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55 Fittin g hidde n Marko v model s to 
psychologica ll  data 

Abstract t 

Markovv models have been used extensively in psychology of learning. Applications 
off  hidden Markov models are rare however. This is partially due to the fact that 
comprehensivee statistics for model selection and model assessment are lacking 
inn the psychological literature. We present model selection and model assess­
mentt statistics that are particularly useful in applying hidden Markov models in 
psychology.. These statistics are presented and evaluated by simulation studies 
forr a toy example. We compare AIC, BIC and related criteria and introduce a 
predictionn error measure for assessing goodness-of-fit. In a simulation study, two 
methodss of fitting equality constraints are compared. In two illustrative examples 
withh experimental data we apply selection criteria, fit models with constraints and 
assesss goodness-of-fit. First, data from a concept identification task is analyzed. 
Hiddenn Markov models provide a flexible approach to analyzing such data when 
comparedd to other modeling methods. Second, a novel application of hidden 
Markovv models in implicit learning is presented. Hidden Markov models are used 
inn this context to quantify knowledge that subjects express in an implicit learning 
task.. This method of analyzing implicit learning data provides a comprehensive 
approachh for addressing important theoretical issues in the field. 

5.11 Introduction 

Markovv models have been used in psychology at least since the 1950's (Miller , 1952; 
Mille rr and Chomsky, 1963). They have been applied mostly in the areas of learning 
andd memory (Brainerd, 1979; Kintsch and Morris, 1965; Nicolson, 1982). In the 
areaa of learning, Markov models have proven to be very flexible models in describing 
andd formalizing the development of knowledge. Although hidden or latent Markov 
modelss have been around for a while in psychology (see e.g. Wickens, 1982), there 
havee been relatively few applications. This is possibly due to inherent problems in 
est imatingg latent variable models. Est imat ion of parameters was usually based on 
thee method of moments, which is hard to adapt to different kinds of da ta to be mod­
eled.. Using method of moments estimation, i t is not feasible to model long sequences 
off  tr ials or many different sequences of trials, such as those gathered in implici t 
learningg experiments. Hidden Markov models are very flexible and can be used to 
modell  any set of sequences of trials, whether these are fixed length sequences, single 
sequences,, or mult iple sequences of different lengths. New applications are available 
duee to the flexibility  in parameter estimation. The maximum likelihood framework 
providess methods for comparing models with different constraints imposed on their 
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parameters.. Adopting the framework of hidden Markov model (HMM) parameter 
estimationn in applications of Markov models has many advantages. 

Inn spite of the improvement of model estimation, for applications in psychol­
ogyy to be feasible, some important statistical features are lacking in the HMM 
framework.. First, model selection criteria are needed to compare models and to 
decidee which model best describes the data. In the present chapter we compare and 
evaluatee several candidate criteria for examplee data sets. Second, absolute measures 
forr goodness-of-fit. called model assessment criteria, are needed to decide whether a 
modell  is adequate for the data at hand. We propose a prediction error measure for 
thiss purpose, which is applicable to a wide range of Markov models. Other measures 
forr testing goodness of fit, and for testing specific hypotheses, are considered as well. 
Third,, in some applications it may be necessary to impose equality or other linear 
constraintss on parameters for theoretical reasons. As far as we are aware, equality 
constraintss in HMMs have received littl e attention. We compare three methods for 
fittin gg equality constraints, and, in specific cases, general linear constraints. There is 
similarr work on equality constraints in latent class analysis (Mooijaart and van der 
Heijden.. 1992). which points to difficulties in finding general solutions for fitting 
equalityy constraints. We developed a program for fitting HMMs, based on the EM 
algorithmm (Rabiner. 1989). which incorporates all these features. Many goodness-
of-fi tt statistics are standard output, others are available on request (Visser, 2001). 

OverviewOverview of the chapter In the present chapter only discrete hidden Markov models 
(HMM )) are considered, that is, HMMs with a discrete hidden state space and 
discretee observation symbols. In Section 5.2. we first present the definitions and 
notationn that we use throughout the chapter. Next, we describe a toy model and 
dataa set. We discuss model fitting with and without equality constraints, using 
thiss data set. In Section 5.3, we compare and evaluate model selection criteria 
andd criteria for assessing goodness-of-fit. In Sections 5.4 and 5.5, we present 
twoo applications of fitting HMMs to experimental data. The first data set is 
fromm a concept identification experiment. Models are fitted in both exploratory 
andd confirmatory analyses. We discuss fitting an HMM with a linear constraint 
betweenn parameters, which is based on theoretical considerations. We show how 
thee likelihood ratio statistic can be used to test the tenability of such constraints. 
Thee second data set is from an implicit learning experiment. In this experiment 
subjectss unconsciously learn finite state languages by reproducing them. In order 
too gain insight into the knowledge that subjects acquire in such an experiment, we 
fitt HMMs to the data. In addition, we discuss the connection between HMMs. finite 
statee automata and regular languages in this section. 

5.22 Fitting hidden Markov models 

5.2.15.2.1 Definitions and notation 

AA discrete HMM may be represented as a five-tuple < 5, O. A, B, n >. S represents 
aa set of states Si,i = 1 . .. n. O is a set of observation symbols Oj, j = 1 . .. m. 
Observationn symbols are alternately called observations, symbols or responses. A 
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representss a transition matrix with conditional probabilities aij,i,j  = 1 . .. n of 
movingg from state Si to state Sj, i.e. â  = P(Si\Sj). B is the matrix of conditional 
observationn probabilities bi3 of observing symbol (or category) Oj in state Si, i.e. 
bijbij  = P(Oj\Si). TT is a vector of initial, unconditional probabilities 7̂  of starting 
inn state Si, i.e. 7̂  = P(Si). All parameters are probabilities and are subject to 
constraintss of the form Y^j=i aij  = ^ an<^ similarly for the observation probabilities 
(H?=ii  &ij ' = 1) a nd initial state probabilities ($]" = 1 ^i — 1)- The parameters 
togetherr are denoted A = (A, B, 7r). This notation is taken from Rabiner (1989), 
andd is used throughout this chapter. 

5.2.25.2.2 Toy model and data 

Inn this section, we consider a two-state HMM with three observation symbols. The 
twoo states are called S\ and £2 and the observation symbols 1, 2, and 3. The 
parameterr values are: 

AA /0.9 0. l\ „ fO.7 0.0 0.3\ f , 
AA=[o.s=[o.s 0.7J B = (,0.0 0.4 o.ej  ff=(°-5 °-5) 

Fromm this model, we generated a data set consisting of a single sequence of 1000 
symbols.. This data set is used below to illustrate parameter estimation, estimation 
withh equality constraints, model selection, and model assessment. 

5.2.35.2.3 Parameter estimation 

Throughoutt this chapter, parameter estimates are obtained by maximizing the 
likelihoodd using the Baum-Welch or EM algorithm for HMM parameters (Rabiner, 
1989).. The EM algorithm is an iterative procedure for finding maximum likelihood 
(ML)) parameter estimates of a given model and a data set. The likelihood of a data 
sett is denoted P(0|A). The general expression for the likelihood is (Rabiner, 1989, 
p.. 272): 

,, where O is a sequence of T observations 0\ .. .Or, bqt{Ot) is the observation 
probabilityy b  ̂ with i — qt and j = Ot- The sum runs over all possible sequences of 
thee hidden states. The EM algorithm finds the parameter values A that maximize 
thee likelihood. In our implementation of the EM algorithm we maximize the 
logarithmm of the likelihood or the loglikelihood, rather than the likelihood itself. 
Thiss is necessary because for long sequences, computing the likelihood leads to 
problemss with underflow, i.e., the likelihood becomes too small to compute as can 
bee seen easily from the expression for the likelihood above. 

Thee loglikelihood may have many local maxima. Hence, in order to retrieve 
thee model parameters and to find the global maximum of the loglikelihood, it is 
necessaryy to fit a model repeatedly with different starting values for the parameters. 
Onn the data set specified above, we fitted 100 two-state models, using random 
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startingg values for the model parameters A. Al l the models converged to the same 
solution,, up to a reshuffling of states. Note that in specifying an HMM, states 
aree assigned arbitrary designations, and hence the identity of a given state is only 
determinedd by the transition probabilities to other states, the observation symbol 
probabilities,, and the initial state probabilities. The loglikelihood of the model 
equalss —883.068. The parameter estimates of the fitted model is 

/0.8888 0.112\ /0.708 0 0.292\ _ , , 
~~ VO.316 0.684,1 V ° ° -3 84 ° -6 1 6/  ̂ ~~  ̂ * 

Notee that the parameter estimates are very close to their true values, except for 
thee initial state probabilities which are estimated as one for state S\ and zero for 
statee S2- The reason for this is that the sequence of symbols that was generated 
actuallyy starts with the symbol 1 which can only be produced from state S\. As 
aa result, the value for that initial state probability has to be one. In order to be 
ablee to estimate initial state probabilities, multiple sequences have to be available 
becausee these probabilities can only be estimated on the basis of the first symbols 
off  a number of sequences. 

Whenn fitting HMMs to single sequences it is (almost) always the case that one 
off  the initial state probabilities is estimated at a value of one and the others at 
zero.. For long sequences of observations, the contribution of this parameter to the 
loglikelihoodd is negligible. This is not the case for non-ergodic models, i.e. models 
withh absorbing states, but in general, non-ergodic models can not be estimated on 
thee basis of single sequences. In section 5.4 a non-ergodic model is fitted on multiple 
sequences. . 

5.2.45.2.4 Equality constraints 

Inn some applications it may be desirable to estimate parameters subject to equality 
constraints.. Some models of concept identification and paired associate learning, 
containn free parameters that theoretically should be equal. In these applications, 
thee hidden states of an HMM are interpreted as knowledge states. Theory may 
dictatee that in some situations, or at specific trials, two knowledge states should lead 
too identical responses. As a consequence, the associated observation probabilities 
shouldd be estimated at equal values. In the EM algorithm for HMMs, it is not 
obviouss how to implement equality constraints within the steps of the algorithm 
itself.. At each iteration of the algorithm, the model parameters are re-estimated 
independentlyy of each other. Re-estimation is only subject to row sum constraints 
thatt ensure that the rows of the matrices A and B and the vector of initial 
statee probabilities n sum to one. These constraints are defined explicitly above 
inn section 5.2.1. As far as we are aware, no solutions exist for imposing equality 
constraintss in HMMs using the EM algorithm. 

Thiss problem is similar to the situation in latent class analysis. In latent class 
analysis,, solutions have been found for some special cases that are of particular 
interestt for psychologists (Mooijaart and van der Heijden, 1992). In particular, in 
re-estimationn of response probabilities in latent class analysis, these probabilities 
aree weighted with the class proportions, i.e., the proportion of subjects that are 
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memberr of that class. Without changing the optimization routine, specification 
off  equality constraints in HMMs may be achieved by setting the parameters of 
interestt to be equal after each iteration of the EM algorithm, i.e., after the M-step 
off  the algorithm and before the next E-step. This is done by calculating a weighted 
averagee of these parameters. Weighting is necessary because different parameters 
havee different contributions to the loglikelihood. When weighting is not applied, 
thee maximization does not result in ML estimates of the parameters. 

Thee weight factor for parameters that we used is the long term expected pro­
portionn of passages through the state with which the parameter is associated. The 
expectedd proportion of passage times through each state of the model is different for 
eachh state because the transition probabilities from each state to itself are different. 
Forr example, there are more passages through state S\ in our toy model. In general, 
thee expected proportions are computed by solving p from the following equation: 

p AA = p, 

wheree p is a probability vector of length n, the number of states in the model, and 
AA is the transition matrix of the model (Kemeny and Snell, 1960). The vector p 
containss the long term probabilities of the process being in each state. For a regular 
andd ergodic Markov chain (not for non-ergodic or cyclic chains), p is found easily 
byy computing increasing powers of A. The convergence of the series A n is fast. For 
thee transition matrix from this model: 

/0.8888 0.112\ . i s /0.73838 0.26162\ 
AA ~ ^0.316 0.684,1 ' ~ \0.73815 0.26185,1 

Ass can be seen from this example, the probabilities in A15 are converged up to the 
thirdd decimals. This procedure can be repeated until the desired degree of accuracy 
iss reached. 

Thee justification for using this weighting scheme is best illustrated with an 
example.. Suppose a model has three states. Suppose further that 95 % of the 
observationss results from only one of these states. This means that observation 
parameterss belonging to this state contribute more to the loglikelihood than the 
observationn parameters from other states do. Conversely, changing one of these lat­
terr observation parameters is unlikely to result in a large change in the loglikelihood 
sincee the contribution of these parameters is small. 

Forr the toy model, we imposed an equality constraint on two parameters of the 
observationn matrix, 6u and 623. Weighting was done by the expected proportions of 
passagee times. In order to check whether in fact the ML estimates of the parameters 
weree found, instead of weighting, a search algorithm within the EM algorithm was 
usedd to optimize the loglikelihood of this model with the equality constraint in 
place.. After each iteration of the EM algorithm, i.e., after the M-step of the 
algorithm,, the maximum likelihood for a range of values of 611 and 623 is found 
byy the secant method {Gil l et al., 1981). In this search, the other parameters 
off  the model, i.e. the transition parameters and initial state probabilities, remain 
fixed.. For each step in this search, the likelihood has to be evaluated so this may 
seemm a time-consuming procedure. However, in comparison with an iteration of 

file:///0.73815
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Tablee 5.1: Parameter estimates for model with equality constraint 
methodd observation matrix parameters log L 

weight t 0.689712 2 
0 0 

0 0 0.310288 8 
0.3102888 0.689712 -886.732 2 

search h 0.689961 1 
0 0 

0 0 0.310039 9 
0.3100399 0.689961 -886.732 2 

noo weights 0.639599 9 
0 0 

0 0 0.360401 1 
0.3604011 0.639599 -889.662 2 

thee EM algorithm, computing the loglikelihood for a fixed set of parameter values 
iss relatively fast. In Table 5.1 we present the resulting parameter estimates and 
thee corresponding loglikelihood. For comparison, we also present the parameter 
estimatess of the model without the weighting. In Table 5.1, only the parameter 
estimatess of the observation matrix are provided, because the other parameters 
hardlyy differ between the models. 

Thee parameter estimates that result from the weighting method and the search 
methodd are identical to the third decimal, but differ slightly thereafter. The loglike-
lihoodss were identical to the fifth decimal number. As can be seen, when weighting is 
nott applied during optimization of the model, both the parameter estimates and the 
loglikelihoodd are very different from the other results. An important disadvantage 
off  the search method in fitting equality constraints is that it can not be implemented 
forr general models within the EM algorithm, whereas the weighting method can. 
Unlesss parameter estimates need to be more precise than in this example, i.e., up to 
andd including the third decimal, it is therefore easier to use the weighting method 
forr fitting equality constraints. When analyzing relatively small data sets, as wil l 
generallyy be the case in applications in psychology, the differences in parameter 
estimatess are far from significant. 

Thee method of computing weighted averages of parameters within the EM algo­
rithmm is, however, not without problems. In latent class analysis, it is known that 
usingg this method for particular types of (complex) equality constraints leads to bad 
estimatess (Mooijaart and van der Heijden, 1992). We suspect that similar problems 
mayy arise in fitting HMMs. By computing likelihood profiles (see section 5.3.4), it is 
alwayss possible to find out whether the difference between the maximum likelihood 
andd the likelihood of the fitted model is significant. That is, when the parameter 
estimatess are not the ML estimates, the likelihood profile has negative values in the 
neighborhoodd of the estimated value (cf. section 5.3.4). 

5.2.55.2.5 Likelihood ratio statistic 

Inn both the comparison of models with an identical number of states, and in testing 
thee tenability of specified equality constraints, the likelihood ratio statistic can be 
used.. It is defined as follows (Wald, 1943): 

# cc = -21og 
.. P(0|A) . 

(5.2) ) 
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wheree Rc is likelihood ratio statistic, logP(0|Ac) is the loglikelihood of the con­
strainedd model, e.g. a model with an equality constraint, and logP(0|A) is the 
loglikelihoodd of the unconstrained model. If the model specified by Ac is correctly 
specified,, i.e., it is the true model, and it is nested under A, Rc follows a x2 

distributionn with the df degrees of freedom, where df equals the difference in freely 
estimatedd parameters in logP(0|Ac) and logP(0|A). 

Forr the above fitted model with an equality constraint between bu and 623, 
dfdf equals 1 because the equality involves two parameters, i.e., one of them is not 
freelyy estimated in the constrained model. In this case Rc = 7.328, p < 0.01. 
Hence,, if a = 0.05, the equality constraint results in a model that is worse than the 
unconstrainedd model and the constraint should be dropped. However, this decision 
shouldd ultimately also depend on the power, i.e., on the number of datapoints used 
too estimate the parameters. The likelihood ratio statistic is also used in computing 
likelihoodd profiles which are discussed in section 5.3.4. 

5.33 Model selection and model assessment 

Thee EM algorithm estimates parameters of a fully specified model, that is, a model 
withh a fixed number of states and a fixed number of observation symbols. We only 
fittedd a two-state model to the data set from the toy model. In general however, 
thee optimal number of states for a given data set may not be known beforehand. In 
suchh a case, it is necessary to fit a number of models with an increasing number of 
states,, to find the model that best describes the data. Of these, the best model is 
selectedd by some criterion that weights the model fit, i.e., the loglikelihood, and the 
economy,, the number of parameters of the model. The latter restriction is needed, 
becausee for a sequence of observations of length X = 100, it is possible to specify a 
modell  with 100 states which wil l have a likelihood of one. Such a model does not 
reducee the data in any useful sense. 

Statisticss for model selection are, for example, the Minimum Description Length 
principlee (Grünwald, 2001), Akaike's Information Criterion (Akaike, 1973), the 
Bayesiann Information Criterion (Schwarz, 1978), and many variants of these (Boz-
dogan,, 2000). Because these statistics are denned for all kinds of models, simulation 
studiess are necessary to gain insight into their applicability to specific models. In 
thiss section, the AIC, the BIC, and a variant of the BIC are compared in selecting 
fittedd HMMs in a simulation study. 

5.3.15.3.1 Definitions 

Whenn comparing HMMs with a fixed number of states, the likelihood ratio statistic 
cann be used as a selection criterion. In fact, it is implicitly used when selecting the 
modell  with the best likelihood from a number of fitted models with equal numbers 
off  states. When comparing HMMs with different numbers of states the situation 
iss different. In particular, HMMs with different numbers of (hidden) states are not 
nested.. The reason for this is the following. In order to arrive at, say a two-state 
modell  from a three state model, a number of parameters have to be set to zero, in 
particularr one initial state probability and the transitions to and from that same 
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state.. As a consequence the observation probabilities of that particular state are not 
identifiedd anymore. Moreover, when constraining a three-state model to a two-state 
model,, the functional roles of the remaining two states may be very different from 
thee states in the three-state model (see Clogg, 1995, for the similar case in latent 
classs analysis). As a consequence of the models not being nested, the likelihood 
ratioo test for comparing model fits can not be used, because the distribution of the 
likelihoodd ratio is unknown. Criteria for comparison of non-nested models include 
Akaike'ss Information Criterion (AIC) and Bayesian Information Criterion (BIC) 
criterion.. They are defined as follows: 

AICAIC = -21ogL + 2np (5.3) 

BICBIC = -21ogL + nplog(T), (5.4) 

wheree L is the likelihood of the fitted model, np the number of parameters of the 
modell  and T the number of observations used in fitting the model (see Bozdogan, 
2000.. for definitions and theoretical foundation of these measures and Lin and 
Daytonn (1997) for an application in latent class analysis). Both criteria consist 
off  two terms: one for the model fit, i.e. the loglikelihood, and a second term for 
parsimony.. The second term is the penalty term, as it increases with the number of 
parameterss used in fitting the model. Usually np is taken to be the number of freely 
estimatedd parameters. In the present example np = 2x (2 — l ) + 2x (3—1) + (2 — 1) = 
7.. The first contribution is from the transition matrix, the second is from the 
observationn matrix and the last is from the initial state vector (because each row of 
parameterss sums to one, one of those parameters is not freely estimated). In fitting 
HMMs,, we also use two variants of these measures that we denote the adjusted AIC, 
(A-AIC )) and adjusted BIC (A-BIC). The adjustment of these measures is in the 
numberr of parameters that are counted as freely estimated parameters. In fitting 
largee HMMs, with more than 5 states say, often a large number of both the transition 
parameterss and observations parameters is found to be zero. This is certainly the 
casee when fitting data from finite state automata, as we do in section 5.5. In the 
A-AI CC and A-BIC, instead of using np as above, we first determine the number of 
freelyy estimated parameters and then subtract the number of parameters estimated 
att zero. Next we add the number of parameters that is estimated at a value of one. 
Thee justification for this is that parameters that are estimated at zero do not provide 
informationn about the data, i.e. they do not occur in computing the loglikelihood. 
Thee parameters that are estimated at one are added because otherwise there would 
bee no difference in the numbers of parameters between, say a four- and a five-state 
model,, with all zeroes and ones in the parameter matrices. In particular, in such 
modelss the number of parameters would be zero. A similar procedure for counting 
parameterss is used in latent class analysis (Vermunt, 1997). 

5.3.25.3.2 Simulation 

AA 3-state model was optimized for the above described data set from the toy model. 
Off  100 sets of random starting values, only two converged within the preset limi t of 
5000 iterations. In comparison, all two state models converged within 100 iterations. 






























