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ABSTRACT

Optical and X-ray studies of six nearby galaxies show that the probability a globular cluster will be an X-ray source is consistent
with being linearly proportional to its mass. We show that this result is consistent with some recent estimates of the velocity kick
distributions for isolated radio pulsars – those which are the sum of two Maxwellians, with the slower distribution at about 100 km s−1

– so long as a large fraction of the retained binaries are in binary systems with other massive stars. We confirm that over a large sample
of galaxies, metallicity is clearly a factor in determining whether a globular cluster will contain an X-ray binary, and we estimate the
transformations between color and metallicity for a large number of optical filter combinations. We also show that the core interaction
rate is roughly linearly proportional to the stellar mass of a globular cluster for the Milky Way when one bins the clusters by mass.

Key words. stellar dynamics – binaries: close – globular clusters: general – galaxies: star clusters – X-rays: binaries –
galaxies: elliptical and lenticular, cD

1. Introduction

It has long been known that globular clusters contain much larger
numbers of X-ray binaries per unit stellar mass than do field
populations of galaxies (Katz 1975; Clark 1975). This overabun-
dance has been ascribed to stellar interactions in globular clus-
ters which allow neutron stars and/or black holes to enter new
binary systems through either tidal capture (Clark 1975; Fabian
et al. 1975) or exchange interactions (Hills 1976) long after the
supernovae that produce them. In the Chandra era, it has been
possible to extend this work to show that the clusters with the
highest interaction rates are most likely to contain X-ray sources,
and probably are most likely to contain accreting neutron stars
(Pooley et al. 2003; Heinke et al. 2003; Gendre 2005).

While studies of Galactic globular clusters have thus been
fruitful, the Milky Way’s globular cluster system is rather small
(containing only about 150 clusters), so it is not possible to study
certain phenomena due to lack of statistical significance in a
small sample of clusters. Furthermore, some of the Milky Way’s
globular clusters’ parameters, such as metallicity and galacto-
centric radius, are strongly correlated with one another, making
it difficult to isolate the causes of certain effects. As a result,
extragalactic globular cluster systems can be invaluable in com-
plementing the Galactic globular clusters for producing the best
possible data on how globular cluster parameters affect X-ray
binary production.

While ROSAT was able to observe globular cluster X-ray
sources in M 31 (see e.g. Supper et al. 1997), it was not until
the advent of the Chandra X-ray Observatory that there was suf-
ficient angular resolution to resolve apart the sources in more
distant galaxies, or to obtain sufficiently accurate positions that
comparisons could be made with optical counterparts. Early
on, by comparing the positions of X-ray sources with those of

optically detected globular clusters, it was found that large frac-
tions of the X-ray binaries in elliptical galaxies were in globu-
lar clusters (Sarazin et al. 2001; Angelini et al. 2001 – ALM).
Larger samples of galaxies have shown a trend where the frac-
tion of X-ray binaries in globular clusters in a galaxy seems to
vary as a function of galaxy type, increasing from spiral galax-
ies to lenticular to normal ellipticals to cD galaxies (Maccarone
et al. 2003; Juett 2005; Irwin 2005).

From the observations of elliptical galaxies, with their large
globular cluster systems, it has been possible to find correla-
tions between cluster properties and the probability that a cluster
would contain an X-ray binary which are not statistically signifi-
cant in the Milky Way, or which have ambiguous interpretations
in the Milky Way because of the aforementioned correlations
between different cluster parameters. Specifically, it has been
shown clearly that metal rich clusters are far more likely to con-
tain X-ray binaries than metal poor clusters (Kundu et al. 2002),
confirming suggestive results from the Milky Way (Grindlay
1993; Bellazzini et al. 1995). These results have been found
again in numerous subsequent papers (see e.g. Jordan et al. 2004;
Minniti et al. 2004; Xu et al. 2005; Kim et al. 2005). It has also
been shown that more luminous clusters are more likely to con-
tain X-ray binaries than less luminous clusters (see e.g. ALM;
KMZ). We refer the reader also to reviews by Verbunt & Lewin
(2006) and Fabbiano (2006) for a broader overview of the liter-
ature.

Other results have been suggested by the data, but are not
as clearly significant. While in the Milky Way, it is clear that
denser globular clusters are more likely to contain large numbers
of X-ray sources per unit stellar mass (Pooley et al. 2003; Heinke
et al. 2003; Gendre 2005), the extragalactic clusters have core
radii which have not been sufficiently well resolved spatially as
to establish this effect clearly. KMZ found an anti-correlation
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Fig. 1. The globular clusters analyzed in this data set. Small dots rep-
resent optically detected globular clusters, while the larger open circles
surround the clusters with X-ray sources.

between cluster half-light radius and LMXB hosting probabil-
ity in NGC 4472, but noted that it was statistically insignif-
icant. Jordan et al. (2004) estimated King model parameters
of globular clusters in M 87. They then inferred stellar colli-
sion rates (Γ) from the model fits, and found that the collision
rates were strongly correlated with the likelihood that a clus-
ter would contain an X-ray binary, but that this correlation was
only marginally better than the correlation with cluster lumi-
nosity. The absence of strong signatures of cluster concentra-
tion should not be taken as evidence that cluster concentration
is uncorrelated with X-ray binary production. Half-light radius
is not expected to be very well correlated with core concentra-
tion, making the null result of KMZ unsurprising. Because the
core radii of globular clusters in the Virgo Cluster are typically
a small fraction of a pixel on the Advanced Camera for Surveys
aboard the Hubble Space Telescope, neither is it surprising that
Jordan et al. (2004) were unable to find a strong signature of
cluster concentration.

In this paper, we analyze a sample of six galaxies for which
there is good optical and X-ray data. We show unambigously that
the metallicity effect is strong. We then isolate the effect of clus-
ter mass, M, on probability that a cluster will contain an X-ray
source, and find that the probability a globular cluster will con-
tain an X-ray source scales as M1.03±0.12. We compare this value
with the expected value from various kick velocity distributions,
and find that this result is most consistent with double Gaussian
distributions for pulsar kick velocities, where there exists a slow
mode to the neutron star kick velocity distribution.

2. Observations

We use data from HST and Chandra for six galaxies: NGC 1399,
NGC 3115, NGC 3379, NGC 4472, NGC 4594, and NGC 4649.
The data analysis procedures used here are the same as those
used in our previous work (see Maccarone et al. 2003, for
details). We take the distances to these galaxies from Tonry
et al. (2001). Partial results for all of these galaxies have been
presented previously (ALM; Kundu et al. 2003, 2004; KMZ;
Di Stefano et al. 2003), and a detailed analysis with full source

Table 1. The color–metallicity relations for 10 different colors.

Color N Relation
V − I 65 [Fe/H] = −5.79 + 4.68 (V − I)
U − B 72 [Fe/H] = −1.91 + 3.22 (U − I)
B − V 78 [Fe/H] = −4.83 + 4.91 (B − V)
V − R 55 [Fe/H] = −5.93 + 9.82 (V − R)
U − V 72 [Fe/H] = −3.15 + 2.05 (U − V)
B − R 55 [Fe/H] = −5.49 + 3.58 (B − R)
B − I 65 [Fe/H] = −5.87 + 2.75 (B − I)
U − R 55 [Fe/H] = −3.61 + 1.71 (U − R)
U − I 64 [Fe/H] = −4.19 + 1.57 (U − I)
R − I 54 [Fe/H] = −4.41 + 6.39 (R − I)

catalogs will be presented in future work (Kundu et al., in prep.)
In all, our sample includes 98 X-ray sources in 2276 globular
clusters. These data points are plotted in Fig. 1.

Because the data are taken in different filter sets (B − I for
NGC 1399 and V−I for the rest of the galaxies), we must develop
an algorithm to convert from magnitudes to cluster masses and
metallicities. The I-band magnitudes are used to estimate the
cluster masses, while the colors are used to estimate the cluster
metallicities. Following the procedure of Kundu & Whitmore
(1998), we determine the color-to-metallicity conversions for all
commonly used sets of photometric filters. We take all globular
clusters from the Harris (1996) catalogue for which there are
data in a given pair of filters, for which there is a spectroscopic
metallicity measurement, and for which E(B − V) < 0.4. We
then de-redden the data, using the E(B − V) versus extinction
relations from Cardelli et al. (1989), and fit [Fe/H] as a function
of color and vice versa, and take the bisector of the two fits.
This typically produces a color-metallicity relation with a scatter
of about 0.2 dex in [Fe/H]. The fact that the scatter is typically
so small (i.e. about the same size as what would be expected
from measurement errors) indicates that linear color-metallicity
relations are adequate for most purposes. The results are given
in Table 1.

3. Analysis

Assuming that the probability that a globular cluster contains an
LMXB can be described as a power law function of the clus-
ter’s mass times a power law function of its metallicity, we at-
tempted to determine the exponents of the power laws. First we
attempted to do the fitting using density estimation (Silverman
1986), applying Gaussian smoothing to the two dimensional data
set with different smoothing factors. We began by making a grid
of 100×100 in mass and metallicity, and tried smoothing factors
from 3 to 10 (i.e. smearing with a Gaussian kernel with a full
width half maximum ranging from 3 to 10 cells on the grid).

While the best fitting results always found that:

P(LMXB) ∝ Z0.25±0.03, (1)

where P(LMXB) is the probability a cluster will contain an
X-ray binary, and Z is the cluster’s metallicity. This metallicity
exponent was found regardless of the smoothing factor, while
the mass exponent was found to depend heavily on the choice
of smoothing factor. The reason for this is likely that near the
edges of the globular cluster distribution, gaussian smoothing is
applied to a source distribution which is asymmetric. This tends
to bias the data. As a result, the density estimation for data sets
such as ours is not robust, but since, as we note below, the mass
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Fig. 2. Metallicity corrected LMXB probability as a function of mass,
fit using binning, with 7 bins. Fits with different numbers of bins pro-
duce results which are the same within statistical errors. Changing the
metallicity correction between 0.20 and 0.30 has no effect on the mass
exponent, as expected given the absence of correlations between cluster
mass and metallicity.

exponent, which is the focus of this paper does not depend on
the metallicity exponent assumed, we save detailed treatment of
the effects of metallicity on X-ray binary production for future
work (Kundu et al., in prep.).

The alternative is to use binning. We then sorted the clusters
by mass, and compared the total number of X-ray binaries in
logarithmically spaced mass bins (varying the number of bins
from 5 to 10) with the expression Y, defined as:

Y = ΣZ0.25
i Mi, (2)

where Zi is the metallicity of a given cluster and Mi is the mass
of a given cluster. In doing this, we have assumed that the metal-
licity effect does scale as [Fe/H]0.25, although we have found that
the mass exponent is not sensitive to the choice of the metallicity
exponent. This is as expected; mass and metallicity of globular
clusters are observed to be uncorrelated (Ashman & Zepf 1998),
so it would be suprising if the correction made for the metallic-
ity strongly affected the inferred correlation between mass and
cluster LMXB probability.

We then use minimization of the Cash statistic (Cash 1979)
to estimate the mass exponent, and find that P(LMXB) ∝
Y1.03±0.12 (see e.g. Fig. 2 for a fit using 7 bins), which means
that P(LMXB) ∝ M1.03±0.12, since the exponent for Y is inde-
pendent of the exponent for the metallicity term, meaning that
all the dependence on Y is due to its mass dependence. We com-
pare the results using different numbers of bins and find that the
results are not strongly sensitive to the number of bins used (for
numbers of bins in mass between 5 and 10, the best fitting value
varies from 1.01 to 1.07, with a standard deviation of 0.11 or
0.12 for every fit). For a given number of bins, varying the
metallicity exponent put into Y changes the fitted dependence
of P(LMXB) on Y by only one part in one thousand – much less
than the changes due to using different numbers of bins. We have
also made linear-logarithmic and logarithmic-linear plots of the
data and found that no reasonable fit can be made using such
functions. Thus while a power law is obviously not a unique de-
scription of the data, it seems to be the most reasonable simple

functional form for the data, and a reasonable choice for param-
eterizing the data. We note that for a smaller number of clusters
in M 87, Jordan et al. (2004) found a metallicity exponent of
0.3 ± 0.1 and a mass exponent of 1.08 ± 0.11, so our results are
consistent with past work.

4. Discussion

4.1. Implications of the observational results for retention
fractions

The number of X-ray binaries in a globular cluster is likely to be
correlated most strongly with the stellar collision rate. The colli-
sion rate should be dominated by the collisions which take place
in the core, and it is straightforward to compute analytically the
collision rate in the core of a globular cluster:

Γ = ρ3/2
c r2

c , (3)

where ρc is the central density of the cluster and rc is the core
radius. This formula assumes virial equilibrium in the cluster
core (Verbunt & Hut 1987; Pooley et al. 2003), and follows from
the more general Γ = ρ2

cr3
c/σ, where σ is the velocity dispersion,

since σ ∝ ρ0.5
c rc.

The only galaxy where the core radii and central densities of
a large number of clusters have been reliably measured (rather
than inferred from model fits) is the Milky Way. The collision
rates for the Milky Way are well correlated with the masses;
when we bin the Milky Way’s globular clusters by mass and fit
a power law to the data. We find that the best fitting power law
index varies between 0.9 and 1.3, depending on the number of
bins used (see Fig. 3 for a characteristic fit). The statistical errors
on the fits are always smaller than 0.1 in index. We thus adopt
1.1 ± 0.2 for the exponent here, but note that this is a systematic
error, and really represents a hard bound on the possible values,
rather than a 1σ error. This result is intermediate between the
two cases where the spatial properties are independent of mass
(i.e. where, among the King model parameters, only the central
density varies, and the expectation value would be Γ ∝ M1.5) and
where the concentration index (i.e. the ratio of tidal radius to core
radius) is independent of mass (in which case the expectation
value would be Γ ∝ M2/3). The intermediate result is expected
given that cluster concentration increases with increasing cluster
mass (Djorgovski & Meylan 1994). It is possible to find other
means of producing various exponents besides those presented
above, if one allows for different relations between the fraction
of the mass in the cluster core and the core radius with mass. The
key point, though, is that empirically, the relation for Milky Way
globular clusters is that Γ scales approximately as M1.1.

Jordan et al. (2004) found that the probability a cluster in
M 87 will contain an X-ray binary is proportional to Γρ−0.4±0.1

c ,
and suggested that the deviation from a purely linear relationship
with Γ might be due to destruction of binaries by dynamical in-
teractions in the globular cluster. While clusters do undoubtedly
destroy binary systems, this should be done preferentially for the
longest period systems, perhaps by making them highly eccen-
tric rather than by destroying them outright if they are Roche
lobe overflowing systems(e.g. Hut & Paczynski 1984; Rasio &
Heggie 1995; Maccarone 2005). Binary destruction should have
relatively little impact on the short period systems which, due to
their higher duty cycles (see e.g. Piro & Bildsten 2002; Bildsten
& Deloye 2004; Ivanova & Kalogera 2006) should provide most
of the bright X-ray binaries which can be seen out to Virgo
Cluster distances (see Maccarone et al. 2005, for a discussion



480 M. Smits et al.: Globular cluster LMXBs and kicks

Fig. 3. Binned collision rate versus mass for the Milky Way’s globular
clusters, using data from the Harris catalog with 8 bins.

of the effects of destruction of X-ray binaries due to dynamical
interactions on their orbital period distributions).

In light of our above finding that, empirically, for the Milky
Way, Γ scales with cluster mass to the power 1.1 ± 0.2, it seems
simpler just to consider that the estimates of the core radii of the
globular clusters in M 87 are likely to be dominated by measure-
ment uncertainties. In the absence of useful radial information,
the derived central density of a globular cluster will scale linearly
with the cluster’s mass; the estimate of Γ will then scale with
the cluster mass to the power 3/2. We have shown that, for the
Galactic globular cluster systems, Γ scales linearly with the clus-
ter mass; therefore, one will need to correct this derived value
of Γ by a term of order M1/2 (or ρ1/2 in the absence, again, or
any useful radial information). The ρ−0.4 term found by Jordan
et al. (2004) is thus more likely this “correction” term than a
term indicating dynamical destruction of accreting binaries. The
only other means of producing the Γ-M correlation we show and
the relation among Γ,M, and ρc found by Jordan et al. (2004)
would be a specific relationship between the fraction of mass
in the core and the core radius for clusters, in which the cluster
core density is uncorrelated with the cluster mass. This would, in
principle, be possible, e.g. if the most massive clusters has pro-
gressively lower fraction of their mass in their core but is, in fact,
not the case, given the strong observed correlation between clus-
ter central density and cluster absolute magnitude (Djorgovski
& Meylan 1994).

Finally, let us consider an additional important point. The
collision rate Γ is a collision rate of typical stars with one an-
other – mostly main sequence stars with main sequence stars.
The collision rate for neutron stars will be the collision rate it-
self, times the fraction of stars in the cluster core which are neu-
tron stars. This fraction will come from three factors – stel-
lar evolution, which determines what fraction of stellar mass
ends up locked up in neutron stars, the retention fraction, which
characterizes what fraction of those neutron stars remain in the
cluster, and the effects of mass segregation, which determines
how over-represented neutron stars are in the cores of globular

clusters, compared to their representation in the clusters on the
whole. We assume that the stellar evolution effects have no mass
dependence, so any difference between the collision rate as a
function of cluster mass and the LMXB hosting probability as a
function of cluster mass is most naturally explained by the de-
pendence of the retention fraction on cluster mass, and mass seg-
regation variations as a function of mass.

As a result, we define a quantity, Φ, which should scale
linearly with the expected formation rate of neutron star X-ray
binaries in the core of a globular cluster. We add only a single as-
sumption at this point, which is that mass segregation works suf-
ficiently effectively on timescales of the ages of globular clusters
that all the neutron stars are in the cluster cores. This introduces
an additional factor of M/Mcore to account for the “overdensity”
of neutron stars among the total stars in a cluster’s core. Since
Mcore ∝ r3

cρc, this yields:

Φ = ΓM/Mcore = ρ
1/2M/rc. (4)

Following the same procedure as above to estimate the Γ − M
relation, we take the binned sum of the Milky Way’s globular
clusters’ values for these same Φ. We find that Φ ∝ M0.5−0.7,
again with the range of estimated exponent values dominated by
the binning scheme used (i.e. whether 6, 8 or 10 bins are used)
rather than by measurement uncertainties (see e.g. Fig. 4). Since
Φ fret should give the LMXB hosting probability, that leads to the
inference that fret ∝ M0.4−0.6, since the hosting probability scales
as M1.1.

We also note that mass segregation of neutron stars is
not sufficiently fast as to place all neutron stars in the
cores of globular clusters; there are some millisecond pul-
sars with well-measured positions that place them outside the
cores of their host clusters (see e.g. Camilo & Rasio 2005,
for a reasonably up-to-date list of globular cluster pulsars,
or Paulo Freire’s continuously updated list at http://www.
naic.edu/∼pfreire/GCpsr.html). While, relaxing this as-
sumption leads to a weaker dependence of the retention fraction
on mass, the assumption is generally a good one. About half of
all millisecond pulsars are within one core radius of the center
of their host clusters, while the fraction of the total mass in the
core is less than 10% even in 47 Tuc, which has the highest core
fraction of any massive cluster.

4.2. Scaling relations of the retention fraction

We have considered a variety of possible kick velocity distri-
butions in order to determine whether any of them are consis-
tent with the estimated retention fraction relation – Fret ∝ M0.5.
Essentially, two broad classes of velocity kick distributions have
been proposed for radio pulsars: “zero-peaked” distributions
(e.g. Paczynski 1990; Hartman 1997; Hansen & Phinney 1997),
where the most likely initial velocity for the neutron star is close
to zero (although the distribution retains significant probabil-
ity density out to hundreds of km s−1), and distributions which
are Gaussians peaked at the mean pulsar velocity (e.g. Lyne &
Lorimer 1994) or Maxwellians, which have rather similar char-
acteristics. Some recent work has modelled the pulsars’ veloc-
ity distributions as double Gaussians or double Maxwellians
(Arzoumanian et al. 2002; Brisken et al. 2003), typically with
one peak at about 100 km s−1 and containing about 20% of the
neutron stars and the other peak at about 300–500 km s−1 con-
taining about 80% of the neutron stars. In essence, the two ap-
proaches have converged to rather similar distributions, since the
low velocity mode “fills in” the gap left at low velocities in the
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Fig. 4. Binned values of Φ versus mass for the Milky Way’s globular
clusters, using data from the Harris catalog with 6 bins.

single mode approach. On the other hand, the most recent esti-
mation of the kick velocity distribution argued for a return to a
single-peaked Maxwellian distribution with a characteristic 1D
velocity of about 265 km s−1 (Hobbs et al. 2005), so there still
exists controversy about the initial velocity distribution of radio
pulsars.

4.2.1. Results of models tried

We have tried a variety of different models with different pa-
rameter values to determine whether they can produce reten-
tion fractions with negligible mass dependence. We present the
methodology and a sampling of the results here. In the interests
of brevity, we do not present every calculation we have done,
but note that these are in the Master’s degree thesis of the lead
author of this paper albeit with a somewhat different interpre-
tation section and can be obtained by contacting the authors of
this paper.

To calculate reliable retention fractions we use 111 globu-
lar clusters from the Harris catalogue as templates. We used the
core and tidal radii from the catalogue, converting arcminutes
to parsecs using the distances provided in the catalogue. We also
converted the V magnitude to mass assuming a constant mass-to-
light ratio of 1.8, as found by Piatek et al. (1994). The 111 clus-
ters are all clusters from the catalogue that are not core-collapsed
and include the 3 parameters we need for fitting.

We use two different models to describe the early globu-
lar clusters. The first is the King model fitted to present-day
average GC properties (from the Harris catalogue). All heavy
stars are assumed to be in the center of the cluster at the end
of their lifetimes and the retention fractions are calculated using
the central escape velocity. The second model assumes that no
mass segregation has taken place. Stars of all masses are spread
equally through the cluster according to the cluster’s mass den-
sity profile. The Plummer model is used because it puts the GCs
with different central potentials on equal footing. GCs evolve
to small core radii and large tidal radii as they age. This means

Fig. 5. The retention fraction as a function of mass, fitted to the King-
model data with a constant kick velocity distribution between 0 and
1000 km s−1. Chi-square was minimized to obtain the fit.

that the present-day central potential has no meaning when ap-
plied to primordial GCs. Through dynamical friction, the high
mass stars may fall to the center before their maximum age is
reached or they may end somewhere between where they started
and the center of the cluster. The escape velocity needed for the
stellar remnant is estimated accordingly. In each cases, we sim-
ulate the results (i.e. retention or ejection) for 10 000 supernova
explosions producing neutron stars.

We use the equations from Drukier (1996) to calculate reten-
tion fractions. The probability that a star is retained to the cluster
after applying the supernova “kick” is as follows:

P(ret|v̂, v̂k) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 v̂k − 1 ≤ −v̂;
1−(v̂−v̂k)2

4v̂v̂k
|v̂k − 1| < v̂;

0 v̂k − 1 ≥ v̂

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭
, (5)

where v̂k =
vk
ve

and v̂ = v
ve

, meaning both the pre-kick veloc-
ity and the kick velocity are divided by the escape velocity. v̂
is taken to be a Maxwellian distribution between 0 and 1. Any
v̂ > 1 would escape from the cluster, therefore we use a lowered
Maxwellian distribution. The escape velocities are taken from
our Plummer and King models. We use the central escape veloc-
ity for both models, but we also use a Plummer model with no
primordial mass segregation as explained in the previous subsec-
tion. The King model escape velocities are the highest (typically
25 km s−1), because most of the GC cores are more concentrated
than the cores of the Plummer models (typically 15 km s−1). The
model with no primordial mass segregation has the lowest es-
cape velocities (typically 8 km s−1), because the supernova pro-
genitors are not concentrated in the center of the core.

As a simple way to test the method we considered a con-
stant kick velocity distribution. We tried 10 progressively larger
kick velocity intervals. The intervals we used are [0, x] km,
with x = 500, 600, ..., 1400. We use the 3 different models:
King, P-center (Plummer model, all heavy stars in the core)
and P-spread (Plummer model with the stars spread through the
GC, no primordial mass segregation) in most cases, although
since the different models result in qualitatively similar conclu-
sions, we do not exhaustively present all the results. To each
we fit a power law for the retention fraction as a function of
mass (Fig. 5). The plots for all other kick velocity distributions



482 M. Smits et al.: Globular cluster LMXBs and kicks

Table 2. Retention fraction fit results for a constant kick velocity distribution.

King P-center P-spread
x Exponent Fraction Exponent Fraction Exponent Fraction

500 0.53 0.041 0.50 0.018 0.50 0.0053
600 0.53 0.034 0.50 0.015 0.50 0.0044
700 0.53 0.029 0.50 0.013 0.50 0.0038
800 0.53 0.026 0.50 0.011 0.50 0.0033
900 0.53 0.023 0.50 0.010 0.50 0.0029

1000 0.53 0.021 0.50 0.009 0.50 0.0026
1100 0.53 0.019 0.50 0.008 0.50 0.0024
1200 0.53 0.017 0.50 0.008 0.51 0.0022
1300 0.53 0.016 0.50 0.007 0.51 0.0020
1400 0.53 0.015 0.50 0.006 0.51 0.0019

Table 3. Retention fraction fit results for a linear kick velocity distribu-
tion with negative slope.

King P-center
x Exponent Fraction Exponent Fraction

100 0.44 0.348 0.47 0.168
200 0.49 0.187 0.48 0.087
300 0.50 0.129 0.49 0.059
400 0.51 0.098 0.49 0.044
500 0.51 0.080 0.49 0.036
600 0.51 0.066 0.49 0.030
700 0.51 0.057 0.49 0.026
800 0.52 0.050 0.49 0.022
900 0.52 0.045 0.49 0.020
1000 0.52 0.040 0.49 0.018

are qualitatively similar, so for the remainder of the paper, we
present tables showing the results rather than plots. We obtain
the exponent and the average retention fraction. The results are
in Table 2. The exponents are all approximately 0.50. This is
because the escape velocity goes as the square-root of the clus-
ter mass. The King model has a slightly higher exponent be-
cause more massive clusters tend to favor a slightly higher cen-
tral potential and are more concentrated, resulting in a somewhat
higher escape velocity. The average retention fraction is linear
with x. This is as expected. If a constant probability distribution
is spread out over an interval twice as large (0–1000 instead of
0–500), one expects half as many neutron stars to be retained.

We have made similar studies of the effects of linear kick dis-
tributions (i.e. where the probability distribution varies linearly,
with a maximum at v = 0, and a probability of zero above some
characteristic velocity) and Gaussian velocity kick distributions
(which are taken to be Gaussian probability density functions
with the characteristic velocity equal to the spread in the ve-
locity distribution). The linear distributions are characterized in
terms of a characteristic velocity x, and are presented for large
and small velocities in Tables 3 and 4 respectively. The linear
distributions, like the constant probability density distributions,
generically produce a M0.5 retention fraction mass dependence,
unless the characteristic velocity is less than the escape veloc-
ity of the most massive clusters, in which case the dependence
will be flatter. Both these functional forms are thus consistent
with the observations of extragalactic X-ray binaries, but will
most likely have trouble explaining the dearth of very low ve-
locity pulsars, and simultaneously explaining the small, but non-
neglible numbers of very high velocity pulsars (e.g. those with
velocities of more than 800 km s−1) while still producing reten-
tion fractions greater than ∼1%, which is needed to explain the

Table 4. Retention fraction fit results for a linear kick velocity distribu-
tion with very large negative slope, for a King model.

King
x Exponent Fraction

10 0.11 0.90
20 0.20 0.79
30 0.27 0.70
40 0.31 0.61
50 0.35 0.54
60 0.38 0.49
70 0.40 0.44
80 0.42 0.40
90 0.43 0.37
100 0.44 0.34

large numbers of X-ray binaries and millisecond pulsars in glob-
ular clusters.

Gaussian distributions produce a wide range of mass depen-
dences, since for a non-zero Gaussian, there typically will ex-
ist a positive slope in the probability density distribution over
the range of globular cluster escape velocities. The results of
Gaussian distribution studies are shown in Table 5. It is clear
that to reproduce the observations, a Gaussian distribution would
need a characteristic velocity just less than 20 km s−1. This
is, on its face, strongly inconsistent with the proposed exist-
ing kick velocity distributions, but, upon consideration of the
effects of binaries, it may become consistent with e.g. the re-
sults of Arzoumanian et al. (2002). The presence of a heavy bi-
nary companion at the time of the supernova explosion will di-
lute the velocity kick applied to the system, making retention
more likely; this has already been suggested to be a big part
of the solution to the retention fraction problem (e.g. Davies &
Hansen 1998; Pfahl et al. 2002). The maximum possible dilu-
tion would occur if the envelope of the proto-neutron star has
been completely stripped in the binary, while the companion
star is very close to the maximum possible mass in order not
to undergo a supernova explosion itself later. That is to say, the
maximum dilution occurs for a supernova explosion of a 1.4 M�
core with an 8 M� companion, and this dilution will be a fac-
tor of 6.7 [i.e. 1.4/(1.4+8.0)]. This would be enough to bring a
90 km s−1 kick (the characteristic kick velocity of the slow mode
found by Arzoumanian et al. 2002) down to about 13 km s−1

(we do note that the Arzoumanian model is a Maxwellian, rather
than a Gaussian, and a 90 km s−1 Maxwellian will have slightly
few low velocity objects than a 90 km s−1 Gaussian, but that
this should lead to only a minor difference). Thus we can say
that the most extreme dilution factor is more than sufficient to
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Table 5. Retention fraction fit results for a Gaussian kick velocity distribution. The exponent values with asterisks denote cases where the retention
fractions are quite small and the estimations suffer from small number statistics.

King P-center P-spread
σ Exponent Fraction Exponent Fraction Exponent Fraction
20 0.68 0.260 1.15 0.06 1.29 0.0058
40 1.06 0.051 1.43 0.005 1.46 0.0008
60 1.18 0.017 1.52 0.001 1.57 0.0002
80 1.23 0.007 1.60* 0.000 1.66* 0.0001
100 1.26 0.003 1.69* 0.000 1.77* 0.0000
120 1.28 0.002 1.81* 0.000 1.89* 0.0000
140 1.30 0.001 1.94* 0.000 2.01* 0.0000
160 1.30* 0.001 2.09* 0.000 2.13* 0.0000
180 1.32* 0.001 2.25* 0.000 2.26* 0.0000
200 1.33* 0.000 2.42* 0.000 2.38* 0.0000

produce a reasonable dependence of the retention fraction on
mass. Additionally, heavy binaries will have lower initial veloc-
ities than the stars in the cluster as a whole, which should al-
low them to accomodate larger kicks (although in no case will
this increase the kick velocity allowed by more than

√
2). Since

mass segregation will bring the most massive stars to the cen-
ters of clusters, and these massive stars will have the highest
cross-sections for interactions, it is likely that supernova progen-
itors will find themselves in binaries with other massive stars.
Whether this actually happens to the extent required by the data
must be addressed through numerical simulations and is beyond
the scope of this paper.

Regardless, it seems that in no case will the data be consis-
tent with a single Maxwellian or Gaussian with a post-dilution
characteristic velocity greater than 20 km s−1. This seems to rule
out the Hobbs et al. (2005) suggestion that the pulsar velocity
kick distribution can be a single Maxwellian at 265 km s−1, un-
less the slower kicks in globular clusters are related to binary
evolution (see e.g. Pfahl et al. 2002b; Dewi et al. 2005, for sug-
gestions that binary evolution may affect pulsar kick velocities).
It also indicates that the contribution of neutron stars from the
fast mode in a distribution like that of Arzoumanian et al. (2002)
to retention fractions should be negligible. These results are thus
quite similar to the conclusions of Pfahl et al. (2002) who found
that, while a single fast kick mode had trouble producing neu-
tron star retention fractions large enough to match the observed
numbers of millisecond pulsars in globular clusters like 47 Tuc,
including also a slow velocity kick mode, and the effects of bi-
naries could potentially solve the retention problem. With care-
ful numerical simulations, the globular cluster X-ray binaries are
likely to present the strongest constraints on the low velocity end
of the pulsar kick velocity distribution, since field studies will al-
ways be complicated, e.g., by the intrinsic velocity dispersion in
the field.

To obtain strong constraints on the actual asymmetric kick
velocity applied to neutron stars at the times of their birth will re-
quire numerical simulations which can take account of both the
distributions of the neutron star progenitors in the cluster at the
time the supernovae occur, and what fraction of the neutron stars
are in binaries, and what are the masses of those binary compan-
ions. The numerical simulations will also need to be made for
ranges of cluster masses and initial concentration indices. At the
present, the best studies of neutron star retention (e.g. Drukier
1996; Davies & Hansen 1998; Pfahl et al. 2002) have each con-
sidered several aspects of this problem; the simulation closest
to meeting these requirements was that of Pfahl et al. (2002), in

which all the relevant factors except for a range in cluster escape
velocities were considered.
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