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rameters, and a calculation in which these parameters are used in
a formula for an estimator of the property. The results by other
investigators on measuring line length [1]-[4] may also be ex-
pressed in these two terms (Section III).

The importance of this unraveling of the estimation procedure
(recognized here for the first time) follows from the fact that given
the digitization, one can optimize estimators in two independent
ways: by improving the characterization step, and by improving
the calculation, i.e., the formula used as an estimator, Both are
considered in Section IV, It is shown that to every characterization

e
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there corresponds a ‘‘BLUE’’ estimator, which is the optimal es-
timator for that particular characterization (optimal in the sense of
minimal MSE, linearity, and being unbiased). The search for op-
timal estimators therefore becomes a search for an optimal char-
acterization. It is shown that a so-called *‘faithful characteriza-
tion,”” in which no information is lost, results in optimal BLUE
estimators.

In Section V, this basic result is applied to the measurement of
the length per chain-code of a digital straight line.
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II. A FORMAL DESCRIPTION OF THE MEASUREMENT PROCESS

Best Linear Unbiased Estimators for Properties of
Digitized Straight Lines

LEO DORST AND ARNCLD W. M. SMEULDERS

Abstract—This paper considers the problem of measuring properties
of digitized straight lines from the viewpoint of measurement meth-
odology. The measurement and estimation process is described in de-
tail, revealing the importance of a step called ‘‘characterization’’ which
was not recognized explicitly before. Using this new concept, BLUE
(Best Linear Unbiased) estimators are found. These are calculated for
various properties of digitized straight lines, and are briefly compared
to previous work.

Index Terms—BLUE estimators, chain-code string, digitization er-
ror, digitized straight lines, length measurement, measurement accu-
racy, quantization.

I. INTRODUCTION

This paper aims at finding optimal estimators for properties of
digitized straight lines in an image. To find these, we first need a
precise understanding of the measurement process since this will
reveal how improvement over existing methods can be achieved.
This knowledge can then be used to arrive at ‘‘optimal’’ esti-
mators, in some specified sense.

The measurement situation is the following. Before digitization,
there is a line in the continuous world with specific properties (such
as slope, length, intercept, etc.) If one wishes to measure a prop-
erty, a digitization of the continuous line is performed, leading to
a chain-code string. This digitization reduces the information in an
essential way since it maps a set of continuous lines into a set of
discrete strings. Therefore, exact measurement is impossible; the
best one can do is estimate the continuous property from the string,

We will discriminate two steps in this estimation procedure
(Section II): a characterization in which the information present in
the actual chain-code string is reduced to some characterizing pa-
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In this section, the digitization and measurement process is de-
scribed in detail. This is necessary to arrive ata prec1se formulation
of the optimal measurement methods.

All continuous straight lines form a set £. An element ! of this
set can be characterized by intercept e and slope o in a Cartesian
grid (I: y = ax + e). A property f can be associated with each /.
For instance, f(e, o) = o represents the slope of /,

Properties of the continuous line [ are to be measured after dig-
itization symbolized by the operator D, Digitization results in a
string ¢ where ¢ = DI. Digitization of all lines in £ results in the
set of all straight chain-code strings @,

Given a string c, there is an equivalence class of continuous
lines, all havmg the same string ¢ as its digitization. This cquiva-
lence class is called the domain Dp(c) of ¢ correspondmg to the
digitization D.

Formal definition:

Dple) = {le £|Dl = (1)

Thus, the set of domains indicates the finest distinction of the orig-
inal continuous lines that is still possible after digitization.

The digitized line ¢ can be represented in various ways, for in-
stance, as a string of (x, y) coordinates, a series of run codes, or
the Freeman directional code [1]. Furthermore, one can digitize in
different ways, such as grid intersection quantization (GIQ) or ob-
ject boundary quantization (OBQ) {2]. The difference between these
methods is not essential to the basic idea of the present paper. Spe-
cific results will be given for OBQ, 8-connected Freeman
chain codes. For this case, the domains have been given in a pre-
vious paper [5]. In Fig. 1, they are depicted for all lines having a
chain code consisting of 6 codes 0 or 1. The representation is in a
part of the parameter space (e, ) where each point (e, o) repre-
sents a continuous line /'y = ax + e.

The estimation of the original continuous property fis to be based
on the discrete string resulting from the digitization. This is done
by characterization and calculation. The characterization K re-
duces the chain-code string ¢ to a tuple ¢ of parameters (where ¢ =
Kc) characterizing the string. For instance, one might characterize
a string by the number of odd and even Freeman codes in the string.
Characterizing all strings of € leads to the set of all tuples J, A
tuple can be used in an estimator g which attributes a value g (£) to
the tuple ¢. This value g (f) = g(Kc) = g(KDI) is used as an esti-
mate of the original continuous property f(I), based on the dlgltl-
zation D/. The recognition of the characterization K is essential in -
optimizing the estimator g of the property f.

In the same way as domains are the equivalence classes into
which the set of lines is divided by digitization, we have equiva-

0162-8828/86/0300-0276$01.00 © 1986 IEEE
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Fig. 1. The domains of the OBQ digitization, represented in the (e, o)
plane for all strings consisting of 6 elements 0 or 1 (from [5]).
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Fig. 2. A schematic representation of the measurement process for prop- -

erties of digitized straight lines.

lence classes into which the set of strings is divided by character-
ization, Therefore, we introduce the scope Sk (t) of a tuple ¢ as the
equivalence class of all strings having the same tuple ¢ under the
characterization X ; ‘

$x() = {ce C|Kc =1}, @)

Taking digitization and characterization together, the original set
of lines £ is mapped into the set J of all tuples. The equivalence
classes of this mapping will be called regions. Thus, the region
R p(?) of a tuple ¢ is the set of all lines having the same tuple ¢
after digitization D and characterization K;

Rypt) = {l € £|KDI = 1}. 3)

We will often omit the subscripts D and X and write D (c), 8 (¥),
and ® (¢) if it is clear which digitization and characterization are
meant.

m.

Fig. 2 summarizes the terms introduced. A relation between the
different equivalence classes which follows immediately from the
definitions is

Rep® = U Dp0). @

ce8k (1)

From this description, it is seen that at two points a (potential) loss
of information occurs. Digitization unavoidably implies loss of in-
formation since it maps a continuous set £ into a discrete set C,
Characterization, however, maps one discrete set (C) into another
(3). Here loss of information is avoidable if the characterization is
chosen properly. Let us use the symbol F to signify a faithful char-
acterization, 1.e., a characterization that is a bijective mapping be-
tween a string ¢ and its corresponding tuple z. In that case, the
scope $p() consists of a single string ¢ = F~'t and the region
Rrp(f) is equivalent to the domain Dy(F~'%). Thus, a faithful
characterization causes no loss of information,

III. DEeScrIPTION OF PREVIOUS WORK

Extensive work has been done for almost 15 years in the mea-
surement of the length of a digitized straight line segment [1}-[4].
This work can be described within the framework of terms asso-
ciated with the measurement process introduced in the previous
section. .

A very simple and straightforward way to associate a length to
a given chain-code string might be the total number n of chain codes
in the string. In this case, the string is characterized by the “‘tuple’’
(n); the regions in £ corresponding to this (n) characterization are
indicated in (e, o) space in Fig, 3(a). As a length estimator, we
have ‘ ,

: sy = n. e

This estimator is too simple, and not often used in practice; it is
introduced here as an illustration.

Freeman [1] based a length estimate on the number of even and
odd codes in a string n, and n,. In terms of the present paper, he
used an (n,, n,) characterization. This results in a finer division of
£ into regions than the (1) characterization [Fig. 3(b)]. But still,
many strings are lumped together. The length estimator given in
[ B

e, o) = n, + V2n, (6)

counts even codes as having length 1 and odd codes as V2. Free-
man thus gave an exact measure of the length of the digital arc. But
as Groen and Verbeek [2] and Proffitt and Rosen [3) almost simul-
taneously realized, this is not necessarily a good measure of the
length of the arc before digitization. The estimator (6) has a limit
root mean-square error of 6,6 percent for long. strings (see Table
D. :

Groen and Verbeek [2} used the same (n,, n,) characterization,
but calculated the probability of occurrence of even and odd codes
based on the distribution of continuous lines. This led to different
coefficients for the length estimator, namely,

Ig(nes 1) = 1.059n, + 1.183n,. o (N

This estimator is somewhat less accurate than Iz (Table I).
Proffitt and Rosen [3] independently. calculated a length esti-
mator, again based on the (n,, n,) characterization, which also took
into account the relative probabilities of even and odd-codes, In
contrast to [2] where the probabilities were calculated for strings
with n = 1, they performed their calculations for the case n — oo,
obtaining Co ‘

Ip(n,, n,) = 0.984n, + 1.340n,. @®)

(Actually, this estimator can be found in {4] since there the basic
idea which was applied to 4-connected strings in [3] was applied
to 8-connected strings.) This estimator has a limit root MSE of 2.7
percent, which is considerably better than /p (see Table I). -

In the same paper [3], an essential new step was taken, which
we would now describe as choosing a new characterization. A new
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Fig. 3. The regions corresponding to various characterizations, repre-
sented in the (e, ) plane). Compare Fig, 1. {a) (n) characterization. (b)
(n,, n,) characterization. (c) (n,, n,, n,) characterization (note that some
disconnected polygons belong to one region). (d) (n, g, p, 5) character-
ization (for clarity, not all labels are indicated). .
TABLE 1
A COMPARISON OF LENGTH ESTIMATORS
Estimator BLUEness 1 2 5 10 20 50 100
Ig (g, ny) Biased 0.223 0.117 0.076 0.069  0.067 0.067 0.066
I (Mes N,) BLUE forn = 1,
‘ otherwise biased 0.217* 0.141 0.103 0.091 0.085 0.082 0.080
Ip(n,, n,) Unbiased for n —+ oo, not
BLUE 0.232 0.114 0.053 0.037  0.031 0.028 0.027
le(n,, ngy, np) Unbiased for n — oo, not
‘ BLUE 0.228 0.103 0,040 0.021 0.013 0.0088  0.0081
l(n,, n, n) BLUE for (n,,n,,n,) char,, :
. optimal BLUE forn < 4 0.217° 0.104" 0.033 0.014 - 0,0064 0.0024 0.0017
lo(n, q, p, 8) ‘Optimal BLUE, is faithful ‘
characterization 0.197 0.094 0.029 0.011 0.0038  0.0010  0.0004

“The difference of the entries marked with footnote * with the optimal BLUE estimator [y can be explained by a different

treatment of strings consisting solely of odd or even codes in [2] and (4],
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parameter was introduced, the so-called corner count n. being the
nur_nber of code transitions (01 and 10 sequences) in the((’:hain—codc
string. This extends the characterization to an (e, 1, ny) charac-
terization, of which the corresponding regions in 5(30arecindicated
in Fig. 3(c). The length estimate proposed in [3] is

le(ng, nyy ny) = 0.980n, + 1.406n, ~ 0.091n,. (9)

obt"ained by least squares approximation of a linear formula to in-
finitely long strings. (Again, for 8-connectivity, this estimator is
found in [4] rather than [3].) This estimator tends to a limit accu-
racy of approximately 0.8 percent (Table I). The increase in ac-
curacy in going from /p to /¢ shows the effect of the extra parameter
n., and hence the importance of the choice of the characterization.
With I¢, the length estimators are better *“tuned’” to the strings for
which they are used, and this is the main reason for their increased
accuracy.

The next step to accurate length measurement was taken in a
paper by Vossepoel and Smeulders [4]. They applied the same (,,
n,, n.) characterization, but did not use a linear formula in the pa-
rameters of the tuple. Instead, they arrived at estimators for the
length corresponding to a tuple (n,, n,, n,) by averaging the lengths
per chain code of all lines (¢, «) in the region ® (n,, n,, n,) cor-
responding to this tuple. Note that this optimizes estimators per
tuple (n,, n,, n,) rather than for all lines of a specific number of
chain codes, as in [3]. The integration can be performed, but leads
to complicated formulas

IV(”'!(" o, nc) = g(nm Hoy nc) ‘ (10)

where the function g can be found in [4]. This estimator is much
more accurate than the previous methods (Table I). A comparison
to le, which is also based on the (n,, n,, n,) characterization, shows
the importance of optimizing the ‘‘calculation’” step in the esti-
mation procedure.

In a previous paper {5], we defined four parameters (n, ¢, p, )
which can be extracted from a straight string (i.e., a string that
could be the digitization of a straight line), and showed that there
is a unique correspondence between the string and this quadruple.
In terms of the present paper, this (n, ¢, p, ) characterization is a
faithful characterization. As is illustrated in Fig. 3(d), this faithful
characterization leads to the finest tesselation of the (e, @) plane
still possible after digitization, and therefore a length estimator can
be tuned to cach individual chain-code string. It is obvious from
the previous that this (1, ¢, p, 5) characterization can potentially
lead to the most accurate estimators possible, In the next section,
we will show that js indeed the case.

IV. BLUE ESTIMATORS

In the previous section, it was seen that estimators based on in-
creasingly finer characterizations can be better tuned to individual
strings, and can thus in principle be a more accurate estimate for
the original continuous property. It was also seen that given the
characterization, still many formulas are possible for the estimator.

In this section, we will show that for each characterization, there
exists an “‘optimal’’ estimator in the sense that an unbiased esti-
mate of the length is provided, with minimal mean-square error
(MSE). This kind of estimator is well known from parameter es-
timation theory, and is called BLUE: Best (minimal MSE),'Linear
(being an average over the ‘‘observations’’), Unbiased Estimator.
In the case of measuring line properties, the continuous property
f() of the line { is estimated by a function g (/) based on the tuple
t = Kc of the string ¢ = DI corresponding to the line 1. The re-
quirements for g (¢) to be a BLUE estimator f(/) are as follpws.

1) The estimator should be linear in f(£). This implies that the
estimator g () for a tuple ¢ should have the form

gty = Egu{f)} 1

where Eq{x} denotes the expectation of x over a set X and Q) is
some set dependent on the tuple £ )
" 2) The estimator g(f) should be an unbiased estimate of £(0)

«

over the set of all straight line segments £:

Eg{fh — g} = 0. (12)

3) Of all estimators satisfying (11) and (12), the BLUE esti-

mator gx () for a given characterization X should have minimal
MSE over £;

Eg{lf()) — gxk®*} minimal. (13)

Note that in all three requirements, ¢ = Kc denotes the tuple cor- i

responding to the string ¢ == DI, so t = KDI. :
It turns out that the estimator obtained by attributing to a tuple

t the expectation of f(I) over the region ® (¢) is BLUE. :
Theorem 1: The estimator ‘

8x(KDl) = Egy yuon{ S} (14)
is BLUE.
Proof:
1) gx(¥) is a linear estimator, as follows immediately from

2) Consider a single region Ry p(XD[). Omitting the sub-
scripts, we have

Em(}ml){f(l) - gK(KDl)} = Em(KDI){f(l)} — gx(KDl) =0

Thus, g, (¢) is unbiased for a region, and hence also for a collection
of regions, such as £. So, (12) is satisfied. Note that ® (KDI) is
the smallest set of lines still distinguisable using the tuple ¢; aver-
aging over a smaller set than ® (KD!) would result in a biased es-
timator. , :

3) Comparing the general estimator g(XDI!) in (11) to
8x(KDI)in (14), regarding the MSE over a region R, p(KDI) [ab-
breviated as ® (KDI)], we have

Eggon{lfQ) — g KDY}
= Equoni[fQ) — gx(KDD*}
+ Equon{lgx(KD!) — g(KDI)*}

= Eguonilf() — gx(KDDYY}.

Hence, g has a smaller MSE than any linear unbiased estimator
based on averaging over more than one region. Hence, it is the Best
Linear, Unbiased Estimator. Q.E.D.

Thus, for any given characterization X, the BLUE estimator for
a given ¢ is obtained by averaging over the region Qg (f). An ex-
ample is the estimator 1y (n,, n,, n,) given in formula (10), which
is the BLUE estimator for the (n,, n,, 1) characterization.

If the characterization is faithful, the regions reduce to domains,
These are the smallest possible sets of lines distinguishable after
digitization, and the BLUE estimators corresponding to this faith-
ful characterization are therefore the most accurate estimators pos-
sible, given the digitization D. This is expressed in the following
theorem. , '

Theorem 2: Of all BLUE estimators

gx(KDl) = Egy pxon{ fU)}

the estimator gr, corresponding to a faithful characterization F, has
minimal MSE. ‘

Proof: Consider the MSE over a domain D oDl =
®r.p(FDL) [abbreviated to D (DI)]:

E.’D(DI){[f(l) - gK(KDl)]2}
= E:D(D/){[f(l) - gF(FDl)]z}
+ Egponiler(FDI) — gx(KDD)}

= Egpn{f() ~ gr(FDDY}.

Hence, the MSE of g is smaller than that of an arbitrary gg, unless
K = F. As in the proof of Theorem 1, no decrease of the set over
which is averaged is possible beyond Rp, p(FDI) = Dp(DI), with-
out resulting in an unbiased estimator. Therefore, g is the optimal
BLUE estimator. Q.E.D.
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In principle, this solves the optimal estimation problem, not only
for straight lines, but for any two-step digitization and characteri-
zation measurement process. To derive the result of Theorem 2,
only the terminology was borrowed from the straight line case. In
all cases, the estimator

gr(FDI) = Eg, yron{ f(}

*‘optimal BLUE.”

Note that since ®p, p(FDI) = Dp(D!), the estimator (15) can be
written as -

s

gr(FDI) = Egyon{ F)} (16)

which is independent of the specific faithful characterization used
(as it should be).

To evaluate (15) in a part1cu1ar situation, one needs

» a faithful characterization F

*.an expression of the domains iDD(Dl) in terms of this faithful

characterization, as, regions R p(FDI)

® calculation of the expectatlon of any desired function Jover
this domain.

For straight lines, thls w111 be done in the next section.

V. OpriMAL BLURE ESTIMATORS FOR PROPERTIES OF STRAIGHT
. LINES

To evaluate (15) for properties of straight lines, we need both a
- faithful characterization and an expression for the domains. Both
have already been given in [5]. Here we repeat these results in the
terminology of the present paper,

Main vﬂiedrem (from [5])

A straight string ¢ (with ith element ¢;) can be faithfully char-
acterized by the quadruple (n, g, p, 5) where
n is the number of elements of ¢, .
g is the shortest period present in ¢ or any of its extensions:
g=min{ke{l,2, -, n}lk
& .
=nVvvie{l,?2, ,ho= Kk}

p is the number of odd codes in a period g:

Civk = Ci}y

. 9 . .
p = 2. ¢ (for a string consisting of codes 0 and/or 1),
i=1 ,
518 a phase shift, the position at which a template pattern can
be found in the string c:

s:5€{0,1,2, -+ ,qg— 1} A

[E(i—s)i!—[e(i—s—l)],
a" q

L] is the floor function, indicating the largest integer not larger
than x, [x7 will denote the ceiling function, indicating the small-
est integer not smaller than x,

vie{l,2, - ,‘q}:c,'=

Domain Thd)rem (from [5])

The domain of a string ¢, expressed as a region of the faithful
(n, g, p, 5) characterization, is the set of all lines y = ax + e
satisfying the following two conditions.

) plg- < o <pilg..

2) Forp_lg. < o = plg,

[L(s) ’ﬂ —aL(s) se< 1+ [F(s + 10 ’ﬂ —aL(s + D).
Forplg = a < b+/q+,

[F(s) ﬂ —aFE) S e<1+ [L(s + l)’ﬂ — aL(s + D).
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The two functions L (+) and F(*) are defined as
- x} g
q .

=[]

and the integefs 1, g+ P+, q-,and p_ are defined by

L&) =x + [",

and

1:0<sl<gAlp=gq—1(modg)
Py =1+ [L(s + 1) ’ﬂ ;[F(s) ﬂ
g, =L+ 1) = F@)

' p P
_=~1—-|F@+DE|+|L©E
w2 oo
g- =L@ = Fs + ).

The proofs are given in [5].

The general shape of the domain of the string with tuple (n, g,
p, §).is quadrangular (see also [6]). The domain is widest at o =
P/g, indicating that this slope is. the most probable slope in agree-
ment with ‘the string with tuple (n, ¢, p, 5). The domain tapers
linearly and reaches a widthOQ at @ = p_/g_ and o = p,/q,. It -
can be shown that p_/q_, p/q, and p./q . are three consecutive
terms in the Farey series of order n [6], [7], implying that g _ <
nand g, < n.

With these results, formula (15) becomes

. plq T+ [F@s+Dplgl—aF@+1)
gF(ns q,p, S) = S S
p-1g~ JILSHPlg] - alls)
* fle, a) Ple, o) de da '
plge pl+[Ls+Dplgl —al(s+1)
L)

[F(s)plq) ~ aF(s)
+ fle, o) P(e, o) de da, 1n

where P(e,a) is the probability density describing the distribution
of the lines.

This formula is the main result of this paper, applied to stralght
lines, in its most general form. It provides the BLUE estimator for
an arbitrary property f(e, o) of a continuous straight line segment,
given a particular chain-code string ¢, faithfully characterized by
the tuple (n, q, p, $).

vplg

Evaluation of the BLUE Estimators
Estimator (17) will now be calculated for the property *“line

length per code element,’” which is fle, @) = N1 + o, This re-
quires an assumption to be made about P(e, o). Generally, we can
assume a uniform distribution of the lines in distance to an origin,
and orientation [7]. This implies

Ple, @) ~ (1 + a?)™,

Following [4], we use a moment-geherating function f;: -

(18)

fin. ¢, p,8) = S (i(e_“)__

1ty de do (19)
®R(n,q, M)

Wthl‘l allows the estimator (17) to be written in the form

fin, ¢, p, 8

gr(n, q,p, 5) =
F Joln, q, p, 8

(20)
and its variance as

hn, g, p, S)
fin, 4, p,8)

. N : 2
var {gr(n, q, p, 5)} = fin, g, p, S)} .

O(n; q, D, s)
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Fig. 4. Generalization to skew grids by a linear transformation.

(As an aside at this point, it should be noted that the estimators of
formulas (19)-(21) can easily be generalized to 4- and 6-connected
grids and other regular grids, using the concept of a ‘‘column’’
introduced in {4]. Calculating the appropriate linear transforma-
tions to transform a skew grid [Fig. 4(a)] to a square grid [Fig.
4(b)] and then applying (19), we find

2
(h sm ylx)
fies, o)

' 1 7 RN
GI(nSqu,s) {(ozx + %cos \b) + <§ sid tﬁ) }

de, do,. (19"

Here K is a normalization constant which cancels out in the com-
putation of gr and var (gp) with formulas (20) and (21). We w1ll
not use (19); it is mentioned here for completeness.)

Since the property line length per code only depends on «, we
will from now on only treat properties independent of e; fe, o) =
f(e). In that case, the mtegral over e in (19) can be performed,
yielding

fin, g, p,8) =

I’F/qr
fin, g, p, 8) = S,,/q (p+ — agy) (1 + a»H™ fi(a) do

) plg
+ S / (ag- ~p) (1 + ¥ fila) da.
p-1q-

This can be rewritten as

ﬁ(n’ q, P S) = [F:,(Dl‘ “Ps —q+)]5’7/+qlq*
+ [Felp-, g 5% (23)
where the functions F; are defined by
2 FlP, 0 = @@ - P+ o) f). (24

V1 + ai, and hence

For the line length per code we have f(a)

from (24),
aP + Q
S 26
Fo Ji+ a2 26)
F = %m (1 + a® — P arctan (o) on

Fy=0JT+a’ =P+ 1+ a?). 28

With (20) and (23), this is the BLUE estimator for the line length
corresponding to a chain-code string (n, ¢, p, ).

"Two other properties for which we can now easily find the BLUE
estimators are the angle f(er) = arctan (o) and the slope f(a). Fy is
as specxﬁed iri (26), but F, and F, now become for the angle arctan

(@)

F = (Quo — P) — (1Q++aPa) arctan (o) 29)
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Fy
(Q + Pa) arctan (o) + 2(P — Qu) arctan (&) — 2(Q + Pa)
V1 + a2
(30)
and, for the slope «,
_ P~ Qo)
F‘——-————m +Q1n(ot+~/1+a7) (31
Qoz + Po + 2Q
F e S~
2 : ot Pln(o:+\/1+oz, ’(32)

respectively.

Approximate Behavior

The formulas (20)-(24) do not reveal the behavior of the esti-
mator with varying (o) nor do they reveal the dependence of the
estimators on (n, g, p, §). Extensnve calculations yield Taylor ap-
proxnnatlons to order O(n~ %) clarifying these issues:

. 1
onn =i (27 o

| ' 33)

1 1 1 1 2

var ket 4.0 9} = g <?: Tl " q_{) ' {f'@z
-+ O(n'ﬁ). (34)

Note that g .. and g _ are implicitly dependent on (n, g, p, s). It is
seen that the first term, dominating gg, is f(p/q), which is the value
of the property f at the ‘‘middle’’ of the domain. As stated before,
this is just the most probable slope in agreement with the string
with tuple (n, q, p, §). The second term compensates for the asym-
metry of the domain relatlve to a = plq. This term can be showu
to be of the order O(n 2.

V1. ConcLUSION

Consideration of the estimation process involved in measuring
properties of line segments leads to the discrim’mation of three
steps.

1) Digitization: The complete description of this step for straight
lines and the loss of information it unavoidably implies were stud-
ied in [5]. An optlmal estimation procedure aims at using all in-
formation remaining after dlgltlzatlon

'2) Characterization: This is an essential step in the whole pro-
cess, which can potentially destroy information. This step ac-
counts, to a large extent, for the differences in accuracy of esti-
mators previously given. An opt1ma1 estimator must be based ona
faithful characterization, which is loss free. )
" 3) ‘Calculation: Based on a specific characterization, many es-
timators can be given, BLUE estimators are optimal in the sense
of being linear and unbiased with minimal MSE. It was shown how
they are related to a specific characterization.

Optimal BLUE estimators result from a calculation of BLUE
estimators based on a faithful characterization preserving all infor-
mation left after digitization. This is the géneral recipe. For some
properties of straight lines, this procedure was performed.

For the property ‘‘line length per chain code,’’ the optimal BLUE
estimators are briefly compared to those of previous authors in Ta-
ble I with respect to BLUEness and values of the root mean-square
error (We hope to give a more detailed comparison, including al---
gorithmic issues, in a future paper. A preview is given in [8].)
Table I shows that increasingly accurate characterizations (with
more elements in the characterizing tuple) generally result in more
accurate estimators, This is partly explained by Fig, 3 where it is
seen that the regions corresponding to these characterizations are
increasingly smaller, allowing better tuning of the estimator. Thus,
the estimators Ig, [, and [p, based on the (n,, n,) characterization,
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all have a high root MSE (=2.6 percent). Use of the (n,, n,, n,)
characterization, but still using a linear formula, leads to I, which
has a limit MSE of 0.6 percent. The BLUE estimator for this char-
acterization is [y, which is much more accurate, especially for
longer strings. The optical BLUE estimator [, of formulas (23)-
(28) is even more accurate, and the proofs of this paper show that
beyond Iy, no improvement in accuracy is possible.
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One-Dimensional Scan Selection for Two-
Dimensional Signal Restoration

JORGE L. ARAVENA anD WILLIAM A, PORTER

Abstract—The problem of m-D filtering using sequential scanning is
considered. It is shown that the optimal causal filter and the perfor-
mance measure depend on the scan selected. Examples show that this
effect can be significant. Possible techniques to select a suitable scan are
analyzed.

Index Terms—Image enhancing, m-D filtering, partially ordered res-
olution spaces, scan selection, selective memory.

I. INTRODUCTION

A simple method of applying 1-D techniques in the design of
discrete m-D filters is raster scanning whereby the m-D domain set
. is linearly ordered. Raster scanning has been used both in the fre-
quency domain [7] and in the time domain. In particular, it has
enabled the design of recursive, Kalman type filters [4], [6], [11],
[12] for m-D signal extraction.
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Most authors have assumed that the scanning is a priori fixed.
However, in studying related problems [1] we have shown that the
choice of scan can affect the performance of the subsequent filter.
Scan selection can also be important in the sequential processing of
bidimensional sensor arrays and other multiplexed data aquisition
systems.

In this correspondence we consider scan selection as a special
case of selective memory (formally defined later). We determine an
optimal mean square filter with respect to a general selective mem-
ory constraint. Using simple computational examples we show that
the error may vary significantly with the specified scan.

The total number of posmble scans in an N X N raster is (N2)|
In only the most trivial cases is an exhaustive search for the best
scan practical. We present a search algorithm, which in simulation
tests, produces a scan procedure close to the optimal. A search
technique derived from dynamic programming is also considered.

II. MATHEMATICAL PRELIMINARIES

We use the basic ideas of causality theory [5], [10] to develop
our concept of selective memory. For sake of brevity we consider
2-D signals only, and make use of the power of functional analysis
concepts [8], [9]. The index or time set will be taken as the set p
={a = (,j):0=i,j=s N— 1}. We shall model the image space
by X = I5(w) and use the orthopro_]ector family {A(a); a & u} de-
fined by

b+a
b= a,.

The vector A(a)x is often called the value of the image x at point a
€. ,
For a given subset o C p define the related projector

= 2 A@);

agg

: 0
[A(@x](b) = [x @

and consider the equality
A(@)Lx = A(@)LP°x,

Since P °x is always zero for all points outside the subset o, the value
of the output at @ € u does not depend on the input outside: the
subset 0. We say that the projector P identifies the memory of the
system L at a € p.

For each a € u let there be specified a subset o(a) C u and a
projector P* = P _ A given processor L has the specified selec-
tive memory if and only if L satisfies

A(a)L = A(a)LP*®, M

The projectors {P?} need not have any relationship among them-
selves nor with the projectors {A(a)}. However, for every scanning
of the elements in the index we can choose the P so that (1) implies
causality.

‘We shall use the name ‘““/-causal’ to denote a map with selective
memory specified by a linear order *“/.”" If the input is scanned one
pixel at a time according to the order [ then /-causal maps are re-
alizable by on line sequential processing,

all x.

acu.

III. TeE RESTRICTED OPTIMAL FILTER

We will determine the filter which is mean square optimal with
respect to the constraint of a spcciﬁed selective memory, The stan-
dard such problem is shown in Fig. 1. The operator L describes a
known blurring or degradatlon effect on the image x. The signal
is an additive noise and D is the reconstructive or enhancing filter.

The image processor D has a selective memory specified by the
projector family {P“}, The restricted optlmal filtering problem is
that of determining a filter D to minimize the index J(D) =
Elllx — £111, over the class of systems with the same selective mem-

ory, hereafter called realizable systems. Here E[*] denotes statis-
tical expectation.
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