
���������	���
��
�	���
��������������
����������� � �����	�!���
�����	���!������� �"�"�#�$�%� �#�!�%�&�'�$�%

�����������	�
 �����������������������
��������������� ��� ���!�����!�"�������������������������!�!���!
�#�����!������ �����$��������

�%���&�'�(�)���*���'���+�,�'�-���������-�.�)�������/�/���0�	�1�2���%���&�'�(�)�3��
�-�"���� �+���
���������!���!
�-�������� �'�������!�����������!�!����������������!���������������������4����$�����������������!�����������������������������������$�!��������������

���!�"�����������5�"����� ����������������5
�,�����������*�!�3 �	�6���#���!�!����
������������" ���4�2�����+�!�"�����������5�"���'���!������������	���!������������
�7����� ��������

���&�/�/���8�	�8�/�	���2�'�,�+�.�	�(���
�)�-�,�	�/�%��
�< �����������9�9�������6������������6�������9�:�:�������9�:�6�����;�:���:

�(�����������)����
��
�*���	���
������������������������
����� �������������+���������������������,�������������
��-����������������������������
�������������������
����� ����
�-�����������)�����������	���������������������������������
��������������������-���	�����������������
�	���������������������
�	�����������������	�����������������������.���������������������
���������������-���������������	���-�����-�������	���.��
�(�����
�����������(���������������!
��
��
�������������������������
�������������-�����������������������+�������������	���+���
���
����������������� � ���
�����!�����
�!���	��
�����
�)�����
���������#�&�"�$���"�"���"�'��

http://hdl.handle.net/11245/2.50745
http://hdl.handle.net/11245/1.253151
http://dare.uva.nl

22 On th e computationa l powe r and
interpretatio nn of subsymboli c

processe s s

Abstract t

Inn debates between connectionists and cognitivists it is often claimed that
neurall networks do not have the computational power to represent all cognitive
functionss of interest. In the last decade some mathematical results have ap
pearedd that characterize the computational powers of neural networks and the
subsymbolicc processes that they instantiate. There are three types of results.
Thee first results show that neural networks are universal function approxima
torss (Hornik et al., 1989). Although this result establishes neural networks
ass powerful computational devices, the type of neural network described in
thiss result has only limited applicability in cognitive science. The second
resultt shows that it is possible to construct a neural network that implements
aa universal Turing machine (Siegelmann and Sontag, 1995). For modeling
purposes,, this type of result is not very helpful, because the neural network
soo constructed shares many of its fundamental properties with the classical
cognitivee architecture. It therefore misses typical advantageous properties of
aa neural architecture such as noise tolerance and graceful degradation. The
thirdd type of result is concerned with learning formal languages by recur
rentt neural networks. This type of result is a promising line of research for
cognitivee science for several reasons. These networks perform like rule-based
cognitivee architectures and at the same time retain the advantages of a neural
architecture.. Analysis of these networks provides insight into the nature
off subsymbolic processin°". We discuss these results and our own work in
thee analysis of neural network behavior and the internal representations that
givee rise to it. Our aims are to establish the computational power of neural
networks,, to provide insight into the nature of subsymbolic processing and, in
soo doing, clarify the relation between symbolic and subsymbolic processing.

2.11 Cognitive architectures

Thee importance of rule-like behavior, as observed for example in language use and
learning,, is virtually undisputed in psychology (see Shanon, 1993, for discussion
off this point). Wi t h respect to language use, Chomsky's influential paper has
madee it clear that behaviorist and associationist models have insufficient resources
too model linguistic competence (Chomsky, 1959b). Although Chomsky's paper is
concernedd only with linguistic behavior, or rather with competence in language
use,, his rule-based account is now used widely in many fields in psychology, such as

10 0 THEE COMPUTATIONAL POWER OF SUBSYMBOLIC PROCESSES

memoryy research, learning, perception. Fodor and Pylyshyn (1988) argued that the
classicall cognitive architecture is needed. The basis of this architecture is formed
byy "representational states that have combinatorial syntax" (Fodor and Pylyshyn.
1988,, p. 1) in order to sustain rule-like behavior. Representations or representational
statess can be manipulated using syntactical rules which manipulate the syntax of
ann expression, and are independent of its content1.

Inn the last 15 years, connectionist models have been used extensively in cognitive
psychologyy as an alternative to the classical architecture (see e.g. Chauvin and
Rummelhart,, 1995; Quinlan, 1991; Arbib, 1995; Baddeley et al., 1999, for overviews
off applications and algorithms). In the connectionist architecture, symbol manipu
lationn is replaced by subsymbolic processing. Smolensky (1988) argues that the con
nectionistt architecture can give rise to rule-like behavior, but also reveals limitations
inn processing symbolic information. He identifies a number of important challenges
andd goals for the connectionist enterprise. First, one of Smolensky's goals is "de
terminingg whether the approach [of connectionist modeling] offers computational
powerr adequate for human cognitive competence and appropriate computational
mechanismss to accurately model human cognitive performance*' (Smolensky. 1988,
p.. 2). Second, these computational mechanisms — read subsymbolic processes —
needd to be clarified in order to see how they can give rise to symbolic information
processingg or rule-like behavior.

2.1.12.1.1 Computational power

Computationall power refers to the capabilities that a representational or compu
tationall system possesses in principle. A system may be capable, for example, of
producingg or recognizing languages of a certain strength, e.g. regular languages or
context-sensitivee languages (see Hopcroft et al., 2001, for an introduction to formal
languages).. As a consequence of this computational power, the system is capable of
performingg cognitive functions or producing certain behaviors. In fact, recognition
orr production of formal languages is the paradigmatic test of computational power.
Noww it is often argued against connectionism that connectionist models can not
modell certain types of behavior, because they lack the computational power to do
so.. As Levelt (1990) puts it: "I t makes littl e sense to spend years implementing a
domainn of knowledge in a network that cannot contain it." More recently Marcus
ett al. (1999) argued that the way in which infants learn artificial grammars can
nott be modeled by a neural network. In response to this, both Christiansen et al.
(2000)) and Schultz and Bale (In press) have designed connectionist networks that
modell artificial grammar learning in infants. We believe that such disputes can be
resolvedd in a formal manner using the mathematical results that we discuss in this
chapter. .

*I tt is not our goal here to provide a complete picture of the what the classical cognitive
architecturee amounts to. Instead, we just provide the essential features that enable a comparison
wit hh the connectionist architecture.

2.22 THE COMPUTATIONAL POWER OF NEURAL NETWORKS 11 1

2.1.22.1.2 Overview of the chapter

Thee present chapter has three goals. First, to establish the computational power of
neurall networks, second to clarify the notion of subsymbolic processing and third
too clarify the relationship between subsymbolic processes and symbolic information
processingg which is deemed necessary for some cognitive tasks. We first present
mathematicall results that concern the computational power of connectionist models
orr neural networks. There are three types of results that we discuss. The first type
off result concerns the representation of neural networks as function approximation
devices.. Second, we discuss a proof that it is possible to implement a (Universal)
Turingg machine in a neural network. Third we discuss a collection of papers that
havee established equivalences — either by formal proofs or by simulation results —
betweenn (specific) formal languages and certain types of neural networks, mostly
simplee recurrent networks. In our own research with neural networks works, we
relatee neural network behavior, and the internal representations that give rise
too that behavior, to the tradition of mathematical models of behavior which is
establishedd for example in Miller (1952). We focus on performance models rather
thann competence models by which we mean models of actual behavior instead
off models of an idealized set of possible behaviors. The argument in Chomsky
(1959b),, is explicitly set against behaviorist models of competence, and not against
performancee models. Mathematical models of performance have a long tradition
inn cognitive psychology, which goes back at least to the 1950s (Miller, 1952; Miller
andd Chomsky, 1963).

2.22 The computational power of neural networks

Thee assessment of the computational power of neural networks originates in the
classicc paper by McCulloch and Pitts (1943). They analyzed neural networks by
meanss of propositional logic, specifically by constructing logical operators such as
AND,, OR and NOT using binary threshold neurons. McCulloch and Pitts (1943)
provedd that they could represent any propositional expression using such basic
neurons.. Their conclusion was that any neural network can be analyzed in terms of
thee propositions it finds to be true. Although neural networks constructed in this
wayy can indeed represent any proposition, as a tool for cognitive science this type of
networkk is not very useful. There are several reasons for this. First, each proposition
requiress its own network and hence large numbers of networks are needed to even
representt a small domain of knowledge. Second, such networks are open to the
samee criticisms that have been leveled against the classical cognitive architecture.
Theyy are very sensitive to 'injury' and can not handle degraded inputs in the way
thee human cognitive system can. Third, perhaps most importantly, the approach
takenn by McCulloch and Pitts (1943) concerns deductions made by neural networks.
Theyy have shown that networks can be constructed that deduce propositions from
otherr propositions given as inputs. Such processing is very far removed from the
cognitivee functions in which psychologists are interested. Finally, these networks
cann not be trained to represent propositions but need to be handcrafted for each
neww proposition that needs to modeled. The possibility of neural networks to learn

12 2 T H EE COMPUTATIONAL POWER OF SUBSYMBOLIC PROCESSES

representationss by being presented with exemplars from a knowledge domain, is
ann important advantage of neural networks over the classical architecture. The
McCullochh and Pitts (1943) networks lack this property.

2.2.12.2.1 Computability as universal function approximation

AA second approach to assessing the computational power of neural networks is
moree recent, with an early exponent in the 1960s. The approach is to represent
neurall networks as function approximators: basically, a neural network computes
aa function from input to output. Studying the possible functions that networks
cann compute therefore provides insight into the capabilities of neural networks. Of
course,, for any neural network to be realistic and usable as a model for cognitive
behavior,, it should have a finite number of inputs and outputs. Therefore, it is
requiredd that both the input and output are of finite dimension. The work by
Minskyy and Papert (1969) can be viewed as a formal characterization of neural
networkss in terms of function approximation. Minsky and Papert (1969) showed
thatt neural networks without hidden layers — also called perceptrons — are limited
too distinguishing linearly separable inputs. They also showed that perceptrons can
learnn these representations by training. However, the category of linearly separable
inputss in very limited. It does not, for example, include the xor-problem which
iss often used as an initial benchmark for establishing the capabilities of neural
networks.. Since Minsky and Papert (1969), however, an efficient learning algorithm
hass been developed to train neural networks with one or multiple layers of hidden
unitss (Rummelhart and McClelland. 1986), namely the backpropagation algorithm.
Thiss has widened the scope of applicability of neural networks immensely. Two
resultss that concern the representation of neural networks as function approximators
discusss multilayer networks: Hornik et al. (1989) and Hartman et al. (1990). These
resultss are very similar and we limit our discussion to Hornik et al. (1989) as it
appearedd first, and because it hardly differs from Hartman et al. (1990).

Thee result by Hornik et al. (1989) concerns multilayer feedforward networks.
Feedforwardd networks are neural networks that only propagate activation forward
inn the network from input to output layers. That is, these networks have no
recurrentt or feedback connections. In contrast with the neural networks analyzed
byy Minsky and Papert (1969), the neural networks discussed by Hornik et al. (1989)
aree multilayer neural networks that have an input layer, one or more hidden layers
andd an output layer. In fact, Hornik et al. (1989) show that one hidden layer
sufficess for their purposes, and that any network with more than one hidden layer
cann be reduced to one with a single hidden layer, with different connection strengths
betweenn the units.

Hornikk et al. (1989) prove that multilayer feedforward networks can approximate
anyy Borel measurable function to any desired degree of accuracy. What does this
meann for modelers in cognitive science? The result holds for the class of Borel
measurablee functions and Hornik et al. (1989, p. 361) state that this class "contains
virtuallyy all functions relevant in applications". Now it is certainly the case that
thee class of Borel measurable functions contains many functions of interest for
functionn theorists. However, this is not necessarily so for the cognitive scientist.

2.22 THE COMPUTATIONAL POWER OF NEURAL NETWORKS 13 3

Theree are two reasons for this. First, Borel measurable functions are real-valued
functionss with finite input and output dimensions. Symbol manipulation in general
iss concerned with discrete inputs and outputs, and hence real-valued functions may
nott be appropriate to model behavior that is best described in terms of symbol
manipulation.. Second, many interesting cognitive functions do not terminate on a
givenn input. Hadley (2000) notes that partial recursive functions are defined only for
certainn inputs but not for others. One such function is finding a proof of a theorem
off number theory, given the theorem. This function is certainly well defined and
partiallyy recursive, but, since this computation does not always halt on a given input
—— not all well-defined theorems have proofs — it is hard to say what we expect from
aa feedforward neural network in a case where no proof exists. The conclusion is that,
althoughh finding a proof for a theorem in number theory is a cognitive function,
albeitt highly specialized, such a function can not be appropriately modeled by a
feedforwardd network.

AA possibly more serious limitation of the theorem is that it only holds on
compacta.. For practical purposes, this means that the input must be bounded.
Cognitivee competence in language production, however, is generally thought to be
unboundedd (Chomsky, 1959b; Fodor and Pylyshyn, 1988), and the limitation to a
finitefinite domain may therefore be crucial. Interestingly, this point has been advanced
ass an argument for and against the usefulness of neural network architectures. On
thee one hand, Levelt (1990) argues that the finiteness is a real limitation that
renderss the result irrelevant to cognitive science. He argues that we can recognize
andd produce arbitrarily long sentences by using recursive constructions such as and.
Forr example, a sentence such as "John and Peter and Karen and Frank and . .. went
home"" can be extended indefinitely and we would still be able to understand it. A
feedforwardd network for recognizing such sentences would break down at a certain
point.. Hence, unlimited productivity as required for cognitive models by Fodor and
Pylyshynn (1988), can not be captured by such feedforward networks. In contrast,
vann der Velde (1993) argues that this limitation to finite sentences is exactly what
wee need in cognitive science. Although he agrees with Levelt (1990) that recursive
constructionss are part of the competence of language users, he also argues that a
limitationn in performance is essential, given that the goal is to arrive at realistic
modelss of actual language users. More generally, van der Velde (1993) argues that
anyy finite and actual machine, such as computers or brains, are in fact finite state
machines,, and are hence bounded in the functions they can compute.

Asidee from this disputed limitation of the 'universality' of function approxima
tionn capabilities of neural networks, there are other, and more important limitations
too the use of feedforward neural networks as models for cognitive behavior. One is
mentionedd by Hornik et al. (1989) themselves. Their proof is limited to deterministic
functionss and so the result does not imply anything about stochastic functions.
Somee form of stochastic behavior or mechanism is often essential in modeling
experimentall data, and hence in modeling cognitive behavior. A second concern
aboutt these networks and the functions they can approximate relates to learnability.
Althoughh Hornik et al. (1989) prove that feedforward neural networks can represent
aa large class of functions, they do not specify how such representations may be
learned.. For cognitive science, this is an essential condition for arriving at a valid

14 4 THEE COMPUTATIONAL POWER OF SUBSYMBOLIC PROCESSES

explanationn of cognitive behavior. It should be noted here that the theorem and
prooff of Hornik et al. (1989) does not give any hint whatsoever how this question
couldd be answered. Finally, neural networks may represent a certain function, but
thiss leaves unanswered the question whether it does so in a plausible way; i.e., does
thee network present an explanation of the internal representations that cognitive
scientistss are after?

Leveltt (1990). for example, constructs a feedforward network that distinguishes
grammaticall from ungrammatical sentences. From the construction of that network,
wee can see that the network performs this task like a look-up table. In fact, for every
possiblee sentence it represents whether it is grammatical or ungrammatical accord
ingg to a particular grammar. The network does not in any way label different parts
off the sentence as verbs and others as nouns et cetera, whereas we would certainly
expectt that to occur in realistic models of language processing. In conclusion, the
analysiss of neural networks in terms of function approximators reveals that they are
veryy powerful computational mechanisms. However, the results also reveal that this
vieww on neural networks is not very useful for cognitive scientists that are searching
forr models that can serve as explanations for cognitive behavior.

2.2.22.2.2 Universal Turing machine computability

Whenn representing neural networks as function approximators one of the drawbacks
iss that only real-valued functions can be considered whereas cognitive behavior
iss often symbolic and discrete, albeit noisy. The generally accepted model for
symbolicc computation is a Turing machine. In fact, the computational mechanisms
off a Turing machine define computational power (Hopcroft et al., 2001). Siegel-
raannraann and Sontag (1995) have shown that it is possible to compute any Turing
computablee function using a recurrent neural network (RNN), which suggests that
neurall networks have the same unbounded systematicity and generativity needed
forr modeling cognition. In contrast with the feedforward networks discussed so far,
suchh networks have connections in both directions between groups of units. Their
resultt would seem to settle the question concerning the computational powers of
neurall networks. Unfortunately, inspection of the proof given by Siegelmann and
Sontagg (1995) reveals that the situation is not so simple.

Siegelmannn and Sontag (1995) determine the computational powers of RNNs by
implementingg a Universal Turing machine in the nodes and connections of such a
network.. As a consequence, the resulting RNN is an artificial construction, which in
noo way resembles the neural networks that are used in modeling cognitive functions.
Inn particular, the Turing network contains dedicated nodes that form the memory
(inn Turing machine parlance called the tape), other dedicated nodes that read
symbolss from the memory , yet other nodes that transform these symbols, et cetera.
Inn fact, the neural network contains all the elements that feature in the construction
off the normal Turing machine. As a result it also inherits all the disadvantages of
suchh machines, and therefore lends itself to the familiar criticism on the classical
cognitivee architecture. For example, the brittleness of the classical cognitive archi
tecturee carries over to the implementation of Turing machines in RNNs: removing
aa node from the network influences its behavior catastrophically. Moreover, neural

2.33 THE INTERPRETATION OF NEURAL NETWORK BEHAVIOR 15 5

networkss constructed in this way lose all the advantageous properties that make
themm desirable models of cognitive functions in the first place.

Thee conclusion from the result by Siegelmann and Sontag (1995) must be that
—— in principle — RNNs can perform any function that the classical architecture
can.. However, it must also be concluded that the result does not greatly help
thee case for connectionists. Each network has to be hand-crafted for a specific
functionn because there are no learning routines available. The style of computation
usedd in these hand-crafted networks is identical to cognitive functions implemented
inn a classical architecture. Hence, subsymbolic processing — the hallmark of
connectionismm (Smolensky, 1988) — does not take place in these networks. The
stylee of computation in the networks proposed by Siegelmann and Sontag (1995)
doess therefore not differ from the classical model. We must conclude that system-
aticityy and productivity can be captured in RNNs, but not in such a way that the
advantageouss features of a connectionist architecture are retained.

2.33 The interpretation of neural network behavior

Inn most applied work with RNNs, the style of computation is very different from
thee networks by Siegelmann and Sontag (1995). In recent work, RNNs are shown
too be able to recognize (regular) languages in a way that is, at least in some as
pects,, different from the canonical representation of such languages by (finite state)
grammars.. First, these networks do not suffer from the brittleness of the networks
thatt implement Turing machines because they have distributed representations, at
leastt at the hidden layers. Second, these networks learn to recognize languages by
beingg presented with examples of grammatical sentences. The goal of this section
iss to clarify how languages are learned by and represented in these networks.

Thee first result about language recognition by recurrent neural networks that
wee discuss is the paper by Cleeremans et al. (1989). The network architecture
theyy use is the simple recurrent network (SRN) introduced by Elman (1990), which
iss depicted in Figure 2.1. In contrast to the networks analyzed by Hornik et al.
(1989),, this network has feedback or recurrent connections to its hidden layer. In
contrastt to Siegelmann and Sontag (1995), the approach taken here is characterized
byy learning specific languages to networks instead of proving a general recognition
capacityy of such networks. Before describing and evaluating the results, we first
providee some background information about the SRN architecture which is essential
too understanding the results.

Thee simple recurrent network consists of three layers: input, hidden and output.
Thee hidden layer has recurrent connections to itself through the context units.
Whenn a stimulus or symbol is presented to the network, the hidden layer forms an
internall representation of that stimulus. This internal representation is then stored
inn the context or recurrent units for use at the next time step. When the next
stimuluss or symbol is presented at the input units, a new internal representation
iss formed on the hidden layer. This new representation is a combination of the
previouss internal representation, which is stored in the context units, combined
withh the current input. In this way, the network keeps track of previous inputs and

