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Vapour-liquid equilibria of the hard core Yukawa fluid 

By B. SMIT 

Koninklijke/Shell-Laboratorium, Amsterdam (Shell Research B.V.) Badhuisweg 3, 
1031 CM Amsterdam, The Netherlands 

D. F R E N K E L  

FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 
1098 SJ Amsterdam, The Netherlands 

(Received 3 December 1990; accepted 20 March 1991) 

Techniques which extend the range of applicability of the Gibbs ensemble 
technique for particles which interact with a hard core potential are described. 
The power of the new technique is demonstrated in a numerical study of the 
vapour-liquid coexistence curve of the hard core Yukawa fluid. 

1. Introduction 

Some systems of  practical importance, in particular certain colloids, are modelled 
with a hard core potential and an attractive tail [1]. Such a model is able to reproduce 
an important characteristic of  real colloids, namely the occurrences of  a 'liquid- 
vapour' phase transition. However, the numerical simulation of  this liquid-vapour 
coexistence has, thus far, proved difficult because the Gibbs ensemble technique [2] 
becomes quite inefficient for models that combine hard core repulsion with strong 
short ranged attraction. A case in point is the hard core Yukawa model. A modified 
simulation scheme is proposed which takes advantage of the specific properties of the 
hard core potential. This technique significantly increases the efficiency of the Gibbs 
ensemble technique for the class of  models mentioned above. As an illustration, we 
report the numerical study of the vapour-liquid coexistence curve of  the hard core 
Yukawa fluid. 

Consider a fluid with a pairwise additive potential 

0 0 ,  r < 0", 

u(r) = (1) 
w(r), r > a. 

in which a is the diameter of the hard core. For  such a fluid Lebowitz and Percus [3] 
have developed the mean spherical approximation (MSA). Together with the exact 
condition 

h(r) = g(r) - I = - 1 ,  r < tr (2) 

the MSA consists in assuming that the direct correlation function [4] can be approxi- 
mated by 

c(r) = - f l w ( r ) ,  r > a, (3) 

where fl = 1/kBT.  
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The importance of this theory is that for various model fluids the MSA combined 
with the Ornstein-Zernike equation [4] can be solved analytically. Examples of  such 
fluids are the dipolar hard sphere fluid [5] and the hard core Yukawa fluid [6]. 

The tail of  the hard core Yukawa fluid is given by 

exp [ -  2(r - a)] 
w(r) = - -~  r > a. (4) 

rift 
Several authors [7-10] have studied this fluid on the basis of the MSA results. 
Expressions for the density profile of  this fluid in a simple external field of an idealized 
wall have been obtained [11-13]. These applications make this fluid interesting as a 
starting point for various perturbation theories for other model fluids [14]. It is, 
therefore, important to have 'exact' numerical data on the phase behaviour of this 
fluid. 

For  the hard-core Yukawa fluid the Gibbs ensemble technique cannot be applied 
straightforwardly as pointed out by Rudisill and Cummings [2]. Since it is energetic- 
ally favourable for two particles to be in contact, a decrease of the volume will most 
likely result in an overlap of a least one pair. The probability of  a volume change to 
be accepted will, therefore, be extremely small and it would require a very large 
number of  these volume steps in order to obtain a proper estimate of the coexistence 
properties. Since the potential does not scale with the volume, a volume step (if 
implemented straightforwardly) is a relatively 'expensive' operation. It would, 
therefore, be questionable whether the Gibbs ensemble technique is 'cheaper' than 
conventional methods for obtaining phase equilibrium data for this type of fluid. 

In this paper we demonstrate that for the hard core fluids one can utilize some of  
the techniques developed by Wood [15] for constant pressure simulations of hard 
discs, to reduce the computer costs for the volume step significantly. 

2. Gibbs ensemble simulations 

_Details on the Gibbs ensemble simulation technique can be found in [16, 17]. A 
formal proof  of the equivalence of the Gibbs ensemble and the canonical ensemble is 
given in [18]. We have used the algorithm described in [19, 20] which deviates slightly 
from the original algorithm of Panagiotopoulos [16]. Below we list the extensions for 
a hard-core potential. 

In case of  a hard core fluid, a configuration can be rejected if an overlap between 
a pair of  particles has been detected. Since it is usually much cheaper to detect such 
an overlap than to calculate the energy of a configuration, one can take advantage of 
this in several steps of the Gibbs ensemble. 

2.1. Part ic le  d isplacement  

During the simulations for each particle a neighbour list was made containing all 
particles within a radius equal to the maximum displacement. Before the energy of the 
new configuration was calculated, this neighbour list was used to test for a possible 
overlap. This makes the computer time required for a rejected move much less than 
the time required for an accepted move. The maximum displacement was, therefore, 
set to give an acceptance ratio of approximately 25%. 

2.2. Volume change 

During the simulations we kept track of the minimum distance between a pair of  
particles in each box. When, after a volume change, one of these minima becomes 
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smaller than the hard core radius the configuration can be rejected immediately. We 
performed one attempt to change the volume after each Monte Carlo step. 

Since the hard core Yukawa potential is monotonically increasing for distances 
greater than the hard core diameter, an increase of  the volume will always result in 
an increase of  the total energy. This makes it unavoidable to use relatively small 
volume changes. 

Because of the low probability of  acceptance, even with a relatively small volume 
change, it is important to perform a very large number of  volume changes during each 
cycle of  the Gibbs ensemble simulation. Although the overlap criterion will reject, for 
a given maximum volume change, typically 90 per cent of  these configurations, the 
calculation of the energy of  the remaining 10 per cent would still require a very large 
amount of CPU time. 

In order to reduce the required CPU time further, a method was developed to 
calculate the energy of  a new configuration more efficiently. 

The total energy (U) of the old configuration is given by 

1 
U = ~ .~ u(rij), (5) 

where rij is the distance between the particles i and j and u(r) is the intermolecular 
potential as defined by (l)  and (4). Assume that a volume change is achieved by 
rescaling of  the coordinates 

r' = (1 + A)r, (6) 

where the prime indicates the new configuration. If  we furthermore assume that there 
is no overlap between two particles, the total energy of  this new configuration is given 
bye" 

U' 1 ~ exp[--2(r~j -- 1)] 1 ~ ex p [ -2 ( (1  + A)rij - -  1)] 
= 2...,, r;j = 2 .,~ (1 + A)rij (7) 

Since the volume change is small, we can make a Taylor expansion of  the exponent 
[21] 

U ~,, A" 
U'(A)  - -  1 " 1 - ~  + c n - -  ( 8 )  ,=] I + A '  

with 

1 -- 1" 2" exp [-- 2(r~j - 1)] ~"  
c. - 2 n ~  Z (9) Lj t'ij 

The coefficients c, depend only on the coordinates of  the old configuration. Tests 
show that four terms in this expansion estimate the energy of  the new configuration 
with a relative error of  approximately 10 -6. Updating the coefficients Cn during a 
simulation does not require much CPU time and therefore this method allows us to 
calculate the energy of a new configuration very efficiently. However, once a new 
configuration has been accepted the new coefficients co need to be calculated, which 
is still a relatively expensive operation. 

Before each simulation was started a short test run was performed to estimate the 
maximum volume change which gave the maximum mean squared volume change per 
unit CPU. 

f In the rest of this paper the energy is in units of e and the length in units of a. 
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Phase diagram of the hard core Yukawa fluid (2 = 1.8) x, O, and ~, are the Gibb~ ensemble 
results of this work. �9 is the estimate of the critical point on the basis of the simulation 
results. The full lines are the fits to the scaling law and the rectilinear law. The 
temperature and density are in the usual reduced units. 

2.3. Particle exchange 
Except for some extra book  keeping for updat ing the neighbour  lists, the mini- 

m u m  distances between pairs in each box and the coefficients c,, the particle exchange 
step was not  modified. 

3. Results of the simulations 

We have calculated the phase diagram for 2 = 1.8. The contr ibut ions o f  the tail 
o f  the potential  was estimated analytically assuming g(r) = 1 for distances greater 

Results for the hard-core Yukawa fluid 2 = 1-8. N is the total number of particles, T the 
temperature, Ncy is the number of Monte Carlo cycles, p the density, P the pressure, E 
the energy, and # the chemical potential, all in the usual reduced units. The number of 
attempts per cycle to insert a particle were: N, ry = 40. The small subscripts give the 
accuracy of the last digit(s), so 0-7317 means 0.731 + 0-007. 

Gas phase Liquid phase 

N T N~....Zy pg Pg - Eg - fig p, PI - El -- #l 
10 3 

108 1 "000 5 0 -0366  0.0304 0"31 3"6010 0"661 0"01 4"51 3"5622 
108 1.025 10 0'0507 0'0404 0"41 3-478 0"661 0"01 4-52 3"3923 
108 1.053 10 0"0599 0-0477 0-43 3"449 0-632 0"036 4"33 3"4116 
108 1.075 10 0 - 0 6 5  0 - 0 5 1 3  0 - 4 6 6  3"486 0-582 0"07 3-92 3"489 
108 1.100 10 0 - 0 8 1  0'0678 0'61 3"375 0"563 0'039 4"02 3"348 
108 1.112 10 0 - 0 8 1  0-05% 0-62 3"426 0'552 0-067 3-72 3"387 
108 1.125 7 0"10613 0"0768 0"82 3"314 0"55019 0-068 3-72 3"295 
108 1.140 7 0.118u 0-0805 0-92 3-303 0"53415 0"075 3"62 3"334 
108 1"150 7 0 -1159  0"0849 0"91 3"323 0"49119 0"07s 3'32 3"333 
108 1.160 5 0-12418 0"08511 0"93 3'324 0 '45414 0-084 3"12 3"345 
108 1.170 7 0-14620 0-0805 - -  3-263 0 '46420 0"075 - -  3-272 
108 1.180 7 0.172 0"081 - -  3"283 0"442 0-092 - -  3-283 

--boxes changed identity during the simulation. 
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than half the box size. The pressure of  the fluid in box k was calculated using 

1 
( dw(r,j) ) dr (P'~)) = T(P'k)) -- 3V ,~<j 'k)r'j + 2nT((pr +) (10) 

in which the summation in the second term on the right-hand side runs over all 
particles in box k. g<k)(1 +) denotes the radial distribution function at contact, which 
has been obtained by extrapolation. The formulae for the chemical potential that have 
been used are given in [22]. 

The results of  the simulations are presented in the figure and in the table. The 
critical temperature and density have been estimated by fitting the results to the law 
of rectilinear diameters and to a scaling law for the densities [23, 24] (with the 
three-dimensional Ising critical exponent, fl = 0.32). The estimated critical tem- 
perature and density are Tc = 1.192 _ 0.008 and Pc = 0.294 __+ 0.006. 

Comparison of  these results with the prediction of  the mean spherical approxima- 
tion, which give for the critical temperature and density T~ = 1.05 and Pc = 0.32 [9], 
shows that the MSA theory underestimates the critical temperature significantly. 

4. Summary 

In this paper we have presented an extension of the Gibbs ensemble technique for 
particles which interact with a hard core potential more efficiently. We have used these 
methods to calculate the vapour-liquid curve of  the hard core Yukawa fluid. 

The work of  the FOM-Institute is part of the research program of  FOM and is 
supported by 'Nederlandse Organisatie voor Wetenschappelijk Onderzoek' (NWO). 
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