nl/~boorsma/T-
base-all. The library of fitness profiles contains data of 159 experiments that were carried using
Saccharomyces cerevisiae. The data is extracted from 8 different publications. The majority of
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the data is derived from the Dudley study, which also includes the log2 ratio data from the stud-
ies of Giaever, Wu and Birrel. Parsons and Zakrzewska provided log2 ratios of their fitness
data. The study of Brown performed plate assays of the deletion mutant collection and scanned
the intensities and size of all individual colonies. We used log2 ratios of the intensities of the
treated colonies of each individual mutant and the intensities of the untreated (YPD grown)
colonies from the same mutant as a measure of fitness.

Correlation analysis and functional predictions
First we normalized each expression or fitness profile by calculating the z-score, which ex-
press the distance of the expression or fitness of a gene towards the mean in units of standard
deviation.

where x = the log-ratio , μ = population mean and σ = the standard deviation. To quantify the
extent to which an individual gene follows the behavior of a given gene group, we computed
the Pearson correlation r between the mRNA expression z-scores of the gene and the t-
score of the gene group across all hybridizations in our expression library.
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Results

Correlation analysis between gene and pathway modulation applied on gene
expression and fitness profiles
Recently we introduced T-profiler, a tool that analyses gene expression profiles by applying a
t-test to score the changes in the average gene expression of predefined groups of genes. We
also demonstrated that the same approach could be applied to data extracted from global fit-
ness profiling experiments [65]. Since the t-statistic is invariant to scaling of the gene expres-
sion or fitness profile it allows for comparison of data from heterogeneous data-sources
(Boorsma et al., submitted; Chapter 4). In the whole T-profiler procedure no arbitrary cutoffs for
the expression of individual genes are used. Instead all genes and all experiments are used,
minimizing data loss. To analyze the relationship between the expression or relative fitness of
individual genes to all gene-groups we applied T-profiler to a library of expression and fitness
profiles that covers 936 mRNAhybridizations and 159 fitness profiling experiments (Materials
& Methods). We calculated the Pearson correlation r over all experiments, between either the
expression of individual genes or the relative fitness of individual mutants represented by their
z-scores within each experiment, (Materials & Methods) with the t-values of all gene-groups
(Figure 1). This resulted in a correlation profile for each gene in which a high r-value indicates
that the z-values of a gene behaved like the t-values of a gene-group over many conditions.

As an example of such an analysis we took the well-characterized gene GRX2. In table 2 the
5 GO-terms showing the highest correlation in behavior over all experiments are shown. Ac-
cording to the Saccharomyces Genome Database (SGD) [204] GRX2 is functionally annotated
as “glutathione peroxidase activity”, “glutathione transferase activity”, and “thiol-disulfide ex-
change intermediate activity” in the category molecular function. The GO-group of “glutathione
peroxidase activity” has 6 members while the minimum for T-profiler analysis is 7. This group
is therefore not analyzed, but the parent group “peroxidase activity” is the group with the high-
est correlation to GRX2 (r = 0.76). The 2nd annotated group has an r of 0.69, and is 9th in the
list. The group “thiol-disulfide exchange intermediate activity” has significant t-values in fewer
than 5 experiments, and is therefore not included in the analysis, but again the parent group
(disulfide oxidoreductase activity) has an r of 0.65 and is ranked 10th in the list. The 2 anno-
tated GO-ontologies for biological process (“regulation of cell redox homeostasis” and “re-
sponse to oxidative stress”) are ranked 4th and 7th in the correlation profile, with r-values of
0.75 and 0.71, respectively.



Figure 1. Schematic overview of the generation of correlation profiles. A libary of 936 gene ex-

pression and 159 fitness profiles is analyzed by T-profiler using GO and MIPS gene groups. In addi-

tion the gene expression profiles were also analyzed using Motif and ChIP gene groups (only using

gene expression data) (1). The obtained t-values for each gene group (blue line) over all conditions are

compared by correlation analysis with the z-score (based on expression or on relative fitness) of indi-

vidual genes (red line) (2). The correlation values for each individual gene between all gene groups

(correlation profiles) are stored in a database, (3) which can be queried to generate functional predic-

tions (www.science.uva.nl/~boorsma/funkey) (4).
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Table 2. Gene Ontology based correlation profile for the characterized gene GRX2. The five high-

est and lowest ranked positive and negative gene gene –group correlations, based on Gene Ontologies

are shown. The complete prediction profile, based on all experimental conditions, contains values for

918 gene ontology gene groups can be found on www.science.uva.nl/~boorsma/funkey.. All top 10 GO-

categories are closely related to these 5 annotations. For cellular component, both “cytosol” and “mito-

chondrion” have been annotated. Many mitochondrial gene groups correlate strongly with GRX2 over all

experiments, starting at rank 13 with an r-value of 0.6, but cytosolic groups do not appear until the 75th

position in the list

Gene Ontology r E-value rank

peroxidase activity 0.76 < 1.0e-14 1
oxidoreductase activity, acting
on peroxide as acceptor 0.76 < 1.0e-14 2
antioxidant activity 0.75 < 1.0e-14 3
regulation of cell redox homeostasis 0.75 < 1.0e-14 4
cell redox homeostasis 0.75 < 1.0e-14 5

snoRNA binding -0.55 < 1.0e-14 913
RNAmethylation -0.56 < 1.0e-14 914
tRNAmethyltransferase activity -0.56 < 1.0e-14 915
RNA helicase activity F -0.57 < 1.0e-14 916
helicase activity -0.58 < 1.0e-14 917
RNAmethyltransferase activity -0.58 < 1.0e-14 918

Global analysis of the correlation profiles according to SGD gene classifica-
tion
For many genes we observed that the functions correlating strongest were amongst or related
to the annotations as found in SGD. This is true only if a gene has been annotated, but SGD
categorizes genes as ʻverifiedʼ if they have a functional annotation (4471 genes), as unchar-
acterized if they do not (1039 genes), and as ʻdubiousʻ genes (560 genes). The latter category
contains genes that were initially predicted as open reading frames, but of which sequence
comparison with closely related yeast species [66] indicates that they most likely are not. We
compared the correlation profiles for the genes of the three classes. Figure 2 shows the dis-
tributions of the highest correlation coefficients for each gene of the three gene classes. The
distribution of the correlation coefficients of the verified genes peaked around correlation co-
efficients of 0.7 and 0.35, while the class of uncharacterized genes peaked around 0.6 and
0.3. When we assessed the number of genes above a certain correlation cutoff, a similar pic-
ture was seen. The percentage of genes that had a correlation of lower or equal to 0.5 with at
least one GO-term for verified genes was 35% and dropped to 21% at a cut-off value of lower
or equal to 0.6. For the uncharacterized genes the number was lower; an r-value of 0.5 or
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higher was found for 16% of the genes, and this number dropped to 8% when a correlation cut-
off of 0.6 is used. Finally, the distribution of the dubious genes peaked around a correlation co-
efficient of 0.2, and the number of correlations for the dubious genes was much lower than for
either verified or uncharacterized genes (Figure 2AB).

B
Genes SGD (r ≥ 0.3) (r ≥ 0.4) (r ≥ 0.5) (r ≥ 0.6)
Verified 4471 3491 (78%) 2482 (56%) 1565 (35%) 954 (21%)
Uncharacterized 1039 627 (60%) 353 (34%) 165 (16%) 87 (8%)
Dubious 560 164 (29%) 90 (16%) 45 (8%) 16 (3%)

Figure 2. Distributions of correlation coefficients according to SGD gene classification. (A) The fre-

quency distribution of the highest correlation coefficient for each gene correlation profile is plotted. In

grey, the distributions for the verified genes, dark grey, the distributions for the uncharacterized genes and

dubious genes (all according to the Saccharomyces cerevisiae Genome Database) are shown in light

grey. (B) Effect of the Pearson correlation cut-off on the number of functional gene predictions of GO

functions. The number of correlations with a certain correlation cutoff is given. In bold is the percentage

of correlations for a certain correlation cutoff. Note that the dubious genes still have a substantial num-

ber of correlations with a high correlation coefficient.

Since the dubious genes are measured in most of the gene expression and fitness data sets
but not expected to behave like functional genes, they can be regarded as background corre-
lation. Concluding, the verified genes on average showed highest correlations with functional
groups, reflected both in the distribution of correlations and in the percentage of correlations
found above a certain correlation. Still, a considerable number of uncharacterized genes had
a high correlation with one or more functional groups.
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Assessment of correlation as a functional predictor
We tested whether high correlation of genes to gene groups favored the groups to which they
have been shown to belong. If this is the case, gene-gene group correlation can be used to as-
sess and predict gene function. Therefore, a set of well-characterized genes that were anno-
tated to at least one group in all three GO classes (molecular function, biological process and
cellular component) was selected. In total, 3400 genes fit these criteria and were used in this
analysis. For each gene we selected the GO-term with the highest correlation coefficient (r) and
compared this to the GO-terms to which the gene was assigned according to Gene Ontology
(GO). A prediction was considered “correct” only when the highest GO-term matched a GO-
term assigned. These criteria are rather strict, since in some cases genes were not annotated
to the most highly ranked GO term but of the one ranked later, even if the highest term was
highly related. Such a situation was shown in the GRX2 example above.

Figure 3 shows the effect of the correlation coefficient cutoff on the quality of the functional pre-
dictions. In total the highest GO-term correlations of 50% of the genes (1695 out of 3400)
matched one of the assigned GO-terms. If a rank equal or better than 5 was used, 68% of the
genes matched. When we analyzed only genes with a correlation of 0.8 or higher, we pre-
dicted the assigned GO gene group in 92% of the cases, and even at low correlation many pre-
dictions are still correct according to these criteria. Using a correlation cutoff of 0.5, 68% of
gene functions were predicted correctly, and this number increased to 78% if functional groups
correlating with an r equal or more than 0.5 but positioned at a rank <= 5 were included

Figure 3. Effect of the r-cut off on the predictive power of the correlation profiles

We assessed the quality of the correlation profiles by taking a set of well-characterized genes (3400). The

correlation value of the highest ranked gene group of each gene was taken. A correct correlation was con-

sidered when the gene was actually a true member of this gene group based on Gene Ontology infor-

mation. Figure 3 shows the differences in the used r-cutoffs and the correct gene group correlations.

Information of all 3400 genes can be found in the additional information.
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Based on the analysis above, we now regarded groups with correlations of 0.5 or higher as
specific hypotheses for the function of genes, with a 68% chance of predicting a correct GO-
ontology gene-group on top of the list, and a 78% chance of it being amongst the first 5. We
used the correlation profiles to generate predictions for all dubious and uncharacterized
genes. For 45 dubious assigned genes correlation of 0.5 or higher was found with a GO-
term. However, when the chromosomal position of these dubious genes was inspected we
found that in about 90% of the cases the genes physically overlapped other (verified) genes.
Since the majority of the micro-array experiments present in our expression library were
based on spotted PCR products of whole genes, the DNA from such a spot was also able to
hybridize to mRNA from the overlapping complementary ORF. Interestingly, we found four
dubious genes that showed high correlation but did not overlap with another, characterized
gene (Table 3). These might represent valid genes that are specific for Saccharomyces
cerevisiae.

Table 3. Functional predictions of ʻdubiousʼ ORFs Functional predictions of ʻdubiousʼ ORFs that do

not show physical overlap on the chromosome with other ORFs. These ORFs might represent true genes

that are specific for Saccharomyces cerevisiae.

ORFs r GO-term
YGL188C 0.56 cytochrome-c oxidase activity
YAR075W 0.51 amino acid derivative biosynthesis
YMR103C 0.51 structural constituent of cell wall
YOL118C 0.51 urea cycle intermediate metabolism

In total 165 out of 1039 ʻuncharacterizedʼ genes have a correlation coefficient of 0.5 or higher
based on Gene Ontology. Table 4 shows the functional prediction for these genes. GO-terms
include arginine biosynthesis, organellar (mitochondrial) ribosome, lysine metabolism, protea-
some complex and histone exchange. The majority of the genes are however associated with
GO-terms related to ribosome biogenesis (snoRNA binding, rRNA binding and processing of
27S pre-rRNA), which is in agreements with findings from Hughes et al. [6].

Orf r GO-id description
YBR047W 0.69 000051 urea cycle intermediate metabolism
YPL250C 0.67
YIL165C 0.62
YJR111C 0.58
YPL264C 0.55
YER049W 0.74 000054 ribosome export from nucleus
YNL119W 0.67
YHL039W 0.65
YPL207W 0.64
YPL245W 0.52
YOR154W 0.53 000055 ribosomal large subunit export from nucleus
YOL007C 0.55 000079 regulation of cyclin-dependent protein kinase activity
YLR049C 0.51
YHR122W 0.59 000105 histidine biosynthesis
YDR115W 0.76 000313 organellar ribosome
YNL081C 0.66
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YKL137W 0.59 000314 organellar small ribosomal subunit
YPL183W-A 0.50 000315 organellar large ribosomal subunit
YNL305C 0.66 000328 vacuolar lumen (sensu Fungi)
YNL115C 0.63
YHR138C 0.58
YOR220W 0.54
YNL155W 0.72 000502 proteasome complex (sensu Eukaryota)
YBR062C 0.66
YOR059C 0.52
YNL313C 0.73 003724 RNA helicase activity
YJL010C 0.82 004004 ATP-dependent RNA helicase activity
YMR315W 0.73 004033 aldo-keto reductase activity
YNL134C 0.71
YBR053C 0.70
YBR056W 0.69
YMR110C 0.66
YKR011C 0.63
YDR391C 0.60
YHR112C 0.54
YBR204C 0.53
YGR111W 0.53
YGL259W 0.60 004190 aspartic-type endopeptidase activity
YHR209W 0.59
YMR090W 0.71 004364 glutathione transferase activity
YOL083W 0.67
YOR289W 0.63
YOL048C 0.51
YMR251W 0.50
YLR194C 0.65 005199 structural constituent of cell wall
YIL108W 0.57
YKR046C 0.57
YBR071W 0.54
YOL022C 0.72 005666 DNA-directed RNA polymerase III complex
YOR021C 0.70
YIL110W 0.69
YGR173W 0.65
YIL064W 0.62
YDL213C 0.52
YCR095C 0.50 005681 spliceosome complex
YOR287C 0.74 005730 nucleolus
YJR124C 0.62 005736 DNA-directed RNA polymerase I complex
YCR087C-A 0.61
YEL048C 0.55
YOL092W 0.55
YDR493W 0.54 005759 mitochondrial matrix
YCL042W 0.64 005775 vacuolar lumen
YBR269C 0.57
YBR241C 0.54
YBR025C 0.50 005829 cytosol
YMR067C 0.59 005839 proteasome core complex (sensu Eukaryota)
YNL200C 0.72 005975 carbohydrate metabolism
YJL161W 0.68
YJL163C 0.63
YFR017C 0.54
YMR291W 0.52
YER067W 0.70 005977 glycogen metabolism
YLR345W 0.65
YJR008W 0.62
YGR243W 0.54
YOR215C 0.52



YGR052W 0.51
YMR196W 0.61 005991 trehalose metabolism
YLR149C 0.73 006112 energy reserve metabolism
YHL021C 0.72
YPL230W 0.66
YER079W 0.64
YGR130C 0.59
YJL057C 0.53
YLR177W 0.50
YJL048C 0.52 006118 electron transport
YLR243W 0.62 006360 transcription from RNA polymerase I promoter
YGR145W 0.87 006364 rRNA processing
YIL127C 0.79 006396 RNA processing
YGR251W 0.64
YPR169W 0.64
YLR401C 0.68 006400 tRNAmodification
YLR405W 0.52
YKL033W-A 0.59 006520 amino acid metabolism
YGL117W 0.84 006526 arginine biosynthesis
YHR162W 0.56
YJL200C 0.74 006553 lysine metabolism
YGR090W 0.64 006611 protein export from nucleus
YLR267W 0.59 006766 vitamin metabolism
YIL056W 0.57 006768 biotin metabolism
YJR154W 0.50
YLR301W 0.50 006888 ER to Golgi vesicle-mediated transport
YPL166W 0.50 006914 autophagy
YDR196C 0.51 007034 vacuolar transport
YOL125W 0.62 008175 tRNAmethyltransferase activity
YLR089C 0.56 008483 transaminase activity
YLR152C 0.51
YLR218C 0.55 008535 cytochrome c oxidase complex assembly
YCR082W 0.51 008541 proteasome regulatory particle, lid subcomplex (sensu

Eukaryota)
YGR110W 0.50 008614 pyridoxine metabolism
YOL107W 0.56 008654 phospholipid biosynthesis
YGR026W 0.50
YDR330W 0.53 009056 catabolism
YMR321C 0.70 009073 aromatic amino acid family biosynthesis
YLR179C 0.50 009092 homoserine metabolism
YGR250C 0.52 009250 glucan biosynthesis
YDR070C 0.67 009269 response to desiccation
YJL144W 0.67
YGR043C 0.60
YNL195C 0.52
YGR201C 0.50
YMR181C 0.58 009415 response to water
YPL247C 0.55 009628 response to abiotic stimulus
YHR097C 0.54
YML131W 0.64 009636 response to toxin
YKL071W 0.52
YJR085C 0.59 015036 disulfide oxidoreductase activity
YFR042W 0.54
YDR161W 0.73 016423 tRNA (guanine) methyltransferase activity
YBR271W 0.71
YMR310C 0.67
YLR073C 0.66
YLR063W 0.63
YBR030W 0.57
YDR020C 0.55
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YGR079W 0.54
YLR356W 0.61 016491 oxidoreductase activity
YBR187W 0.50 018193 peptidyl-amino acid modification
YGR149W 0.61 019203 carbohydrate phosphatase activity
YDL027C 0.57
YPR172W 0.55 019321 pentose metabolism
YGR127W 0.54
YBR147W 0.66 019794 nonprotein amino acid metabolism
YDR412W 0.79 019843 rRNA binding
YLR003C 0.79
YGR272C 0.74
YCR016W 0.76 030489 processing of 27S pre-rRNA
YIL096C 0.75
YNL022C 0.71
YKR060W 0.70
YJR003C 0.69
YLR287C 0.61
YLR409C 0.82 030515 snoRNA binding
YDL063C 0.81
YPL183C 0.74
YIL091C 0.70
YJL069C 0.63
YMR259C 0.61
YBR238C 0.55
YLR413W 0.57 030684 preribosome
YML018C 0.53
YBL054W 0.66 030687 nucleolar preribosome, large subunit precursor
YLR414C 0.53 031505 cell wall organization and biogenesis (sensu Fungi)
YJL097W 0.54 042175 nuclear envelope-endoplasmic reticulum network
YBR231C 0.71 043486 histone exchange
YBR052C 0.63 044248 cellular catabolism

Table 4. Functional predictions for uncharacterized genes. Functional predictions for ʻuncharacter-

izedʼ genes based on GO-terms ranked by their highest correlation coefficient.

Analysis of gene group-gene correlations to improve annotation
The previous examples were all based on the prediction of functions of individual genes. It is
also possible to assess correlations on the gene group level. In many groups, some gene mem-
bers showed poor correlation to the group they have been assigned to. This might indicate
that these genes have been incorrectly annotated. Conversely, some groups have non-mem-
bers that correlate closely. Assignment of genes to gene groups is based on different types of
evidence. Therefore, we assayed the correlation strengths of genes annotated to functional
groups based on three different types of evidence. Figure 4 shows the frequency distribution
of the correlations of all GO-terms for genes with the evidence codes TAS (Traceable Author
Statement), IDA (Inferred from Direct Assay) and IMP (Inferred from Mutant Phenotype). Gene
annotation based on Traceable Author Statement is generally more solidly evidence based
than annotation based on IDA and IMP, which often originated from large-scale analyses. In-
deed, genes associated with GO-terms based on TAS correlate much better with their associ-
ated terms than those based on IDA and IMP evidence codes (Figure 4A,B and C).
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Figure 4. Distribution of correlation coefficients based on the three different GO evidence

codes. Distribution of the correlation coefficients of all GO-terms of all genes with evidence codes A)

Inferred from Mutant Phenotype (IMP), B) Inferred from Direct Assay (IDA) and C) Traceable Author

Statement (TAS).

This indicates that annotation which is most strongly evidence based also leads to higher cor-
relation, which makes it safe to assume that correct functional annotation should be reflected
in correlation.As an example of such a group-centered analysis we describe the analysis of the
GO-term ´cell wall organization and biogenesis´ (GO:007047). This gene group contains 196
gene members correlating with correlation coefficients ranking from 0.59 to -0.30. For exam-
ple, SED1, a gene that codes for a structural GPI-cell wall glycoprotein scores a high correla-
tion (r = 0.58) (Figure 5A) whereas the gene ECM1 scored the lowest correlation with the cell
wall organization and biogenesis GO gene group (r = -0.30) (Figure 5B). The evidence that
ECM1 belongs to this GO gene group originates from a transposon mutant screen for hyper-
sensitivity against the cell wall perturbing agent Calcofluor White [205]. In contrast to its low cor-
relation with the ʻcell wall organization and biogenesisʼ group, ECM1 showed the highest
positive correlation for the GO term ʻribosomal large subunit export from nucleusʼ (r = 0.82)
(Figure 5C).

Figure 5. Scatter plot of correlation profiles of two gene members of the cell wall organization

GO gene group (SED1 and ECM1). Figure 5 shows the correlation profile, visualized by a scatter plot,

between the z-scores of genes (based on gene expression of fitness profiles) and the t-values of gene

ontology gene groups over 1100 experiments. Figure 5A SED1 and the GO-term of ʻCell Wall Organi-

zationʼ,r = 0.58). Figure 5B; ECM1 and the GO-term of ʻCell Wall Organizationʼ, r = -0.30. Figure 5C;

ECM1 and the GO-term of ʻRibosomal export from nucleusʼ, r = 0.80.
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This newly predicted function is strongly supported by the localization of ECM1 in the nucleo-
plasma and the nucleolus and genetic interaction with MTR2, which is involved in 60S riboso-
mal protein subunit export [71]. Ten other ECM genes in this GO-group (based on mutant
phenotypes) have a negative correlation, and a strong positive correlation with other functional
groups and are therefore unlikely to be directly involved in cell wall biogenesis. Additionally, 4
genes (SRL3, CRG1, YPS1 and YIL108w) not assigned to this GO-group correlate to it with
an r of 0.5 or higher. The example above suggests that our correlation analysis is useful in dis-
crimination between correct and incorrect annotation.

Expression and fitness profiling data are complementary in identifying gene
functions
We used combined gene expression and fitness profile data, but not in all cases do the two in-
dependently give the same result. For example, MRPL38, a gene coding for a mitochondrial
ribosomal protein correlates with the gene group mitochondrial ribosome with an r of 0.81, to
which both fitness and transcription data contribute (figure 6a). A different picture is seen for
the gene TSL1; its correlation of 0.89 with the GO-term ʻTrehalose metabolismʼ is entirely based
on gene expression data sets (Figure 6b). A reverse pattern is found for the gene APL2; cor-
relation between APL2 and the GO-term ʻClathrin bindingʼ is mostly based on the fitness data
(Figure 6c). The latter two examples suggest that expression profiling studies and fitness pro-
filing studies used in FunKey are complementary in identifying gene functions.

Figure 6. Differences in correlation profiles based on

expression and fitness data shows three different cor-

relation profiles of genes with significant correlations. Fig-

ure 6A shows the correlation profile between MRPL38

and mitochondrial ribosome (r = 0.80) where both gene

expression (dots) and fitness data sets (squares) con-

tribute to the correlation. The correlation between TSL1

and trehalose metabolism (r = 0.89) is mainly based on

gene expression profiles (Figure 6C) whereas the corre-

lation between APL2 and clarthin binding (r = 0.54) bind-

ing is mainly based on fitness profiles (Figure 6B)



If genes have strong correlations in both transcription and fitness data, but correlate to differ-
ent functions in the different datasets, this indicates dual functionality. An example is the TCA
cycle gene ACO1. Based on gene expression correlations profiles, the GO-term glutamate
biosynthesis and tricarboxylic acid cycle score the highest correlation coefficients (r = 0.74 and
r = 0.68, respectively). If only fitness profiles are used, the GO-term mitochondrial genome
maintenance (r = 0.58) shows the highest correlation. This is in accordance with a recent find-
ing that describes Aco1p to function in mitochondrial DNA maintenance [206].

Gene prediction webtool: FunKey
We created a web-application named FunKey, which can be used to query the correlation pro-
files for all Saccharomyces cerevisiae genes (www.science.uva.nl/~boorsma/Funkey). Since
Gene Ontology and MIPS describe the physiological role of gene groups they are the most suit-
able to generate functional predictions. As output we provide the correlation of the query gene
to all GO-ontology gene groups. As described in the analysis above, lower correlations have
less predictive power. In addition, we applied our method to Motif and Transcription Factor Oc-
cupancy (TFO) gene groups. The correlation profiles for the latter gene groups provide infor-
mation about the transcriptional regulation of a gene and are therefore based on gene
expression data only. Besides correlation profiles based on the combined expression and fit-
ness dataset, it is also possible to query FunKey for the two independently. Additionally, it is
possible to generate output for gene groups, so that all genes correlating to a gene group can
be analyzed. The user can define cutoffs for correlation strength and rank.
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Conclustions & Discussion

There is a need for methods that can, based on the use of high-throughput data, generate use-
ful hypotheses about the function of uncharacterized or poorly characterized genes [6]. Here
we present such a method that integrates gene expression and fitness profiles to predict the
function of uncharacterized or poorly characterized genes. Unlike existing methods our method
first measures the modulation of functionally related genes by means of t-statistics, and next
uses this information to predict the function of a gene based on the correlation of the behavior
of individual genes to that of gene groups throughout our data library. The first step in the pro-
cedure can be regarded as a normalization step where modulation of individual genes is trans-
ferred into t-values on the gene groups level. This transformation allows the integration of
heterogeneous data sets. The results of our method are available through webservice FunKey
that allows for efficient data mining and hypothesis generation.

The predictive power of the correlation profiles was assessed in two ways: First we analyzed
the frequency distributions of correlation profiles from verified, uncharacterized and dubious
genes. This analysis revealed that the characterized genes in general show higher correla-
tions to at least one gene group than the uncharacterized genes. This may be because gene
groups were generated based on knowledge of the genes functioning in them. However, it also
shows that uncharacterized genes are not as easily assigned to functional groups. Next we
compared the GO annotations of a set of well-characterized genes with the predictions gen-
erated by FunKey. This revealed that, when no correlation cutoffs were used, we were able to
make correct predictions for 68% of the genes. Using a strict correlation cut-off (r > 0.5), pre-
dictions were generated for 165 (16%) of the uncharacterized genes. These findings suggest
that, in proportion, the functions of uncharacterized genes are harder to predict using gene ex-
pression and fitness profile data sets. The method could be improved by adding new gene ex-
pression and fitness profiling dataset; therefore GO-terms that are found to be not modulated
in the dataset might help to suggest, which experimental conditions should be added. Finally,
the group of dubious genes shows very little correlation, and therefore serves as a measure
for background correlation with no functional significance. Interestingly, four dubious genes, not
overlapping with other genes, showed significant correlation with a GO-term and could be Sac-
charomyces cerevisiae specific genes.

We also show that the origin of gene annotations strongly influences the distribution of the cor-
relation coefficients. For example, genes that are annotated according to the ʻTraceable Author
Statementʼ (TAS) perform much better then genes that are annotated according to the ʻInferred
from Mutant Phenotypeʼ (IMP) evidence code. This suggests that annotation of genes via TAS
is more accurate than IMP annotated genes. An example is shown of genes that belong to the
GO-term ʻcell wall organization and biogenesisʼ that show large variation of correlation coeffi-
cients. Most of the genes that have poor correlation to this GO-term are annotated with an IMP
evidence code and originate from high-throughput assays [205], and do correlate strongly to
other GO-ontology categories. We currently are re-evaluating these mutants for their sensitiv-
ity to cell wall perturbants. Generally, genes correlating poorly to their annotated gene group,
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and correlating strongly to others should be looked into.
We also took the opportunity to compare separate correlation profiles based on gene expres-
sion profiles and fitness profiles. Only a portion of the genes (196 genes, r >= 0.5, rank <= 10)
share predictions of gene function based on gene expression and fitness profiles. Most of these
genes function in cytosolic and mitochondrial ribosomal biogenesis, functions which are prob-
ably most strongly transcriptionally regulated (our unpublished data). This shows that fitness
profiling is complementary to the use of gene expression profiles. Interestingly, we are able to
predict two distinct functions for the TCA-cycle gene Aco1p, which confirms earlier findings
that Aco1p has a double function in the TCA-cycle and mitochondrial DNAmaintenance [206].
Mining FunKey might reveal more of such multifunctional genes.

Our method uses data of all expression and fitness profiles and makes no prior selection. Hut-
tenhower et al. (Huttenhower et al., 2006) suggested that selection based on meta-data about
experiments might improve the predictive power for functions whose effects are under-repre-
sented in the dataset. For example, there are only 9 gene expression profiles of sporulaton con-
ditions. Still, our method is capable of generating reliable functional predictions for genes
involved in the sporulation, especially if also the rank is taken in account. Similarly, although
no datasets specifically targeting peroxisomal functions are present in our dataset, we still find
significant correlations of peroxisomal genes to peroxisomal gene groups. A pre-selection of ex-
periments can also be dangerous, and might lead to accumulation of (positive) errors and
therefore generate seemingly solid but false predictions

In summary, we have presented a conceptually simple and transparent method that can be
used to generate specific hypothesis of uncharacterized or poorly characterized Saccha-
romyces cerevisiae genes. Our method is scalable and can easily be used to improve the an-
notation of the genome of Saccharomyces cerevisiae and other organisms.
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