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Vector Code Probability and Metrication Error in the
Representation of Straight Lines of Finite Length
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Department of Biomedical Information Processing and *Laboratory for Pathology, University
Medical Center, Wassenaarseweg 62, 2333 AL Leiden, The Netherlands

Received May 1, 1980; revised November 2, 1981

An unbiased estimate for the length of straight lines represented by an arbitrary number of
discrete vector elements is derived from statistical evaluation of line segments randomly
positioned on a grid. The computational method is independent of the connectivity of thé grid,
whether it is rectangular or hexagonal, Estimates for the variance of the length are also given.
The length estimate may be used in combination with linearity conditions to evaluate the
length of an arbitrary curved contour by polygonal approximation. The length of the original
curve can then be estimated with greater accuracy than when existing methods are used, An
alternative method for length estimation is also presented, based on least-squares approxima-
tion of infinitely long straight lires. For 8-connectivity, the alternative method gives a greater
accuracy than similar existing methods, Figures are presented for both alternatives in compari-
son with existing methods.

1. INTRODUCTION

At first glance the computation of the length of a continuous line segment from its
digital representation is rather straightforward. Until recently, the method most
commonly used for computation of this length was that first described by Freeman
[1]. In this method the computation of the length of a continuous line segment is
replaced by the evaluation of the length of the digitized line segment. If we assume
the digitized line segment to be represented by »n + 1 grid points, then n vector
elements will connect these grid points. The vector elements are usually coded
according to Freeman [1]. All the n codes together are called the chain code string.
The length of the digitized line segment in this method equals the sum of the lengths
of the vector elements. In this paper a careful distinction should be made between
the continuous line segment and the digitized line segment. The continuous line
segment will sometimes be called line segment by way of abbreviation.

To find the length of a digitized line segment according to this method the length
of each vector element is needed and will depend on the connectivity of the grid. If a
rectangular grid is used and if only 4 neighbors are considered for each pixel, the
grid has by definition a connectivity ¢ = 4. If 8 neighbors are considered then the
connectivity ¢ = 8. Likewise, on a hexagonal grid ¢ = 6, or ¢ = 12. The length of a
vector element equals the grid constant u for ¢ = 4 or ¢ = 6. The length of the
even-coded vectors for ¢ = 8 or ¢ = 12 will also be u. For ¢ = 8 the odd codes have
a length w2 for ¢ = 12, w/3.

Let m denote the number of odd codes in a given chain code string with ¢ = 8
consisting of n codes. In the naive method the length is then given by n + m(y2 — 1).
It should be noted that to achieve the same density of grid points on a rectangular
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348 VOSSEPOEL AND SMEULDERS

grid as on a hexagonal grid, the following relation should hold: ug = u,(%)'/4. This
relation may be derived by comparing the areas associated with one grid point in the
two connectivities.

In 1978 Groen and Verbeek [2] demonstrated that the naive method for the
computation of the segment length yields a biased estimate of the segment length,
Via a rather complicated analysis of all possible intersections of a line segment with
one grid cell they achieved unbiased estimates for straight line segments with ¢ = 8
and n = 1. In the computation of the unbiased estimate the position of the relative
entry height e in the grid cell and the orientation 7 of the straight line segment are
assumed to be random with respect to the grid. Given the probability density
function of a straight line segment, determined by e and 7, integration over one grid
cell now leads to the unbiased estimate. According to their method the length
estimate is given by 1.059x + 0.124m, also for n» > 1. This segment length will be
unbiased only under the assumption that there is no correlation between two
subsequent vector elements. In practice this will rarely be the case. The method may
be unrealistic in the assumption of uncorrelated chain codes, but basically it
provides the concept of the statistical properties of single vector elements.

In 1979 Proffitt et al. presented a method of length estimation based on the
properties of digitized lines of infinite length [3, 4]. It consists of computing the
coefficients @ and b while minimizing the error in the length defined by an + bm for
infinitely long lines. Because of the infinite length only the orientation, not the
position of the line with respect to the grid, had to be considered as a parameter in
their least-squares approach, For 8-connectivity they found @ = 0.948 and b = 0.392.

The two methods of Groen [2] and Proffitt [3] lead, under different assumptions,
to different results. Groen assumed no correlation between neighboring vectors
(n = 1), and Proffitt assumed that n = oo. If we have a digitized straight line
segment of finite length (# > 1) neither method is unbiased. It is not clear which
method should be preferred in a practical situation.

Apart from estimating the length of an infinite line segment Proffitt and Rosen
have also introduced the corner count concept. A corner count n, is defined as the
number of consecutive and different code pairs. If the straight line segment is not
nearly parallel to a grid axis such a corner will appear in the code string. As will be
illustrated later, utilizing the corner count concept increases the accuracy of the
length estimate. Proffitt arrives at a length estimate using n and n, given by
0.948n — 0.278n,, for ¢ = 4.

So far we have been concerned with length estimates of straight line segments. If
we wish to estimate the length of an arbitrary curved line, we may approximate the
code string by a polygon. The length of the curve may then be represented by
the sum of the polygon side lengths. Methods are known in which the vertices of the
polygonal approximation are chosen arbitrarily with a fixed number of codes
between them [4], or according to an irregularity criterion as derived by Kulpa [5].
The length of the associated line segment is then computed as the Euclidean distance
between the vertices. Quite clearly, for an arbitrary curved figure fixing the polygon
side length a priori will be less appropriate than computing the places of the vertices
from the code string. In the latter case, vertices may be found by applying linearity
conditions to the code string. The linearity conditions are presented by Freeman [1]
in an incomplete form and by Brons [6], both without a proof. A proof is given by
Wu [7].
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The linearity conditions can be summarized as follows:

—-no more than two different code values are involved;

—the difference between these two code valuesis 1 or ¢ — 1;

—the minority codes always appear isolated;

~no more than two different runlengths of majority codes are involved;

—the difference between these two runlengths is 1 or less;

—the minority runlengths of the majority codes always appear isolated;

—etc., starting iteration three conditions back, until only one runlength is involved,
after replacing “majority codes” by “adjoining majority and minority runs”.

Our aim in this paper is to derive an unbiased estimate for the length of a digitized
line segment given n, m, and n,. For each set of n, m, and n_ that may be generated
by a straight line segment an unbiased estimate is computed. These estimates are
found by generalization of the method of Groen for n = 1 and the method of
Proffitt and Rosen for n = o0 to finite values of ». In the estimates the corner count
n. is used to achieve an extra accuracy of the length estimate. In this paper the
accuracy of the method presented will be compared with estimates of the form
na, + mb, + n.c,, with coefficients a,, b,, and ¢, which are found by solving the
normal equations of a least-square fit. While solving these, combinations of a,, b,
and ¢, will be found with greater accuracy than the ones given by Groen and
Proffitt. Once the unbiased length estimates have been derived, our next aim is to
approximate arbitrary curved figures by polygons. The length of the arbitrary figure
will be found by summing the length estimates of the side lengths. Examples will be
given for ¢ = 4, ¢ = 6, and ¢ = 8; we omit ¢ = 12 from the discussion, because this
value is of little practical importance. Before we proceed to the computation of the
estimates, we introduce the column concept in the next section. Use of the column
concept makes the integration method independent of the connectivity.

2. DIGITIZATION

In the most commonly used coding scheme, the vector element in the direction of
the positive x axis is coded 0. The other vector elements, at an angle v = 27j/c
with the one coded 0 (7 taken counterclockwise only), are then coded j. In the
following, the digitization of straight line segments is considered for directions 7 only
between those of vector elements coded 0 and 1, thatis, 0 < 7 < 27 /c.

Now we want to consider the complete set of straight line segments that result in n
and only n codes upon digitization. To this end, we first define the concept of a
column. An origin is supposed at a grid point (the open pixel center in Fig. 1a).
Consider as the first line segment the one that connects the end points of the vectors
that each consist of n vector elements coded 0 and 1, respectively. Consider as the
second line segment the one that connects the end points of the vectors that each
consist of n 4+ 1 vector elements coded 0 and 1, respectively. Then column # is
defined as the trapezoid between the parallel first and second line segments, and the
vector elements numbered n + 1 coded 0 and 1, respectively. In Fig. 1a column 2 is
indicated by shading.

The angle o(c) between the columns and the positive x axis only depends on the
connectivity used: o(4) = 7/4, 0(6) = 7/3, and ¢(8) = 7 /2. This is also illustrated
in Fig. la.
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Fic. 1. Digitization of a straight line segment into four chain codes (1101, » = 4) in 4-, 6-, and
8-connectivity. (a) Illustration of the column concept (shading); (b) locus of the line segments that are
digitized into three odd chain codes (m = 3); (c) same as (b), but with the additional constraint that both
the first and the last chain code are odd (k = 2).

Among the different digitization methods that are used, we have adopted the one
that connects the grid points nearest to the line segment when going along the
intersected column boundaries in the direction of the positive x axis (see Fig. 1a).
Alternatively, one could simply have taken the nearest grid points along the
intersected column boundaries, or the ones in the opposite direction. But irrespective
of the digitization method used, intersection of a straight line with n columns always
results in n codes upon digitization, provided the orientation is within the limits, of
course.

Now we define the entry window as the boundary between column 0 and column
1, and the exit window as the boundary between column » and column » + 1. An
arbitrary straight line with orientation 7(0 < 7 < 2#/¢), can always be made to
intersect both the entry and exit windows by translating the grid origin over an
integer number of vector elements. The proper orientation can be achieved by
rotating the grid over an integer multiple of #/4 or #/6 in a rectangular or
hexagonal grid, respectively. For double connectivities (¢ = 8 or ¢ = 12) an addi-
tional reflection with respect to the direction of an odd-coded vector element may be
necessary. Note that all these transformations of the grid do not change the position
of any grid point, if considered anonymous.

The length of the straight line segment between the intersections with the column
boundaries depends on the angle ¢ between the line segment and a line perpendicu-
lar to the parallel column boundaries. It also depends on the column width. The
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ratio between this width and the grid constant u is called g(c): g(4) = 1y2, q(6) =
1y3, and g(8) = 1. The ratio s between the intersected length and the grid constant
u is then given by s = g(c)/cos @, and it is this length that generates exactly one
code. So, in accordance with Groen and Verbeek [2), the number of codes per unit
length is proportional to cos g, or inversely proportional to s. The latter proportion-
ality turns out to be more convenient to use in further derivations. In s the
connectivity is a parameter.

We define the entry height e’ as the distance between the right-hand side of the
entry window and the intersection between the entry window and the straight line.
The relative entry height e is then defined as the ratio between e’ and the entry
window width (see Fig. 1a). In e also the connectivity is a parameter.

Likewise, we define the exit height ¢’ + ¢’ as the distance between the right-hand
side of the exit window and the intersection between the exit window and the
straight line. The relative exit height ¢ is then defined as the ratio between ¢’ and the
difference between the exit and entry window widths. This definition may seem
rather artificial at first glance, but it provides the opportunity to transform functions
of the variable 7 into functions of the variable 1, the former depending on the value
of ¢, the latter not. Besides, the relations between  and r are simple, for example,
t = tanr for ¢ = 8.

3. DOMAINS
By definition, the unbiased length estimate L is given by

L= [ s(r)p(e,r)drde. (1)

domain

In this formula s denotes the ratio between the length of a line segment intersecting
n columns, and n - u, whereas p denotes the probability density function. Note that s
does not depend on e, because the entry and exit windows are parallel. The
integration will be described in the next section; here we focus on the integration
domains.

The integration domains follow from all code strings representing a straight line
that are considered equivalent. The most trivial approach is to consider all code
strings with equal » as equivalent. Then the domain is defined by the full range of
values of e and 7. But more information may be used in the length estimation than
just the string length a. Let us consider the exit window depicted in Fig. 1a. We can
easily think of confining the lines to a distinct part of the exit window, instead of
treating all lines through the exit window as equivalent. A natural choice for these
distinct parts would be the subwindow between two adjacent grid points on the exit
window. In Fig. 1b the locus of all lines passing through the entry window and the
exit subwindow is indicated. Upon digitizing, the chain code strings of all these lines
have the number of odd codes # in common. The exit height within one subwindow
isthen givenbym e+ nt<m+ 1,with0 g m <n.

In Fig, 2a a diagram in e + nt and ¢ is given of the integration domain boundaries
resulting when codes are considered equivalent if they have the same m. Within the
ultimate boundaries imposed by 0 < e<1l and 0 <r<27/c (or 0t <1 =
e < e+ nt < e+ n), the boundaries imposed by keeping m constant are given by
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F1G. 2. Domains of chain code strings in the plane defined by e as abscissa and e + nt as ordinate.
The representation is independent of the connectivity. (a) Domains of chain code strings in which the
number m of odd codes is constant. (b) Same as (a), but with the additional constraint that the number k&
of odd codes at both ends of the string is constant (cf. Fig. Ic). The chain code strings are indicated in the
domains. Domain boundaries of strings with identical values of n, m, and k are indicated by dashed lines.
The position of the continuous line segment in Fig. 1a is indicated by an asterisk.

the horizontal lines in Fig. 2a with
e+ nt=m. (2)

Proffitt et al. [3] stress the importance of using the corner count n, when
estimating the length of a line represented by a code string. When considering code
strings of straight line segments the minority codes will appear isolated in the string
in conformity with the linearity conditions. If both ends of the string consist of the
majority codes, n, will be twice the number of minority codes. But every minority
code at the end of the string will reduce n by 1. So, for distinct values of »n and m,
n, can have only three different values, which depend upon the parity of the codes at
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the end of the chain code string. If we want to use the information provided by R
for a further reduction of the integration domain (thus increasing the accuracy of the
length estimates) we can just as well use k, the total number of odd codes at each
end of the string instead of n. In the frame of reference provided by Fig. 1, in which
the codes can only have values 0 or 1, k is defined as

k = code(1) + code(n).

Consequently, k = 0, 1, or 2. Among the set of all line segments the value of code(1)
is determined by considering the exit height (e + ¢) after intersection with the first
column:

e+t<l=code(l)=0, and e+1?>1= code(l)=1. (3)

Likewise, the value of code(n) is determined by the difference between the digitized
exit height after n columns and the one after n — 1 columns. If both exit sub-
windows are described by the same value of m, code(n) = 0; otherwise code(n) = 1.
The value of m that describes a subwindow is given by m = [e + nf], in which the
brackets denote the entier (truncation to integer) function. The value of the entier
function will change at e + nt = m, which is Eq. (2) again, and ate + (n — 1)t = m.

In Fig. lc the reduction of the locus of all lines with distinct » and m by taking
k = 2 is depicted. In Fig. 2b the boundaries resulting from the introduction of k are
added to Fig. 2a:

et+i1=1 or e+nt=n~(n—1)e (steep diagonal)
hm e
n—1 n-1

e+ (n—Nt=m or e+ nt= (sloping lines).

(4)

So in Fig. 2b every closed domain corresponds to one combination of n, m, and k.
The equations of the boundaries can be written in a much simpler form as
functions e(t). Equations (2) and (4) then become

e=m~— nt for 1<sm<n
e=m—-(n—Ut for 1<sm<n (5)
e=1-1.

In Fig. 3 the boundaries are depicted in the e—¢ plane, for n = 4 again.

In the evaluation of the integral of Eq. (1)—as will be explained in the next
section—we need a description of the domains by the values of the relative exit
height ¢ and of the change r in direction coefficient, both at the corners of each
integration domain. To find general expressions for ¢ and r we observe that the
integration domains generally appear in sets of four quadrangular domains with
equal values of m. In Fig. 3 one such set may be seen at the center of the figure (i.e.,
the four domains that have (e = 0.5, t = 0.5) as one corner). The upper left domain
of such a set is always for k£ = 0, the lower right domain for k = 2. The upper right
and lower left domains are always both for k£ = 1. Note that in Fig. 3 there is only
one such set of domains, with m = 2, because n = 4, For larger values of » there are
more—(n — 3), in general—such sets. For m = n — 1, the set is degenerate, because
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F16. 3. Domains of chain code strings with constant values of n, m, and k in the e~ plane (n = 4, cf.
Fig. 2b). The representation is independent of the connectivity.

the domain for k = 0 has vanished. Likewise, the domain for k = 2 has vanished
from the set for m = 1. In these two cases two corners of each domain for k = 1
coincide. For the extreme values of m (m = 0 and m = n) the sets comprise just one
domain each, requiring special treatment, as will be explained in the next section. So,
for 0 < m < n, each domain can be viewed as one of a set of four (or three),
according to the value of m. The values of ¢ and r at the corners of the domains are
presented in Table 1.

In the next section the planar integral is taken over every such closed domain
resulting in a different length estimate for every combination of n, m, and k. The
area of a domain together with the probability density function of the line segment
given in e and ¢ determine the variance in the length estimate of chain code strings
with corresponding n, m, and k.

TABLE 1

Values of the Relative Exit Height ¢ and Change in Direction
Coefficient , Both at the Four Corners of Each of the Four Integration
Domains of a Set with a Distinct Valueof m,0 < m < n

Domain Corner Domain Corner
quadrant k quadrant t r quadrant k& quadrant t r
2 0 1 LS R ! 1 | n -n
n-1 n
2 o 2 mfl o, 1 12 m oy
n n—1
2 0 3 LN 1 | 3 m-1 5 _,
n-—1 n—2
2 0 4 m-l 5 1 1 4 m=1 .,
n—2 n—1
s o1 o1 2zl 4 2 o m=lo
n—2 n—1
3 1 2 L 4 2 2 m-1 , 5
n—1 n—2
3 | 3 L 4 2 3 m-1 ,_,
n n—1
S T el T T . el U
n—1 n
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4. INTEGRATION

The unbiased length estimate L is given in Eq. (1). Instead of evaluating that
equation, we compute L and its variance from L(n, m, k) = G,/G, and

varL(n, m, k) = G,/Gy ~ (G,/G,)* (6)

in which the moment functions G, are given by

Gi(nm k)= [ s(r)'ho(r,e) drde. (7)

domain

In this formula (', e) is the unnormalized weight function. The integral over 7 and
e should be performed for each domain, of which the boundary conditions are
computed in the previous section. For every domain, with given n, m, and k, a
different value of L will result. The variable 7 is rather unpractical in the integration
because s(r) depends of the connectivity in a complicated way. It also presents
complicated relations between e and r at the integration domain boundaries, as
opposed to the ones given in Eq. (5). To avoid these complications we use in the
integration the variable ¢ instead:

Gi(n,m, k)= [[ s(tY'ho(t, e)(dt/dr) ™" dt de. (8)

domain
From the sine rule follows
sinT dt sin o
= = = ——— 9
sin(r + o) = dr sin(r + o) ©)
Applying the sine rule once more gives

sin(r + o) = sino/s

and substituting this into Eq. (9) results in

dt st
dr  sine’ (10)

Now, application of the cosine rule gives

s(1)=(1*+ 1~ 2tcos 0)'/? (11)
The weight function &, is adopted from the considerations of Groen and Verbeek
[2], as already mentioned in Section 2. Assuming »# and ¢ constant, the code
generating probability per unit length of a straight line segment is inversely propor-

tional to its length s:

hy=1/s,  independent of e. (12)
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Substituting (12), (11), and (10) in (8) yields

Gi(n,m, k) ff s(tY sino dr de. (13)

domain

The integrand is a function of ¢ only, and the domain boundaries are linear relations
in e and ¢ (see Eq. (5)). The evaluation of an integral of this type is presented in
generalized form in Appendix A. The result is

4
Gi(n, m, k) = E.II}F,( ;) (14)

in which the values 7, denote the ordinates of the four corner points of the
integration domain. The values r; denote the change in the direction coefficient of
the boundary of the integration domain at each corner, going in a counterclockwise
direction along the boundary. The values of #; and r; depend on 7, m, and k and
follow from the scheme presented in the prev1ous sectlon

Finally, the functions F(¢) in Eq. (14) are found by

d*F(1)/dt? = 5(1) sine (= ho(t)s(2) *sine).
Integrating this expression twice over ¢ gives

Fy(t) =s(t)/sina
Fi(t) = n((t — cos o) arctan((t — cosa)/sin o) — sinolog(s(z)))
F,(t) =n%sino((r — cosc)log(s(z) + 1 —cosa) — s(z)).

For 0 < m < n the following expressions for G,(n, m, k) result

) o-am(224)
]

G,(n, m,0) =2(1 — n)F,.(n—'f—-l-) + nE.(

G(nm, 1) = 2 =nE (%) + (2= n) B2

+tr-{af527) +5[2=1))

G, (n,m, 2)—2(1—n)F( 11)+ F( 1)+(n—2)}7}(r::21).

3 o

For m = 0 or m = n, the integration has to be performed according to Appendix B,
resulting in

G;(,0,0) = nF,(1/n) - nF(0) — H,(0)
G;(n, n,2) = H(1) = nE(1) + nF((n — 1)/n)

in which the functions H () are the result of integrating ,(¢)s(¢)'~?sino once
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over ¢

Hy(t) = (t — cosa)/(s(t)sino)

H,(t) = narctan{(t — cos o) /sina}

H,(t) = n*sinolog(s(t) +¢ — coso).

357

Evaluation of these expressions for distinct values of n, m, and k, and substitution
of these values in Eq. (6) then gives the unbiased length estimate L(n, m, k) and its
variance. The resulting values are summarized in Table 2 for 1 < n < 4. From this
table it appears that the length estimation of coded linear segments is most accurate
with ¢ = 6 for short segments.

A graphic representation of some results is presented in Fig. 4. Essentially, this
figure renders the domain areas as given by Eq. (5), similarly to Fig. 3. The ordinate

TABLE 2

Relative Probability or Weight w, Length s (= L/n), and Variation Coefficient d
for Some Numbers of Codes n, as a Function of n, the Number of Odd Codes m,

and the Number & of Odd Codes at Both Ends of the Code String

Connectivity = 4

Connectivity = 6

Connectivity = 8§

mom k n, w s d%) w s d®B w s d (%)
1 0 0 0 0500 0785 102 0500 0907 43 0,586 1.059¢ 7.0
1 1 2 0 0500 0785 102 0500 0907 43 0.414 1.183% 100
1 total 1.000 0785 102 1.000 0907 43 1.000 1.011 84
2 0 0 0 0207 0.837 100 0232 0930 42 0.334 1.019 22
2 1 1 1 058 0749 170 0536 0887 29 0.504 1.113 1.5
2 2 2 0 0207 0837 100 0232 0930 42 0.162 1.292 5.9
2 total 1.000 0.785 84 1.000 0907 35 1.000 1.111 59
3 0 0 0 0118 0885 76 0.146 0949 33 0.229 1.009 1.0
31 1 1 0178 0772 72 0.173 0897 3.0 0209 1.041 2.5
3 1 0 2 0204 0739 64 0.182 0882 26 0.189 1.075 44
3 02 2 2 0204 0739 64 0182 0882 2.6 0.148 1.165 6.1
3 2 1 1 0178 0772 72 0173 0897 3.0 0.127 1228 4.8
3 3 2 0 0118 0885 7.6 0.146 0949 33 0.099 1.333 4.0
3 total 1.000 0.785 7.0 1.000 0907 2.9 1.000 1.111 39
4 0 0 0 0081 0914 59 0106 091 26 0.174 1.005 0.6
4 1 1 1 0074 0823 61 0080 0919 26 0111 1.021 1.2
4 1 0 2 0178 0772 12 0173 0897 30 0209 1.041 2.5
4 2 2 2 0052 0736 25 0.046 0878 09 0.049 1.063 1.7
4 2 1 3 0229 0713 1.0 0191 0869 04 0169 1.117 2.7
4 2 0 2 0052 0736 25 0046 0878 09 0035 1.186 2.4
4 3 2 2 0178 0772 72 0173 0897 3.0 0.127 1.228 4.8
4 3 1 1 0074 0823 61 008 0919 2.6 0.056 1.281 34
4 4 2 0 008! 0914 59 0.106 0961 26 0071 1.354 3.0
4 total 1.000 0.785 55 1,000 0507 24 1.000 I1.111 27
“Cf, [2].

Note. The number of corners is denoted by n,,
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F1G. 4. Same as Fig. 3, but the vertical axis is transformed such that the domain areas are
proportional to the probability of the chain code strings. Vertical (nonlinear) scales indicate normalized
segment length s and relative exit height ¢ (cf. text and Fig. 1a). The connectivity is indicated in each

subfigure,
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F1G, 4.-Continued.

t is transformed into

Hy(t) — Hy(0)
Ho(l) - Ho(o)

with Hy(t) = dF,(t)/d! again.

By transforming the ¢ axis in this way the area of each domain becomes
proportional to the integrated weight function G,(n, m, k), that is, proportional
to the fraction of random oriented line segments with distinct values of m and k,
given n.

The values of ¢ are still indicated on the vertical axis (¢ = 0) on a nonlinear scale.
On the boundary given by e = 1, some values of s(¢) are indicated, reflecting the
decreasing probability of segments of increasing length.

5. COMPARISON WITH OTHER METHODS

Both Groen and Verbeek [2] and Proffitt and Rosen [3, 4] compute the segment
length K by a relation linear in n, m, and n,. In this section we will repeat the
evaluation of the coefficients of the linear relation by a least-square approximation
over m and n,, for a distinct value of n. K is given by

K(n,m,n) = na, + mb, + n.,

in which a, represents the length assigned to all codes, b, denotes the length
correction for all odd codes, and c,, the correction for the corner count 7.,
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Given the functions Gy(n, m, k) and L(n, m, k) derived above, the normal
equations used in the least-squares approximation are

L (nGy(K/L—1))=0
L (mGy(K/L - 1))=0
Y (nGo(K/L - 1)) =0,

in which the summations are performed over the different values of m and n_, given
n. The arguments of the functions G,, K, and L have been omitted for the sake of
clarity. Solution of these equations leads to the values for a,, b,, and c,.

For 4- or 6-connectivity we remove the second equation from the set and put
b, = 0. For n = oo and ¢ = 4 the same result is found as in [3]. In 8-connectivity we
may account for the corner count, but fix the correction of the odd codes a priori by
b, = a,(y2 — 1). The second equation may then be removed from the normal
equations. Instead of removing the second equation in 8-connectivity, the third
equation may be removed, that is, the corner count will not be taken into account in
the length computation (¢, = 0). By this procedure for n = 1 the same result is
found as Groen’s [2], whereas for n = oo the same result is found as Proffitt’s [3]. In
8-connectivity removing an equation from the set will lead to a larger average error
of estimate. Therefore we also evaluate all three normal equations for ¢ = 8 without
imposing any constraint on b, or ¢,,.

In Table 3 the values of a,,, b,, and ¢, are presented for n = 1000. This number of
codes is large enough to make the results comparable with those described (for
¢ = 4) for infinite n. The results for 6- and 8-connectivity are also presented using
the constraints mentioned before. One may see from the table that the constraint
¢, = 0 in 8-connectivity results in the same values for the coefficients per code a,
and in the same variation coefficient d, as in 4-connectivity. Since the line segment
rendering 1000 codes is on average much longer in 8- than in 4-connectivity,
accuracy is lost in ¢ = 8 by removing the corner count from the length computation.

When we consider the variation coefficients d,’ in Table 3, the accuracy of long
linear segments seems optimal with ¢ = 8. However, for large n the average absolute

TABLE 3
Coefficients a,, (Average Length per Code), b, (Odd Code Correction), and ¢, (Corper Correction)
Used in the Computation of the Segment Length
K=a,n+ bm+ c,n,forn=1000

Connectivity Constraints ay, b, ¢, d, (%) d,(%) e,
4 b, =0 0.948%  0.000 ~0.278¢ 2,3 0.021  0.184
6 b, =0 0.977 0.000 -0.131 1.0 0.010  0.096
8 by=a,0/2—1) 0984 0408 —0085 0.8 0009 0114
8 ¢, =0 0.9489  0.392¢ 0.000 2,37 0.009 0.114
8 - 0.980 0426  —-0.091 0.7 0.009 0.114

aCt. [3).
Note. The term d, denotes the resulting average variation coefficient of K, d/, the same for the
unbiased length estimate L, and ), the average absolute error in L,
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error e, in the segment length is decreasing toward a constant with increasing
number of codes. This constant value is smaller for ¢ = 6 than for ¢ = 8, even after
application of the necessary correction factor (4/3)!/* for ¢ = 6 to obtain equal grid
densities.

6. POLYGON LENGTH

By applying the linearity conditions mentioned in Section 1 to an arbitrary code
string one may construct a polygonal representation of this string. Starting with the
first code, one code is added to a string and the linearity conditions are applied,
until the string does not fulfill the conditions any more. The code that made the
previous string fail to meet the linearity conditions may in turn be taken as the first
code of the next string. The process may be repeated until the end of the string is
reached. For closed contours that contain a “sharp” corner, that is, two adjacent
codes representing nonadjacent directions, it makes sense to start at this sharp
corner.

The vertex-finding process is illustrated in Fig. 5 for a closed 4-connected contour
and its 8-connected counterpart. The figure has been generated by boundary
quantization of a hand-drawn circular object. If no sharp corner is present, the first
corner where a third different code appears after an otherwise linear code string is
taken as a starting point (P or Q). The result depends strongly on the (arbitrary)
choice of the entry point E, so the starting point is searched for only beyond the first
corner after the entry point. In the given example the 4-connected contour, consist-
ing of 66 codes (vector elements), has a length of 52.58 (4 0.62) starting at P and
going clockwise, or 53.11 (£0.61) starting at Q and going counterclockwise. Both
times, 8 linear segments were found (see Fig. 5). In the 8-connected contour,
consisting of 44 codes, 9 linear segments were found, resulting in lengths 52.46
(£0.50) and 52.62 (+0.44) starting at P and Q, respectively. The errors were
computed by adding the theoretical variances of the individual segments. The
contour lengths have been corrected for object boundary quantization by addition of

F16. 5. Polygonal representation of a digitized circular object in (a) 4- and (b) 8-connectivity. The
entry point of the contour is E (in Fig, 5b E coincides with Q). The P and ( are starting points for
clockwise (W) and counterclockwise (4) searches for vertices, respectively. A @ indicates a vertex found in
both directions.
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APPENDIX A

Let us consider an integration domain 4 in the e — ¢ plane, limited by the
boundary b(e, ). Let us assume that the boundary consists of four straight line
segments, that is, on each segment between the corner points i and j (j = i + 1) the

direction coefficient
o = { de(t) }
iy at J pee,n

is a constant, except if a boundary is described by a constant value for e. In that
case, we have to resort to the integration method given in Appendix B.
We want to compute

According to Green’s theorem we can write this as

G= H(t) de,
b(e,t)

in which H(r) is defined by A(¢) = dH(t)/dst. Note that the boundary is supposed to
be followed counterclockwise. Now we may write

(#0)

G= H(t) 7 )b(m) t

b(e, 1)

as long as the direction coefficients v,; exist. But in the assumed case, the coefficients
v;; are constants. So, if we define F(1) by H(t) = dF /dt, we may write

4
G= )y Uij(F(tj) _F(ti))a
i=1,(j=i+1)
or
4
G= Y rF(1),  with r =0~ .

J=1,(i=j= s (k=j+1)

APPENDIX B

In practice, there are two cases in which the direction coefficient (de/dt), is not
defined, for t = 0 and ¢ = 1, respectively. In these cases the planar integral cannot
be solved by the method given in Appendix A.

./(;l/(;t(e)h(t) dt de = fo‘(H(t(e)) — H(0)) de

= —H(0) +ft:;)l)H(t)(de/dt)bdt = —H(0) + (de/dt),{F(£(1)) — F(£(0))).
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Likewise

[ Lot ande= [1(80) < ) e

= H(1) ——j;(té)]_)H(t)(de/dt)bdt

= H(1) — (de/dt) ,{F(1(1)) — F(¢(0))}.
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