Downloaded from UvA-DARE, the institutional repository of the University of Amsterdam (UvA)
http://hdl.handle.net/11245/2.50754

File ID uvapub:50754
Filename B Manual of Markovfit 1.6
Version unknown

SOURCE (OR PART OF THE FOLLOWING SOURCE):

Type PhD thesis

Title Rules and associations : hidden Markov models and neural networks in the
psychology of learning

Author(s) I. Visser

Faculty FMG: Psychology Research Institute

Year 2002

FULL BIBLIOGRAPHIC DETAILS:
http://hdl.handle.net/11245/1.253151

Copyright

1t is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or
copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content licence (like
Creative Commons).

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
(pagedate: 2014-11-17)

http://hdl.handle.net/11245/2.50754
http://hdl.handle.net/11245/1.253151
http://dare.uva.nl

B Manual of Markovfit 1.6

A program for fitting and selecting hidden
Markovmodels for categorical time series data

Ingmar Visser
Unpublished manuscript
Copies and source codes available from ingmar@dds.nl

Abstract

Markoviit 1.6 implements the EM-algorithmn for maximum likelihood estimation
of hidden Markov model parameters. It can also be used to estimate or compute
parameters for standard Markov models with data from multiple subjects. It also
computes confidence intervals for (hidden) Markov model parameters using either
likelihood profiling or bootstrapping. In addition separate routines are available for
generating data according to a specified (hidden) Markov model and for explorative
search for models. The hidden Markov model is suitable for modeling sequences of
categorical responses or single categorical timeseries. Both the number of categories
and the length of the sequences are unlimited in principle.

Keywords: hidden Markov model; Markov model; EM algorithm; maximum likeli-
hood estimation; confidence intervals; likelihood profiles; bootstrapping; data gener-
ation; error computation; fitmeasures; categorical data; categorical timeseries.

B.1 The hidden Markov model

Hidden Markov models (HMM) are mainly used in the area of speech recognition
(c.f. Schmidbauer et al., 1993; Chien and Wang, 1997; Rabiner, 1989), but have also
found their way into psychological modeling, for example in coding of recall data
(Durbin et al., 2000). Other applications are in physiology (Becker et al., 1994) and
in computational genetics (Krogh, 1998).

HMMs are stochastic finite state machines but they come in many different
guises and have many different designations: latent Markov models, (analytically
tractable) Boltzmann machines, (analytically tractable) belief networks and (ana-
lytically tractable) state space models to name but a few.

An HMM consists of a Markov transition process, the hidden part of the model,
and a observation process. The hidden process is a, not necessarily stationary,
Markov process over a finite number of states. The observation process is a function
that determines the observation given the hidden (or latent) state of the process.

mailto:ingmar@dds.nl

108 MANUAL OF MARKOVFIT 1.6

Formally an HMM consists of the following elements (notation from Rabiner,
1989):

1. aset ofstates S;.i=1.... . N
2. a set V of observation symbols Vi. k =1.... . M
3. a matrix A of transition probabilities a;; for moving from state S; to state 5

4. a matrix B of observation probabilities b;(k) of observing symbol Vi while being
in state S

[

a vector 7w of initial state probabilities m; corresponding to the probability of
starting in state S; at t =1

The equations describing the dynamics of the model are as follows:

Sty1=AS + ¢
Oty1= BS; + & 41,4

where S; is the hidden (Markov) process and Oy is the observed process: (341 and
& 41 are zero mean martingale increment processes (c.f. Elliott et al., 1995, p. 20
for further details).

An HMM becomes a normal Markov model when the response process is known
and fixed. Some authors add the requirement that the observation process is a
deterministic function. In terms of the above described model, this means that the
observation matrix B is known and fixed and in fact is the identity matrix. Often,
in ordinary Markov modeling the initial state distribution is also known and fixed.

B.1.1 Markov models versus hidden Markov models

In the literature on Markov models the terminology is somewhat different from
that in the hidden Markov literature. In particular, the observation function (or
observation matrix) in hidden Markov models is referred to as the response function
in Markov models. The state space for which the (hidden) Markov process is
defined is sometimes referred to as the knowledge state space in literature on Markov
models. The response function maps the (knowledge) state space onto a response
state space, i.e. the possible responses. In a large part of the literature on Markov
models the response state space consists of two states: a correct and an incorrect
response. This limitation to two possible responses, however, is not a principled
limitation; in general, any finite number of categorical responses is allowed. In the
remainder of this manual the transition function is referred to as the transition
matrix and the response function is referred to as the observation matrix.

B.2 Running Markovfit 1.6

In order to fit (hidden) Markov models on a dataset, two things are needed: a
datafile and a command or syntax file. Markovfit does not have a graphical user

B.2 RUNNING MARKOVFIT 1.6 109

interface. All configurations and data specifications have to be fed to the program
in syntax file that from here on will be called the command file. In the following
sections the requirements for both the data file and the command file are described.

B.2.1 Data file format

The data file should contain the data and, importantly, nothing else. Data that
can be fitted with Markovfit are single categorical timeseries or multiple sequences
of categorical responses. For both these types of data it is required that the possible
response categories are numbered from 1 through A where M is the number of
possible response categories. Note in particular that 0 and 1 response categories for
incorrect /correct responses are not recognized by the program so these have to be
recoded to 1 and 2 respectively. All response categories have to occur in the data.
In particular, it is not possible to have response categories 1, 2 and 4 but not 3. In
this case response category 4 should be recoded to response category 3.

In the case of a single timeseries the responses have to be written in the data file
in order of recording them, separated by white space. White space can be either
spaces, tabs, newlines or returns. The specific type of white space does not matter.
In the case of multiple sequences of responses, for example sequences generated
by different subjects, the responses should be listed in order separated by white
space. For the program it is not necessary to separate the different sequences of
responses by returns or other types of white space. For example, the data file of
a single timeseries of 1000 responses with 4 categories may look exactly the same as
the data file of 10 sequences of 100 responses with the same number of response
categories. However, for purposes of readability it is of course advisable to have a
clear separation between different sequences of responses.

Note that, although all response categories have to occur in the data, it is not
necessary that, when fitting multiples sequences, each sequence should contain each
response category.

B.2.2 Command file format

When running the program it requests the name of the command file, After typing
this name and hitting return, the command file is read, checked and executed.
The command file has four main sections: the type of analysis the program has to
perform, a description of the data, a description of the model and a specification
of the desired outputs. All the commands can appear in any order in the command
file although it is advisable to stick to the above mentioned order to prevent errors
and to simplify finding them if any occur. The command file is ended with the
command end. It tells the program to stop reading the command file. All the
files that are read by the program have to be in the same directory/folder as the
program itself.

Corminents

After the end-line any amount or form of commentary is allowed; it will be ignored.
It is allowed to write commentary anywhere in the command file. However, carc

110 MANUAL OF MARKOVFIT 1.6

should be taken that a comment line does not start with any of the commands
that are used by the program. To prevent this, it is recommended that comment
lines start with , the usual C++ keyword for end-of-line-comments but anything is
allowed as long as it does not start with the name of a command used in Markovfit.

Command line format

Each (non-comment) line of the command file has the following format: <command
name> followed by the <command value>. The <command name> and the <command
value> should be separated by one or more spaces or tabs but they should be on
the same line. There are a few exceptions to this. notably the strings-command
and the pa-command that are described below.

The job-command

There are three types of analyses possible with Markovfit. The type of analysis
required is specified with the command name job followed by one of the following
three command values: fitting, explore or generate. Here’s a description for
each job:

fitting This routine fits an HMM with a fixed number of (hidden) states to a given
data set. Optional outputs include a number of measures of fitness and confidence
intervals for the parameters. Optional starting values for the optimization can
be specified along with a number of parameters that control optimization.

explore This routine fits a series of HMMs with a increasing number of hidden
states to a given data set. This should be used when no a priori structure of the
model is available or desired. The output of this routine is a list of the fitted
models and a number of measures of fitness for each of them in order to facilitate
model selection.

batch This routine does the same thing as the explore routine for a number of
different datasets.

generate This routine generates a data set of specified dimensions according to a
given model.

In the following three sections the required and optional commands for each of
these jobs will be listed along with an example command file.

B.2.3 Standard run: fitting

To fit an HMM the command file should have the line: job fitting. Apart from
that it has to contain data description commands and model description commands
and, optionally, output specifications.

B.2 RUNNING MARKOVFIT 1.6

Table B.1: Data description commands
Command | Status | Possible values | Description/use

datafile obligatory | <filename> specifies the file that con-
tains the data
categories | obligatory | positive integer | the number of response
categories in the data

datapoints | optional positive integer | number of datapoints of a
single timeseries

strings optional positive integer | number of separate se-
quences/strings

Data description commands

Depending on the type of data there are the following data description commands.

Either one of the datapoints or the strings is required to describe the data.
If a number of individual sequences is to be fitted the strings-command is used.
After the command line that has strings <number of strings> the lengths of
each of the strings or sequences have to be listed, separated by white space.

Model description commands

These commands define the model to be fitted.

Table B.2: Model description commands

Command Status Possible values | Description/use

states obligatory | positive integer | the number of (hidden)
states of the HMM

modelfile optional HMM parame- | starting values for opti-

ters mization can be provided

here, see details below

pa optional see details below | with this command values
for parameters that should
be fixed or constrained to
be equal to another para-
meter can be provided

Starting values: modelfile The file that contains the starting values should list
the number of states, the number of observation categories (both positive integers)
and then the three model matrices, transition matrix, observation matrix
and initial state distribution vector, in this order. See section B.1 for the
definition of these parameters.

112 MANUAL OF MARKOVFIT 1.6

Fizing parameters: pa When parameters have to be fixed on certain values this
can be done with the pa. Also parameters that should be estimated equal can
be set using this command. After the pa-command, on the next lines, the three
model matrices should be listed with zeroes for the parameters that should be fixed
and with non-zero integer values for the parameters that are to be estimated free.
If parameters need to be estimated equal they should be given the same positive
integer value in this listing of parameters. For more on the order of the parameters,
see the section about that. When parameter should be fixed, the value of that
parameter that is read from the modelfile is the value at which it will be fixed.
The other values in the modelfile are used as starting values.

Output specifications

The output of the fitting-routine is written to a file called <datafile>.out, in
fitting. Outputs are appended to this file if it already exists. Outputs that are
always given are the following (in that order in the output file):

1. Starting values of the model (parameters in the same order as described above
for the modelfile).

2. Number of datapoints or number of strings and their lengths.

3. Fitted model (parameters in the same order as described for the modelfile).
4. Number of iterations until convergence.

5. Loglikelihood of the data given the model.

6. Number of parameters of the model.

7. Number of free parameters: number of parameters minus the number of con-
straints imposed. This is the number of degrees of freedom in likelihood ratio
x2-tests. It is also used for computing the AIC and BIC measures of fitness.

8. AIC
9. BIC

10. Adjusted free parameters: same as the number of free parameters minus the
number of parameters that is estimated at zero (in general for large models many
parameters arc estimated zcro and hence the adjusted number of paramcters may
be quite different from the number of free parameters).

11. Adjusted AIC, same as AIC but using adjusted free parameters instead of the
free parameters.

12. Adjusted BIC, same as BIC but using adjusted free parameters instead of the
free parameters.

13. Lempel-Ziv entropy of the data.

B.2 RUNNING MARKOVFIT 1.6 113

14. Lempel-Ziv entropy of the model {based on ten resampled datasets of the same
dimensions as used for fitting the model) (not yet).

All the following output specification commands are optional. These outputs,
if requested, appear in the order specified here, except for the most likely state
sequence which is written to a separate file.

Table B.3: Output specification commands
Command Possible values Default Description use
profile 0/1 0 1 for profile likelihood con-
fidence intervals (this is
not implemented)

boots 0/1 0 1 for bootstrapped confi-
dence intervals
samples positive integer | 100 this is the number of

bootstrap samples used
to compute bootstrapped
confidence intervals

errors 0/1 0 1 for computing x? predic-
tion error measures

viterbi 0/1 0 1 for computing the most
likely state sequence

mod 0/1 0 put a 1 for loglikelihood

ratio modification indices

Likelihood profiles profile Likelihood profile based confidence intervals are not
implemented in this version.

Bootstrapping: boots When the boots-command is given value 1 confidence in-
tervals will be bootstrapped. Outputs that are then produced are the following: the
value of the parameter, the mean of the fitted values of that particular parameter,
the standard error, i.e. the standard deviation of the distribution from the bootstrap
samples, the confidence interval, i.e. 1.96 x stderr and the t-ratio of the parameter.
The t-ratio is an indication if the parameter value is significant. The t-ratio given
here is the parameter value divided by its standard error. As a rule of thumb
it should be more then 2 for a parameter value to be significant. Also see the
paragraph on modification indices. All the bootstrap samples are written to a file
called bootstrapsamples.

Bootstrapping: samples When bootstrapped confidence intervals are requested
with the boots-command, it is possible to set the number of bootstrap samples
using the samples-command. Usually one hundred bootstrap samples gives results
that are precise enough for practical purposes but more samples can be requested.

114 MANUAL OF MARKOVFIT 1.6

Prediction errors: errors By setting the errors-command to 1 prediction errors
will be listed in the output file. These prediction errors are x? differences between
observed and predicted frequencies of single observation symbols, pairs of observa-
tion symbols, triples et cetera. Prediction errors can only be computed for ergodic
models or models without absorbing states. This is checked by the program and
error computation is skipped if this is the case.

Most likely state sequence: viterbi For timeseries it is often useful to know the
most likely state sequence, that is, the fitted sequence of hidden states that optimizes
the loglikelihood. It can be requested by putting viterbi 1 in the command file.
It can also be used for multiple sequences. The result is written to a file called
<datafile>.vit.

Modification indices: mod When the mod is set to 1, modification indices are
computed for the parameters. The modification index is the loglikelihood ratio of
the fitted model and the constrained model that is construed by setting a parameter
to zero. The loglikelihood ratio that is reported is:

R=-2x (L.— Ly),

where L. is the loglikelihood for the constrained (with a specific parameter set

to zero), and Ly is the fitted model. Equality constraints are incorporated in
computing R, that is, when two parameters are constrained to be equal, they will
both be set to zero for computing their modification index.

Modification indices are not in general available for all parameters. First, they
are not computed for fixed parameters. Second, setting some parameter to zero
might lead to an inadmissible model, i.e the data can not be described anymore
with the data. Third, sometimes setting a parameter to zero leads to a model
that is either not identified or not ergodic anymore, although the model may be
an admissible model. In theory this would lead to a loglikelihood of minus infinity.
When this is the case this is reported in the output file and the loglikelihood ratio
is reported as nan (not-a-number).

Order of parameters

In two output routines the parameters are numbered consecutively in a special
order. These are the bootstrap and modification indices routines. The parameters
are numbered as follows: first the transition matrix parameters, for example, 1
through 4 in case of two-state model. After that the observation matrix parameters
are numbered and then the initial state distribution. For a two-state, three-category
model, parameter number 9 is thus the probability of observing a symbol of category
2 in (hidden) state 2.

Sample command file

This is a sample command file using most of the commands described above. Note
that the line numbers are not part of the actual command file.

B.2 RUNNING MARKOVFIT 1.6 115

@

N oo

title testing Markovfit 1.6
job fitting

//data description

datafile testmodel.dat

strings 10

100 100 100 100 100 100 100 100 100 100
categories 3

W ~NOO D WN -

10 //model description
11 states 2
12 modelfile testmodel

-
()]
w =g
=N

~

w o
(620)]

21 0
22 0

24 //requested outputs

25 boots 1

26 errors 0

27 end

28 any comments are allowed here

Here's a description of each line and what it results in:

. This line is ignored since title is not a keyword used in Markovfit 1.6

. This line specifies the job to be performed, in this case simply fitting a model.

Empty lines have no effect whatsoever but they do make the command file more
readable.

This is a comment line for purposes of clarity.
Name of the file that the data has to be read from.
This line indicates that the data consists of 10 separate strings of observations.

This line lists the lengths of each of these 10 separate strings, in this case they
all have the same length but this is not necessary.

This line gives the number of categories in the data, alternatively called the
number of observation symbols.

116 MANUAL OF MARKOVFIT 1.6

9.

10.

11.

12.

13.

14.

16.

17.

18.

19.

20.

21.

22.

23.

24.

26.

27.

28.

Empty lines have no effect whatsoever but they do make the command file more
readable.
Comment line (not starting with a command or keyword.
The number of states in the model.
The name of the file with the starting values of the model.
Empty line . ..
The pa-command indicates that some parameters of the model should be esti-
mated to be equal and/or fixed
. This line and the next are the transition parameters, they are all estimated free.
They have no equality constraints imposed on them.
Empty line ...
This line and the next tell Markovfit that parameters b;; and b3 should be

estimated equal.
Parameter number 6, b2 should be fixed.
Empty line ...

This line and the next indicate that the initial state probabilities have no equality
constraints imposed on them.

. and both are fixed.
Empty line ...

Comment line . ..

. The boots-command indicates that bootstrapped confidence intervals are re-

quested (with the default number of samples since samples is not in the command
file).

The errors-command indicates that no prediction errors are requested. Since
this is the default this line is actually superfluous.

The end tells Markovfit to stop reading the command file here.

After the end-command the command file is not read anymore so any comments
are allowed.

B.2 RUNNING MARKOVFIT 1.6 117

B.2.4 Ezxplorative fitting of models: explore

In order to exploratively fit HMMs the command file should have: job explore.
Apart from that it has to contain data description commands and model description
commands and, optionally, output specifications. The explore-routine will fit a
series of HMMs according to specifications given in the command file. Usually
this means fitting a series of models with an increasing number of hidden states.
For each number of hidden states this can be done a number of times, which is
recommendable since not always the same models are found given different starting
values. See section B.2.4 below on starting values.

Data description commands

Data description is the same as it is when using the normal fitting-routine. Refer
to section B.2.3 for a complete description of the required commands.

Model description commands

These commands define the models to be fitted. When exploratively fitting HMMs
it is required to specify the range of model to be fitted.

Table B.4: Model description commands in explore

Command Status Possible values | Description/use
statbegin optional positive integer | see details below
statend obligatory | positive integer | see details below
fitsPerStatg optional positive integer | see details below

Number of states: statbegin and statend With the statbegin the number of
hidden states to begin exploring is specified. It is an optional command. When
it's left out of the command-file, exploring is started with an HMM with one hidden
state. Exploring stops with statend number of hidden states. For each number of
hidden states, fitsPerState number of models are fitted, with the exception of the
single hidden state model, since the single hidden state model is uniquely identified.
It is in fact the model where the entries of the observation matrix correspond to
the proportion of each observed category. Although it is a trivial model, it is good
to have it as a reference model in model selection.

Starting values In explorative fitting of models, starting values can not be provided
by the user. For each model to be fitted ten sets of random starting values are
generated. Each of these sets of starting values are iterated through the EM-
algorithm iterStart times; see section B.2.7 below for a complete description of
this command.

Fizring parameters Fixing parameters is not possible in routine explore for obvious
reasons.

118 MANUAL OF MARKOVFIT 1.6

Output specifications

Output options in the explore-routine are the same as in the fitting-routine:
they are, however, written to different file called <datafile>.models. Qutputs are
appended to this file if it already exists. Before each model’s outputs the numer of
the fitted model is given. That is, models that are fitted are numbered consecutively
starting with the models with the least number of states. Qutputs that are always
given are the same ones as in the fitting-routine, see section B.2.3.

All the following output specification commands are optional. These outputs,
if requested, appear in the order specified here. The only difference with outputs
in the fitting-routine is that the most likely state sequence can not be requested.
All others can be but it should be noted that all of them, except the modification
indices, are computationally demanding. When fitting a long series of models it is
recommendable to not specify any of these outputs to save on computation time.
For detailed descriptions of what all these commands amount, refer to the respective
paragraphs in section B.2.3.

Table B.5: Output specification commands
Command Possible values | Default Description use
profile 0/1 0 1 for profile likelihood con-
fidence intervals (this is
not implemented)

boots 0/1 0 1 for bootstrapped confi-
dence intervals
samples positive integer | 100 this is the number of

bootstrap samples used
to compute bootstrapped
confidence intervals

errors 0/1 0 1 for computing x* predic-
tion error measures
mod 0/1 0 put a 1 for loglikelihood

ratio modification indices

Apart from the models file, another output file is created in the explore-
routine which has all the information needed for model selection. This file is called
<datafile>.fits. Qutputs are appended to this file if it already exists. The has
file contains one row for each fitted model. Each row has the following information:

exp nr The number of the model which is the same as in the output file that
contains the fitted models.

it The number of iterations needed until convergence.
states The number of (hidden) states of the model.
pol The loglikelihood of the data given the model.
AIC Akaike’s Information Criterion.

B.2 RUNNING MARKOVFIT 1.6

A-AIC Adjusted AIC, see section B.2.3.

BIC Bayesian Information Criterion.

A-BIC Adjusted BIC, see section B.2.3.

pars The number of parameters of the model.

free The number of free parameters of the model, see section B.2.3.

A-free The number of adjusted free parameters of the model, see section B.2.3.

B.2.5 Eaxplorative fitting of models: batch

This routine does essentially the same as the explore routine. However, it does it
for a number of datasets. As a consequence the command file is essentially identical
the command file for the explore routine. There are two differences. First, the
datafile should specify a file which contains the names of the files that have
the datasets to be analysed. Second, there should be an extra command named
inputfiles which specifies the number of datasets to be processed. From there
on, the rest is the same as for the explore routine. Each dataset that is analysed
gets its own output files. Note that this only works for datasets that are identical,
that is, they should have the same number of datapoints and the same number of
categories.

B.2.6 Generating data: generate

Generating data according to a given HMM can be done with the command line
job generate. After this command line the command file should have the data
description commands that are again identical to those in the fitting and explore
routines. See section B.2.3 for a full description of all the optional and required
commands. After the data description commands the model according to which
the data should be generated is to be specified using the states and modelfile
commands. The generated dataset is written to a file called <medelfile>.data.
Note that this file is overwritten if it already exists.

B.2.7 Other commands

There are some other commands that relate to optimizing models which can be
used with either the fitting or explore routines. They are the following:

iterMax The maximum number of iterations used in optimizing models. It has a
default value of 999.

iterStart The minimal number of iterations used in optimizing models. It has a
default value of 6. iterStart iterations are done before the loglikelihood criterion
is tested. This number of iterations is also used in selection of random starting
values in the explore routine. In the explore routine ten sets of random starting
values are generated. Each of the resulting models are iterated iterStart times

120 MANUAL OF MARKOVFIT 1.6

and then the best of these models is selected. that is, the model with the highest
loglikelihood.

kmeans If this command is specified and given a value of one. K-means estimation
of the model will be done at the start of optimization. This can speed up
optimization considerably but in some cases also results in suboptimal solutions.
See Rabiner (1989) for a description of the algorithm. At the end of optimization
another K-means estimate of the model is generated and written to the output
file.

optCriterion With this command the optimization criterion can be specified. Its
default value is 1.0107°.

setzero By default at every step of the EM-algorithm parameters are checked for
sigfnicance. If they are found to be non-significant parameters they are set to
zero and optimization continues from there. The reason for doing this is that it
speeds up optimization considerably. Although some checks are performed to see
if setting the parameter to zero leads to an impossible or otherwise inadmissable
model, these checks are not 100% foolproof. As a result it is possible that setting
a parameter to zero leads to a loglikelihood that is not a number (nan on the
console output). Setting the setzero to 0 in the command file takes care that
optimization is done without setting parameters to zero. This can result in
parameter estimates that are very close to zero but nevertheless do not reach zero
before optimization is over. Also this can lead to slow optimization and hence it
may be necessary to increase the maximum number of allowed iterations.

verbose If this command is specified and given a value of one, screen outputs will
be provided during optimization and exploration.

