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Abstract

It is generally believed that for the power of unit root tests, only the time span and not the

observation frequency matters. In particular this has lead researchers in the area of purchasing

power parity to test for a unit root in real exchange rates based on data covering a time span of a

century or more. In this paper we show that the observation frequency does matter when the high-

frequency data display fat tails and volatility clustering, as is typically the case for exhange rate

returns. Our claim builds on recent work on unit root and cointegration testing based non-Gaussian

likelihood functions. The essential idea is that such methods can yield substantial power gains in

the presence of fat tails and persistent volatility clustering, and these feautures (and hence the power

gains) typically decrease with temporal aggregation. This is illustrated using both Monte Carlo

simulations and empirical applications to real exchange rates.

Key words: Fat tails; GARCH; mean reversion; observation frequency; purchasing-power parity;

unit roots.

1 Introduction

Testing purchasing-power parity is one of the main applications of unit root and cointegration analysis.

Although some researchers have tried to address this problem by checking whether nominal exchange

rates and prices (or price differentials) are cointegrated in a multivariate framework, many others have

focussed on the question whether real exchange rates contain a unit root. The fact that a unit root

quite often cannot be rejected, so that no significant mean reversion in real exchange rates is found,

is typically explained by the notoriously low power of unit root tests, together with the fact that the

tendency towards purchasing-power parity is so weak that it is not detected by conventional unit root

tests. To solve this problem, researcher have tried increase the power of these tests by obtaining more

data; either by considering a longer time span (of a century or more) of data, or by considering a panel

of exchange rates, exploiting cross-country restrictions, or a combination of these; see Frankel (1986),

Frankel and Rose (1996), Lothian and Taylor (1996), and Taylor (2000).

∗Corresponding author. Address: Department of Quantitative Economics, Universiteit van Amsterdam, Roetersstraat 11,

1018 WB Amsterdam, The Netherlands. E-mail: H.P.Boswijk@uva.nl.
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Another way to obtain larger sample sizes is to consider the same time span, but using data observed

at a higher frequency. However, it is generally believed that this route will not lead to more power,

because the power of unit root test is mainly affected by time span, and much less by observation

frequency. This result was first derived by Schiller and Perron (1985), and repeated in the influential

review paper by Campbell and Perron (1991). At an intuitive level, finding significant mean reversion

requires a realization of a process that indeed does pass its mean quite regularly within the sample;

increasing the observation frequency does not change this in-sample mean-reversion, whereas a longer

history of the time series will demonstrate more instances of passing the mean.

At a more formal level, the theoretical basis for the result of Schiller and Perron (1985) is provided

by a continous record asymptotic argument. Suppose that the data may be seen as discrete observa-

tions from the continous-time Ornstein-Uhlenbeck process (i.e., a continuous-time Gaussian first-order

autoregression). Then the power of a unit root test based on the discrete observations may be approxi-

mated by the asymptotic local power, which is essentially the power of a likelihood ratio test for reducing

an Ornstein-Uhlenbeck process to a Brownian motion process, and the latter power is solely determined

by the time span and the mean-reversion parameter. This approximate local power is the same, whether

we consider10 years of quarterly data or10 years of daily data. Although the actual power differs some-

what between these cases, this difference is negligible relative to the power gains that may be obtained

from a longer time span.

This paper argues that the result that only time span matters for the power of unit root tests is violated

when high-frequency innovations are fat tailed and display volatility clustering, and these properties

are accounted for in the construction of the unit root tests. Recent research by Lucas (1997), Ling

and Li (1997, 1998), Boswijk (2001) and Klüppelberget al. (2002) has demonstrated that when the

errors of an autoregressive process display these typical features of financial data (fat tails and persistent

volatility clustering), then (quasi-) likelihood ratio tests within a model that takes these effects into

account can be considerably more powerful than the conventional least-squares-based Dickey-Fuller

tests. And because these properties tend to become less pronounced with temporal aggregation, the

possibilities of high-powered unit root tests also decreases when one moves from high-frequency to

low-frequency observations. In this sense, frequency does matter. We demonstrate this claim by a

small-scale Monte Carlo experiment and an empirical application to real exchange rates of the leading

currencies vis-̀a-vis the US dollar in the post-Bretton Woods era.

The outline of the remainder of this paper is as follows. In Section 2, we review the most important

results about testing for a unit root based on non-Gaussian likelihood functions. Section 3 discusses a

stylized Monte Carlo experiment, showing that in a realistic situation, the possible power gains at the

daily frequency reduce considerably when moving to monthly data. Section 4 discusses the empirical

analysis; here we show that for the real dollar exchange rate of the German mark, the British pound and

the Japanese yen, the theoretically expected power gain indeed leeds to stronger evidence in favour of

purchasing power parity. For a fourth exchange rate (of the Canadian versus the US dollar), we do not

find any improvement over the Dickey-Fuller test. The final section contains some concluding remarks.
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2 Unit root testing based on Gaussian and non-Gaussian likelihoods

This section reviews the theory of testing for a unit root based on non-Gaussian and/or GARCH likeli-

hood functions, building on recent work by Lucas (1997), Ling and Li (1997, 1998), Boswijk (2001),

and Klüppelberget al. (2002). To test for a unit root in a series{Xt, t = 1, . . . , n} which does not

display any deterministic trend, we typically consider an autoregressive model of orderp, rewritten as

∆Xt = γ(Xt−1 − µ) +
p−1∑

i=1

δi∆Xt−i + εt, (1)

where the unit root hypothesis isH0 : γ = 0, to be tested against the stationarity alternativeH1 : γ < 0.

De model is usually linearized, replacingγ(Xt−1 − µ) by m + γXt−1, where the restriction thatm =

−γµ = 0 underH0 is imposed either implicitly or explicitly, such that the process has a possibly non-

zero mean but no linear trend under both the null and the alternative hypothesis. An explicit treatment

of this restriction leads to theΦ1 test of Dickey and Fuller (1981), i.e., theF -test for the exclusion of the

constant term andXt−1. Under the assumption thatεt ∼ i.i.d. N(0, σ2), and with fixed starting values,

this is a monotone transformation of the likelihood ratio test statistic forH0. TheF -statistic does not

have an asymptoticF -distribution under the null, but another asymptotic distribution, discussed below.

The number of lagsp in the model should be such that the resulting disturbanceεt should display no

serial correlation; oftenp is chosen in practice using a model selection criterion (such as Akaike’s or

Schwartz’s information criterion), in combination with a test for serial correlation.

The asymptotic distribution of the likelihood ratio statistic forH0 is often characterized in terms

of functionals of a Brownian motion process. An essential ingredient is the functional central limit

theorem, which states that under fairly mild conditions on{εt},

1
σ
√

n

bsnc∑

i=1

εi
L−→ W (s), s ∈ [0, 1], (2)

wherebxc denotes the integer part ofx, where
L−→ denotes convergence in distribution, and whereW (s)

is a standard Brownian motion process on[0, 1]. This result, together with the continuous mapping

theorem, implies that, underH0,

2Φ1
L−→

∫ 1

0
dW (s)F (s)′

[∫ 1

0
F (s)F (s)′ds

]−1 ∫ 1

0
F (s)dW (s), (3)

with F (s)′ = [W (s), 1]. The distribution of the right-hand side expression is tabulated by Dickey and

Fuller (1981), based on simulation of a discretization of the relevant integrals.

Under a sequence of local alternativesHn : γ = c/n, it can be shown that

2Φ1
L−→

∫ 1

0
[dW (s) + cU(s)ds]F (s)′

[∫ 1

0
F (s)F (s)′ds

]−1 ∫ 1

0
F (s)[dW (s) + cU(s)ds], (4)

whereU(s) =
∫ s
0 ec(s−r)dW (r), an Ornstein-Uhlenback process, which is the solution to the stochastic

differential equationdU(s) = cU(s)ds + dW (s). Now F (s) is defined as[U(s), 1]′. The probability

3



that the right-hand side expression in (4) exceeds the100(1 − α)% quantile of the null distribution in

(3) defines the asymptotic local power function. This provides an approximation to the actual power of

Φ1 for finite samples.

For example, when we haven = 25 annual observations on a time series and the true mean-reversion

parameter isγ = −0.2, then the asymptotic power function corresponds to the rejection probability of

(4) for c = nγ = −5. When we extend this sample to a century of data, such thatn = 100, then

the approximate power corresponds toc = −20, and will indeed be substantially larger. On the other

hand, when we extend the sample by replacing25 annual observations by100 quarterly observations

over the same25 years, then this will not increase the power substantially, because the quarterly mean-

reversion parameter will be correspondingly smaller (γ̃ = −0.05 on a quarterly basis), so that the same

non-centrality parameterc = γ̃ñ = −5 and hence the same asymptotic local power applies.

The results so far do not requireεt to bei.i.d. Gaussian; the functional central limit theorem (2) also

applies whenεt is a stationary GARCH process, or when the distribution ofεt has a bigger kurtosis than

the Gaussian distribution. The main assumption needed is thatεt has a finite unconditional variance, plus

some fairly mild additional assumptions. However, when the actual data-generating process displays

such deviations from thei.i.d. Gaussian assumption, then the Dickey-Fuller test, which is based on a

Gaussian likelihood, is no longer optimal. In that case, tests based on a likelihood function that captures

this volatility clustering and distributional shape will have a (sometimes substantially) bigger asymptotic

local power, as shown by Lucas (1997) and Boswijk (2001),inter alia. We refer to these papers and

the references therein for a full derivation of these results, and only mention the most important aspects

here.

Suppose that the lag lengthp = 1 for convenience. Then the Dickey-Fuller test essentially checks

whether the sample moment

1
σ2n

n∑

t=1

Zt∆Xt =
1

σ2n

n∑

t=1

(
1

Xt−1

)
∆Xt (5)

differs significantly from0. On the other hand, when we assume thatηt := εt/σt ∼ i.i.d. g(ηt), where

σ2
t = ω + αε2

t−1 + βσ2
t−1, then the average log-likelihood function will look like

¯̀(θ) =
1
n

n∑

t=1

{
−1

2
log σ2

t + log g

(
∆Xt − δ′Zt

σt

)}
, (6)

whereδ = (m, γ)′, and whereθ containsδ, the GARCH parameters(ω, α, β), and possible additional

parameters characterizing the distributional shape ofηt. We assume thatvar(ηt) = 1, such thatσ2
t is the

conditional variance ofεt. Defining the score functionψ(ηt) = −∂ log g(ηt)/∂ηt, the partial derivative

of the average log-likelihood with respect toδ is given by

∂ ¯̀(θ)
∂δ

=
1
n

n∑

t=1

{
1
σt

Ztψ

(
∆Xt − δ′Zt

σt

)
+

1
2σ2

t

[
ψ

(
∆Xt − δ′Zt

σt

)
∆Xt − δ′Zt

σt
− 1

]
∂σ2

t

∂δ

}
, (7)

where the GARCH model implies that

∂σ2
t

∂δ
= −2α

t−1∑

i=1

βi−1Zt−i(∆Xt−i − δ′Zt−i). (8)
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Evaluating (7) inδ = 0 gives the moment condition that is tested by the QLR test.

Under the null hypothesis, this moment condition is asymptotically equivalent to

1
n

n∑

t=1

Zt

(
ψ(ηt)

σt
− α

σ2
t

[ψ (ηt) ηt − 1]
t−1∑

i=1

βi−1εt−i

)
=

1
n

n∑

t=1

Ztυt, (9)

which converges in distribution, asn →∞, toστ
∫ 1
0 F (s)dB(s), whereσ2 = ω/(1−α−β) = var(εt),

τ2 = var(υt), and whereB(s) is a standard Brownian motion, obtained as the limit in distribution

of (τ2n)−1/2
∑bsnc

i=1 υi; the processF is as defined before. Sincecov(υt, εt) = 1, it follows that

ρ = corr(υt, εt) = 1/(στ), and this is also the correlation between the two standard Brownian motions

W (s) andB(s). For a Gaussiani.i.d. likelihood it can be checked thatυt = εt/σ2, so thatρ = 1. In

general however,0 ≤ ρ ≤ 1, whereρ = 0 corresponds to the limiting case of an infinite variance process

for εt. The limiting distribution of the QLR statistic under local alternatives now may be expressed as

QLR
L−→

∫ 1

0

[
dB(s) +

c

ρ
U(s)ds

]
F (s)′

[∫ 1

0
F (s)F (s)′ds

]−1 ∫ 1

0
F (s)]

[
dB(s) +

c

ρ
U(s)ds

]
,

(10)

whereU(s) =
∫ s
0 ec(s−r)dW (r) is the same Ornstein-Uhlenbeck process as before, andF (s) =

[U(s), 1]′. Comparing (10) with (4), we see that the non-centrality parameterc now has been replaced

by c/ρ, which explains why the largest power gains ofQLR overΦ1 are obtained for cases whereρ is

relatively small (note that the limiting caseρ = 0 is not allowed, because an infinite-variance process

does not satisfy a functional central limit theorem).

Under the null hypothesisc = 0, (10) reduces to
∫ 1
0 dBF ′

[∫ 1
0 FF ′ds

]−1 ∫ 1
0 FdB, the distribu-

tion of which still depends onρ = corr(B(1),W (1)). However, the parameterρ may be estimated

consistently by the sample correlation ofυ̂t and ε̂t, and approximate quantiles of the asymptotic null

distribution for a given value ofρ may be obtained from the Gamma approximation discussed in Boswijk

and Doornik (1999).

3 A Monte Carlo experiment

As the data-generating process, we consider the AR(1)-GARCH(1,1)-t model

∆Xt = γ(Xt−1 − µ) + εt,

σ2
t = ω + αε2

t−1 + βσ2
t−1,

ηt :=
εt

σt
∼ i.i.d. t(ν), t = 1, . . . , n.

Heret(ν) denotes thestandardizedt(ν) distribution, such thatE(η2
t ) = 1 and henceσ2

t is indeed the

conditional variance ofεt given the past. The initial values for the process are chosen asσ2
0 = σ̄2 :=

ω/(1− α− β), andX0 = µ + σ0η0.

For each replication, we first generaten observations ofXt, using parameter values that mimic

properties of daily financial data, i.e.,

α = 0.08, β = 0.9, ν = 5,
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and forγ we chooseγ = 1 + c/n, wherec ∈ {0,−5,−20}; thus we study both the size and the power

of various tests, the latter for the case of weak (c = −5) and relatively strong (c = −20) mean reversion.

Note that the analysis is invariant toµ andω, which only determine the location and scale ofXt but not

its dynamic properties or distributional shape.

To study the effect of temporal aggregation, we repeat the analysis with a skip-sample version of

Xt, i.e.,

X̃τ = Xmτ , τ = 1, . . . , ñ =
n

m
,

where we takem = 20. These may be thought of as the end-of-month versions ofXt, assuming

20 trading days in a month. We choosen = 2000 and hencẽn = 100; thus we mimic a sample

of about8 years of daily data{Xt, t = 1, . . . , n}, and the corresponding8 years of monthly data

{X̃τ , τ = 1, . . . , ñ}. We do not attempt to provide full characterization of the implied data-generating

process for{X̃τ}. The results of Drost and Nijman (1993) imply that under the null hypothesisγ = 0,

∆X̃τ is a weak1 GARCH(1,1) process with̃α + β̃ = (α + β)m = 0.67 (so that the volatility displays

less persistence), and that the kurtosis of the standardized errors decreases with temporal aggregation.

Under the alternativeγ < 0, the implied process is weak ARMA-GARCH of a higher order; however,

because we consider very local alternatives, we suspect that an AR(1)-GARCH(1,1) model will also be

adequate for the temporally aggregated data in these cases.

For both the high- and the low-frequency data we apply four unit root tests:

• Φ1, Dickey and Fuller’s (1981)F -test forγ = m = 0 in the least-squares regression∆Xt =

m + γXt−1 + εt;

• QLRG−t, the (Q)LR test forγ = m = 0, based on a GARCH(1,1)-t(ν) likelihood function with

estimatedν; for the high-frequency data, this model is correctly specified, so this is the LR test;

• QLRG, the QLR test forγ = m = 0, based on a Gaussian GARCH(1,1) likelihood function;

• QLRt, the QLR test forγ = m = 0, based on ani.i.d. t(ν) model forεt/σ.

The motivation for studyingQLRG andQLRt is to quantify the relative contribution of volatility clus-

tering and fat-tailedness to the possible power gains.

We obtainp-values for each of the QLR statistics using the Gamma approximation of Boswijk

and Doornik (1999). The correlation parameterρ is estimated simply as the sample correlation of the

“scores”υ̂t and the residualŝεt, both evaluated at the unrestricted estimates. All results below are based

on1000 replications, and have been obtained using Ox 3.2, see Doornik (2001).

1Drost and Nijman (1993) define a processεt to be weak GARCH if the linear projection ofε2
t on a constant and the past

history ofεt andε2
t satisfies a GARCH specification.
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Table 1: Rejection frequencies of the four unit root tests, high-frequency data,n = 2000.

c Φ1 QLRG−t QLRG QLRt

0 0.057 0.057 0.096 0.062

−5 0.108 0.262 0.203 0.215

−20 0.714 0.955 0.867 0.895

ρ 1 0.749 0.791 0.809

Table 1 displays the rejection frequencies under the null and local alternatives of the four tests,

for the high-frequency data. Also indicated are the average (over1000 replications) estimates of the

correlation parameterρ. We observe thatQLRG has serious size distortions, whereas for the other

three tests these size distortions are fairly moderate. Next, we see that all QLR tests have substantially

better power than the Dickey-Fuller test, with the largest power gain for theQLRG−t test (which is the

likelihood ratio test in this case), and the smallest for the Gaussian GARCH-based testQLRG. This

confirms earlier results, see Boswijk (2001), that for the type of GARCH parameter values typically

encountered in practice, taking account of fat-tailedness has a bigger contribution to the power gain

than taking account of volatility clustering. The average values of the correlation parameterρ is the

smallest forQLRG−t, corresponding also to the biggest power. From asymptotic theory, one would

indeed expect the power to decrease withρ; we see that this prediction is not satisfied by the relative

power ordering ofQLRG andQLRt, which presumably is a finite-sample effect.

Table 2: Rejection frequencies of the four unit root tests, low-frequency data,ñ = 100.

c Φ1 QLRG−t QLRG QLRt

0 0.067 0.073 0.082 0.069

−5 0.103 0.155 0.130 0.135

−20 0.693 0.804 0.691 0.788

ρ 1 0.864 0.935 0.894

Table 2 provides the corresponding figures for the low-frequency, temporally aggregated observa-

tions. As expected, the size distortions are somewhat larger for this smaller sample size. We see that

the power ofΦ1 decreases only very little, confirming the basic idea that for Gaussian likelihood-based

tests, the power of unit root tests is affected mainly by time span, and only very little by observation

frequency. In contrast, we see a much more pronounced decrease in the power of the QLR tests, which

now seem to approach theΦ1 test (even though there is still some power superiority left). This is also

reflected in the estimates ofρ, which are now closer to one.

In summary, this very limited Monte Carlo experiment confirms the theoretical predictions: tempo-

ral aggregation reduces the degree of fat-tailedness and volatility clustering in the data, and hence the

possibility of obtaining more power from tests that take these properties into account. In the next section

we explore whether this also has consequences for the empirical analysis of real exchange rates.
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4 Empirical application

In this section we apply the unit root tests studied in this paper to daily, weekly and monthly real

exchange rate data in the post-Bretton Woods era (using data from April 1974 to March 2002). We focus

on the real exchange rates of the German mark, British pound, Japanese yen and Canadian dollar vis-

à-vis the US dollar. We use end-of-day, end-of-week and end-of-month nominal exchange rates. These

are converted to real exchange rates using OECD producer price indices for manufacturing goods, where

daily and weekly observations have been obtained by linear interpolation of the monthly log-prices.

Figure 1: Daily real exchange rates of the German mark, British pound, Japanese yen and Canadian

dollar vis-̀a-vis the US dollar.
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The log-real exchange rates are depicted in Figure 1. In all four series we observe very slow (if any)

mean-reversion: real exchange rates may persistently deviate from their mean for more than a decade.

This indicates that it is typically very hard to find evidence in favour of purchasing-power parity within

the kind of time span considered here.

To investigate whether there is any scope for power improvement due to fat-tailedness and volatility

clustering, Figure 2 depicts some stylized properties of daily exchange rate returns, in particular their

estimated density, correlogram, and correlogram of squared returns. We observe the typical characteris-

tics of financial returns: very little serial correlation in the returns, positive and persistent correlation in

the squared returns, and a relatively peaked density of the returns. The graphs do not directly indicate

fat-tailedness, but the domain over which the densities are depicted indicates that extreme observations

occur frequently. Note that for the Canadian dollar, the correlogram of squared returns seems to display
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a different pattern; this might indicate that the GARCH(1,1) model is not adequate for this series, which

will be investigated below.

Figure 2: Graphs, densities, correlograms and correlograms of squares for the returns on the real

exchange rates depicted in Figure 1.
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We consider first the German mark. Table 3 depicts the results for the four tests at the three different

observation frequencies. Note that the table only gives the test statistics, not thep-values. However, the

asymptotic theory indicates that the5% critical value lies between5.99 (theχ2(2) critical value) and

9.17 (twice the asymptotic critical value for the Dickey-FullerΦ1 test, hence the appropriate asymptotic

critical value for an LR version of this test), which suggests an easy bounds procedure. For ease of

comparison, the Dickey-FullerΦ1 test statistic has been multiplied by two in the table.

Table 3: Unit root tests for the German mark real exchange rate.

frequency 2Φ1 QLRG−t QLRG QLRt

test stat. test stat. (α̂ + β̂, ν̂) test stat. α̂ + β̂ test stat. ν̂

daily 2.351 4.772 (1.000, 4.75) 1.707 0.989 5.788 3.72

weekly 2.715 0.916 (0.986, 8.47) 1.668 0.981 2.258 5.98

monthly 2.979 1.105 (0.955, 8.26) 3.341 0.934 0.991 8.38

All results in this section have been obtained using the Garch module within PcGive 10.1, see

Doornik and Hendry (2001). The GARCH models have been estimated under the restrictionα+β ≤ 1,

and in some cases the maximum of the likelihood function is found on the boundary, i.e., forα̂+ β̂ = 1.
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In all cases we have added a sufficient number of lagged differences, such that there is no residual

autocorrelation, and also the GARCH(1,1) specification is not misspecified. The general impression

from this table is that as we move from daily via weekly to monthly data, the Dickey-FullerΦ1 test

is only moderately affected, whereas the GARCH-t- and t-based QLR test statistics clearly decrease,

and hence convey less evidence of mean reversion. The Gaussian GARCH-based test does not fit into

this picture, since the test statistic obtains a maximum value for monthly data. None of the tests are

significant at the5% level, butQLRG−t and QLRt do have ap-value less than10% for the daily

data, which indeed indicates that for this series, taking the fat-tailedness of the high-frequency data

into account indeed helps to find more evidence in favour of purchasing-power parity, even though the

evidence is still not overwhelming.

Table 4: Unit root tests for the British pound real exchange rate.

frequency 2Φ1 QLRG−t QLRG QLRt

test stat. test stat. (α̂ + β̂, ν̂) test stat. α̂ + β̂ test stat. ν̂

daily 4.381 36.16 (1.000, 4.92) 9.179 0.999 4.162 3.19

weekly 3.993 4.132 (0.985, 6.19) 4.592 0.975 1.068 5.10

monthly 4.369 0.188 (0.838, 9.53) 7.909 0.843 0.940 7.43

The results for the British pound are given in Table 4. Here these results for theQLRG−t are

most remarkable: at the daily frequency there seems to be substantial evidence for mean reversion,

which disappears as we move to weekly and monthly data. There is one caveat however, which is

that the model with 5 lagged differences, which we use for the daily data, seems to display significant

autocorrelation within the GARCH-t model. We have tried to remedy this using a bigger specification,

but with no succes. A similar but less pronounced picture emerges from theQLRG test. Using this test,

the monthly data still seem to display significant mean reversion. In this particular case the test based

on ani.i.d. t(ν) model does not lead to more evidence in favour of mean reversion.

Table 5: Unit root tests for the Japanese yen real exchange rate.

frequency 2Φ1 QLRG−t QLRG QLRt

test stat. test stat. (α̂ + β̂, ν̂) test stat. α̂ + β̂ test stat. ν̂

daily 2.234 15.651 (1.000, 4.14) 3.531 0.997 14.35 3.08

weekly 2.963 7.283 (1.000, 5.03) 1.230 1.000 11.05 4.00

monthly 3.008 1.687 (0.973, 5.60) 2.504 0.912 2.521 6.66

The results for the Japanese yen, given in Table 5, again indicate that daily data provide more

evidence for mean reversion, provided that a method is used that exploits the fat-tailedness. In this case

taking the GARCH effect into account does not seem to yield much power gain. We see that even at

the weekly frequency, there is still some evidence for purchasing-power parity based onQLRG−t and

QLRt, but at the mothly frequency this evidence vanishes. As always, the Dickey-Fuller tests fail to

detect any mean reversion at any observation frequency.
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Table 6: Unit root tests for the Canadian dollar real exchange rate.

frequency 2Φ1 QLRG−t QLRG QLRt

test stat. test stat. (α̂ + β̂, ν̂) test stat. α̂ + β̂ test stat. ν̂

daily 3.763 0.448 (0.987, 5.35) 5.767 0.982 0.219 4.07

weekly 2.963 3.892 (0.935, 5.44) 3.460 0.825 1.624 4.77

monthly 4.679 3.221 (0.609, 5.10) 5.623 0.50 2.650 5.19

Finally, for the Canadian dollar we observe in Table 6 that none of the tests give substantial evidence

in favour of mean reversion, regardless of the obervation frequency. Note that although the correlogram

of squared returns suggested otherwise, misspecification tests indicate that the GARCH(1,1) model does

provide an adequate characterization of the volatility clustering. The parameter estimates clearly show

that both the GARCH persistence and the fat-tailedness is the least pronounced for this series, which

provides an explanation why the QLR tests do not help to detect mean reversion in this series.

5 Concluding remarks

The main conclusion of this paper is that the common belief that only time span matters for the power

of unit root test is incorrect for financial data, where high-frequency observations display properties

that may be exploited for obtaining high-powered tests. Clearly, the alternative approaches to obtaining

more power, such as longer time series, panel data restrictions, or alternative treatments of the constant

and trend are useful as well, and could be combined with the approach presented here. Similar power

gains from non-Gaussian likelihood analysis may be obtained in a multivariate cointegration context, see

Boswijk and Lucas (2002). Although one could also try to apply GARCH likelihoods in a cointegration

context, the main problem here is to find a parsimoniously parametrized multivariate GARCH model

that is reasonably well specified. We leave this problem for future research.
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