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A new gauge theory for W-type algebras *

K. Schoutens, A. Sevrin and P. van Nieuwenhuizen
Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, NY 11790-3840, USA

Received 14 March 1990

The rigid conformal and rigid W;-type symmetries of the action for scalar fields in d=2 dimensions are promoted to local gauge
invariances of both chiralities. The complete action and transformation rules are given; both are infinitely nonlinear.

In string theory, one may start with a real scalar field on a flat =2 worldsheet with action
F=43,p0_9p, (1)

and add the constraints T, , =9,¢ d,¢=0and T__=0. They generate left- and right-handed rigid conformal
symmetries, d¢g=k* 9.9 with 8_k* =9,k =0. The quantum algebra follows then from the operator product
expansion (OPE), and consists of two commuting copies of the Virasoro algebra. The BRST charge Q has the
standard form and is nilpotent if the central charge of the matter sector has the value c=26. This can be achieved
by taking 26 copies of (1), and choosing as constraints 7, . = >.2¢, T% ;. =0.

By introducing » real scalar fields ¢’(i=1, ..., n) with action as in (1), and defining the constraints
W, =0,9'0,¢/0,0°d"*=0and W___=0, one obtains a theory with a current algebra that is reminiscent
of the Wi-algebra [1]. The constraints produce left- and right-handed rigid symmetries of the action, dp‘=
AT+ 9,0/ 9,0%dY and idem with A~ where 9_A** =3,4~~=0. Classically, the rigid algebra of conformal
and W-transformations on ¢ closes, but with p-dependent structure constants, provided the totally symmetric
d”* satisfy [2]

dk(ijdl)mk=5(ij'51)m . (2)

Quantum mechanically, the requirement that W, . . be primary fields of spin 3 requires that the d symbol be
traceless. The OPE of the properly normalized W-current,

W,,.=No,0 3,0/ 0,9*d" withN~"2=_-9(n+2), (3)
yields, using (2) and d%<=0,

s o n 2T(w) . 9T(w) 1 [ 4 1n=2,, ,. )
W)W (w)= (z=w)® " (z=w)* " (z—=w)? (z—w)An+2 (I (w)- 2 n+263(p 3t (w)
1 2 1n=2 Pn 1 :
Z_W(——n+2a(rr)— 3515 0@% 3y )(w)—ﬁa3T(w,))+---, (4)

where W=W,,,, T=T, ., while d and z stand for 9, and x*.
The W;-algebra has the same form, except that the last two terms read
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1 32 32 302 1
(z—w)2(22+5n (TT=700"T) +360°T (W) + “—2

16
224 5n

6(TT—%62T)+%563T)(W) . (5)

There is clearly only agreement if n=2 [2,3]. The difference between our model and the W result at position
(z—w)"2%is

—12 n-2

224 5n
— 6
224+ 5nn+2 > (6)

<(TT)+%(H+2)62T+ 763(0[ dp’

which is a primary field with spin 4, in agreement with ref. [4].
The quantum algebra for n=2 scalar fields consists then of two commuting copies of the W;-algebra. The
quantum BRST charge has been constructed in refs. [5,6]. It reads

0= §dele™ (Tur +1T8 ) +7** Wy WAL ) 203 7],
T8, =—=2b,y Qe — (0 biy )™ =30, 1 049 =200+ Brvs)v™,

25
we, = 6522 [20€83 p* )by +30(85 7 )04 by +18(0y *) (B30, 1)+ 83 b4 4]

+et 0B +3(01ct)Brsn +512—62[2(a+y++)b++ Tiv+y 7 0,(be T (7)

The requirement that it be nilpotent leads to two independent conditions which the central charge must satisfy,
namely,

c—50

c=26+74 , C= 1044 Sc+22 .

(8)

The lowest eigenstate of Ly + L§* has eigenvalue —4. Eq. (8) is satisfied for c= 100, but taking fifty #=2 dou-
blets would not achieve this, as W, , . =22, W’ ., (n=2) would not satisfy the OPE in (4) or (5) due to the
nonlinearity of the W;-algebra.

In order to solve this dilemma, we have taken the following course of action. We start with the action in (1)
for n scalar fields, with d* only satisfying (2), and add a minimal coupling of T, +, W, + » to new gauge fields

** (the graviton) and B*** (the W-graviton). We also let the parameters k*, k=, A**, 1=~ become arbi-
trary, instead of being chiral. Giving these initial data, we then deduce the complete action and transformation
rules using the time-honored Noether method. Our approach is similar to that of Hull [2], but he considers only
one chiral sector. We hope that our treatment which includes the interactions between the two chiral sectors,
will lead to a better understanding of the essential nonlinearity of the higher spin gauge theories and of the
underlying geometric structure.

We start with the action for lowest nonminimal coupling

F=40,00_@' —kh*™* T, —SkB*** W, .., (9)

where k is the expansion parameter for the Noether method which will be set equal to one at the end. To order
k° it is invariant under

Sh++ = %a_k++(k+ By +hk™ Ot T+ (O k~—0, k* )+ (A 3, B¥ T BT AT, .,

OBt =(k* 0, +k~ 9_)B* Y4+ BT (0_k™ -2 6+k+)+%6_l++—h++ O AT +2(0,ATT)ATY,

Spi=(k* 8, +k= 3_)p +A%* 3, ¢’ 0, p*d* . (10)
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The rules for 6B~~~ and 64—~ follow by interchanging + and —. These rules give invariance to all orders if
only one chiral sector is considered [2].

We then Noethered through third order in k. The results for the A variation are given in table 1. It should be
stressed that this method yields, order by order in &, in a systematic way the extra terms in transformation rules
and action. Possible ambiguities at one level in & are fixed at the next level [7].

Inspection of these results reveals the following patterns:

(i) In the action and transformation rules one can find order k+ 1 terms from order k terms replacing 8_ by
9_—h** 3, andd, byd, —h~—d_. This suggests to introduce vielbeins e4 where u is the curved index, distin-

guished henceforth by a caret. In the gauge e =e= =1 we have

1 _h++ 1 h++
= P 1
e (_h-— 1 > éx e(h" 1 ) (n

where e=det (¢)=(1—A*+*h~~)~'. The compensating local Lorentz and local Weyl transformations, needed
to preserve this gauge, lead to the following complete k transformation rules for e;} de* :

kedeT=—V_&r=— (e 3,+w_ *,)ET, (12)
with &* =k#e; . The spin connection (with all indices flat) reads in this gauge
w_Y,=e '(—0d_et+thtt d,e)+o, At (13)

(ii) As a confirmation of the vielbein formulation, one may check that all B-independent terms in the action
to third order in k are reproduced by 3e(e4 9,9) (e” 9,9) in the gauge chosen. The term with /B in the action
can be viewed as vielbein covariantizations of the term with B, and it follows that B* * * are flat tensors. Hence,
with the known Lorentz and Weyl compensations, we predict that B*** must gravitationally transform as
gravitational covariantization of (10). This rule agrees again with the Noether results.

(1i1) A most important general observation is that in gauge theories, especially in supergravity, both the trans-

formation rules and the field equations (but not the action!) can be written in terms of covariant derivatives.

Table 1
Action through order k3 and transformation rules as obtained by the Noether method.

L=40,0 0 g —3kh** 8,0 00"~ kB Ed% 8, 0' 0. ¢/ 010 +Kh T hT~ 30" B¢
FICBEEERFEQRY_ 01 8, ¢ B, p*+ k2B B~ —dPdIS (9, 9P B, 07) (3_p" _p°)

R TR YR 3, 9" 0,9 — Sk R YR —BEEEA g i 3, ¢! 3, 0¥
—IPBEEERFFRFERRY g 2 0f 9, p* 2UPBFY TR~ hEEAPIGI(3, 9P B, 09) (34 07 05 ¢°)
—IPBTTFRIFFREEE (4%, 0') (dP9 35 07 35 ) (4 B3 0" 85 0°) +O(K?)

Spi=A~"dd_gl d_*—2kA" "R+ A 3_g 8, pF—2kA~~B+++(dV* 3_g) (7 3, 97 8, 07)
FIRAT R TR AR Y, 0 8, 0FH kAT BB AU(d 3, 97 B, 0°) (d* 3, 0P B, ¢7)
+2ATBTHHRY (A8, 07) (A 0, 97 B, 97) +4k2A~ BB (d9* 9_¢') (d*9 8, 97 ) (d"" D_p’ _p°)
+4K2AT BT R (d3_pl) (d" 3, 9P 3_p?) +O (k%)

Oh=~=(A==3_B~"" =B~~~ 9_A"")3_¢(d_g'—2kh** 8, ¢! —2kB*++d"* 3, ¢/ 3, ¥
Fh[— (B h**)A= "B~~~ —h*+A==(8,B~~~)+B-~~h**(8,A=~)]1(3_p' 0_p') +O(k?)
1
SB~"= — 8, A"~ —h="(_A"")+2(d_h~")A~~—=2kd, (h**h==)A~~ +O(k?)

x|
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Closer inspection of the A-transformation rules for ¢’ reveals a new type of covariant derivative, which is perhaps
best described as “‘nested covariant derivative: higher B-terms are obtained by successive substitutions of the
form

84,0509 —B¥ T 859/ 3z 9% dYx. (14)
This nesting implies the following closed form solution for the nested covariant derivative:

d.p'=e4 3,0'—B¥FF §_¢’/ d_gkd¥*. (15)

Iteration reproduces all results for d¢’ in the table. We suspect this to be a general feature of future gauge theories
for nonlinear algebras.

(iv) Spurred by this success, we turn to the A-law for dh**. One may check that all results obtained so far
agree with

€5h++=(l++ V+B+++—B+++ V+,{++)8+¢i8+¢i. (16)
A most dramatic confirmation is provided by the B-field equation: a// B*** (B8~ ~) dependent terms in the
action can be recovered if the B* * * field equation reads — 3e 8. ¢’ 3. ¢/ 3. p* d¥* .

(v) To extend these results to an exact result at all orders, we introduce a new field F*, which on-shell reduces
to the nested covariant derivative 8. ¢’. Our intent is to reduce the infinite nonlinearity to polynomial form.
Therefore, we interpret (15) as a set of coupled field equations for F, and F' : F', =0. ¢'—B¥FFFL Fk i~
A corresponding first-order action suggested by this observation and by dimensional arguments, is then given
by

P=—led, 0 d_p'—eF',F._ +e(d,9' =3B~ ~~"F_F*“d™)F_ +e(d_¢'—{B***F/ FX d")F’, . (17)
This is the complete action.

(vi) To find the complete transformation laws, we start from

& . 8 .. 81 cae, O,
' i R R . 4. 1
5¢,6¢+6hﬁ6h + 5T 9B +5F'i OF (18)

ol=

We now use the obvious (but little understood) 1.5 order formalism [7]. According to this formalism, one
works in second order formalism, but one needs not determine 6F %, (by the chain rule) since they are multiplied
by 8I/8F". which vanishes identically. The complete transformation rules are now easily found. They read for
A~ ~ transformations

Sp'=A—"F_F%d", 6 edh~——=X"~, edht+r=Y*+,

OB~ =V, A~ =B ~~h**X ~+2B~"h~~Y**, BTt =H2B T thttX BTt poY
(19)

where

X——=(1—x)"'"(A=" V_B~"~"—=B~—~V_A"")(F_LFL), Y**=X"—BY++Br++pi Fi |

x=(B*+**)(B~"")3(F.F ) (FL_F._). (20)

In these results one must replace F*. by its on-shell value. The rules for A* * follow by interchanging + and —.
(vii) In first order formalism the rules for F’. follow by keeping track of where the F-field equations were
used in the proof of the invariance of the second order action. One finds

SF_ =V_(A=~FL_F*d%y_e(h~~F_ —\F', + 13, '+ 1B~ —~F1_ F* d")sh++,
OF', = —e(h**F'y —iF' +13_g'+1B**+Fi FX d*)oh-~ . (21)
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(viii) A purely cubic action is obtained by replacing d*F._ FX by Q. _, and adding the terms eS’ +
X(—Q% s +d*FLFL).

We end with some comments and a list of open problems.

(i) Of course, the outstanding problem is the quantization of this model. In particular, it should be studied
whether the conformal and W-anomaly both cancel for a suitable choice of d7* and n. From the BRST analysis
one knows that if the algebra is exactly W, one needs a c= 100 matter system, but for our present model with
n+2 this analysis must be modified. The quantum consistency of our classical action is still completely open. A
solution of this problem would pave the way to W-strings, of which some preliminary considerations were given
inref. [8].

(ii) The gauge algebra can be studied. In particular, we intend to investigate whether (modified) transfor-
mation rules for the set of fields in (18) can lead to a closed gauge algebra, or whether additional auxiliary fields
are needed.

(iii) A covariant formulation for #,, and W, should exist. Just as the absence of 2™~ can be traced to the
existence of Weyl gauge invariance, the absence of B**~ and B*~~ hints at the existence of a W-Weyl-sym-
metry. It should appear in the commutator of a W-symmetry and a Weyl symmetry.

(iv) The W-geometry should be analyzed. As a starting point, the W-anomaly in the covariant formulation is
expected to give the W-extension of the usual conformal anomaly which is proportional to the scalar curvature
of gravity.

(v) The transformation rules of 4 ** and B* * * under which the anomalous conservation laws of the Noether
currents T** and W ** = are invariant as found in refs. [9,10], differ from the purely classical laws of ref. [2]
and us: the A variation of #* * contains additional higher derivative terms. We observe that these same terms
appear in renormalized form in the quantum BRST charge (7).

(vi) Supersymmetrization.

References

[1] A.B. Zamolodchikov, Teor. Mat. Fiz. 65 (1986) 1205.
[2] C.M. Hull, Phys. Lett. B 240 (1990) 110.
[3] V.A. Fateev and A.B. Zamolodchikov, Nucl. Phys. B 280 [FS18] (1987) 644.
[4] A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Nucl. Phys. B 241 (1984) 333.
[5]17J. Thierry-Mieg, Phys. Lett. B 197 (1987) 368.
{6] K. Schoutens, A. Sevrin and P. van Nieuwenhuizen, Commun. Math. Phys. 124 (1989) 87.
[71P. van Nieuwenhuizen, Phys. Rep. 68 (1981) 189.
[8]A. Bilal and J.-L. Gervais, Nucl. Phys. B 326 (1989) 222.
[9]1Y. Matsuo, Phys. Lett. B 227 (1989) 209.
[10] M. Bershadsky and H. Ooguri, Commun. Math. Phys. 126 (1989) 49.

249



