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Determination of the algebraic exponents near the melting transition
of a two-dimensional Lennard-Jones system

C. Udink and J. van der Elsken
Laboratory for Physical Chemistry, University of Amsterdam, Nieuwe Achtergracht 127,
NL-1018 WS Amsterdam, The Netherlands
(Received 24 June 1986)

We report a calculation of algebraic exponents for translational order as well as for orientational
order in a two-dimensional molecular-dynamics system containing 12480 Lennard-Jones particles,
near the melting transition. Results of the calculation, which proceeds via finite-size scaling, show
that values of algebraic exponents are in better agreement with the Kosterlitz-Thouless-Halperin-
Nelson-Young (KTHNY) theory than was hitherto assumed. Higher moments of the orientational
order parameter, however, produce exponents deviating from those obtained with the zeroth mo-
ment. This observation of imperfect scaling is an illustration of the discriminative ability of the
finite-size scaling approach, in the identification of algebraically ordered phases in molecular-

dynamics simulations of large systems.

Since the extension of Nelson and Halperin' and
Young? of the Kosterlitz-Thouless theory® of two-
dimensional melting, a great many papers have appeared,
dedicated to computer simulations of this transition in
several two-dimensional systems.* Focusing here on
simulations of Lennard-Jones systems, all authors agree as
to the existence of an intermediate region, which is ob-
served between the solid and the liquid phase.’~!!

There is however no consensus about the nature of that
intermediate region. Visual inspection shows that the
theory of dislocation and disclination unbinding does not
seem to apply, which leaves open the possibility of a dif-
ferent physical mechanism. Calculation of the thermo-
dynamic properties shows compatibility with a first-order
melting transition,!! and an intermediate two-phase coex-
istence, and so does a calculation of the bond angle sus-
ceptibility on various length scales. '

The only truly quantitative test, however, is given by a
calculation of the exponents in the correlation functions
of translational and orientational order. Early attempts
were made on too small systems, whereas a more recent
molecular-dynamics simulation of over 10000 particles®
paid no special attention to the calculation of the ex-
ponents. This led us to the investigation of the decay of
the orientational correlation in a molecular dynamics
simulation of a system of 12480 Lennard-Jones particles
with a finite-size scaling method. The first aim of this
paper is to point out that this method can produce reliable
results in investigations of phases with algebraic decay of
the order parameter correlation function. It is important
to stress at this point that in order to obtain useful results,
one has to simulate large systems. The results will show
that at least the values of the algebraic exponents
determined in this way are in agreement with the predic-
tions of the Kosterlitz-Thouless-Halperin-Nelson-Young
(KTHNY) theory. We also present the results of calcula-
tions of the thermodynamical properties and orientational
order correlation functions, to allow comparison with ear-
lier work, especially.® We start with a calculation of the
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decay of translational order in the traditional way from
the decay of S(k), Eq. (4). These last calculations are
used as a test on the validity of the results obtained by
scaling methods.

We performed molecular dynamics simulations at con-
stant density for several temperatures near the melting
transition. Most of the calculations were performed on
the Cyber 205 of SARA (Stichting Academisch Reken-
centrum Amsterdam). Initial runs were made on the
Cray-1 of the University of London Computer Center.
The system consisted of 12480 particles, interacting
through the commonly used Lennard-Jones potential.

In the following we use reduced units: »*=r/2!/%¢ for
the length scale and the usual scaling for the temperature
T*=kgT /€. In these units our cutoff radius amounts to
r&=3.0, the time step to At*=0.005 and the density is
p*=1.10. The simulation time per temperature point
varies from 10000 time steps for points in the solid phase
to 30000 time steps for temperatures in the intermediate
region.

Translational order is reflected in the structure factor
S (k) defined as a function of the wave vector k

S(k)'-: 2 eik-R<eik~u(R)e—ik-u(0)) (1)
R

in which u(R) is the displacement vector of the particle
with equilibrium position R and the sum is over all equi-
librium positions R (the lattice vectors in the direct lat-
tice).

This structure factor can be rewritten as

S=14+2 3 ™M @)
N

with N the number of particles in the system, and r; is
the vector difference between the instantaneous positions
of particle / and particle j. The summation is over all
particle pairs.

After integrating over the angle this expression goes
nto
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S =1+ = 3 Jolkry) | 3

rij

in which Jj is the zeroth-order Bessel function of the first
kind. This expression is especially useful in reaching sta-
tistically reliable results from one configuration. The
disadvantage of using (3) is the loss of information on
angle-dependent properties. The behavior of S (k) in the
vicinity of the first reciprocal-lattice vector G, is predict-
edas '3

—24+n5(T)

S(k)~ |k —G | (4)

with

kT |G|*3u+n)
T Amu2u+A)

where u and A are the usual elastic constants. In the solid
phase 1G(T) should reach the limiting value + at the
melting transition, the point at which algebraic transla-
tional order is replaced by exponentially decaying transla-
tional order.

To calculate orientational order of bonds between
neighboring particles, we must have a criterion to deter-
mine whether two particles are neighbors. There are
several ways to do this. A straightforward way is to take
the six nearest particles as neighbors. The exact definition
of neighbors however, is provided by the Voronoi con-
struction. To perform a Voronoi construction in a system
with over 10000 particles is not trivial. We used an algo-
rithm by Watson!# originally devised for the contouring
of raw data, which is mathematically speaking the same
problem.

The order parameter of the sixfold order is calculated
as

yle; ’ (5)

N
> exp(6i6;;) , (6)

nb j=1

Pelr;) =

in which the sum is over all neighbors j of the particle i,
as determined in the Voronoi construction. The orienta-
tional correlation function

g6(r)=(ts(r)h5(0)) (7

is then obtained by taking the product of the Fourier
transformed order parameters, and transforming back to
real space.!> The Fourier transforms were performed on a
square grid. According to the KTHNY theory the orien-
tational correlation function should decay algebraically,

ge(r)~r ™, (8)

in the intermediate phase, with a limiting value n¢= + at
the second transition.

Finite-size scaling was originally devised by Binder in
the Monte Carlo calculation of spin systems.!® The
method can be used to study properties near critical points
and consequently is well suited to calculate algebraic ex-
ponents in quasi-long-range-ordered phases. Frenkel
et al.'7 used this method to identify algebraic order in a
two-dimensional hard-core nematic in a Monte Carlo
simulation. The application to a molecular dynamics
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FIG. 1. Pressure and potential energy minus kinetic energy
per particle versus temperature.

simulation is straightforward. An algebraically ordered
phase means that the appropriate correlation function
behaves like

(00 )y~ |ri—r;| 77" 9)

in which O; is the molecular order parameter. Conse-
quently, we can derive an expression for the system size
dependence of the block-averaged order parameter
0 =(1/N)3,; O; as

|O| ~L—"?, (10)

where N; is the number of particles in the subsystem con-
sidered; L =(N,)!/? is the length of the subsystem. For
translational order the relevant molecular order parameter
is O; = exp(iG-u) and for orientational order O; =(r;).
We now turn to our results. A rough way to locate the
intermediate region is to plot pressure and potential ener-
gy minus kinetic energy versus temperature (see Fig. 1).
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FIG. 2. The orientational correlation function ge(r) as a
function of reduced distance r, for the temperatures 7 =0.69,
0.71, 0.77, 0.80, 0.90, 0.95, and 1.16 from top to bottom.
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There was no hysteresis observed in traversing the transi-
tion. These results are consistent with those of Ref. 8 (a
simulation at a slightly higher density). The sharp
minimum at T =0.83 may be seen as the beginning of the
melting process. Figure 2 shows the orientational correla-
tion functions for various temperatures. These functions
are smooth because the orientational order parameter was
averaged in a small square neighborhood of the particle
before the Fourier transform was taken. The functions
show an asymptotic behavior which may be in qualitative
agreement with Ref. 8, but is no more suited to extract
quantitative data. To find the values of the algebraic ex-
ponents we have to study the system size dependence of
the order parameter. Out of the system of 12 480 particles
we constructed subsystems of four different sizes, respec-
tively, 4, 7c» o> and 3¢ of original system size. The or-
der parameters in the systems of different sizes were
evaluated and plotted in a log-log plot versus linear box
size. The slope of a weighted fit then provides us with the
algebraic exponents according to Eq. (10). The result for
the translational order parameter is displayed in Fig. 3.
The dotted line corresponds with the predicted stability
boundary, i.e., no stable translationally ordered phase can
exist with a value 7 above the critical value +. The plot
of 7 as a function of temperature shows a sharp increase
at the temperature 7 =0.83. Moreover the KTHNY
value 7=+ is passed at that temperature. The coin-
cidence with the transition temperature obtained from the
potential-energy plot shows that in this simulation there is
no overestimation of stability of the low-temperature
phase, as is often the case in simulations of finite systems.

-40 hN

-50 \\

log, |0| -60

FIG. 3. The logarithm of the translational order parameter
plotted versus the logarithm of the box length of the system, for
five different system sizes, and for the temperatures T =0.69,
0.71, 0.77, 0.80, 0.87, 0.90, 0.95, and 1.16 from top to bottom.
The slope of the line in this plot is the algebraic exponent 7 /2.
The dotted line designates a line with a slope which equals the
critical value 7/2=+. The dashed line is a calculation of a ran-

dom configuration.
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FIG. 4. Values of the algebraic exponent for translational or-
der as a function of temperature, calculated from the behavior
of the structure factor near the first reciprocal-lattice vector
(solid circles) and from the scaling procedure (open circles).

The dashed line in Fig. 3 is the result of a randomly gen-
erated configuration, which shows the typical 1/V'N
dependence, a reflectance of lack of correlation. The con-
figuration in the fluid phase T =1.16 is seen to approach
this line. A comparison of 7 values obtained from this
method and 7 values obtained from the structure factor is
made in Fig. 4. The traditional way of determining 7% is
seen to produce more scatter in the datapoints and does
not show a sharp transition. This is partly due to the fact
that the structure factor is obtained from a single-particle
configuration, according to the analytical averaging pro-
cedure (3), and the scaling procedure incorporates 100
configurations, but the scatter is also a product of the in-
herent difficulty in fitting power-law behavior.

The algebraic exponent for orientational order 7 in the
intermediate phase was calculated with the same scaling
procedure. The results are displayed in Fig. 5. The most

FIG. 5. Scaling results for the algebraic exponent for transla-
tional order 7 (solid circles); the dotted line is the critical value
17:%, and for orientational order 74 (open circles); the dash-
dotted line is the critical value o= +. The solid curve is the fit

through the experimental points of the orientational correlation
length &6 in the fluid phase, as in Eq. (13).



282 C. UDINK AND J. van der ELSKEN 35

relevant temperature points in this plot are averaged over
five configurations. The sudden increase of 74 as a func-
tion of temperature is almost as sharp as in the transla-
tional case, the value of %, associated with the second
transition is reached at the temperature 7°'=0.94. The
orientational correlation length &4 in the fluid is calculat-
ed in a straightforward way from a fit of the orientational
correlation function

Eo(T)

g6(r)~ exp . (11

From the predicted behavior

§6= exp b ] (12)

|T—T,[7

we can also calculate the temperature of the second transi-
tion point, the result is 77=0.93. The fit

0.65

—_ (13)
|T—0.93|'72

6= exp

is shown in the figure as a solid line. The combined re-
sults shown in Fig. 5 of the temperature dependence of
the algebraic exponents and of the orientational correla-
tion length are in complete and quantitative agreement
with the KTHNY theory and give the two transition tem-
peratures 77 =0.83 and 7, =0.93.

With the same scaling procedure we can also obtain the
higher moments of the orientational order parameters as a
function of system size. From these moments we can cal-
culate the same algebraic exponent 74. If the scaling law
is perfectly obeyed the values obtained from the higher
moments should be the same as those obtained from the
zeroth-order moment. Comparison of these values is
made in Fig. 6. There is a small but significant difference
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FIG. 6. 7' values and 7¢’ values obtained from the zeroth
moment (/=0: dotted line); second moment (i =2: dashed

line); fourth moment (i =4: solid line).
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FIG. 7. Illustration of the procedure used to obtain solid
fractions in the intermediate region, here shown in the case of
716 of the system. The solid order parameter is linearly extra-
polated from the solid phase, the fluid order parameter is taken
as a constant with the value of the random configuration.

between the results obtained from the different moments.
Such a flaw in the scaling behavior means that the simu-
lated systems in the transition region are not homogene-
ous. Strandberg, Zollweg, and Chester!? have come to a
similar conclusion by comparing the distribution values of
the angular susceptibility, which corresponds to the
second moment of the orientational order parameter. It is
however an altogether different matter to conclude from
the inhomogeneity of the system on the scales considered
here, that we have to deal with a solid-liquid coexistence
region and a first-order transition.

To illustrate this point we can calculate the apparent
solid fraction in the presumed coexistence region. In an
actual mixture the order parameter | O | should be linear-
ly composed of the order parameter in the solid phase and
the order parameter in the fluid phase and so should all
the moments. The solid fraction can thus simply be deter-
mined from the calculated values of the order parameter
or its moments and a knowledge of the values in the solid
and in the fluid phase. The solid phase values are slightly
temperature dependent and were therefore extrapolated
from the true solid phase points. The order parameter of
the fluid phase is taken as the temperature-independent
one from the randomly generated configuration. The pro-
cedure is illustrated in Fig. 7 which is a calculation of a
system with size 5z of the entire simulated system. Solid
fractions are calculated in this way as a function of tem-
perature for different system sizes and from zeroth,
second, and fourth moments. The results show an ap-
proximately linear behavior with temperature irrespective
of system size or the order of the moment, as to be expect-
ed in a two-phase region with a temperature-independent
heat of fusion. However, the values of the fractions ob-
tained from the different moments differ widely thus re-
futing the presumption of the presence of two phases. In
Fig. 8 it is shown for a temperature in the intermediate re-
gion that although the discrepancy diminishes with de-
creasing system size, even for the smallest system there is
no coincidence. This means that the established inhomo-
geneities of the system persist up to dimensions of a few
interparticle distances only. Therefore there is no two-
phase coexistence in the sense that there are distinguish-
able solid and liquid regions. The intermediate phase may
not be perfectly homogeneous but considering the tem-
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FIG. 8. Solid fraction at T*=0.90 under the assumption of
coexisting phases according to zeroth moment (solid circles),
second moment (solid squares), and fourth moment (asterisks),
of the order parameter.

perature behavior of the algebraic exponent for orienta-
tional order and of the orientational correlation length we
cannot but conclude that the intermediate region has the
characteristics of an orientationally ordered phase.

Finally we remark that in the determination of the alge-
braic exponent for orientational order, we noticed very
long relaxation times for the larger systems. This is what
makes the observation of the algebraic decay in the corre-
lation functions such a problem. Efforts to capture the
mechanism of the melting transition by simulating still
larger systems will be limited by the long simulation times
needed to assure orientational equilibration.
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