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6 Yang-Yang thermodynamics on
an atom chip

In this chapter we describe measurements on the behavior of a weakly
interacting nearly one-dimensional (1D) trapped Bose gas at finite
temperature. We perform in situ measurements of spatial density
profiles and show that they are very well described by a model based
on exact solutions obtained using the Yang-Yang thermodynamic for-
malism, in a regime where other, approximate theoretical approaches
fail. We demonstrate Bose gas focusing as a means to gain exper-
imental access to the axial momentum distribution of the gas, and
find good agreement with the in situ results.

6.1 Introduction

Reducing the dimensionality in a quantum system can have dramatic consequences.
For example, the 1D Bose gas with repulsive delta-function interaction exhibits a
surprisingly rich variety of physical regimes that is not present in 2D or 3D (see
Sec. 2.6). This 1D Bose gas model is of particular interest because exact solutions
for the many-body eigenstates can be obtained using a Bethe ansatz (Sec. 2.5.2).
Furthermore, the finite-temperature equilibrium can be studied using the Yang-
Yang thermodynamic formalism [36–38], a method also known as the thermody-
namic Bethe ansatz (Sec. 2.5.3). The experimental achievement of ultracold atomic
Bose gases in the 1D regime [39–41, 178] has attracted renewed attention to the
1D Bose gas problem [73,84,179–181] and is now providing previously unattainable
opportunities to test the Yang-Yang thermodynamics.
In this chapter, we present the first direct comparison between experiments and

theory based on the Yang-Yang exact solutions. The comparison is done in the
weakly interacting regime and covers a wide parameter range where conventional
models fail to quantitatively describe in situ measured spatial density profiles. Fur-
thermore, we show that Bose gas focusing allows experimental access to the equi-
librium momentum distribution of the 1D gas, which is difficult to obtain through
other means.
Theory for the 1D Bose gas is summarized in Ch. 2. In brief, for a uniform 1D

Bose gas, the key parameter is the dimensionless interaction strength γ = mg1/�
2n1,

where m is the mass of the particles, n1 is the 1D density, and g1 is the 1D coupling
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92 Yang-Yang thermodynamics on an atom chip

constant. An overview of the regimes in 1D is shown in Fig. 2.4. At low densities
or large coupling strength such that γ � 1, the gas is in the strongly interacting or
Tonks-Girardeau regime [42, 43, 53]. The opposite limit γ � 1 corresponds to the
weakly interacting gas. Here, for temperatures below the temperature of quantum
degeneracy Td = �

2n2
1/2mkB, one distinguishes two regimes [59]. (i) For sufficiently

low temperatures, T � √
γTd, the equilibrium state is a quasi-condensate with

suppressed density fluctuations and fluctuating phase. The system can be treated
by the mean-field approach and by the Bogoliubov theory of excitations. The 1D
character manifests itself through long-wavelength phase fluctuations resulting in a
finite phase coherence length lφ = �

2n1/mkBT which greatly exceeds the mean-field
correlation length lc = �/

√
mn1g1. (ii) The temperature interval

√
γTd � T � Td

corresponds to the quantum decoherent regime [59], where both the density and the
phase fluctuate. Here, the condition lc � lφ required for the existence of a quasi-
condensate is no longer satisfied and the system can be treated as a degenerate ideal
gas combined with perturbation theory in g1. At temperatures near the crossover
to the quasi-condensate, T ∼ √

γTd, neither of the above mentioned approximate
theoretical approaches work and one has to rely on the numerical solution to the
exact Yang-Yang equations, as we show in this chapter.

Experiments on 1D Bose gases are usually carried out in harmonic traps with
strong transverse confinement and weak confinement along the symmetry axis, ω⊥ �
ω‖. A trapped gas is in the 1D regime if both temperature and chemical potential
are small with respect to the radial excitation energy, kBT, μ � �ω⊥. The effective
1D coupling can be expressed through the 3D scattering length a as g1 � 2�ω⊥a
if a � (�/mω⊥)1/2 [33][Eq. (2.34)]. Various physical regimes of a harmonically
trapped 1D gas have been discussed in Refs. [34,70,76,85]. The above classification
of the regimes for the uniform gas can be applied locally to the trapped gas if the
conditions for the local density approximation (LDA) are met [70, 76, 85]. It was
recognized early on that the physics of the degenerate part of the trapped cloud is
already effectively 1D if the weaker condition μ < �ω⊥ is satisfied [39–41,178].

We experimentally investigate the behavior of a weakly interacting trapped Bose
gas (γ ≈ 10−2) in the regime where μ < �ω⊥ and kBT � �ω⊥. Similar measurements
to our in situ data were previously performed at higher chemical potentials and
higher temperatures [60], in which case the observed density profiles were found to
be in disagreement not only with a pure quasi-condensate description and with an
ideal-gas description, but also with a model based on a Hartree-Fock approximation.
Our approach here is different in that we fit the data using a model based on the
solutions to the exact Yang-Yang equations [36,59] and use these fits to extract the
chemical potential and the temperature of the gas. The model describes our in situ
data very well, in contrast to the more conventional descriptions.

The outline of this chapter is as follows. In Sec. 6.2 a short summary of the used
methods is given. In Sec. 6.3 and Sec. 6.4 we describe the data obtained with the in
situ and in focus methods respectively. In Sec. 6.5 the presented data are discussed
and compared with theory. Finally, in Sec. 6.6, we conclude this chapter and give
an outlook to further experimental and theoretical investigations.
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6.2 Methods

For (nearly) 1D clouds, it is difficult to obtain experimental access to the axial
momentum distribution. The conventional time-of-flight method does not work for
this purpose, mainly because the cloud hardly expands axially beyond its long initial
length. In addition, we observe strong density fluctuations, similar to the example
given in Fig. 5.7(a), that develop in time-of-flight from the initial phase fluctuations
of our 1D degenerate clouds further complicating the analysis. Previous work for
elongated 3D condensates with μ > �ω⊥ can be found in Refs. [171, 172]. Bragg
spectroscopy has been demonstrated as a means to obtain the axial momentum
distribution of phase-fluctuating condensates [172], but this requires averaging over
many realizations of the experiment.

We gain experimental access to the axial momentum distribution using Bose
gas focusing a technique that is described in detail in Ch.5. In brief, we apply a
short, strong axial harmonic potential yielding a kick to the atoms proportional to
their distance from the trap center (analogous to the action of a lens in optics),
followed by free propagation. As a result the atoms come to a focus, at which
time the axial density distribution reflects the axial momentum distribution before
focusing. Initial phase fluctuations do not lead to density fluctuations in the focus,
but instead result in a finite width of the cloud [127]. Since the focusing brings all
atoms together axially, the signal level is high, even for a single realization. As we
will show, averaging over a few shots is sufficient to obtain high signal-to-noise ratio.

The core of our experimental setup is a magnetic microtrap that is described in
Sec. 3.3. The experimental procedure to prepare our cold atom samples is described
in Ch. 4. In short, we trap 2 × 107 87Rb atoms in the F = 2, mF = 2 state in a
tight magnetic trap near the chip surface, and perform forced evaporative cooling
by applying a radio frequency (RF) field. The frequency ωRF is ramped down
from 27 MHz to 1.7 MHz relatively quickly (in 180 ms) to purposely reduce the
atom number. Apart from that the experimental procedure is identical to that
of Ch. 5. Before reaching degeneracy we relax the axial confinement to a final
trap with ω⊥/2π = 3280 Hz, ω‖/2π = 8.5 Hz, and a bottom corresponding to
ωRF/2π = 1.518(2) MHz. The current in the Z-wire is set at 2.25 A, and the
distance of the cloud to the chip surface is 90 μm. In this trap we perform a slower
ramp (450 ms) to the final RF frequency. An additional 300 ms of plain evaporation
allows the damping of residual quadrupole collective oscillations in the cloud to the
point where these oscillations are no longer visible.

6.3 In situ density profiles

In Fig. 6.1(a)-(e) we show the linear density of atomic clouds in the magnetic trap
for different final RF frequencies. These data were obtained by in situ absorption
imaging and integrating the atom number along z. The absolute atom number was
calibrated using time-of-flight data. Each curve is an average of ∼ 18 images taken
under identical circumstances. Since all of our data was taken for μ < �ω⊥, we
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expect1 that the interactions will significantly affect only the distribution in the
radial ground state, while the population in the radially excited states can to a good
approximation be described by the ideal-gas distribution. This leads to the following
model that was used to analyze the in situ data.
We start from the solution to the Yang-Yang integral equations for a finite-

temperature uniform 1D Bose gas at thermal equilibrium [36]. As was shown in
Sec. 2.5.3, this yields numerical results for both the equation of state nY Y (μ, T )
and the local pair correlation function g(2) [59]. The local density approximation
is then used to account for the axial potential via a varying chemical potential
μ(x) = μ−V (x). This approach is expected to be valid as long as the axial potential
is smooth on the scale of the relevant correlation lengths [70,85].
Our axial trapping potential was characterized with standard methods using

both the measurement of in situ density profiles at high T [129] and the dipole
mode oscillation frequency in the trap center. The curvature in the trap center
corresponds to a frequency of 8.5 Hz, while for larger |x| (in the wings of the warmer
clouds) the curvature corresponds to a frequency of 6.4 Hz [128].
Since our temperature is on the order of the radial level splitting, �ω⊥/kB =

158 nK, the fraction of the gas which occupies radially excited states can not be
neglected. We account for this fraction by summing over radially excited states
[radial quantum number j, degeneracy (j + 1)] and treating each radial state as an
independent ideal 1D Bose gas in thermal equilibrium with the gas in the radial
ground state, μj(x) = μ(x)− j�ω⊥. Within this model the density is given by

nl(x, μ, T ) = nY Y (μ(x), T ) +
∑∞

j=1
(j + 1)ne(μj(x), T ). (6.1)

For the radially excited states, we use the result of the LDA for the 1D ideal
gas, ne(μ, T ) = g1/2(exp(μ/kBT ))/ΛT where g1/2 is a Bose function and ΛT =
(2π�

2/mkBT )1/2 is the thermal de Broglie wavelength (see Sec. 2.3.2). In this model,
the radially excited states act as a bath for particle and energy exchange with the
radial ground state. The resulting fits are shown as solid lines in Fig. 6.1(a)-(e) and
describe our data very well. The fitted values of T and μ are displayed in Fig. 6.2.

6.4 In focus density profiles

We now turn to the in focus measurements which give access to the axial momentum
distribution of the gas (see Ch. 5). The focusing pulse is created in the same way
as described in Sec. 5.6, by ramping up the axial trapping frequency from 8.5 Hz to
20 Hz in 0.8 ms, maintaining this for 3.8 ms, and ramping back down to 8.5 Hz in
0.8 ms. This is followed by a sudden switch-off of the magnetic trap. During the
focusing pulse the cloud length reduces by less than 20%. After switching off the
magnetic trap, the cloud expands in the radial direction on a timescale of 1/ω⊥, so
that the interactions vanish rapidly compared to the relevant axial timescale and the

1For our trap parameters the condition μ < �ω⊥ corresponds to n < 3/4a ≈ 150 μm−1, see
Sec. 2.4.3
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subsequent axial contraction can be treated as free propagation. We experimentally
observe that the cloud comes to an axial focus after a free propagation time of 13 ms.
The focus time is reduced as compared to the measurements performed at higher
linear densities that were presented in Sec. 5.6; these data could be modelled using
a mean-field description. The observed earlier time of focus for the data presented
here indicates the failure of the mean-field description – as was already hinted at in
Sec. 5.7, Fig. 5.12 – that will be discussed in the next section.

In Fig. 6.1(f)-(i) we show the axial density distribution obtained in the focus,
averaged over typically 10 shots, for final RF frequencies similar to the in situ data
in Fig. 6.1 (a)-(e). Here, in contrast to the in situ results, one can clearly distinguish
a narrow peak from a broad pedestal for RF values below 1.56 MHz [Figs. 6.1(h)-
(j)]. The Yang-Yang solution does not yield the momentum distribution and thus
it can not be used to fit to the in focus data. Instead, to quantify the observation
of the bimodal structure we first fit a 2D Gaussian to the wings of the atomic
density distribution. In a second step we fit a narrow Gaussian to the residual peak
in the center. The fitted curves are shown after integration in the z direction in
Fig. 6.1(f)-(j), and describe the observed in focus distributions well.

6.5 Analysis and discussion

Fig. 6.2(c) shows the resulting atom numbers in the wide and narrow part of the
momentum distribution; we also plot the atom numbers from the Yang-Yang model
in the radial ground state, in the radially excited states, and atoms in the radial
ground state experiencing μ(x) > 0. Comparing the in situ and the in focus data, we
conclude that: (i) the momentum distribution becomes bimodal around the point
where the global chemical potential μ crosses zero and becomes positive; and (ii)
the narrow part of the momentum distribution is dominated by the atoms in the
radial ground state (described by nY Y ), while the wide part is dominated by atoms
in the radially excited states.

A further comparison between the in focus and in situ results can be made as
follows. Estimates for the temperature can be obtained from the Gaussian fit to
the wide part of the in focus data, by assuming that the tails (where degeneracy is
negligible) are well described by Boltzmann statistics. The resulting temperatures
are shown in Fig. 6.2(a). The agreement with the temperature extracted from the in
situ data is reasonable. We attribute the remaining discrepancy to the approxima-
tions implicit in the above interpretation of the Gaussian fit results, which neglects
the discrete radial level structure and the contribution of the radial ground state to
the wide part of the axial momentum distribution.

The failure of both the ideal-gas and quasi-condensate descriptions is illustrated
in Fig. 6.1(c)-(e). The key point here is the following. The Yang-Yang thermody-
namic equations yield a smooth equation of state nY Y (μ, T ), including the region
around μ(x) = 0, as is plotted in Fig. 2.2. This deviates dramatically from both the
ideal-gas description (diverging density as μ approaches zero from below) and the
quasi-condensate description (vanishing density as μ approaches zero from above).
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The region in μ(x) (and consequently in nY Y (x)) where this discrepancy is signif-
icant is particularly large for our parameters, and the Yang-Yang thermodynamic
solutions are essential for a proper description of the in situ data. For example,
for our trap parameters and T = 140 nK [as in Fig. 6.1(e)] the point T =

√
γTd

(or equivalently lφ = 2lc) corresponds to nY Y = 20 μm−1. At this temperature
the Yang-Yang equation of state deviates significantly from the ideal-gas and quasi-
condensate description over the range 2 � nY Y (x) � 30 μm−1 and the calculated
value of the local pair correlation function g(2) varies smoothly between 1.1 and 1.8
in this range (see Fig. 2.2). This differs from the ideal-gas value of 2 and the quasi-
condensate value of ≈ 1, and confirms the breakdown of the Hartree-Fock model of
Ref. [60] which sets g(2) = 2.

6.6 Conclusion and outlook

In conclusion, we have found excellent agreement between in situ measurements of
the spatial linear density of a nearly 1D trapped Bose gas and a model based on
the exact Yang-Yang solutions. We have measured the corresponding momentum
distribution for which currently no theoretical comparison is available. We expect
that these results will stimulate further theoretical and experimental studies of Yang-
Yang thermodynamics. In addition, our findings should be relevant to experiments
performed at similar linear densities and temperatures, such as guided-wave atom
lasers [147] and atom-chip based interferometers [96].

Figure 6.1 on next page: Linear atomic density from absorption images obtained in situ (a)-(e) and in
focus (f)-(j). The data from top to bottom correspond to lowering the value of the final RF evaporation
frequency as indicated. In situ: solid black lines are fits using Yang-Yang thermodynamic equations
(see text). The values of μ and T resulting from the fits are shown in the figure. Red line: ideal Bose
gas profile showing divergence for μ = 0. Green line in (e): quasi-condensate profile with the same
peak density as the experimental data. In focus: blue lines are the sum of two independent Gaussian
fits – one to the wings (light blue) and one to the central part of the atomic density distribution.
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Figure 6.1: Linear atomic density from absorption images obtained in situ (a)-(e) and in focus (f)-(j).
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Figure 6.2: Characterization of the measured atomic clouds as a function of the final RF frequency

ωRF , as determined from fits of the Yang-Yang model to the in situ data and Gaussian fits to the in

focus data. (a) Temperature from the in situ data (�) and from the radial (�) and axial (•) size of

the broad Gaussian fit to the in focus data. The dash-dotted line is to guide the eye and indicates a

ratio of 11 of the trap depth (set by ωRF ) and the cloud temperature. The dashed line corresponds

to �ω⊥/kB . (b) Chemical potential from the Yang-Yang fit. The dashed line indicates �ω⊥/kB . (c)

Atom number from the in focus data: wide distribution (•) and central peak (	); from the Yang-Yang

model fit to the in situ data: atoms in the radial ground state (�), in radially excited states (◦), and

atoms in the radial ground state experiencing μ(x) > 0 (�).


