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Observation of the J =4 Roton Band in Solid Deuterium under Pressure
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O Natuurkundig Laboratorium, Universiteit van Amsterdam, Amsterdam, The Netherlands
@ Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138
O Laboratoire de Spectroscopie Hertzienne de I'Ecole Normale Superieure, 24 Rue Lhomond, 75005 Paris, France
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Raman scattering in high-pressure solid orthodeuterium has been used to make the first observation of
the J =4 roton band in 0-D3, not confined to k =0. The results are consistent with an almost dispersion-
less band. A determination of the J=2 roton band density of states is in agreement with our computer

calculations.

PACS numbers: 63.20.Dj, 62.50.+p, 67.80.Cx, 78.30.Hv

The rotational energy states in solid parahydrogen and
orthodeuterium at low temperature and pressure are ro-
ton bands characterized by the even rotational quantum
number J. In the ground state the molecules are in the
J=0 state; detailed spectroscopic studies of the J=2
band at the k=0 point in the Brillouin zone have been
made earlier,! in particular, by Raman scattering of the
J=0— 2 transitions. In general, the J=4 and higher
bands cannot be excited due to the Raman selection rule
of AJ=0, 2. One method of exciting the J=4 band
would be to thermally populate the J=2 band which
would then allow J=2— 4 transitions; however, at am-
bient pressures the crystal melts before significant popu-
lation of the /=2 band is achieved. By using pressure to
raise the melting temperature of 0-D, we have been able
to populate the J=2 state sufficiently to make the first
direct observation of the J=4 band, not confined to zero
wave vector. Because of the very small dispersion of the
J=4 band, it was possible to experimentally determine
the density of states of the J=2 band; this compares
favorably to our calculated density of states.

At ambient pressure solid H, and D, melt at T = 14
and 19 K, respectively. However, the /=2 and 4 roton
bands remain essentially unpopulated at the melting

point. The energy of the center of gravity of the J=2
band is about 6B, where the rotional constant B has a
value of 85.4 K for H; and 43.0 K for D,. As a conse-
quence, the Boltzmann thermal factor for the J=2 band
in deuterium, exp(—6B/kgT), is about 10 % at the
melting point; the situation is much worse in hydrogen
(10 7'®). Since the melting temperatures of H, and D5
increase rapidly with density, while B remains relatively
constant, high pressure can alleviate this problem. We
have studied a crystal of 0-D,, which has the hexagonal-
close-packed (hcp) structure, at 7=40 K and a pressure
of ~4 kbar (molar volume 13.7 cm3/mole) for which
Tree=75.4 K. At this temperature the population of
the J=2 band is about 1.6x10 ™3 this can provide a
measurable Raman intensity in a well designed ap-
paratus. Moreover, the J=2 band is still well defined
as demonstrated by the characteristic triplet of the J
=0— 2 spectrum shown in Fig. 1.

The energy dispersion of the rotational band states is
determined principally by the anisotropic intermolecular
pair potential. Since J is an approximately good quan-
tum number in the solid, the single-particle wave func-
tions, which are used to construct the many-body wave
functions, are spherical harmonics.? The Hamiltonian is
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FIG. 1. The Raman spectrum of a pressurized 0-D> crystal at T=40 K, showing the J =2— 4 band transition. The dashed line
shows the 7=4.2-K background. The other features are discussed in the text.
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given by the rotational kinetic energy and a sum over
pair potentials,

H=XBJ}+ X V(Q,Q,,R;), (1)

i i>j

where Q; and Q; are polar angles of the molecular axes
with respect to the vector R;; between the center of
masses of the molecules. It is thus useful to expand the
potential in spherical harmonics:2

V=Z Zs,,;zC(11,12,11+12,m, —m)C/lm(Ql)Cf;‘m(ﬂz).

iy, m
(2)

Here /| and /, are even positive integers; the dependence
on the molecular separation is contained in g,
C(\,15,1,+1,,m,—m) is a Clebsch-Gordan coefficient,
and C;,m(Q) is a Racah spherical harmonic. If we are
only interested in excitations from the J=0 level to the
J=2 band, then it suffices to terminate V at /|, =/,=2.
The dominant anisotropic term is due to the permanent
electric quadrupole-quadrupole (EQQ) coupling, with
£,=(70)'203/R">, where 0, is the EQ moment; the
matrix elements of higher-order spherical harmonics
vanish within these rotational manifolds. When the
J =4 manifold is considered, the largest anisotropic term
which will affect the energy of the J=4 roton band is
due to the electric hexadecapole-hexadecapole moment,
with £4=3(11x130)'2Q3/R°, where Q, is the hexade-
capole moment. This has been measured at zero pres-
sure in hydrogen® and has a value in good agreement
with the calculations of Karl, Poll, and Wolniewicz.*
Evaluating the strength of the EQQ and electric hexa-
decapole-hexadecapole interactions shows that the latter
is about 3 orders of magnitude smaller than the EQQ at
the densities of interest in this experiment. As a result,
the J =4 band will be very narrow and the energy will be
essentially independent of the k vector; however, this has
never been determined experimentally.
The Raman scattering efficiency is given by

40,0}

SHr = pPi§:|(f|axu|i>|28(hwi—ha)f—Efi).

3)
Here w; and o/ are the angular frequencies of the initial
and final photons, and |i) and |f) are the initial and final
states of the crystal, with energy difference Es. p is the
molecular number density, P; is the probability that state
|i) is populated, and a,, is the Ay component of the crys-
tal polarizability. As usual, in this formulation a mo-
mentum-conserving & function has been suppressed. For
excitations from the ground state this confines the transi-
tion probability to Ak = 0, or k== 0 since k; =0.

The center of gravity of the J=2— 4 band transition
is expected at about 415 cm ~'. For the J=2 band all
states k; can be thermally populated so that transitions
with k,#0, but with the restriction k; —k,=0, are al-
lowed. The sum in Eq. (3) then becomes the product of
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the polarizability and the convolution of the density of
states of the initial and final states. Since the bandwidth
of the final state (the J=4 band) is expected to be nar-
row compared to the initial state,® the Raman efficiency
measures the density of the J=2 roton band in the ap-
proximation that the polarizability matrix element is
mode and energy independent. We shall check this by
comparing experiment to theory.

Raman spectra were obtained on a 97.7% o0-D; sample
using the 5145-A line of an Ar* laser. Although a
diamond-anvil cell (DAC) allows easy pressurization of
deuterium, the small sample size and the diamond win-
dows result in an unfavorably low signal-to-noise ratio
for an exploratory experiment of this nature. A low-
strain transparent crystal (molar volume 13.7 cm?/mole)
was grown from liquid D, in an isochoric high-pressure
cell, described elsewhere.® The Raman spectra shown in
Fig. 1 are for T=40 and 5 K (dashed line). The broad,
triangular-shaped band in the region Av=390-440
cm ~! is the J=2-—4 band, which disappears at low
temperature. The weak bump at 421 cm ~', present at
40 and 5 K, arises from the sapphire cell windows. We
also see the strong J=0— 2 roton transition and the
J=1— 3 p-D, impurity line. The feature at 355 cm ~'
is due to the J =0— 2 transition of a 0.2% H, impurity
and the double rotational transition JJ'=00— 22 of o-
D,.” In Fig. 2(a) we show the difference of the 40- and
5-K spectra, representing the intensity due to the J =2
— 4 transition.

The J=2 roton bandwidth was estimated earlier by
Van Kranendonk,® who used a rectangular band shape to
find a bandwidth of 1.05&,. Lagendijk and Silvera®
have calculated the J=2 roton density of states for hcp
and fcc hydrogen lattices, as a function of molar volume.
We have performed this calculation for hcp deuterium at
the experimental molar volume. The energy was calcu-
lated for 46650 k values in the full Brillouin zone and
has a width of about 1.19¢;,. This is compared to the ex-
perimentally measured band shape in Fig. 2(b) where we
adjust the theoretical curve to 7=40 K, by multiplying
it by the appropriate Boltzmann factor P;. For compar-
ison, the first moment of the theoretical curve was fixed
to the energy of the gas-phase J =2— 4 transition. We
expect a shift of the center of gravity of this transition to
be no more than 1-2 cm ~! in the solid.®

In comparing theoretical and experimental results, we
note that the triangular shape of the experimental densi-
ty of states is well portrayed by the theoretical curve.
This provides confirmation of the almost dispersionless
nature of the J=4 band, along with an experimental
determination of the density of states of the J=2 roton
bands, in the approximation that the polarizability-
tensor matrix elements are energy independent. We
point out that there is a striking disagreement with the
density of states of the J=2 band recently calculated by
Bose and Poll,'® which we cannot explain. Comparing
the theoretical and experimental curves of Fig. 2(b) in
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FIG. 2. (a) The Raman spectrum of the J=2— 4 band
transition. The peak labeled S originates from the sapphire
windows of the cell; the arrow indicates the energy of the
J =2 4 transition in the gas phase. (b) The J=2— 4 band
and the calculated density of states. The theoretical curve has
been multiplied by a Boltzmann factor corresponding to 40 K.
The two curves have approximately the same vertical scale for
easy comparison.
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more detail, we note differences in the high- and low-
frequency sides. A possible explanation for the differ-
ence at low frequency is a difficulty in determining the
background curve with precision, so the background sub-
traction gives distortion in flatter regions of the curves
(see Fig. 1). On the high-frequency side the experiment
is broader and less peaked than theory. This may be a
result of other g; terms in the Hamiltonian, Eq. ),
which are known to grow with pressure and have been
ignored here, or possibly due to anharmonic terms®
which have also been disregarded in the present calcula-

tions.

Now that we have established this technique, it would
be very useful to carry out further studies in a DAC to
much higher pressures and at elevated temperatures to
increase the intensity. In particular, it has been suggest-
ed by Lagendijk and Silvera that the broken-symmetry
transition to orientational order in 0-D, at 28 GPa (Ref.
11) and in p-H, at 110 GPa (Ref. 12) is due to a soften-
ing of a roton mode at the zone edge; Igarashi has sug-
gested that although the mode softens, it does not go to
zero energy due to the effects of higher-order interaction
terms.'®> Experimental studies of the density of states of
the /=2 roton band at very high pressures would help to
sort out the mechanism of this phase transition.
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