
���������	���
���������
���
�	���������������������������
�����������������������������������
�����������������
��������������
����������� � �����	�!���
�����	���!������� �"�"�#�$�%� �#�!�&�$�'�#�(

�����������	�
 �����
������������������
�����������
���� ����������������������
����� �!���"�� �����#���"�$��

�%�&�'�(�)�*���+�&�(���,�-�(�.���&�����.�/�*�����&�0�0�&�1�	�2�3���%�&�'�(�)�*�4��
�.������ �
� �5���6����
�.���5���� �-�������5�
����������� �"���������5�����"� ���7������� �
�5�����7����� �"�7� �
���������7����������� �"���������5�!
�-���5�8�"� �+�!�4 �,�����9�������5
���
�6�����5�� ���2�1�	�����	�����"� ���
�5���6�!���	���!�5���5���5�����+�	�	�4
�:���
� ��������

���'�0�0���;�	�;�0�	�&�3�(�-�,�/�	�)���
�*�.�-�	�0�%��
�> �8�5�5�����<�<�8�������8�
���������������5�<�����������<�������������=��

�)�����������*����
��
�+���	���
�����������������
�������
����� �������������,���������������������-�������������
���������
���������������������������������.�����������������
�����������
�������������������
����� ����
�.�����������*�����������	���������������������������������
�����
���������������.���	�����������������
�	���������������������
�	�����������������	�����������������������/���������������������
���������������.���������������	���.�����.�������	���/��
�)�����
�����������)���������������!
��
��
�������������������������
�������������.�����������������������,�������������	���,���
���������
�����������������������������������
�����������������
����������������� � ���
�����!�����
�!���	��
�����
�*�����
���������#�0�"�$���"�"���"�$��

http://hdl.handle.net/11245/2.34928
http://hdl.handle.net/11245/1.151564
http://dare.uva.nl

A Meta-Environment for Generating
Programming Environments

PAUL KLINT

CWI, Amsterdam and the University of Amsterdam

Over the last decade, considerable progress has been made in solving the problems of automatic

generation of programmmg/development envmonments, Wven a formal definition of some

programming or specification language. In most ca~es, research has focused on the functlonahty

and efficiency of the generated environments, and, of course, these aspects WI1l ultimately

determme the acceptance of envmonment generators. However, only marginal attention has been

paid to the development process of formal language defimtlons Itself. Assummg that the quality

of automatically generated environments wdl be satisfactory wlthm a few years, the develop-

ment costs of formal language definitions wdl then become the next limiting factor determmmg

ultlmate success and acceptance of envu-onment generators.

In this paper we describe the des]gn and Implementation of a meta-enwronment (a develop-

ment emnronment for formal language definitions) based on the formalism ASF + SDF This

meta-environment IS currently being mlplemented as part of the Centaur system and is, at least

partly, obtained by applying environment generation techniques to the language defimtlon

formahsm itself. A central problem is providing fully interactive editmg of modular language

definltlons such that modlilcatlons made to the language defimtion during editing can be

translated immediately to modifications m the programming environment generated from the

original language definition. Therefore, some of the issues addressed are the treatment of

formahsms with user-definable syntax and incremental program generation techniques

Categories and Subject Descriptors: D,2. 1 [Software Engineering] Requirements/

Specifications-languages; D 2.6 [Software Engineering]: Programmmg Envmonments;

D 31 [Programming Languages] Formal Detinltions and Theory—,~ rztax. semantzcs: D.3.4

[Programming Languages]: Processors

General Terms: Design, Languages

Addltlonal Key Words and Phrases: Algebralc speclficatlon, application generators, application

languages, concrete and abstract syntax, incremental program generation, language defimtlon

formalism, meta-environment, programming environment generation, programming language

semantics, user-definable syntax

Partial support recewed from the European Commumtles under ESPRIT project 2177 (Genera-

tion of Interactive Programming Environments 11–GIPE II) This 1s a completely rev]sed and

extended version of a paper that appeared earlier in Algebralc Methods II Theory. Tools and

Applzcutzons, VO1. 490. J. A. Bergstra and L. M. G. Feijs, Eds, Lecture Notes in Computer

Science, Sprmger-Verlag, 1991, 105-124.

Author’s address. CWI (Centrum Voor Wiskunde en Informat,ca), P. O. Box 4079, 1009 AB

Amsterdam, The Netherlands. email klint@cwi.nl

Permission to copy without fee all or part of this material m granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is ~ven that copying m by permission of the

Association for Computing Machinery. To copy otherwise, or to repubhsh, reqmres a fee and/or

specific permission.

G 1993 ACM 1049-331x/93/0400-0176 $01.50

ACM Transactions on Software Eng’meenng and Methodology Vol 2, No 2, Aprd 1993, Pages 176–201

A Mets-Environment for Generating Programming Environments . 177

1. INTRODUCTION

Over the last decade, several research projects have focused on the automatic
generation of programming environments given a formal specification of a
desired language (for instance, Mentor [6], PSG [1], Synthesizer Generator

[27], Gandalf [101, GIPE [14], Genesis [8], Graspin [7], and Pan [2]). A
programming environment is here understood as a coherent set of interactive
tools such as syntax-directed editors, debuggers, interpreters, code genera-
tors, and pretty printers to be used during the construction of texts in the
desired language. This approach has been used to generate environments for
languages in different application areas such as programming, formal specifi-
cation, proof construction, text formatting, process control, and statistical
analysis. All these projects are based on the assumption that major parts of
the generated environment are language independent and that all language-
dependent parts can be derived from a suitable high-level formal specifica-
tion. Various problems have been studied:

—integration of text-oriented editing and syntax-oriented editing;

—automatic generation of incremental tools from nonincremental specifica-
tions;

—a single integrated language definition formalism versus several separate
formalisms;

—generation of interpreters and compilers;

—fixed versus user-definable user interfaces;

—fixed versus user-definable logic in language definition formalisms;

—descriptive power of the language definition formalism (specification of
polymorphic type systems, concurrency, etc.).

As a general observation, systems with fixed, built-in solutions for some
of the problems mentioned above are very easy to use in the application
area they were designed for—and probably in some unanticipated areas as
well—but it may be difficult or even impossible to use them in other areas.
Therefore, we currently see a trend toward systems with more open architec-
tures consisting of cooperating sets of replaceable components. In this way
one can obtain very general and flexible systems.

An example of such a general architecture is the Centaur system [4]
developed in the GIPE project. It can be characterized as a set of generic
components for building environment generators. These generic components
support, among other things, operations for

—manipulating abstract syntax trees, and

—creating graphical objects and user interfaces.

The kernel thus provides a number of useful data types but does not make
many assumptions about, for instance, the logic underlying the language
definition formalism. This generality is achieved by permitting a simple
interface between the kernel and logical engines such as a Prolog interpreter

ACM Transactions on Software Engmeermg and Methodology, Vol. 2, No. 2, Aprd 1993.

178 . Paul Kllnt

or a rewrite rule interpreter. Note that these logical engines are not gener-
ated from specifications but are implemented separately.

The kernel has already been extended with compilers for various language
definition subformalisms such as METAL [21], SDF [13], and TYPOL [5, 20],
as well as interactive tools such as the structure-oriented editor CTEDIT, the
generic syntax-directed editor GSE with integrated text-oriented and syntax-
oriented editing capabilities, and a tool for controlling the execution of
TYPOL specifications. The system thus resembles an extendible toolkit rather
than a closed system.

The current Centaur system gives some support for the interactive develop-
ment of language definitions (e.g., the interactive editing and debugging of
TYPOL specifications), but major efforts are still needed to obtain a true
interactive development environment for language definitions.

In this paper, we describe our own contributions to the GIPE project that
aim at constructing a “programming environment based on language defini-
tions” as already sketched in [II]. Some ideas on “monolingual programming
environments” [12] have also guided our work. We distinguish three phases:

(1) design of an integrated language definition formalism (ASF + SDF);

(2J implementation of a generator that generates environments given a
language definition;

(3) design and implementation of an interactive development environment
for As~ + SDF.

The latter leads to a meta-environment in which language definitions can be
edited, checked, and compiled just like programs can be manipulated in a
generated environment (i.e., an environment obtained by compiling a lan-
guage definition), Both the generator itself and the meta-environment have
been implemented on top of the current Centaur system. Coming back to the
issue of closed versus open systems, our system takes a middle position:
many mechanisms are built-in and cannot be changed by the user (this leads
to an easy-to-use system but probably blocks off certain applications),
but there is a well-defined mechanism to connect tools to the generated
environments.

The main topics to be discussed are

—interactive editing of modular language definitions with immediate
translation of modifications in the language definition to modifications in
the programming environment generated for it (this requires in our case,
for instance, incremental type checking, incremental scanner and parser
generation, and incremental compilation of algebraic specifications);

—treatment of formalisms with variable (i.e., user-definable) syntax.

The plan of the paper is as follows. In Section 2, we give an overview of the
features of the formalism ASF + SDF that have influenced the design of
the meta-environment. In Section 3, we present the global organization
of the ASF + SDF meta-environment. In Section 4, we address the issue of
defining the syntax of the equations in modules, and in Section 5 we give a

ACM TransactIons on Software Engmeermg and Methodology, Vol. 2, No 2, April 1993.

A Meta-Environment for Generating Programming Environments . 179

look inside the generic syntax-directed editor that forms the essential build-
ing block in our design. After these preparations, we describe the actual
construction of the ASF + SDF meta-environment in Section 6, We describe
the implementation techniques needed for the system in Section 7 and
conclude the paper with a description of the current state of the implementa-
tion as well as a discussion of the relative merits of our approach in Section 8.

2. ASF + SDF

The global design of the meta-environment for ASF + SDF to be discussed in
the next section can, to a large extent, be used for a variety of specification
formalisms. We make a number of assumptions about specifications and
the modules in specifications (e.g., assumptions about the mechanisms for the
import and parameterization of modules, for the renaming of names in
modules, and assumptions about the specific form of conditional equations).
There is, however, one specific feature that has largely determined our
design: modules cannot only introduce new functions and define their seman-
tics, but they can introduce new notations for these functions as well. The
implications of this feature are far reaching, since one has to provide for the
(syntax-directed) editing of specifications with a variable syntax.

Although a detailed understanding of the formalism ASF + SDF is not
necessary for understanding the remainder of this paper, a brief sketch of the
formalism may help the reader to see the benefits (and associated implemen-
tation problems) of user-definable syntax,

ASF + SDF is the result of the marriage of the formalisms ASF (Algebraic
Specification Formalism) and SDF (Syntax Definition Formalism). ASF [3]
is based on the notion of a module consisting of a signature defining the
abstract syntax of functions and a set of conditional equations defining their
semantics. Modules can be imported in other modules and can be parametri-
zed. SDF [13] allows the simultaneous definition of concrete (i.e., lexical and
context-free) and abstract syntax and implicitly defines a translation from
text strings (via their associated parse trees) to abstract syntax trees.
The main idea of ASF + SDF [13, 19, 29] is to identify the abstract syntax
defined by the signature in an ASF specification with the abstract syn-
tax defined implicitly by an SDF specification, thus yielding a standard
mapping from strings to abstract-syntax trees. This gives the possibility to
associate semantics with (the tree representation of) strings and to introduce
user-defined not ation in specifications.

Two (trivial) examples may help to clarify this general description. Figure 1
shows a definition of two modules. Module Booleans defines a sort BOOL,

constants true and false, and left-associative operator &. The equations define
& as the ordinary and operator on Boolean values. Module Naturals defines a
sort NAT, constant O, successor function SUCC, and infix operator <. The
equations define < as the ordinary less than operator on natural numbers.

This example shows how new syntax rules are introduced in a module
(appearing under the heading context-free syntax) and how they can be used
in the equations. The result is that, for instance, the equation [BI] can only

ACM Transactions on Software Engineering and Methodology, Vol 2, No. 2, Aprd 1993

180 . Paul Klmt

module Booleans
exports

sorts BOOL
lexical syntax

[\t \ n] + LAYOUT
context-free syntax

true - BOOL
false ~ BOOL
BOOL “W BOOL - BOOL {left}

equations
[Bl 1 true & true = true
[B2] true & false = false
[B3] false & true = false
[B4] false & true = false

module Naturals
imports Booleans
exports

sorts NAT
context-free syntax

“o ~ NAT
succ ‘((” NAT “)” - NAT
NAT “ < “ NAT + BOOL

variables
N - NAT
M ~ NAT

equations
[Nl] O <0 = false
[N2] SUCC (N) <0 = false
[N3] O < SUCC(N) = true
[N4] SUCC(N) < SUCC(M) = N < M

Fig. 1 An AbF + SDF specification of Booleans and Naturals

be parsed given the preceding syntax definition of the & operator. Since
arbitrary context-free grammars can be defined in this way, we cannot give a
fixed grammar for each module. Instead, all syntax rules defined in a module
(together with all syntax rules defined in imported modules) contribute to the
grammar of that particular module (see also Section 4).

Being interested in formal language definitions, we give an example of a
(trivial) type-checking problem. Consider the language L of programs of the
form

def {a lzst of zdent@rs} In {a lzst of identzfzers}

satisfying the constraint that each identifier appearing in the second list
appears in the first list as well. A definition of L is given in Figure 2 and
consists of three modules. Module Identifiers defines sorts ID (identifiers)
and ID-LIST (lists of identifiers) together with a membership function in. The
sort L-PROGRAM introduced in module L-syntax consists of all syntactically
correct L-programs. In module L-tc, we define the type-checking function tc[]
on L-programs that checks the constraint mentioned above.

ACM Transactions on Software Engmeermg and Methodology, Vol 2, No 2, Aprd 1993

A Meta-Environment for Generating Programming Environments . 181

module Identifiers
imports Booleans
exports

sorts ID ID-LIST
lexical syntax

[a-z] [a-zO-91* + ID
context-free syntax

“{” { ID “,”}* “}” + ID-LIST
ID in ID-LIST + BOOL

variables
Id [’]* + ID
Ids [’I* + {ID “,”}*

equations
[ldll Id in { } = false
[ld2] Id in {Id, Ids} = true
[ld3] Id != Id’

———. —————____—— ——————————— ———————

Id in {Id’, Ids} = Id In {Ids}

module L-syntax
imports Identifiers
exports

sorts L-PROGRAM
context-free syntax

def ID-LIST In ID-LIST + L-PROGRAM

module L-tc
imports L-syntax
exports

context-free syntax
tc “[” L-PROGRAM “]” -+ BOOL

equations
[Tell tc [def {Ids} in { }] = true
[Tc2] tc[def {Ids} m {Id, Ids’} 1=

Id in {Ids} & tc[def {Ids} in {Ids’}]

Fig. 2. A simple language and its type checker

3. THE META-ENVIRONMENT

Decomposing large systems into manageable pieces is, of course, an old
and well-known engineering technique. Applying modular decomposition
techniques to formal language definitions is, however, relatively new. In
principle, the benefits to be expected from this approach are the gradual
construction of a library of language definition modules that can be reused in
the formal definition of different languages, e.g., reusing parts of the defini-
tion of Fortran expressions in the definition of Pascal (but also see the
discussion in Section 8.3).

In this section, we present the architecture of a system for the interactive
development of modular language definitions. The main question will be how
to give support for the interactive editing of modules and how to update the
implementations of these modules automatically after each edit operation.

As already illustrated by the examples in the previous section, we are here

ACM TransactIons on Software Engmeermg and Methodology, Vol. 2, No. 2, April 1993.

182 . Paul Klint

considering a specification formalism in which

—a formal language definition consists of a set of modules;

—a module may import other modules from the language definition;

—each module may define syntax rules as well as semantic rules;

—the notation used in the semantic rules depends on the definition of the
syntax rules.

3.1 General Architecture

Figure 3 shows the overall organization of the system. First of all, we make a
distinction between the meta-environment (i.e., the interactive development
environment for constructing language definitions and for generating and
testing particular programming environments) and a generated environment

(i.e., an environment for constructing programs in some programming lan-
guage L, obtained by compiling a language definition for L in the meta-
environment). In the meta-environment one can distinguish:

—a language definition (in ASF + SDF) consisting of a set of modules;

—the environment generator itself, which consists of three components dis-

cussed below.

The output of the environment generator is used in conjunction with GSE
(Generic Syntax-directed Editor), a generic building block that we use to
construct environments. GSE not only supports (text-oriented and syntax-
oriented) editing operations on programs but can also be extended by attach-
ing “external tools” which perform operations on the edited program such as
type checking and evaluation. The main inputs to the Generic Syntax-directed
Editor are

—a program text P,

—the modules that define the syntax of P,

—connections with external tools.

One language definition can thus result in more than one generated
environment by connecting a number of instances of GSE to different sets of
external tools. Since both the syntax description of P and the definition
of external tools may be distributed over several modules we are faced with
the problem of managing several sets of grammar rules and equations
simultaneously. It may even happen that subsets of these grammar rules and
equations are used for other purposes in the same generated environment.

We will first motivate the architecture sketched in Figure 3 and discuss
some details of the environment generator itself. A detailed discussion of GSE

is postponed to Section 5.
Our point of departure is a formalism (AsF) in which the operations

for module composition (import, export, renaming, parameter binding) are
defined in terms of textual expansion: with each module one can associate
a new module that does not contain any module composition operations

(its so-called normal form) by textually expanding each composition opera-
tion that appears in the original module. This conceptually simple model is

ACM TransactIons on Software Engmeenng and Methodology, Vol. 2, No 2, Aprd 1993

A Meta-Environment for Generating Programming Environments . 183

Met a-environment

t Generated Enwronment
I
1
1
1 Name of module defining
1
1 the syntax of L

1

t I
L-Program

(text)
Gener]c Syntax-directed Echtor

Fig. 3. Global organization.

inadequate as a basis for implementation since the actual copying of modules
is not only expensive (both in compilation time and in size of the generated
code), but also difficult to extend to incremental compilation of modules.

An ideal implementation model is illustrated in Figure 4. At the specifica-
tion level, we assume a composition operation + on modules. At the imple-
mentation level, we assume both an implementation function 3 that maps a
module to its implementation and a composition operation @ on implementa-
tions. Given two modules Ml and Mz, the following equality has to hold:

From the perspective of interactive editing of modules this property is
attractive since we can reuse implementations of unchanged modules. For
example, when Ml is changed into M; we can reuse &(Mz), since

Y(M{ + MJ =Y(Mj) @Y(Mz) (2)

Unfortunately, in practice it is hard to find combinations of +, @, and -Y
with this property, since for reasons of efficiency most implementation func-
tions Y will perform global optimizations when constructing Y’(Ml + Mj)

which need global information from both Ml and Ma. The types of modules
and the instances of @ and Y that we will encounter are summarized
in Figure 5. In all these cases, + represents the operator for the textual
composition of modules.

We propose therefore the following, alternative, implementation model
sketched in Figure 6. Instead of composing implementations we build one
implementation for all modules in the specification and make a selection from
this global implementation to obtain implementations for individual modules.

ACM TransactIons on Software Engineering and Methodology, Vol. 2, No. 2. Aprd 1993.

184 Paul Klint

Ml

+

m(l) e I 4(M2)

I

—— W!fl + Mz)

1 I

Fig. 4. Ideal implementation scheme.

. .
lexical grammar scanner generator composition of scanners

context-free grammar parser generator composition of parsers

cond] tlonal equations equation compher composition of

cornphed equations

Fig. 5, Types of modules with associated operators .7 and 6

mm ‘-‘j(Ml + Mz)

I

select Ml select MZ

Fig. 6 Actual implementation scheme based on selection

More specifically, each module in the language definition contains a num-
ber of “rules” such as declarations, lexical and context-free grammar rules,
and conditional equations. We collect all rules from all modules in a single,
global set of rules. Each rule in this global set is tagged with the name of the
module in which it was defined. We use these tags to enable or disable
individual rules in the global set. Instead of constructing the normal form for
each module, we only have to calculate which rules in the global set must be
enabled to obtain the same effect as the desired normal form. After selecting
certain rules from the global set, these can be used immediately, for instance,

ACM Transactions on Software Engmeermg and Methodology, Vol 2, No 2, Aprd 1993

A Meta-Environment for Generating Programming Enwronments . 185

for parsing input sentences according to the selected set of grammar rules,
or for rewriting an input term according to the selected set of conditional
equations.

Consider, in Figure 7, a sequence of named modules which may contain
names of other modules to be imported as well as a number of unspecified
“rules” which we denote by lower-case letters. The names declared in an
imported module may optionally be renamed before it is imported. The
corresponding normal forms are shown in Figure 8 and the corresponding
global set of rules in Figure 9. The global set of rules contains the original
rules as they appear in the specification together with renamed versions
of the rules as needed for the normalization of all the modules in the
specification. As an optimization, we could remove from the global set those
renamed rules that are identical to the original one, i.e., rules that are not
affected by the renaming.

The success of this implementation model is determined by the efficiency of
the following operations:

—calculation of the set of rules corresponding to a normal form;

—enabling/disabling rules in the global set;

—selecting parts of the implementation of the rules in the global set for a
given set of enabled/disabled rules;

—modifying the global set of rules (and the corresponding implementation)
in response to editing operations on the specification.

The viability of this implementation model is further discussed in Section 7.
Returning to the global architecture shown in Figure 3, we distinguish

three components in the environment generator that maintain information at
a global level:

—The Module Manager (MM) administers the overall modular structure of
the language definition. This amounts to maintaining the import relations
between modules and keeping track of definition and use of individual
rules.

—The Syntax Manager (SM) administers the (lexical and context-free) func-
tions as well as the declarations of priorities (not further discussed here)
and variables defined in each module. It also creates and updates the
scanners and parsers derived from all modules.

—The Equation Manager (EQM) administers the equations defined in each
module together with the rewrite rules that have been derived from them.

The general principle is that the Module Manager manages all modu-
lar information and that the Syntax Manager and the Equation Manager
can access only the pieces of information that they need to carry out their
respective tasks.

Applying this organization to the example specification discussed above, we
obtain the situation shown in Figure 7. The Module Manager passes all
information related to syntactic issues to the Syntax Manager, which in turn
maintains two global sets of rules: lexical rules and context-free rules. All

ACMTransactIons on Software Engmeermg and Methodology, Vol. 2, No 2, Aprjl 1993

186 . Paul Kllnt

Lexical Rules

~ ~Rl =R2 =R1R2 b bRl bR2 bRl R2 c CRl CR1R2 d dR2
_—— ——

900090 0 0900 ;0

Language Definition Context-free Rules

module Ml: ~ ~R1 ~R2 ~R1R2 b bR1 bR2 bR1R2 , ,Rl ~R1R2 d ~

a, b
eoooeo 009000 0

module M2:

imports Ml Environment Generator
c

module F13:
imports

Ml a

k12 renamed by RI

d

module M4:

imports

Ml ~

M2
~R2 =R1R2 b bRl bR2 ~Rl R2 c ~R1 CR1R2 ~~R2

M3 renamed by R2 : ~yy;~~y:~y;y

Flg,7, Processing ofamodular specification (module M2 is selected)

module Ml: a,b

module M2: a,b, c

module M3: a b aR1 bRl, cRl, d
U’b’c ai2 bR2 aRl R2, bRl R2, cRl R2, dRzmodule M4: , , , , ,

Flg.8 Normal forms ofspeclficatlon in Flgure7.

information related to equations is passed to the Equation Manager,
maintains one global set of rewrite rules derived from the equations.

3.2 Major Components

which

The Module Manager, the Syntax Manager, and the Equation Manager all
adhere to a similar protocol based on the following operations:

add, delete: Add/delete an entity to/from the language definition. Depend-
ing on the component, these entities nlay be a module declaration, a sort

ACM TransactIons on Software En~neermg and Methodology, Vol 2, No 2, Aprd 1993

A Meta-Environment for Generating Programming Environments . 187

m
EIK

Ml l o
M2 e o
M3 l e
M4 l o—

Fig. 9.

~R2 #lR2 b @ bR2 bRlR2 ~ # ~RlR2 d

0 0 e 0 0 0 0 0 0 0

0 0 l o 0 0 l o 0 0

0 0 l e o 0 0 l o l

l 0 l 0 e l 0 0 l o

Rules and selections corresponding to specification in Figure 7.

J&2

7
0
0
0
l

declaration, a lexical function definition (a lexical grammar rule), a con-
text-free function definition (a context-free grammar rule), a priority
declaration, an import, a variable declaration, or an equation.

select: Select a module as current module. For the Syntax Manager this
implies (1) determining all SDF functions (and their renamed versions)
belonging to the normal form of the current module in order to determine
the current grammar and (2) selecting the parts of the generated scanner
and parser accepting that grammar. For the Equation Manager this implies
(1) determining all equations (and their renamed versions) belonging to the
normal form of the current module in order to determine the current set of
equations and (2) selecting those parts of the compiled term-rewriting
system corresponding to the selected set of equations.

parse: Parse a string according to the grammar defined by the currently
selected module.

rewrite: Rewrite an abstract syntax tree (usually called “term” in the context
of term rewriting) using the rewrite rules derived from the equations
defined in the current module.

Most of the operations of the Module Manager depend on the corresponding
operations defined in, respectively, the Syntax Manager and the Equation
Manager.

4. THE SYNTAX OF EQUATIONS

When constructing the meta-environment based on ASF + SDF, we are con-
fronted with the question of how the syntax of equations can be represented.
Defining the syntax of equations in the form of an ordinary module is not
only elegant, but it is efficient in terms of implementation effort as well. The
syntax of equations should be explicit and localized in a single module,
as opposed to, for instance, being dispersed over the implementation of
the Module Manager. In this way, it will be easy to change the syntax
of equations. This might become relevant when we want to combine SDF with
some logical formalism other than ASF.

There are two possible approaches to represent the syntax of equations:

—Use a general grammar to describe the form of equations. In its simplest

ACM TransactIons on Software Engineering and Methodology, Vol. 2, No. 2, April 1993.

188 . Paul Kllnt

form, this grammar would consist of a single rule

(equation):: = (term)”= “(term)

where (term) describes all well-formed terms that may appear at the left-
or right-hand side of the “ = “ sign as defined by the SDF section of the
current language definition. However, this rule permits equations in which
the sorts of both terms are unequal. Therefore these have to be rejected in
a separate (very simple) type-checking phase.

—Reject type-incorrect equations already during parsing by adding syntax
rules to the grammar for equations of all sorts S1, Sn declared in the
language definition. This grammar has the form:

(equation)::= (S1)”= “ (Sl)l l(Sn)”= “(Sn)

We will now consider the second alternative in more detail. Not only
because this is a nonstandard approach deserving some investigation, but
also because we can then further exploit the incremental parser generator
we already need at the implementation level for handling additions and
deletions of grammar rules (see Sections 3 and 7).

4.1 Type Checking Using a Specialized Equation Grammar

Consider an ASF + SDF language definition consisting of the modules
Ml,.. ., M.. In order to define the syntax of equations, this language defini-
tion is extended in the following way. First, the module Equations is added
that introduces a sort (EQ) for an individual equation and a sort (EQ-SECTION)
for a complete equations section. We only discuss a simplified version of the
definition of unconditional equations; conditional equations can be defined in
a similar way. The definition is

module Equations
exports

sorts EQ EQ-SECTION
context-free syntax

EQ- + EQ-SECTION

Next, we generate for each module M, in the language definition a module
EQ-M, that consists of three parts:

(1) For all exported sorts S,, S~ declared in M, we generate declarations
for exported functions of the form S,”= “S, - EQ; .

(2) For all hidden sorts T,, . . ., T, declared in M, we generate declarations for
hidden functions of the form T,’L= “T, ~ EQ; .

(3) For all modules N1,.. ., N~ imported by M, we generate imports of the
“equation version” of each module N,. In case of importing and renaming
a module, we simply rename the equation version of N, and import that
renamed module. If the module has no imports, only an import for the
module Equations is imported.

ACM TransactIons on Software Engmeermg and Methodology, VOI 2, No. 2, AprJ 1993

A Meta-Environment for Generating Programming Environments . 189

The result is as follows:

module EQ-M,
exports

context-free syntax
S1”= “S1 + EQ
. ..
Sk”= “S, + EQ

hiddens
context-free syntax

T,”= “T, + EQ
.

T/’c= “T, + EQ
Imports

EQ-N1 . . . EQ-N~

Parsing an equation in module M, can now be done in the context of the
dynamically generated module EQ-M,.

4.2 Example of a Specialized Equation Grammar

Consider the specification of Booleans and Naturals given earlier in Figure 1

(Section 2). Using the scheme described in the previous paragraph, this
specification will be extended with the following modules (apart from the
module Equations given earlier):

module EQ-Booleans
exports

context-free syntax
BOOL’r = “BOOL + EQ

imports Equations

module EQ-Naturals
exports

context-free syntax
NAT” = “NAT + EQ

imports EQ-Booleans

An equation like O < SUCC(0) = SUCC(0) < SUCC(SUCC(0)) that could legally
appear in module Naturals, can be parsed using EQ-Naturals. More interest-
ingly, an equation like true = SUCC(0) would be syntactically incorrect.

5. LOOKING INSIDE GSE

The Generic Syntax-directed Editor (GsE) is a generic building block providing
the following functionality:

—syntax-directed editing of strings (programs) in a given language L;

—connecting “external tools” operating on the L program in the editor.
As we will see, some of these “external tools” will be derived from the
language definition itself (e.g., type checker, evaluator, code generator).

5.1 Syntax-Directed Editing

GSE aims at integrating text-oriented editing and structure-oriented editing
as smoothly as possible. See [24], [25], and [31] for a detailed description

ACM Transactions on Software Engineering and Methodology, Vol. 2, No. 2, Aprd 1993.

190 . Paul Klmt

and Section 8 for some remarks on the relative merits of these two editing
paradigms.

By syntax-directed navigation (or just by pointing) the user can position a
focus on a part of the program being edited. The text outside the focus is
always syntactically correct, but the contents of the focus can be modified by
conventional text-editing operations. The user can move the focus to another
part of the program, with or without parsing the text in the current focus.
When, in the former case, syntax errors are found, the new focus will simply
cover both the old (erroneous) part of the program and the new part the user
wants to move to. In addition, GSE provides commands for the template-driven
creation of program fragments.

Other aspects of GSE worth mentioning are the following:

—Unlike most other syntax-directed editors, GSE does not use pretty print-
ing to recreate the text of programs from its internal-tree representation.
Instead, a two-way mapping is maintained between the text as typed in
by the user and the tree representation. In this way, the user has com-
plete control over the layout of the program (but can of course request to
reformat parts of it), and the well-known problem of pretty printing
comments can be solved in a straightforward manner.

—To support editing in the meta-environment (see Section 6), GSE can
handle the case that modifications are made to the syntax of the input
language L currently in use. After such a modification, it should be
verified that the current program in the editor is still a valid L program.
The naive implementation we currently use is to completely (re)parse the
program.

—The possibility to extend GSE’S user interface to connect external tools as
described below.

5.2 Attaching External Tools to the Editor

The formal definition of a language may contain rules specifying certain
operations on programs such as type checking and evaluation. After compila-
tion of the specification this leads to a number of functions that can operate
on programs. From the viewpoint of the editor these functions form “external
tools,” and the question now arises as to how they can be attached to an
instance of GSE. The following points should be considered (see also Figure
lo):

Activate external tool. Add a button or menu entry to GSE’S standard
user-interface which activates the external tool. Activation of the external
tool takes the form of a possibly parameterized function call. Some external
tools (like, for instance, an incremental type checker) need to be called
implicitly whenever the program in the editor is changed. For this we need
a notion of change propagation, to be discussed in Section 5.5.

Make information available to external tool. Depending on the informa-
tion required by the external tool, information like the focus or the whole

ACM TransactIons on Software Engmeermg and Methodology, Vol. 2, No. 2, Aprd 1993.

