Downloaded from UvA-DARE, the institutional repository of the University of Amsterdam (UvA)
http://hdl.handle.net/11245/2.46564

File ID uvapub:46564
Filename 211137y.pdf
Version unknown

SOURCE (OR PART OF THE FOLLOWING SOURCE):

Type article

Title Short-range correlations in quantum crystals and motional renormalization
of anisotropic interactions in solid hydrogen as a function of density

Author(s) V.V. Goldman

Faculty UvA: Universiteitsbhibliotheek

Year 1979

FULL BIBLIOGRAPHIC DETAILS:
http://hdl.handle.net/11245/1.426699

Copyright

1t is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or
copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content licence (like
Creative Commons).

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
(pagedate: 2014-11-27)


http://hdl.handle.net/11245/2.46564
http://hdl.handle.net/11245/1.426699
http://dare.uva.nl

PHYSICAL REVIEW B

VOLUME 20, NUMBER 11

1 DECEMBER 1979

Short-range correlations in quantum crystals and motional renormalization of
anisotropic interactions in solid hydrogen as a function of density

Victor V. Goldman
Natuurkundig Laboratorium, Universiteit van Amsterdam, Valckenierstraat 65,
1018 XE Amsterdam, The Netherlands
(Received 3 July 1979)

Using moment constraints, pair-distribution functions for solid fcc H, and D, are calculated
and the motional renormalization of the electric quadrupole interaction is obtained. Horner’s
basic concepts are followed but are improved by introducing a simpler form for the distribution
function, which then allows the procedure to be carried out at high densities. Two differential
equations for the short-range asymptotic behavior are investigated. Some implications of the
results concerning the theory of quantum crystals are discussed.

I. INTRODUCTION

The anisotropic interaction between hydrogen
molecules is responsible for a variety of phenomena
associated with the orientational degrees of freedom
of these molecules. By virtue of the large zero-point
motion of solid H; and D,, the translational motion
has a considerable influence on the orientational
dynamics. This can often be expressed in terms of
orientational quantities which are renormalized by
averaging over the pair distribution function of the
center of mass motion."? However, the computation
of the pair distribution function of quantum crystals
is not trivial because of their large vibrational ampli-
tude and because of short-range correlations induced
by the highly repulsive anharmonic core of the inter-
molecular potential. The knowledge of the value of
the motional renormalization (which in some cases
can be high as a factor of 3) is essential for the prop-
er interpretation of experimental data, which in turn
can be used to obtain information on the bare in-
teractions.

Horner? has recently formulated a theory for
short-range correlations where the pair distribution
function is parametrized so as to bear the (presum-
ably known) short-range asymptotic behavior and
constrained to produce moments of the displacements
which are consistent with the lattice dynamics up to
the second moment. Luryi and Van Kranendonk*
have made use of the moments to obtain certain re-
normalizations. However, their treatment is best
suited to deal with'effects due to vibrational anisotro-
py and does not yield a pair-distribution function.
The study of the density dependence of the renor-

malizations would enhance our knowledge concerning
the radial dependence of the interactions; however
there are no results yet available for renormalizations
involving short-range:correlations at pressures other
than zero.

In this paper pair distribution functions as well as
selected renormalizations are presented for solid H,
and D; for densities up to 10 cm?/mole (~20 kbar).
Horner’s concepts are basically followed but are fur-
ther developed by eliminating the use of the multipli-
cative polynomial in the pair distribution function
which we found to limit the applicability of the
method at high densities. Furthermore, a differential
equation (proposed by Brueckner and Frohberg®)
which better describes the short-range asymptotic
behavior is used in the calculation.

iI. ANHARMONIC PAIR DISTRIBUTION FUNCTION

The pair distribution g (T) can formally be defined
g Uy l'c'|T) = (B (T—XUK) +X(I'c))) ,

where X(/«) is the position of the particle labeled by
the /th unit cell and «th sublattice, and ( ) denotes
averaging over a canonical ensemble. The second
moment X of g(T) defined below

Nk t'w) = [ [F=R(0) +R ()]
x [F=RUk) +RU'D]gUkyl'K'| F) d*r

can be related® to the one-phonon spectral function
X'(q jj";w) via the fluctuation-dissipation theorem

Nap(lK51'K") = '}V 2 [ei?'i(l)ea(Kl qJj)— eit‘"ﬁ’(")ea(x'| qa)l
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In the above N is the number of unit cells, R (/k) = (X(/k)), n(w) = (e™*"—1)"', and e,(k|T ) is an eigenvec-

tor for the (T j) mode.

The anharmonic one-phonon spectral function can generally be expressed as’

ZwFJF(aj;w)

X'(qJj,w) =

i
M [wz—w%j—Zwﬁ.!A(ﬁ’j;w)]z+4(u27,-—jrz(aj;w)

0))]

where M is the mass, [w,} is some suitable set of basis frequencies, and 2w [A(T j;0) —iT(T j;0)] =3(T j0)

is the complex phonon self-energy.

In the present work the parametrized form of g(T) is given by

gl [F) = Af(Dexp = HF=Eic k)] -5 Uisl'ne) - [F=ECisl'k)]) 3)

The Gaussian parameters A, ? ( peak position of

Gaussian), and ¥ (width) are determined from the
moment constraints defined below

J et ®) ar =1 (42)
(normalization),
[ eUrrcFer =R —RU') (ab)

(lattice structure),
J g Ul | PIF —RU +RUKOE ' =Xl l'

(4¢)
Unlike the harmonic case, E and ¥ do not in general
coincide with R and X. The function f(r) should en-
sure the proper asymptotic behavior at short dis-
tances and is given here by the solution to the dif-
ferential equation

{-%V2+v(r)—ep p(r) =0, (5a)
with® ’
L) =|p(r)|%exp [%[f‘—-i(lx) +R(I'D/TeA)
r s rmax »
) =frmad, > Fmax - (5b)

v(r) is the bare potential interaction (isotropic part),
€, is an eigenvalue representing the effective pair en-
ergy in the solid, and 7. is the distance at which
Y(r) reaches its first maximum. This differential
equation, which was originally proposed by Brueckner
and Frohberg® for quantum crystals, can be derived
from a variational procedure on the two-body cluster
contribution to the ground-state energy and should
thus give a good approximation to the short-range
asymptotic behavior of g(T).

Horner?® has suggested the following parametrization

~for g(T):
gl l'w|T)=la+b(r—=R") +c(r—=RNAf(r)
xexp[——;-(f'—l_{") ':—.l(/K‘,/'K')
(T—-R"1, 6)

1]
with R'= R(/k) —R(I'c") and f(r) satisfying the dif-
ferential equation

—%vuvm]w(f) -0, )

with
f(")=‘d‘(r)l2 ’ rsrmax »
f(r)=f(rmax) , P> Fmax -

Here the Gaussian parameters are fixed and the
parameters a, b, and ¢, in the multiplicative spherical-
ly symmetric polynomial are varied to obey the mo-
ment.constraints [ Eqs. (4)].

With this procedure, we encountered pathologies at
high densities where g (T) displayed oscillations and
took negative values. No pathological behavior was
encountered with the use of Egs. (3) and (4). Furth-
ermore, the form for g(T) expressed in Eq. (3) can
be adapted to the symmetry of the lattice and allows
for the satisfaction of constraints on all the tensor
components of the moments. This is important for
the renormalization of the electric quadrupole in-
teraction where vibrational anisotropy plays an impor-
tant rolé? and is not possible with a spherically sym-
metric term. Horner® had originally introduced the
multiplicative polynomial as a general (nonspherically
symmetric) quadratic form. With this form, howev-
er, the moments constraints forced g (T) into neg-
ative regions even at low densities.

III. RESULTS

The normal mode contribution to X in Eq. (1) can
be expressed in terms of effective frequencies!® @

TJ
defined below
[n(éz,) +=] w
LT [ X(@jsw)n ) + 114
@gj m
- (8)

The anharmonic spectral functions for H; and D,
which are used here have been calculated recently!!
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and good agreement with experiment was obtained.
There, the basis frequencies {w,} in Eq. (2) were
determined from the standard self-consistent phonon
approximation and the self-energy Z(w) included cu-
bic three-phonon decay processes and higher order
anaharmonic terms. A higher order approximation
for X" (w) would require the {w?j} and other vertices
to be renormalized iteratively via the calculated g(f).
However, it is important to keep in mind that the X’s
utilized here contain cubic and higher anharmonic
corrections which tend to compensate for different
kinds of vertex renormalizations. Such an iterative
procedure may be important for highly quantum crys-
tals such as low-pressure solid helium, but we do not
expect it to substantially change the present results
which, as we will show, are more sensitive to the
form of f(r) in Egs. (3) and (6) rather than A.

The frequencies @, defined in Eq. (8) have to be
calculated for various points in the Brillouin zone via
X'(qj;w). For computational economy we make the
numerical approximation where the LBT” are calculat-
ed only for the (100) zone boundary X point and,
with the help of the calculated isothermal elastic con-
stants, a five force-constants fit is produced in order
to extrapolate to other wave vectors in the Brillouin
zone.

The eigenvalue €p in Eq. (5a) represents essentially
the pair expectation of the potential and kinetic energy

eP=%<[5(1.<)2—13(1:,<,)12>+(vWUK)_Y([,K,))) ’

which is also evaluated using the self-consistent pho-
non basis.

With the spectral functions X"'(w) and elastic con-
stants calculated in Ref. 11, and the procedure out-
lined above, pair distribution functions in the form of
Eq. (3) were calculated for nearest-neighbors fcc H;
and D; at T =0 K for densities ranging up to 10
cm?/mole. For comparison both Brueckner-
Frohberg’s (BF) differential equation [ Eq. (5a)] and
Horner’s [H, Eq. (7)] were used; however, in the
latter case (H) the numerical method (Newton-
Raphson) used to obtain A4, _§', and ¥ became un-
stable for molar volumes smaller than 12 cm®*/mole.

Figure 1 shows g(T) along the nearest-neighbor
pair axis for (a) H, at 22.73 cm?®/mole (P =0) and
for (b) D, at 12 cm®/mole. Plotted are a correlated
Gaussian distribution and the distribution functions
obtained using the BF and H differential equations
[Egs. (5) and (7)]. For a given density all three dis-
tribution functions plotted have identical Oth, 1st,
and 2nd moments of the displacements. One should
note in Fig. 1(a) the difference in the short-range
behavior of the BF and H results. This will in turn
be reflected in the renormalizations shown in Figs. 2
and 3. The electric quadrupole interaction reduction

o

0

2273cmImole
A1 1 1 1

1
2 3 4 5 2 3 4 5
INTERMOLECULAR DISTANCE (A)

Pair distribution function (arb. units)

FIG. 1. Pair distribution functions with short-range
asymptotic behavior calculated with Eq. (5): BF, and Eq.(7):
H. Correlated Gaussian without short-rénge correlations:
CG. The pair distribution functions are shown relative to
the isotropic intermolecular potential v(r) of Silvera and
Goldman (Ref. 17).

factor

s Y12/ YD)
B o L AL
£s= (7] iRy ©)
where Ry is the nearest-neighbor distance, is shown
in Fig. 2 as a function of density for the various ap-

proximations. The quantity goo= ((r/R)~'%) which
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ELECTRIC QUADRUPOLE INTERACTION REDUCTION FACTOR
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FIG. 2. Density dependence of the electric quadrupole in-
teraction reduction factor for various pair distribution func-
tions as labeled in Fig. 1. RL denotes the rigid lattice value.
O: Ref. 4; O: Two-body cluster Nosanow-Koehler Jastrow
method.
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FIG. 3. Density dependence of the motional renormaliza-
tion of (Ro/r)1° for various pair distribution functions as la-
beled in Fig. 1. RL denotes the rigid lattice value.

enters in the total integrated intensity of the far in-
frared absorption line shape'? is plotted in Fig. 3.
The rigid lattice (RL) value of &s4 value of ggp is uni-
ty for all densities. The difference between the H
and BF solutions for the short-range part of g(T) is
clearly reflected in these figures.

In Fig. 2 we also show a value for &s4 we obtained
using the Nosanow-Koehler!? two-body cluster vara-
tional method, and a value calculated by Luryi and
Van Kranendonk.* Hardy et al.'* experimentally ob-

tain an effective quadrupole reduction factor of 0.856
for H, at zero pressure. However a direct compari-
son with theory requires taking into account [besides
&s4 defined in Eq. (9)], nonquadrupolar valence and
dispersion terms which are poorly known. With this
data the BF renormalization implies a deviation of
—10.5% from (motionally renormalized) ideal qua-
drupolar behavior, and —6.5% from the H renormali-
zation, at P =0,

IV. CONCLUDING REMARKS

Using moment constraints, pair-distribution func-
tions, and motional renormalizations of electric qua-
drupole interactions in the solid hydrogens have been
obtained as a function of density. The new form for
the pair distribution function introduced here allows
the procedure to be carried out at high densities and
the marked differences between results obtained
from the Horner and Brueckner-Frohberg differential
equations point to the necessity of a good a priori
knowledge of the asymptotic short-range behavior for
the Horner scheme. Because it is derived variational-
ly we expect the BF equation results to be more real-
istic. However, some improvement might be
achieved by taking into account three-body terms!® or
applying methods from the theory of inhomogeneous
liquids.'® Of all previous treatments involving short-
range correlations, the BF solution yields the weakest
renormalization of the electric quadrupole interaction.
The implementability of the present method to high
densities can now allow for a better interpretation of
high-pressure experiments in the solid hydrogens.
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