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Abstract 
We propose a class of stochastic volatility (SV) option pricing models that is more flexible than 
the more conventional models in different ways. We assume the conditional variance of the 
stock returns to be driven by an affine function of an arbitrary number of latent factors, which 
follow mean-reverting Markov diffusions. This set-up, for which we got the inspiration from the 
literature on the term structure of interest rates, allows us to empirically investigate if 
volatilities are driven by more than one factor. We derive a call pricing formula for this class. 
Next, we propose a method to estimate the parameters of such models based on the Kalman 
filter and smoother, exploiting both the time series and cross-section information inherent in 
the options and the underlying simultaneously. We argue that this method may be considered 
an attractive alternative to the efficient method of moments (EMM). We use data on the 
FTSE100 index to illustrate the method. We provide promising estimation results for a 1-factor 
model in which the factor follows an Ornstein-Uhlenbeck process. The results indicate that the 
method seems to work well. Diagnostic checks show evidence of there being more than one 
factor that drives the volatility, indicate the existence of level-dependent volatility, and provide 
an incentive to consider realized volatility in future empirical analysis.  
 
JEL classification: C13, C32, G12, G13. 
 
Keywords: Derivative pricing, Stochastic Volatility, Kalman filter, State space models. 

 
 
 

1. Introduction 
 
The problem of parameter estimation in stochastic volatility (SV) option pricing 
models is generally considered to be difficult. Such a model typically consists of two 
equations to describe the evolution of the underlying asset on which the option is 
written; one for the stock price and another for its random volatility. See e.g., the 
models considered by Hull and White (1987), Wiggins (1987), Scott (1987), Stein 
and Stein (1991), Heston (1993), Ball and Roma (1994) and many others.  

 
The main issues that arise are the following. Both empirically observed stock and 
option prices contain complementary information about parameter values. As such, 
the data has both a time series and cross-section dimension. Stock prices contain 
information about the parameter values of their real-world distribution. Option prices 
however, incorporate information about the parameters of the stock’s risk-neutral 
distribution as well, which is a necessary input for pricing derivatives. Moreover, as 
the market is incomplete in the sense that not all derivatives can be perfectly hedged 
due to stochastic volatility, the change to the risk-neutral measure is not unique. It 

                                                
1 Corresponding author. E-mail address: a.p.c.vanderploeg@uva.nl . Tel. +31 20 525 5269. 
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is determined by the market price of volatility risk which depends on the risk 
preferences of the agents in the market. In order to obtain unique derivative prices a 
certain functional form needs to be assumed for this market price of volatility risk. 
Besides, both stock and option prices contain complementary information about the 
unobservable stock volatility. Ignoring one of these sources of information probably 
leads to a loss. Incorporating both sources is likely to generate more efficient 
parameter estimates. This is important for more reliable pricing and hedging of, e.g., 
newly issued exotic over-the-counter derivative products by a financial institution. 
Furthermore, it may generate better volatility forecasts which are relevant in all 
kinds of risk-management systems like Value-at-Risk.  

 
However, combining both sources for reliable parameter estimation is difficult as 
these models deal with a latent object, the volatility. As volatility is unobservable it 
needs to be integrated out both when pricing derivatives and when estimating the 
parameters by means of optimizing some fitting criterion. And here the main 
problems come in: computationally very demanding simulations and numerical 
multiple integrations are required.  

 
As a consequence the literature has mainly concentrated on the information in either 
option data or stock price data alone. Studies that investigate the informational 
content of option prices and contrast them with the information in the underlying are 
summarized in Bates (1996). This informational content often concerns the stock 
volatility. If one estimates the volatility from a stock price series, then this estimate 
is based on historical data alone and may not be too relevant for predicting future 
volatility2. In contrast, implied volatilities obtained from option prices are typically 
considered to be market forecasts of future volatility, and may therefore be more 
relevant. To infer diffusion parameters from option price data, a technique called 
calibration is commonly employed. See, e.g., Bates (1996), Bakshi, Cao and Chen 
(1997) and Duffie, Pan and Singleton (2000). This technique exploits the information 
in a cross-section (i.e., a panel) of option prices on a certain day, and infers the �-
parameters from these prices by minimizing the sum of squared deviations between 
the observed market prices and the theoretical prices. This technique disregards the 
time-series dimension, and is therefore inherently inconsistent with the dynamic 
principles of the model.  

 
Another part of the literature has focused on the information in stock prices alone for 
estimating the diffusion parameters3. Together with some assumption on the market 
price of volatility risk, derivatives are subsequently priced. For example, Scott (1987) 
and Taylor (1994) use the method of moments (MM). Others employ generalized 
method of moments (GMM). Although appealing at first sight, a straightforward 
application of (G)MM is not always possible. The main reason being that for many SV 
models a sufficient number of moments cannot analytically be derived. This has led 
researchers like Wiggins (1987), Chesney and Scott (1989), Melino and Turnbull 
(1990) and notably Duffie and Singleton (1993), to simulate the unknown moments, 
and then apply GMM. This method is known as simulated method of moments. 
Shephard (1996) lists a large number of drawbacks of using GMM for estimating SV 
models. Especially notable is the fact that it does not deliver a volatility forecast, so 

                                                
2 This does not appear to be true for the realized volatility models based on high frequency intraday stock 
return data, which seem to generate accurate forecasts. For a recent application, see Hol and Koopman 
(2002). However, in this paper we look at daily option and stock price data.  
3 It is not our aim to provide a complete survey of all estimation methods that have been proposed in the 
literature for estimating SV models. Overviews can be found in, inter alia, Ghysels et al. (1996), Shephard 
(1996) and Van der Sluis (1999).  
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that another type of estimation is needed for that. Furthermore, it is generally known 
that GMM may have serious finite sample problems. Another branch of estimation 
techniques based on stock prices only, explicitly recognizes the fact that a latent 
process drives the volatility. These techniques write the process in terms of an 
unobserved components- or state space model. Examples include Harvey, Ruiz and 
Shephard (1994), Kim, Shephard and Chib (1998) and Sandmann and Koopman 
(1998).  

 
Today however, a method coined efficient method of moments (EMM) by Gallant and 
Tauchen (1996), is probably the most popular method for estimating SV models. 
EMM matches the scores of the likelihood function of an auxiliary model via 
simulation. Gallant and Tauchen show that the EMM estimator is asymptotically as 
efficient as the maximum likelihood estimator, if the auxiliary model is a good 
approximation to the distribution of the data. EMM has been used primarily for 
estimating diffusions using only stock price data. Nevertheless, Chernov and Ghysels 
(2000) have extended EMM to estimate and appraise SV option pricing models using 
the joint distribution of the underlying stock and its options. They are the first to 
combine both sources of information simultaneously for estimation purposes. 
However, EMM is not easy to implement. Another major drawback is that it does not 
readily deliver a volatility forecast; another method called reprojection is required for 
this. Furthermore, although EMM has desirable asymptotic properties, accumulating 
evidence from empirical studies, which typically deal with finite samples, point out 
that the finite sample behavior of this estimation method can be very poor. See, 
e.g., Gallant, Hsieh and Tauchen (1997), Duffee and Stanton (2001) and Chernov 
and Ghysels (2000).  

 
The main purpose of this paper is twofold. First, we propose a different estimation 
technique for estimating SV option pricing models, that permits using both sources of 
information simultaneously, like Chernov and Ghysels (2000) did. Our technique is 
based on the Kalman filter. It allows to fully exploit the time series and cross-section 
information in prices of a panel of options and their underlying value jointly. A 
convenient consequence of our procedure is that the filtered volatility series is a 
direct by-product of the estimation output. Moreover, the market price of volatility 
risk can be isolated in this way. Second, before discussing our technique we start by 
proposing an SV model that is more flexible than generally encountered in the 
literature. We assume the stock variance to be driven by an affine function of an 
arbitrary number of latent factors (instead of just one), which are assumed to follow 
stationary mean-reverting Markov diffusions. We label the model the multi-factor 
affine stochastic volatility option pricing model. We do not allow for the leverage 
effect (yet) in our analysis4. The reason for proposing this multi-factor model is the 
recent empirical finding that the term structure of stock volatilities seems to be 
attributed to more than one factor. See Bates (2000), and Duffie, Pan and Singleton 
(2000). It would be interesting to empirically investigate by how many factors the 
volatility is actually driven. Although our technique permits this the empirical 
illustration in this paper is for a 1-factor model.  
 
The inspiration for setting up such an SV model and our estimation technique was 
found in the literature dealing with the term structure of interest rates. This 
literature generally assumes the short interest rate to be driven by an affine function 
of latent factors, which follow stationary mean-reverting Markov diffusions. See 
Duffie and Kan (1996) and Dai and Singleton (2000) amongst many others. As 
                                                
4 Incorporating the leverage effect will be considered in future research. Now it would complicate matters 
too much. 
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analytical bond pricing formulas result in these models, which is very convenient in 
terms of parameter estimation, we tried to transfer the insights obtained there 
towards the problem of estimating SV option pricing models, and to benefit from it.  

 
After having stated the general multi-factor affine SV option pricing model, we derive 
a valuation formula for call options for this model class. This formula turns out to 
essentially coincide with the Hull and White (1987) formula. It tells us that in order 
to obtain the call value, we need to compute the conditional expectation (under the 
risk-neutral measure �) of the Black-Scholes (1973) pricing function evaluated in the 
integrated variance over the remaining life of the option.  

 
The problem with this valuation formula is the fact that an explicit analytical 
expression does not result, except in a few special cases such as the Heston (1993) 
model5. In general, prices can only be obtained by Monte Carlo simulation. We 
already argued that this poses a major problem for econometric estimation of such 
models. To avoid reliance on Monte Carlo simulations during estimation, we propose 
the following procedure. First, we rewrite the Black-Scholes (BS) pricing function in 
terms of the exponent of the integrated variance, which we see as the new argument 
of the BS function. Next, we linearize the BS function around a suitably chosen value 
of this new argument. Given this linearization of the BS function, and reconsidering 
the fact that the call price is obtained by taking the conditional �-expectation of this 
function, then, if we take the �-expectation of this linearization, we end up with a 
partly analytical expression for the call price. Namely, from the results of Duffie and 
Kan (1996), we know that the �-expectation of the exponent of the integrated 
variance is of the exponential-affine form. Some further manipulations to be 
discussed below then ensure that we end up with an equation that is linear in the 
latent factors. This equation can then serve as part of the measurement equation of 
a linear state space model that we will use for parameter estimation. In order to 
investigate if linearization of the BS function provides a reasonable approximation to 
the true pricing function, we provide some promising results that indicate that this 
may indeed be the case.  

 
Tackling the call valuation formula in this way to write it into linear state space form 
is only part of deriving proper discrete-time equations from our continuous-time 
option pricing model. The stochastic differential equations (SDEs) for the underlying 
stock price and the volatility driving factors must also be handled to make them 
suitable for proper state space estimation. This is covered in detail below.  

 
Having collected together the equations that make up the resulting linear state space 
model, we turn to an empirical implementation. We examine daily data on the UK’s 
FTSE100 index, and the European option contract traded on that index, covering the 
period 4-1-1993 – 28-12-2001. We provide some promising initial estimation results 
for the simplest special case, in which there is one factor driving the volatility that 
follows an Ornstein-Uhlenbeck process. The model is estimated using three types of 
data: only stock return data, only option data, and both sources of data. The 
extracted volatility series is compared to a GARCH volatility series and to the 
observed Black-Scholes implied volatility data. The graphs we supply indicate that 
the method may work well, although further research has to confirm this. Diagnostic 
checks show evidence of there being more than one factor that drives the volatility, 
indicate the existence of level-dependent volatility, and provide an incentive to 
consider realized volatility in our analysis. Together with an extension towards 

                                                
5 The Heston (1993) model  with correlation parameter 0ρ =  is a special case of our model.  
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incorporating the leverage effect, and towards considering a panel of options, this 
will all be investigated in our future research.  

 
The remaining part of the paper is structured as follows. Section 2 discusses the 
general set-up of the multi-factor affine SV option pricing model, and shows how call 
options can be valued in this setting. Section 3 is devoted to the state space 
framework. The advantages of the state space approach in the current context are 
highlighted. A brief review of the linear state space framework, the Kalman filter and 
smoother, and QML estimation is given next. Section 4 is devoted to writing the 
model in linear state space form. Each equation from the continuous-time model is 
considered separately. Special attention is devoted to writing the call pricing formula 
in the desired format by using a linear approximation. Some evidence on the quality 
of this linearization is discussed thereafter. Section 5 discusses the data and 
estimation results for the 1-factor Ornstein-Uhlenbeck special case, including 
diagnostic checks. Evidence yielding motivations for further research is paid special 
attention to. In section 6 a summary is given, together with directions for future 
research. The appendix contains a proof of our model being arbitrage-free, together 
with some technical derivations related to the state space model.  

 

 

2. Call Option Valuation in Multi-Factor Affine Stochastic
 Volatility Option Pricing Models 
 

2.1 The general setting of the model 
 
The model under � 
Consider a financial market in which a risky stock S  is traded that pays dividends at 

a continuous rate. Trading takes place in continuous time. The calendar time is 

denoted by t  with 0t ≥  and is measured in years. There are no market 

imperfections in the sense that there are no transaction costs, taxes or any short 

sale restrictions. Furthermore the market is assumed to be competitive in the sense 

that a single investor cannot influence prices by his individual trades. Besides 

investing in the stock, investors can deposit part of their wealth in a money market 

account (or invest in a so-called cash bond) B  that evolves deterministically over 

time. Its price process { ; 0}tB t ≥  is characterized by 

 0

0

exp( )

t

t t t t sdB r B dt B B r ds= ⇔ = �  ,      (1) 

in which { ; 0}tr t ≥  represents the deterministic short rate process. Denote the stock 

price process by { ; 0}tS t ≥ . The stock pays a continuously compounded dividend 

yield of tq  per annum at time t , such that the dividend payment in the time interval 

[ , ]t t dt+  of infinitesimal length equals  

  

t tq S dt .         (2) 
 

Under the empirical or real-world measure �, the stock price follows  
 

 ,t t t t S tdS S dt S dWµ σ= + ,     (�)  (3) 
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where µ  is a constant and { ; 0}t tσ ≥  is the volatility process. The stock volatility 

varies randomly over time. In particular, the volatility is assumed to be driven by n 

possibly correlated, latent factors 1' ( ,.., )nx x=x  in an affine way, 
 

 
2

0 't tσ δ= + x ,        (4) 

 

where 0δ  and 1( 1) ( ,.., )'nnx δ δ=  are positively valued. Under � the latent factors 

evolve according to stationary mean-reverting Markov diffusions, 
 

 ,( )t t t x td dt d= − +x K x W ,    (�)  (5) 

 

where ( 1)nx  is the mean of the factors, ( ) ,nxn K  are matrices of constants, and 

t  is a diagonal matrix given by 
 

 1 1 ndiag( ' ,.., ' )t t n tα α= + +x x ,     (6) 

 

in which 1( ,.., )'nα α=  and 1( ,.., )'i i inβ β= , 1,..,i n=  are ( 1)nx  vectors of positive 

real valued constants. This discussion assumes the dynamics above to be well 

defined, in the sense that the volatility is nonnegative and 'i i tα + x  is nonnegative 

for all i  and .t  The matrix K  governs the speed of adjustment of the latent factors 

towards their mean . 
 
In this financial market, uncertainty is resolved by the ( 1)n + -dimensional standard 
Brownian motion process { ; 0}t t ≥W  under �, given by 
 

 , , , 1( , ')'; ( ,.., )'t S t x t x t t ntW W W= =W W W .   (�)  (7) 
 

Its natural filtration is denoted by { ; 0}t t ≥� . Notice that the Brownian motion 

driving the stock price is assumed to be independent of the Brownian motions driving 

the latent factors.   

 

 

The model under � 
Besides investing in the stock and the money market account, investors can trade in 

derivative assets like European call and put options and forward contracts written on 

the stock. In order to be able to obtain a fair price (i.e., a price that excludes 

arbitrage in this market) for the options, we also need the stochastic processes 

followed by the stock price and the unobservable factors under the risk-neutral 

probability measure �. However, as the current market setting is incomplete in the 

sense that not all derivative securities can be hedged for the full hundred percent by 

a dynamic self-financing trading strategy in the underlying stock and the bond, this 

measure is not unique. Moreover, each different measure will in general lead to 

different option prices. Hence, the condition of no-arbitrage alone is not sufficient to 

generate unique derivative prices. In order to obtain unique prices it is necessary to 

make additional assumptions with respect to the market prices of risk associated 

with the Brownian motions driving the factors. As these factors in turn drive the 

stock volatility, we might call these prices of risk collectively the market price of 

volatility risk.  
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In particular, to rule out arbitrage opportunities, the market price of risk belonging to 

the stock, ,S tγ , should equal 
 

 ,
t t

S t
t

q rµγ
σ

+ −
= .        (8) 

 

Refer to the appendix for a proof. It equals the risk premium on the stock expressed 

per unit of risk -as measured by its standard deviation, like a Sharpe ratio. Following 

Duffie and Kan (1996), de Jong (2000), Dai and Singleton (2000) and many others 

with them, we model the market price of risk for factor ix , denoted by itγ , as being 

proportional to its instantaneous standard deviation, 

 

 'it i i i tγ γ α= + x ,        (9) 

 

in which iγ ∈ � . The market price of volatility risk may thus be represented by the 

vector , 1( ,.., )'x t t ntγ γ=  given by 

 

,x t t= ,         (10) 

 

where 1( ,.., )'nγ γ= . From Girsanov’s theorem6, the change of measure from � to � 

is then governed by the transformation 

 

 t t td d dt= +W W� ,        (11) 

 

where , ,( , ')'t S t x tγ= . Here, { ; 0}t t ≥W�  with , ,( , ')'t S t x tW=W W� � �  is an ( 1)n + -

dimensional standard Brownian motion under the risk-neutral measure � that has 

the same filtration { ; 0}t t ≥� as the �-Brownian motion { ; 0}t t ≥W . Given this 

change of measure, the stock price follows under �, 

 

 ,( )t t t t t t S tdS r q S dt S dWσ= − + � .    (�)  (12) 

 

One advantage of the assumed form for the market price of volatility risk is the fact 

that it delivers the same type of mean-reverting SDE for the factors under � as 

under �. Although the volatility function remains the same, the speed of adjustment 

towards the mean, and the mean itself differ under � and �. Some algebraic 

manipulations show that under �, the factors obey the following SDE: 

 

 ,( )t t t x td dt d= − +x K x W�� � ,    (�)  (13) 

where 

 '≡ +K K� �         (14) 

 1( )−≡ −K K� � , 

and  

1 1 1( 1) ( ,.., )', ( ) ( ,.., ), ( ) diag( ,.., )n n nnx nxn nxnα α γ γ= = =� ,  

 

and where we assume the inverse of the matrix K�  to exist. This completes the 

description of the multi-factor affine SV option pricing model.  
 

                                                
6 For these prices of risk the Novikov condition for this theorem to hold is satisfied. 
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2.2 Call option valuation 
 
Given the general set-up just discussed, in this section we aim at deriving the time-t  

value of a tradable European call option C  written on the stock ,S  having strike 

price K and maturity .T t>   

 

The Fundamental Theorem of Asset Pricing7 says that the absence of arbitrage 

opportunities is equivalent to the existence of at least one equivalent martingale 

measure �, under which the relative prices of all tradable securities (i.e., prices 

expressed in terms of the price of some numéraire asset which we take to be the 

cash bond), follow �-martingale processes. As our model is arbitrage-free, this 

theorem immediately pins down the price of the European call to  
 

 1[ | ] exp( ) [max{0, }| ]

T

t t T T t s T t

t

C B B C r ds S K−= = − −�� �� �� � ,  (15) 

 

where max{0, }T TC S K= −  is the payoff of the call at maturity. In order to compute 

this expectation, the conditional distribution of TS  under � is needed. It follows from 

applying Itô’s lemma to derive the SDE for ln tS , then summing the increments and 

finally taking exponents to yield 
 

 21
,2

exp ( )

T

T t u S u

t

S S r q dWσ τ σ
� �
� �= − − +
� �
� �

� � ,   (�)  (16) 

     

where we define the time to maturity τ , the average interest rate ( r ), average 

dividend yield (q ), and average integrated variance ( 2σ ), all over the remaining life 

of the call, by, respectively, 
 

2 21 1 1
, , ,

T T T

u u u

t t t

T t r r du q q du duτ σ σ
τ τ τ

≡ − ≡ ≡ ≡� � � .   (17) 

Recall the assumption of independence between the volatility driving Brownian 

motions and the Brownian motion driving the stock price. Therefore, conditioning on 

the sample path of ,x uW�  for t u T≤ ≤ implies that the volatility path is known, such 

that the Itô integral in the previous formula is conditionally normally distributed,  
 

 2
, ,|{ } ~ 0,

T T

u S u x u u

t t

dW duσ σ
� �
� �
� �
� �

� �W� � N ,    (�)  (18) 

 

where ,{ }x uW�  is shorthand notation for ,{ ; }x u t u T≤ ≤W� . But this implies that 

,| ,{ }T t x uS W��  is lognormally distributed. Hence, we may write 
 

 
21

, 2
| ,{ } exp ( )T t x u tS S r q σ τ σ τ ε� �= − − +

� �
W�� ,  (�)  (19) 

 

in which ε  is standard normally distributed under �. Now, express the conditional 

call payoff in terms of ε   to get 
 

                                                
7 Harrison and Kreps (1979), Harrison and Pliska (1981), Delbaen and Schachermayer (1994). 
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21
22

,

2

exp ( ) , if
max{0, }| ,{ }

0, if

t
T t x u

S r q K d
S K

d

σ τ σ τ ε ε

ε

� � �− − + − > −� � �− = �
� ≤ −�

W��  

where 

 

21
2

2 1 1

ln ( )
, .

tS
r q

Kd d d
σ τ

σ τ
σ τ

+ − +
≡ − ≡     (20) 

Given these results, we obtain 
 

,[max{0, }| ,{ }]T t x uS K− W��� �   

2

21
22

1
exp[( ) ] exp[ ( ) ] ( )

2
t

d

S r q d K dτ ε σ τ ε
π

∞

−

= − − − − Φ�   

1 2exp[( ) ] ( ) ( )tS r q d K dτ= − Φ − Φ ,    (21) 

    

where (.)Φ  denotes the cumulative standard Gaussian distribution function, and 

where the last equality follows after making the change of variable towards 

ξ ε σ τ≡ −  and performing some further manipulations.  
 
The call price at time t  can subsequently be obtained by making use of the law of 

iterated expectations: 
 

 ( ),exp( ) [max{0, }| ,{ }] |t T t x u tC r S Kτ= − − W�� �� �� �  

 1 2[ exp( ) ( ) exp( ) ( ) | ]t tS q d K r dτ τ= − Φ − − Φ ���  

 2[ ( , , , , , )| ]t tBS S K r qτ σ= ��� ,      (22) 

where  
2

1 2( , , , , , ) exp( ) ( ) exp( ) ( )t tBS S K r q S q d K r dτ σ τ τ≡ − Φ − − Φ   (23) 

 

stands for the conventional Black-Scholes call price adjusted for continuous dividend 

payments, evaluated in the arguments , , , ,tS K r qτ  and σ .  

 

If tF  represents the fair time- t  forward price of the forward contract written on S  

that has the same maturity τ  as the call option, i.e., 
 

 exp[( ) ]t tF S r q τ= − ,        (24) 

 

then the call valuation formula can conveniently be rewritten as 
  

2[ ( , , , , ) | ]t t tC BS F K rτ σ= ���       (25) 

where 

 2
1 2( , , , , ) exp( ) ( ) ( )t tBS F K r r F d K dτ σ τ≡ − Φ − Φ� �� �     (26) 

 

21
2

1 2 1

ln
,

tF

Kd d d
σ τ

σ τ
σ τ

+
= = − .      (27)  
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The advantage of this latter expression is that the average dividend yield does not 
play a role in this formula, which may be hard to estimate in practice. 
 

To conclude, in the multi-factor affine SV option pricing model, the call price is 

obtained as the expectation of the Black-Scholes call price, where the expectation is 

taken over all paths the volatility may possibly assume over the remaining maturity 

of the option, under the risk-neutral measure. Notice that although we allow for a 

much more general SV option pricing model than Hull and White do in their 1987 

paper, a similar type of valuation formula results. The reason being that the volatility 

process is independent of the stock price process, and the fact that the stock follows 

a geometric Brownian motion type SDE under �. 

 

 

3.  The State Space Framework 
 

3.1 Motivating the use of the state space approach 
 

To value a call option the �-expectation of the Black-Scholes price evaluated in the 

integrated variance needs to be calculated. As no explicit analytical expression exists 

for this expectation, one typically relies on Monte Carlo simulation. This method 

assumes the parameters of the model to be known. Clearly, these are generally 

unknown and must first be estimated from available stock and option price data. The 

estimation methods commonly applied are simulation-based and therefore 

computationally intensive. The most prominent method is probably the Efficient 

Method of Moments (EMM) due to Gallant and Tauchen (1996). For a recent 

application in the current context see Chernov and Ghysels (2000). However EMM is 

not easy to implement. Besides, although EMM has desirable asymptotic properties, 

accumulating evidence from empirical studies indicates that the finite sample 

behavior of this estimation method can be very poor. Chernov and Ghysels (2000) 

for example mention that ‘the precision of the estimates is very poor [..]’ and that 

their result is consistent with previous findings in, for example, Gallant, Hsieh and 

Tauchen (1997). As another example, Duffee and Stanton (2001) find that ‘EMM 

behaves extremely poorly in samples of the size and type usual in term structure 

estimation [..]’.  

 

One of the aims of this paper is to propose a different technique that facilitates 

parameter estimation in SV option pricing models and that circumvents Monte Carlo 

simulation. The method we suggest is based on the Kalman filter and smoother and 

fits into the linear state space framework. Although Kalman filter based estimation 

methods are commonly employed in the term structure literature to estimate a wide 

range of interest rate models, they have not been applied to our type of model yet8 

(at least to the best of our knowledge). The main reason probably being that it is not 

clear at all from the outset how the state space approach could be used in this 

setting. This is in rather sharp contrast to term structure models, where it is often a 

fairly natural way to estimate parameters. And indeed, the inspiration for our method 

                                                
8 Nevertheless, as mentioned in the introduction, Kalman filter methods have been used extensively for 

estimation of SV models based on stock return data only, but not on options data. See, e.g., Harvey, Ruiz 

and Shephard (1994), Kim, Shephard and Chib (1998) and Sandmann and Koopman (1998).  
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came to mind after having read some articles on the success story of affine term 

structure models introduced by Duffie and Kan (1996), such as Lund (1997), de Jong 

(2000), Dai and Singleton (2000) and Duffee and Stanton (2001).  
 
Using the state space methodology as a way for estimating parameters of SV option 

pricing models has a number of advantages. First, this framework is ultimately suited 

for exploiting time-series and cross-sectional information in a panel of call option 

price series simultaneously, besides extracting information inherent in the underlying 

stock price series. With a method like EMM this is probably much harder. Second, as 

state space models are analyzed using the Kalman filter, this filter readily delivers 

the filtered latent volatility series as a by-product of the estimation procedure in a 

natural way. In contrast, EMM requires besides parameter estimation another 

method called reprojection to be able to extract the volatility series. Third, the state 

space methodology has proven to be a rather robust estimation method in the term 

structure literature, see e.g. Lund (1997), de Jong (2000) and Duffee and Stanton 

(2001). Convergence to optimal parameter values is often rapidly obtained. Kalman 

filter Quasi Maximum Likelihood (QML) estimation methods tend to perform fairly 

well in finite samples, even though some of the different sub-methods deliver 

inconsistent estimates. The papers just mentioned contain Monte Carlo evidence 

showing that this inconsistency does not seem to be very severe in small samples.  
 
Having motivated the possible benefits of the use of the state space methodology in 

the current context, we briefly review this framework in the next section. For an 

extensive discussion see, e.g., Hamilton (1994) or Durbin and Koopman (2001).   
 
 
3.2 A brief review of the linear state space representation, the 

Kalman filter and smoother 
 
The linear state space representation 
We consider the following state space representation of a dynamic system, which is 

particularly suited for our needs. The observation- or measurement equation reads 
 

 't t t t t= + +y a H w .        (28) 

 

Here, ( 1) tmx y  is a vector of variables observed at time 1,..,t T= , where time is 

measured in some time unit, that can be described in terms of a possibly unobserved 

( 1)rx  vector t  known as the state vector containing r  state variables, and an 

( 1)mx  vector white noise error term tw  having properties 
 

 
,

[ ] ; [ ']
,

t t s

t s

t s

=�
= = � ≠�

R
w 0 w w

0
� � .      (29) 

 

The transition- or state equation describes the evolution of the state variables over 

time. They are assumed to evolve as a VAR(1) process. It reads 
 

 1 1 1 1 1

,
; [ ] ; [ ']

,
t t t t t s

t s

t s
+ + + + +

=�
= + = = � ≠�

Q
F 0

0
� � ; 1,..,t T=  (30) 

       1 1[ ']t + =v 0� ,                           

 



 12

in which 1t +  represents the innovation in the state at time 1t + . The innovation 

series 1{ }t +v  behaves like white noise. The matrices ( ) , ( )mxm rxrR F  and ( )rxr Q  

are parameter matrices. The ( 1)mx  vector ta  and the ( )mxr  matrix 'tH  contain 

parameters that are allowed to change over time, although solely in a deterministic 

(non-random) way. The disturbances tw  and 1t +v are assumed to be uncorrelated at 

all lags, 
 

 1 1cov[ , ] [ '] , 1,..,t s t s t s T+ += = ∀ =w v w v 0� .    (31) 

 

Finally, it is assumed that the initial state 1  is uncorrelated with the series 1{ }t +v . 

Given these assumptions, it follows that the state innovation 1t +v  is uncorrelated 

with lagged values of the state. That is 1 1[ '] ; 1,..,t t s s t+ + − = =v 0� . 

 

The Kalman filter and smoother 
The representation above can be analyzed by the Kalman filter and smoother, 

assuming that the numerical values of , , ,t tF Q a H  and R  are known. The Kalman 

filter may be motivated as an algorithm for calculating linear least squares forecasts 

of the state vector on the basis of data observed through date t , that is 
 

 1| 1
ˆ ˆ[ | ]t t t+ +≡

�
�� ,        (32) 

 

where 1( ',.., ')'t t≡ y y�  and 1
ˆ[ | ]t + �

��  denotes the linear projection of 1t +  on t�  

and a constant. The Kalman filter calculates these forecasts recursively, generating 

1|0 2|1 1|
ˆ ˆ ˆ, ,.., T T+  in succession. Associated with each of these forecasts is a mean 

squared error (MSE) or variance matrix 1|t t+P  given by 
 

 1| 1 1| 1 1|
ˆ ˆ[( )( )']t t t t t t t t+ + + + +≡ − −P � .     (33) 

 

Provided that the eigenvalues of F  are inside the unit circle such that the process for 

t  is covariance stationary, the Kalman filter can be started with the unconditional 

mean and variance of 1 , 
 

 1|0 1
ˆ [ ]= = 0�         (34) 

 2
1

1|0 1 1|0 1 1|0 1
ˆ ˆvec( ) vec( [( )( )']) vec(var[ ]) [ ( )] vec( )

r

−= − − = = −P F F Q� . 

 

We then iterate on 
 

 1| | 1 | 1 | 1 | 1
ˆ ˆ ˆ( ' ) ( ' )t t t t t t t t t t t t t t t t

−
+ − − − −= + + − −1F FP H H P H R y a H   (35) 

 1| | 1 | 1 | 1 | 1[ ( ' ) ' ] 't t t t t t t t t t t t t t
−

+ − − − −= − + +1P F P P H H P H R H P F Q ;   1,..,t T= . 

 
The Kalman filter is mainly used for producing a forecast of the future state, given 

current data. In contrast, the Kalman smoother is particularly suited for obtaining an 

estimate of the state, given all observations, i.e., for 1| 1
ˆ ˆ[ | ]t T t T+ +≡ �� , with 

associated MSE matrix 1| 1 1| 1 1|
ˆ ˆ[( )( )']t T t t T t t T+ + + + +≡ − −P � . These smoothed 

estimates of the state can be obtained from a backwards recursion that uses the 

output from the Kalman filter. See, for example, Hamilton (1994) for details on this.  
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Estimation 
In practice the numerical values of , , , ttF Q a H  and R  are typically unknown and 

must be estimated from the data T� at hand. If the initial state 1  and the series 

1{ , }t t +w v  are multivariate Gaussian, then the distribution of ty  conditional on 1t −�  

is Gaussian: 

 

 1 | 1 | 1
ˆ| ~ [ ' ; ' ]t t t t t t t t t t− − −+ +y a H H P H R� N ,    (36) 

 

from which the sample loglikelihood is easily constructed. The loglikelihood can 

subsequently be maximized numerically with respect to the unknown parameters in 

the matrices , , ,t tF Q a H  and R . In the absence of sufficient restrictions on these 

matrices the parameters are unidentified. If the disturbances { }tw  and 1{ }t +v  are 

non-Gaussian, the Kalman filter can still be used to calculate the linear projection of 

t s+y  on past observable variables. Moreover, we can still write down the same 

loglikelihood as before and maximize it with respect to the unknown parameters, 

even for non-Gaussian systems. This quasi maximum likelihood (QML) estimation 

procedure will still yield consistent and asymptotically normal estimates of the 

parameters, provided that some mild regularity conditions are satisfied (see Watson 

(1989)). So far this review. 

 

 

4. Deriving the State Space Representation of our Model 
 

4.1 The equations from the option pricing model collected 
 

In this part the linear state space representation of the affine SV option pricing 

model is derived. For convenience we first repeat the basic equations of the option 

pricing model. From now on we concentrate on the model with diagonal K , which we 

denote by  1diag( ,..., )d nk k=K . These equations are: 
 

Stock price:   ,t t t t S tdS S dt S dWµ σ= +    (�)  (37) 

Variance:   2
0 't tσ δ= + x       (38) 

Latent state: ,( )t d t t x td dt d= − +x K x W        (�)  (39) 

,( )t t t x td dt d= − +x K x W�� �   (�)  (40) 

        'd≡ +K K� � , 1( )d
−≡ −K K� �     (41) 

 1 1 ndiag( ' ,.., ' )t t n tα α= + +x x    (42) 

Call premium:    2[ ( , , , , , ) | ]t t tC BS S K r qτ σ= ����     (43) 

Given this continuous-time model, our object is to translate the model into the 

discrete-time state space representation discussed above, which can be used for 

estimation purposes. We assume the empirical data to consist of T daily observations 

of stock returns and a panel of call option prices. Time t  will be measured in trading 

years. As a year is assumed to consist of 260 trading days, the timing of the data 

points will be denoted by , 2 , 3 ,..,t t t t T t= ∆ ∆ ∆ ∆  with 1 /260t∆ = . Each model 
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equation will be considered separately in the sub-sections below. After that a 

summary is given.  
 
 

4.2  Tackling the stock price SDE 
 

Let us first focus on the SDE for the stock price. Unfortunately, an exact 

discretization does not exist. From its Euler discretization9 over the interval [ , ]t t t+ ∆  

we obtain 

t t t t tr tµ σ η+∆ +∆= ∆ + ,        (44) 

 

where the stock return t tr +∆  and the Brownian increment t tη +∆  are defined as 
 

 t t t
t t

t

S S
r

S
+∆

+∆
−

≡ ;   , , ~ i.i.d. (0, )t t S t t S tW W tη +∆ +∆≡ − ∆N .  (45) 

 

Given the filtration t� , the returns are conditionally normally distributed: 
 

 2| ~ ( , )t t t tr t tµ σ+∆ ∆ ∆� N .       (46) 

 

Notice that the series 2{ }tσ  represents the conditional variance series (per annum) of 

the stock returns, which varies over time in a random way. The unconditional per 

annum variance of the stock returns is given by 2[ ]tσ� . In the present analysis, we 

are ultimately interested in the volatility. As volatility clustering is associated with 

temporal dependence in second order central moments, our focus is on squared 

returns in deviation from their mean instead of the raw returns themselves. Consider 

the equation 
 

 2 2( ) [( ) | ]t t t t t t tr t r tµ µ ϖ+∆ +∆ +∆− ∆ = − ∆ +�� ,     (47) 

 

where, by construction, the error term t tϖ +∆  has mean zero. Some rewriting yields 

 

 2
0

1
( ) 't t t t tr t

t
µ δ ω+∆ +∆− ∆ = + +

∆
x ,      (48) 

   

where /t t t t tω ϖ+∆ +∆≡ ∆ . Notice that this equation is linear in the latent factors. What 

remains to be checked is the statistical properties of the series { }t tω +∆ . To be able to 

use the estimation method based on the Kalman filter described previously, this 

series ought to be white noise. And it indeed is,  

 

 
2,

[ ] 0, [ ]
0,

t t t t s t

t s

t s

ωσω ω ω+∆ +∆ +∆
� =�= = �

≠��
� � .     (49) 

 

A proof together with an explicit expression for 2
ωσ  is given in the appendix. The 

equation for the squared returns will serve as part of the measurement equation10. 

                                                
9 This Euler discretization is not exact. Nevertheless we write an equality sign =  instead of an 

‘approximately equal’ sign ≈ .  
10 Prior to estimation, we substitute the sample average of the returns for µ  to make the left hand side 

“observable”.  
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4.3 Tackling the call premium formula  
 
In practice, we also observe the call price series. The big issue is now how to extract 

the inherent information from this source. Looking at the call valuation formula 

above, it is not clear at all how to translate this expression into an equation that can 

serve as the second part of the measurement equation of the linear state space 

representation. An exact way does not exist. Below we propose an approximate 

method based on linearizing the Black-Scholes function in order to put the pricing 

formula into the desired form.  

 

As a prelude, recall the volatility process under �; see (38) and (40). Given this 

specification and invoking the results of Duffie and Kan (1996)11, we know that the 

conditional �-expectation of the exponent of the integrated variance is an 

exponential-affine function of the latent factors, 
 

 2[exp( )| ] exp[ ( ) ( )' ],

T

u t t

t

du Aσ τ τ= +� B x���      (50) 

 

where ( )A τ  is some deterministic function of the time to maturity T tτ ≡ − , and ( )τB  

is an ( 1)nx  deterministic vector function of τ . These functions satisfy the following 

system of ordinary differential equations (ODEs), 
 

 21
02

1

( )
' ' ( ) [ ' ( )]

n

i i

i

dA

d

τ τ τ α δ
τ =

= + +�K B B� �      (51) 

 21
2

1

( )
' ( ) [ ' ( )]

n

i i

i

d

d

τ τ τ
τ =

= − + +�
B

K B B� , 

 

with initial conditions (0) 0A = and (0) =B 0 . Notice that ( )A τ  and ( )τB  are functions 

of the risk-neutral parameters K�  and � . For Gaussian models (i.e., models in which 

the volatility function of the SDE for the factors is deterministic), we can solve for 

( )A τ  and ( )τB  explicitly. For other models the system can relatively easily be solved 

numerically with the Runge-Kutta method for example.   
 

4.3.1 Linearizing the call price formula 
 

Our aim is now to incorporate these convenient “analytical” results in a smart way 

when deriving a possible state space equation from the call price formula. Reconsider 

this formula (43). Notice that the arguments of the Black-Scholes pricing function 

are known at time t  given the filtration t� , except for the average integrated 

variance 2σ  over the remaining life of the option, which is obviously random. The 

                                                
11 They model the short rate by 0 't tr δ= + x  in which the latent factors tx  follow the same SDE as 

above. Given this set up, they show that the price of a zero coupon bond is given by 

( , ) [exp( )| ] exp[ ( ) ( )' ]

T

s t t

t

P t T r ds A τ τ= − = +� B x��� ,  

where ( )A τ  and ( )τB  satisfy a similar system of ODEs as above.  
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exponent of the integrated variance is the variable we are going to concentrate on 

now. In order to do so, define 
 

 2
T

s

t

X dsσ≡ � ,  2exp( ) exp( )

T

s

t

Y X dsσ≡ = �      (52) 

 

The Black-Scholes price is a function (.)f  of the integrated variance X . Given that, 

conditional on t� , all other arguments are known constants, we may write 
 

 1( ) ( , , , , , )tf X BS S K r q Xτ τ −≡ .      (53) 

 

It is also true that 
 

 ( ) (ln[exp ]) (exp ) ( )f X f X g X g Y= = = ,     (54) 

 

where (.) (ln[.])g f≡ . Now, for the crux of the argument, consider a first order Taylor 

series expansion of the function (.)g  around the point Y b= , 
 

 ( ) ( ) ( ) '( )g Y g b Y b g b HOT= + − + ,      (55) 

 

where HOT  stands for higher order terms. Then, the theoretical call value can be 

written as 
 

 2[ ( , , , , , ) | ]t t tC BS S K r qτ σ= ���  

 [ ( ) | ]tg Y= ���   

 [ ( ) ( ) '( ) | ]tg b Y b g b HOT= + − + ���  

 ( ) '( ) [ | ] '( ) [ | ]t tg b bg b Y g b HOT= − + +� �� �� �     (56) 

 

Note that ( )g b  and '( )g b  are easily calculated. Rewriting yields 

 

 
( ) '( ) [ | ]

[ | ] exp[ ( ) ( )' ]
'( )

t t
t

C g b bg b HOT
Y A

g b
τ τ

− + −
= = + tB x

�
�

�

�

�
� , (57) 

  

where the last equality follows from the assumption of an affine SV model for the 

stock price, and where ( )A τ  and ( )τB  satisfy the previously given system of ODEs 

(51). Taking logarithms yields  
 

 
( ) '( ) [ | ]

ln ( ) ( )'
'( )

t t
t

C g b bg b HOT
A

g b
τ τ

− + −� �
= +� �

� �
B x

���
.   (58) 

 
This equation is linear in the unobservable factors tx .  

 

4.3.2 Making use of the theoretical relationship in practice 
 
Equation (58) is an exact relationship that describes how the theoretical call value is 

related to the latent factors. How can this equation be implemented for practical 

purposes, i.e., for the purpose of parameter estimation? 
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We linearized the Black-Scholes pricing function around a certain point b  without 

further characterizing it. Some obvious issues naturally arise. Around which point 

should we linearize? And what about the quality of the linearization? Is the function 

(.)g  sufficiently well behaved to be adequately approximated by a linear function? 

Regarding the point of linearization, b , we argue as follows. Consider the 

conventional Black-Scholes world with time-varying but deterministic volatility. In 

that case the call price equals the conventional Black-Scholes price but with the 

variance parameter 2σ  replaced by the average integrated variance /X τ  over the 

remaining maturity of the option. Hence, the Black-Scholes implied variance 

essentially represents the average integrated variance in this setting. That is, 
2

, /implied t Xσ τ= . Now remember from above that we view the Black-Scholes pricing 

function as a function of Y , being the exponent of the integrated variance, 

exp( )Y X= . Therefore, an arguably reasonable point of linearization could be 
* 2

,exp( )t implied tb τ σ≡ , which is easily calculated. Notice that this linearization is 

performed for each t , such that the value of the point of linearization differs for each 

t ; it equals *
tb .  Notice that for this specific choice of b  we find that 

 

      * 2 2 2
, , ,( ) (exp[ ]) ( ) ( , , , , , ) ,mkt

t implied t implied t t implied t tg b g f BS S K r q Cτσ τσ τ σ= = = ≡  (59) 

 
where mkt

tC  represents the observed market value of the call. Substitution into the 

theoretical relationship subsequently yields 
  

 *

*

[ | ]
ln ( ) ( )'

'( )

mkt
t t t

t t

t

C C HOT
b A

g b
τ τ

� �− −
� �+ = +
� �
� �

B x
����

.    (60) 

 

Some comments on the quality of this linearization will be postponed till the end of 

this section.  

 

For a practical implementation of the above relationship, we next propose to replace 

the theoretical call value tC with its observed counterpart mkt
tC , and to neglect the 

higher order terms. To more or less ‘compensate’ for these simplifications, and the 

fact that a model is never a complete description of reality, we introduce noise in the 

form of an additive random error term tν  for which we assume that it is uncorrelated 

with any other variable or series. We then obtain 
 

 2
, ( ) ( )'implied t t tAτ σ τ τ ν= + +B x ,      (61) 

 

since * 2
,ln t implied tb τ σ= 12. An important issue concerns the assumptions about the 

statistical properties of tν , and in particular its first two moments. These cannot be 

derived in a straightforward way. Is it reasonable to assume that tν  has mean zero? 

Probably not. Instead, we assume that the mean is proportional to the time to 

maturity,  
 

 [ ]t νν µ τ=� ,         (62) 

 

                                                
12 Compare this equation to the often encountered equation in the term structure literature, where the 

product of the time to maturity and the bond yield is on the left hand side.  
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where νµ  is a constant. And what about its variance? Reconsider equation (61). In a 

deterministic volatility setting the left hand side essentially equals the integrated 

variance X  over the interval [ , ]t T . Hence, we expect that the larger τ , the larger 

the value of the left hand side will be, and the larger its variance. In contrast, the 

variance of the right hand side variables tx  is constant. Hence, it may not be too 

unreasonable to assume that the variance of tν depends on τ , such that { }tν  is 

heteroskedastic. In particular (and mostly for convenience), we will assume that  
 

 2 2var[ ]t εν σ τ= ,        (63) 

 

such that the standard deviation of tν  is proportional to the maturity of the call. 

Furthermore, we assume that the series { }tν  is non-autocorrelated: 
 

 cov[ , ] 0t s t sν ν = ∀ ≠ .       (64) 

 

Given these assumptions equation (61) can be rewritten. Towards this end, introduce 
the error term   
 

 t v
t

ν µ τε
τ
−≡ ,         (65) 

 

which is a white noise series by construction for which  
 

 2[ ] 0; var[ ] ; cov[ , ] 0t t t s t sεε ε σ ε ε= = = ∀ ≠� ;     (66) 

tε  uncorrelated with any other variable or series 

 

These properties follow from the assumed properties of tν . Substitution, followed by 

rewriting eventually yields  
 

 2
,

( ) ( )'
implied t t t

A
ν

τ τσ µ ε
τ τ

= + + +B
x       (67) 

 

This equation will serve as the second part of the measurement equation of the state 

space model.  
 
4.3.3 Some preliminary insight into the quality of the linearization 
 
We now provide an example that yields some preliminary insight into the quality of 

the linearization of the Black-Scholes pricing function around the point 
* 2

,exp( )t implied tb τ σ= , regarded as function of .Y  For simplicity, we assume the 

dividend yield to be zero. This function equals 
 

 1 2( ) [ ( )] exp( ) [ ( )]tg Y S d Y K r d Yτ= Φ − − Φ ,     (68) 

where 

 
1
2

1 2 1

ln ln
( ) ; ( ) ( ) ln

ln

tS

K
r Y

d Y d Y d Y Y
Y

τ+ +
= = − . 

The first thing one should ask is what a reasonable interval for Y  is to lie in, in 

practice. Obviously, Y is always larger than 1 since the integrated variance is always 
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larger than zero. A reasonable interval for practical values of implied volatilities may 

be , [1%,80%]BS impliedσ ∈  suggesting that a reasonable interval for Y could be 

[exp(0.0001 ),exp(0.64 )]τ τ . 
 
Now, consider for instance an in-the-money call option on a stock that is currently 

worth 42, having strike K = 40 and maturity τ  = 0.5 years. Suppose further that  

the current interest rate on T-bills maturing half a year from now equals 10%. In this 

case, the interval for reasonable values of Y is [exp(0.00005), exp(0.32)] which 

equals [1.00005 , 1.38]. Below the graph of (.)g  is drawn for this interval Y . 
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 Figure 1: The function ( )g Y  for Y ∈  [1.00005 , 1.38]. 

 

 

Zooming in on Y  reveals that in the very close neighborhood of 1, the function 

behaves as shown in figure 2. 

 

 
 

1.005 1.01 1.015 1.02

4.2

4.4

4.6

 
 
 Figure 2: Zooming in on the function ( )g Y  in the close neighborhood of 0. 
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Suppose that the call has a value of 5.71 such that the Black-Scholes implied 

volatility equals , 30%BS impliedσ = . We thus linearize around *b = exp(0.5*0.32) = 

1.046. Now, notice that the theoretical call pricing formula (43) in the affine SV 

option pricing model essentially tells us to compute the call value as a “probability 

weighted average” of Black-Scholes values for all different values that Y can assume, 

[ ( )| ]t tC g Y= ��� . Intuitively, we expect the most “probability weight” to be put on 

values of Y around the point of linearization, where the error is smallest. The further 

away we are from the linearization point, we expect the greater errors, but the less 

weight these points have in the overall call value. Figure 3 draws ( )g Y  together with 

its linear approximation in * 1.046b =  for the interval [1.005 , 1.13] corresponding 

to , [10%,50%]BS impliedσ ∈ . 
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Figure 3: The function ( )g Y  and its linear approximation in *b = 1.046. 

 
  
It is also instructive to consider the approximation error for these values of Y, shown 

underneath. 
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Figure 4: The approximation error between  ( )g Y  and its linear approximation in *b = 1.046. 
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Although further investigation should make things clearer, this preliminary analysis 

suggests that a linear approximation may not be too bad.   
 
 

4.4 Deriving the transition equation 
 

The object in this section is to derive the transition equation of the state space model 

which describes the development of the state over time. In our set up the state is 

formed by some function of the unobservable factors. Recall their SDE under �,  

 

 ,( )t d t t x td dt d= − +x K x W .    (�)  (69) 

 

To obtain a discrete-time equation from this SDE, one could consider its Euler 

discretization. However, fortunately an exact discretization exists. First, we express 

t t+∆x  in terms of tx . In order to do so, consider the transformation 
 

 exp[ ]t d tt≡y K x ,        (70) 

 

where we define the exponent of a diagonal matrix as follows. If 

1( ) diag( ,..., )d nnxn a a=A , then 1exp[ ] diag(exp[ ],...,exp[ ])d na a≡A . By Itô’s lemma,  
 

,exp[ ] exp[ ] exp( )[ ]t d d t d t d d t x td t dt t d t dt d= + = +y K K x K x K K W . (71) 

 
Summing the increments over the interval [ , ]t t t+ ∆  yields 
 

 ,exp[ ] exp[ ]

t t t t

t t t d d d u x u

t t

u du u d

+∆ +∆

+∆ = + +� �y y K K K W .   (72) 

  
Now, transforming back to t t+∆x  by premultiplying with exp[ ( )]d t t− + ∆K  yields 

 

,exp[ ] exp[ ( )] exp[ ( )]

t t t t

t t d t d d d u x u

t t

t t t u du t t u d

+∆ +∆

+∆ = − ∆ + − + ∆ − + − + ∆ −� �x K x K K K W

  ,exp[ ] ( exp[ ]) exp[ ( )]

t t

d t n d d u x u

t

t t t t u d

+∆

= − ∆ + − − ∆ + − + ∆ −�K x I K K W . (73) 

 

Defining  

 *
t t t≡ − ∀x x ; ,exp[ ( )]

t t

t t d u x u

t

t t u d

+∆

+∆ ≡ − + ∆ −�u K W   (74) 

 

this equation can be simplified towards 
 

 * *exp[ ]t t d t t tt+∆ +∆= − ∆ +x K x u ;   ,..,t t T t= ∆ ∆ .    (75) 

 
This equation already has the basic form we are looking for, if we interpret the 

random vector t t+∆u  as the error term corresponding to the state equation. Notice 

that the state vector t  from the state space model will be formed by the latent 

factors in deviation from their mean, i.e. by *
t t≡ −x x . What remains to be 
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checked however, is the statistical properties of the series { }t t+∆u , ,...,t t T t= ∆ ∆ . 

Recalling the state space formulation (30), this series ought to be white noise. In the 

appendix we prove that this is indeed the case. In particular, we find 

 

 [ ]t t+∆ =u 0� ;  
';

[ ']
;

d
t t s t

t s

t s
+∆ +∆

=�
= � ≠�

G M
u u

0
�    (76) 

 

in which 
 

1 1 ndiag[ ' ,.., ' ]d nα α≡ + +M       (77) 

 

( )nxn G  with 
1 exp[ ( ) ]

[ ]
i j

ij
i j

k k t

k k

− − + ∆
=

+
G , 

 

and  denotes the Hadamard product; i.e., element-by-element multiplication. 

Furthermore it is shown that the error term t t+∆u  is uncorrelated with lagged values 

of the state. Finally, it is proven that the error terms of the measurement equation 

and the transition equation are uncorrelated as they ought to be.   

 

 

4.5 The state space model 
 

In the previous sections we derived the individual ingredients of the discrete-time 

state space model extracted from our continuous-time SV option pricing model. 

Here, we state the resulting state space model that can be used for the purpose of 

parameter estimation. As having shown, the model exactly fits into the general 

framework discussed in section 3.2. Using the notation from there the following state 

space model results, where , 2 ,...,t t t T t= ∆ ∆ ∆  13: 

 
     't t t t t= + +y a H w ,     ~ ( , )tw 0 R ,   (78) 

 t t t t t+∆ +∆= +F ,    ~ ( , )t t+∆ 0 Q ,                          

 

with 
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2
,

( )ˆt tt
t

implied t

r tµ

σ
+∆∆

� �− ∆
� �≡
� �
� �

y , 
0

1

'

( ) ( )'t Aν τ

δ
µ τ τ

+� �
≡ � �+ +� �� �� �� �

a
B

,    

 
 

1

'
'

( )'t

τ τ
� �

≡ � �
� �� �

H
B

, *
t t≡ x , t t

t
t

ω
ε
+∆� �

≡ � �
� �

w ,  
2

2

0

0

ω

ε

σ
σ

� �
� �=
� �
� �

R , 

 
 

 exp[ ]d t≡ − ∆F K ,     t t t t+∆ +∆≡v u , 'd=Q G M , 

 

                                                
13 Notice that since the state is formed by 

*
t t= −x x , the equations that constitute together the 

measurement equation have been rewritten in terms of this state. Notice furthermore that we repeat the 

main equations only. 
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with , dG M  as above and 2
ωσ  as in the appendix. Notice that although the first two 

moments of the error terms tw  and t t+∆v  are known, their distribution is unknown. 

As explained in section 3.2, the parameters will be estimated by QML which still 

yields consistent and asymptotically normal estimates.  
 
Notice that this formulation supposes that only one call option price series is 

analyzed besides the stock price series. Generalizing the formulation to be able to 

tackle more than one call simultaneously is more or less obvious. One could then 

assume the error terms belonging to each call equation to have its own variance and 

perhaps to be cross-sectionally correlated, but to be uncorrelated over time.  

 

 

 

5. Empirical Results 
 

5.1 Data 
 

We examine the FTSE100 index which is based on a portfolio of 100 major U.K. 

stocks listed on the London Stock Exchange, and the European option contract 

traded on that index. The source of the option data14 is the London International 

Financial Futures and Options Exchange (LIFFE). The data consists of daily closing 

prices on a wide range of different call and put options, covering the period 4-1-1993 

till 28-12-2001, for a total of 902 445 observations. Specifically, the dataset contains 

the date, call/put flag, strike, option price, expiry month, open interest, volume and 

the daily settlement price of the FTSE100 index futures contract that has the same 

maturity as the option contract. The daily settlement time of the futures contract is 

at 4.30pm; option trading ends at 4.30pm as well. As we select short-maturity at-

the-money (ATM) calls which are the most liquid instruments, we expect non-

synchronicity biases between the futures and option prices to be negligible. Our 

analysis also requires the daily returns on the index. The closing price of the index is 

obtained from DataStream. Again, as trading on the London Stock Exchange ends at 

4.30pm, non-synchronicity-biases between the record times of the FTSE100 index 

value and the closing price of the option are expected to be of minor importance.  

 

Various selection criteria have been applied to extract a call series from the original 

data base. For each day we have first selected the calls that have a maturity of at 

least -but at the same time closest to-, 20 trading days 15, i.e., one month. We 

assume a year to consist of 260 trading days. Second, from these selected calls, we 

have –for each day- selected the call that is closest ATM by minimizing | ln( / )|t iF K , 

where tF  is the index futures price on that day and K  is the strike price. We select 

ATM calls as these are the ones whose premium is most sensitive for changes in the 

volatility. Hence, we expect them to contain the most valuable information about the 

stock volatility. This leaves us with a total of 2258 call price observations16 for which 

                                                
14 We are grateful to Joost Driessen from the Finance Department of the University of Amsterdam for 
providing us with the option data.  
15 European FTSE100 index option contracts with expiry months March, June, September, December and 
additional months such that the 3 nearest calendar months are always available for trading, are traded on 
any given trading day.  
16 Data on 20 trading days are missing in the original database. Furthermore, the data for 1-10-1997 is 
incomplete and the data for 28-5-1998 contains obvious errors, such that we have discarded these dates.  
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the maturity ranges from 20 to 44 trading days. The Black-Scholes implied variances 

are computed using equations (26) and (27), such that estimates of the average 

dividend yields are not needed. For the interest rates we have performed linear 

interpolation between the continuously compounded 1-month and 2-month LIBOR 

rates each day, and taken the rate with term equal to the maturity of the call on that 

day. These LIBOR rates were taken from DataStream.   

 
Figure 5 displays the squared daily FTSE100 index returns17 (multiplied by 260) and 
the Black-Scholes implied variances of the filtered call series. Two things are 
prominent from this picture. First, there appears to be a clear increase in the level of 
the volatility after approximately observation 1200 (6-10-1997). The effects of the 
Asian crisis on the European and global markets that  became really noticeable in the 
fall of 1997, are clearly visible. Furthermore, the combined impact of the crisis in the 
Soviet Union and the continuing Asian crises, the insecurity about the consequences 
of the European Monetary Union and the euro, and the insecurity about Clinton’s 
retreatment due to the Monica Lewinsky affair, that all started approximately in the 
fall of 1998, is clearly visible (after observation 1400). Furthermore, the influence of 
September 11, 2001 and the subsequent war on terrorism is very obvious. All these 
events have increased the turbulence on financial markets in the last 5,5 years. 
Second, the volatility-of-the-volatility seems to have increased during this period in 
comparison with the period till observation 1100.   
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Figure 5: The squared daily FTSE100 returns (multiplied by 260) and the BS implied variances for the  
period 4-1-1993 till 28-12-2001 

 

                                                
17 The returns have first been “pre-whitened”, as follows. There appeared to be significant autocorrelation in 
the daily returns, believed to be caused by non-synchronous trading effects associated with the individual 
stocks that constitute together the FTSE100 index; see e.g. Campbell, Lo and MacKinlay (1997). As our 
model implies non-autocorrelated returns, we have “removed” the autocorrelation by estimating an AR(2) 
model. The residuals of this regression are taken to be the pre-whitened returns, which are serially 
uncorrelated.  
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5.2 The model: 1-factor Ornstein-Uhlenbeck 
 
In the empirical analysis below we study the simplest special case of the affine SV 

option pricing model in which there is one latent factor that follows an Ornstein-

Uhlenbeck (OU) process. In this case 1 11, 1, 0n α β= = = . The basic equations from 

the continuous-time model become 
 

 ,t t t t S tdS S dt S dWµ σ= +      (�)  (79) 

2 2
,( )t t x td k dt dWσ θ σ σ= − +       (�) 

2 2
,( )t t x td k dt dWσ θ σ σ= − +� ��       (�) 

    ,k k
k

σγθ θ= = −� �  

   2[ ( , , , , , ) | ]t t tC BS S K r qτ σ= ���� , 

 
where we have further imposed the restrictions 0 0, 1δ δ= =  such that 2

t txσ = . For 

this Gaussian SV model, we can explicitly solve for the functions ( )A τ  and ( )B τ  that 

obey the system of ODEs (51)18. The state space model (78) reduces then to 
 

2 *1
( )ˆt t t t tr t x

t
µ θ ω+∆ +∆− ∆ = + +

∆
      (80) 

 
2

2
, 2

1 exp( ) 1 exp( ) 1 exp( 2 )
1 1 2

22
implied t v

k k k

k k k kk

σ τ σ τ τσ µ θ γ
τ τ τ

� �− − − − − −� � � �= + + − + − +� �� � � �
	 
 � �	 


 

    
*1 exp( )
t t

k
x

k

τ ε
τ

− −+ +      (81) 

* *exp[ ]t t t t tx k t x u+∆ +∆= − ∆ + .          (82) 

 
The error terms satisfy 
 

2~ (0, )t t ωω σ+∆ ;  2~ (0, )t εε σ ;      ~ (0, )t tu Q+∆ ,   (83)  

 

and are both serially and mutually uncorrelated. Also, 2 2 2/ 2kωσ σ θ= +  and 
2(1 exp( 2 )) /(2 )Q k t kσ= − − ∆ . 

 

Notice that this special case implies the following. The market price of volatility risk 

is given by the constant γ . As for the general model, the series 2{ }tσ  represents the 

per annum conditional variance series of the stock returns. The unconditional 

variance of the stock returns equals 2[ ] [ ]t txσ θ= =� �  per annum, such that the 

unconditional stock return volatility equals θ . From the properties of the OU 

process, the invariant distribution of the variance equals 2 2~ ( , /2 )t kσ θ σN . Hence, 

the volatility-of-the-volatility equals 2( /2 )kσ . Furthermore, the persistence in the 

daily variance is measured by exp[ ]k t− ∆  where 1 /260t∆ = . The speed of 

adjustment towards the mean is given by k .  
 

                                                
18 The calculations are available on request from the first author.  
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5.3 Estimates based on observations 1200 –2258 
 
In this section we discuss three sets of parameter estimates for the 1-factor OU 
special case. These sets are obtained from estimating the model using three 
alternative sets of data: just return data, just option data, and both sources of data 
jointly. The estimates are based on observations for 6 October 1997 until 28 
December 2001, i.e., observations 1200 – 2258. 
 
For observations 1 - 1200 (subsample 1), an estimate of the unconditional stock  
volatility based on averaging the squared returns is 11.4%, whereas for observations 
1200 – 2258 (subsample 2) the estimate equals 20.3%. Hence, θ  has more than 
tripled in the second sample. Also, as mentioned before, the volatility-of-the-
volatility seems to be much larger for the second subsample. Recall that the 
volatility-of-the-volatility is governed by the parameters σ  and k , which we expect 
to differ over both subsamples. Given these differences between both subsamples, 
we choose to estimate the model over the second subsample only, such that possible 
misspecification associated with different θ ’s, σ ’s and k ’s is largely circumvented.  
 
The model is estimated using three types of data. First, the model is estimated using 
only the return data, such that the model essentially reduces to equations (80) and 
(82). Second, the model is analyzed using only the option data meaning that the 
model effectively reduces to equations (81) and (82). Notice that in this case the 
parameters νµ  and θ  cannot separately be identified: only their sum can be 
estimated. Third, the model is estimated relying on both the return and option 
data19. In this case all equations are incorporated.  
 
To allow a comparison, we also estimate a Gaussian GARCH(1,1) model20 for the 

daily stock returns in which the conditional variance follows the process 
2 2 2

0 1 2( )t t t tr tσ ϕ ϕ µ ϕ σ+∆ = + − ∆ + . We find  

 

 
2 2 2

(3.18 06) (0.0192) (0.0348)

9.82 06 0.08584 ( ) 0.8517t t t t

E

E r tσ µ σ+∆

−

= − + − ∆ +
  (84) 

  
with standard errors in parentheses. For this model the persistence in the daily 

variance is measured by 1 2ϕ ϕ+ , whereas the unconditional stock return volatility per 

annum may be approximated by 0 1 2/[(1 ) ]tϕ ϕ ϕ− − ∆ . 
 
Table 1 provides the parameter estimates and their robust White (1982) QML 
standard errors21 (in parentheses) associated with the 1-factor OU special case 
depending on what data is analyzed, together with some other quantities of interest. 
Note that obviously, not every type of data allows all parameters to be estimated. 
The fourth column shows some comparable quantities for the estimated GARCH(1,1) 
model (84).     
 
 

                                                
19 In the estimation procedure we leave ωσ  as a free parameter to be estimated, as we do not expect it to 

satisfy the restriction 
2 2 2/ 2kωσ σ θ= + , since it is obtained from a non-exact Euler discretization. In 

contrast, as the Euler discretization of the SDE for the factors is exact, we restrict Q  in the estimation 

process to equal the formula given above.  
20 Notice that like our model, GARCH does not allow for leverage,  permitting a more consistent comparison.   
21 Their computation is based on Hamilton (1994), section 5.8.  
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Table 1: Estimation results 

 

 Return data Option data Both GARCH(1,1) 

k  16.2 
(6.92) 

7.12 
(5.05) 

1.53 
(1.70) 

 

σ  0.164 
(0.049) 

0.211 
(0.0561) 

0.147 
(0.0208) 

 

γ  - 0.128 
(0.541) 

0.133 
(0.447) 

 

εσ  - 0.00293 
(0.00178) 

0.00379 
(0.00167) 

 

ωσ  0.0612 
(0.00561) 

- 0.0651 
(0.00638) 

 

θ  0.0409 
(0.00520) 

- 0.0364 
(0.0356) 

 

νµ  - - 0.0174 
(0.00329) 

 

νµ θ+  - 0.0572 
(0.0136) 

0.0538  

Persistence 0.939 0.973 0.994 0.938 

Vol. of returns  20.2% - 19.1% 20.2% 
Vol-of-vol 2.87% 5.58% 8.42% 1.75% 

Q  0.00983 0.0129 0.00909  

2 2/ 2kσ θ+  0.0707 - 0.130  

 
The table reports the QML parameter estimates (boldface) and their robust QML standard errors (in parentheses), 
together with some other quantities of interest, resulting from estimating the model using three different types of data: 
just the squared return data (first column); just the BS implied variance data (second column); both the squared return 
and the BS implied variance data (third column). The fourth column shows some comparable quantities for the estimated 
Gaussian GARCH(1,1) model (84). 

 
 
Looking at the table the following things stand out. The persistence in the daily 
variance (exp[ ]k t− ∆ ) is estimated to be the smallest (i.e., the mean-reversion the 
quickest) when the model is estimated using the return data only. In that case the 
daily persistence equals 0.939, which is equivalent to a speed-of-adjustment 
coefficient of 16.2. For the GARCH model we find a virtually equal persistence of 
0.938. This is not that surprising when we realize that both our model equations 
(80), (82) and the GARCH(1,1) model can essentially be rewritten as ARMA(1,1) 
models for the squared returns. If one analyzes the model using the option data 
only, the estimated persistence of 0.973 is higher, such that the mean-reversion is 
slower. A possible explanation for this finding may be the fact that squared daily 
returns are such noisy estimators of the variance that know large swings in value, 
which causes the estimated speed-of-adjustment towards the mean to be larger, and 
thus the mean-reversion to be quicker, and hence the persistence to be lower. Notice 
that when both sources of information are used, the estimated persistence is even 
larger and the estimated speed of adjustment is thus smaller.  
 
Notice that the volatility-of-the-volatility 2( /2 )kσ  is estimated to be largest when 

both the return and the option data are used. We may obtain a rough estimate of the 

per annum volatility-of–the-volatility in the GARCH(1,1) model from computing the 

standard deviation of the constructed daily GARCH variance series after first having 

multiplied this series by 260. This estimate equals 1.75%. Compare this value to the 

volatility-of-the volatility estimated from using the return data only, 2.87%.  



 28

The market price of volatility risk γ  is estimated to be positive and of the same order 

of magnitude in both cases, although this parameter is clearly insignificant. Both 

estimates of εσ  are roughly the same in magnitude. A similar thing holds for ωσ . 

Recall that the parameter vµ  essentially captures the approximation error associated 

with the call formula. At first glance its value does not seem large, although it differs 

significantly from zero. Recall that θ  measures the unconditional volatility of 

returns, previously approximated at 20.3% based on the average of the squared 

returns over subsample 2. Note how close this value is to the estimates in the table. 

The magnitude of the standard deviation of the transition equation disturbance t tu +∆ , 

Q , is roughly the same for all cases. The final row in the table displays the 

estimated theoretical value of 2 2 2/ 2kωσ σ θ= + , which should be compared to the 

unrestrictedly estimated ωσ . 
 
 

5.4 The volatility series and the in-sample fit of the model 
estimated with both return- and option data 
 

Let us now investigate the extracted volatility series and the in-sample fit of our 

model estimated using both the return- and the option data. We concentrate on the 

smoothed estimates of all quantities of interest. Figure 6 displays the smoothed 

stock volatility series *
|t t Txσ θ= + , the (annualized) GARCH volatility series 

obtained from (84), and the original BS implied volatility data 22. 
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Figure 6: The smoothed stock return volatility series 
* 1 /2
|( )t t Txσ θ= + , the GARCH volatility series, 

and the Black-Scholes implied volatility data. 

 

                                                
22 Recall that 

2{ }tσ  represents the conditional variance series of the stock returns (per annum). The 

annualized GARCH volatility series has been obtained from multiplying the daily GARCH volatility series 

obtained from (84) with 260 .  
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Notice the rough analogy in the patterns of the different volatility series, although 

the GARCH series looks somewhat “smoother” and does not peak as much as both 

other series. Besides, in contrast to the smoothed volatilities from our model, the 

GARCH volatilities seem to have some lower “barrier” that is virtually never 

exceeded. This “smoother” behavior may be caused by the fact that the impact of a 

time t  shock in the conditional mean (i.e., tr tµ− ∆ ) on the time t t+ ∆  GARCH 

conditional variance is given by 2
1( )tr tϕ µ− ∆  which is generally small. In contrast, 

the SV model allows for an autonomous shock t tu +∆ each period that fully impacts on 

the SV conditional variance. Therefore, the SV model seems better able to describe 

quickly changing patterns, which is evidenced by figure 6: the smoothed volatilities 

track the observed BS implied volatility data better than the GARCH volatilities do. 

However, to obtain more insight in the differences between the three series, in figure 

7 we plot the difference between the BS implied volatility data and the smoothed 

volatilities (upper graph), the difference between the BS implied volatility data and 

the GARCH volatilities (middle graph), and the difference between the GARCH- and 

the smoothed volatilities (lower graph). Notice that the scales of the vertical axis 

coincide. 
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Figure 7: Upper graph: the difference between the BS implied volatility data and the smoothed volatilities 
* 1 /2
|( )t t Txσ θ= + . Middle graph: the difference between the BS implied volatility data  and the GARCH 

volatilities. Lower graph: the difference between the GARCH- and the smoothed volatilities. 

 
 
We note the following. The observed Black-Scholes implied volatilities are generally 
larger than the smoothed volatilities. Hence, it seems that the market expectation of 
the volatility is generally higher than the “true” volatility. Also, the BS implied 
volatilities are generally larger than the GARCH volatilities, although in the second 



 30

part of the sample this is less so (but remember that ”virtual lower barrier” of the 
GARCH volatilities). The difference between the GARCH- and the smoothed 
volatilities fluctuates much more around zero. A reason for these findings may be the 
fact that both the GARCH- and our SV model allow fat-tailedness in stock returns, 
whereas the conventional BS model with which we computed the BS implied 
volatilities does not.   
 
Figure 8 provides insight in how well the model fits the original data. The upper 

graph displays the squared return data and its inherent signal, the smoothed stock 

variance 2 *
|t t Txσ θ= + . The lower graph shows the observed BS implied variance data 

and the fitted (smoothed) BS implied variances computed from equation (81).  
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Figure 8: Upper plot: the squared return data and its inherent signal, the smoothed stock return variance 
2 *

|t t Txσ θ= + . Lower plot: the BS implied variance data and the fitted BS implied variances. 

 
 
Notice how well the model seems to fit the data. The two series in the lower picture 
are virtually indistinguishable. In particular, OLS regression of the observed BS 
implied variances on the smoothed BS implied variances yields a constant term of –
0.00072, a slope of 1.01 and an R-squared of 0.99634.  
 
 

5.5 Diagnostic checking 
 
In this section diagnostic checking is considered. Given the parameter estimates and 

the Kalman filter output the standardized prediction errors or innovations23 can be 

constructed. If the model is well-specified these errors ought to be a mean zero unit 

                                                
23 In terms of the general state space model, the standardized prediction errors are defined as 

( ) ( ) ( ) ( )1 1
2 2

| 1 1 | 1 | 1
ˆˆ' [ | ] ' 't t t t t t t t t t t t t t t t

− −
− − − −+ − = + − −H P H R y y H P H R y a H�� .  
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variance uncorrelated series. Figure 9 displays the errors associated with the squared 

return equation (80) in the upper graph, and the errors associated with the BS 

implied variance equation (81) in the lower graph. The means of the series equal 

0.000, respectively 0.003, whereas the standard deviations equal 1.005, respectively 

0.996. Both series are clearly heteroskedastic.  
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Figure 9: The standardized prediction errors belonging to the squared return equation (80) (upper graph) 

and the BS implied variance equation (81) (lower graph).  

 
 
Furthermore, as evidenced by table 2, both series are significantly autocorrelated. 
For example, the p-values (Prob) associated with the Ljung-Box Q-statistics (Q-stat) 
for testing the null hypothesis of there being no autocorrelation up to order 5 equals 
0.000 for both series. The column headed AC contains the first to fifth order 
autocorrelation coefficients. 
 
 

Table 2: Autocorrelations in the standardized prediction error series and associated statistics 
 

Statistics for the standardized innovations   Statistics for the standardized innovations  
in the squared return equation:   in the BS implied variance equation: 

 
Order AC Q-Stat Prob    Order AC Q-Stat Prob  

1 0.081 7.0415 0.008    1 0.034 1.2226 0.269  

2 0.053 10.001 0.007    2 -0.147 24.150 0.000  

3 0.130 27.877 0.000    3 -0.106 36.129 0.000  

4 0.109 40.613 0.000    4 0.038 37.704 0.000  

5 0.048 43.019 0.000    5 -0.004 37.718 0.000  

 
The table reports the autocorrelation coefficients (AC) up to order 5 and the Ljung-Box Q-statistics (Q-stat) for testing the 
null of no autocorrelation up to a certain order with associated p-values (Prob). The left (resp. right) part of the table 
deals with the standardized innovations in the squared return (resp. BS implied variance) equation.  

 
 

The fact that both series are significantly autocorrelated is evidence of 
misspecification, and may be interpreted as a preliminary indication of neglected 
dynamics in this 1-factor Ornstein-Uhlenbeck model.  
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Besides the standardized prediction errors, the so-called smoothed disturbances or 

auxiliary residuals yield additional information with respect to model misspecification. 

They represent the best estimates of the disturbances in the state space model given 

the data24. Figure 10 displays the auxiliary residuals belonging to the measurement 

equation. 
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Figure 10: The auxiliary residuals of the measurement equation: the smoothed { }t tω +∆  series associated 

with equation (80) (upper plot), and the smoothed { }tε  series associated with eq. (81) (lower plot).  

 
 
 
Notice that there is evidence of conditional heteroskedasticity. The asymmetric 

pattern in the smoothed { }t tω +∆  series is a consequence of the course of the squared 

return series over time; recall figure 5. When an ARMA(1,1) model is fitted to the 

squared returns a similar picture results for the residuals.  

 

Figure 11 displays the smoothed state *
|t Tx  together with the smoothed state 

disturbance [ | ]t t Tu +∆ �� . Inspecting figure 11 it appears that when the level of the 

state is high, the state disturbance is large (in absolute value). Hence, the variance 

of the state disturbance seems to increase if the level of the state is high. Recalling 

that the state governs the conditional stock return variance, this is evidence of level-

dependent volatility.  
 

                                                
24 In terms of the general state space model, the smoothed disturbances (or auxiliary residuals) of the 

measurement equation are defined as |
ˆ[ | ] 't T t t t t T= − −w y a H�� . For the transition equation they 

equal 1 1| |
ˆ ˆ[ | ]t T t T t T+ += −v F�� . As Durbin and Koopman (2001) point out they are autocorrelated 

but can be useful for detecting outliers and structural breaks as they represent estimators of the error term.  
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Figure 11: The smoothed state 
*
|t Tx  (upper graph) and the smoothed state disturbance [ | ]t t Tu +∆ �� . 
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Figure 12: The upper plot displays the smoothed state obtained from estimating the model using only the 

return data, together with the smoothed state obtained from using both the return and option data. The 

lower plot shows the smoothed state obtained from using only the option data, together with the 

smoothed state obtained when using both sources of data.  

 
 
Finally, it is instructive to compare the smoothed states of the model estimated with 
the three different types of data. The upper plot in figure 12 displays the obtained  
smoothed state when only the return data is used for estimation, together with the 
smoothed state when both the return and the option data are used. Notice that they 
seem to deviate pretty much from time to time. In the lower graph, the smoothed 



 34

state when only the option data is used is plotted, together with the state obtained 
from using both sources of data. Notice that these latter smoothed states seem to 
track each other much better. It seems that the information in the option data 
dominates the estimation results when both the return- and the option data are 
used. This may be attributed to the fact that squared daily returns are such noisy 
estimators of the variance: they contain less precise information and therefore less 
pronounced structure.  
 
 

6. Summary and Directions for Future Research 
 
In this paper we introduce the class of multi-factor affine SV option pricing models. 
This class is more flexible than the more conventional models, although it does not 
allow for the leverage effect yet. It is assumed that the variance of the stock returns 
is driven by an affine function of an arbitrary number of latent factors, which follow 
stationary mean-reverting Markov diffusions. The inspiration for proposing this class 
was found in the literature dealing with the term structure of interest rates. A major 
advantage of this class is that it allows to investigate if the volatility is driven by 
more than one risk factor in practice. We derive a call pricing formula for this class of 
SV option pricing models.  
 
Next, we propose a method to estimate the parameters of such models. We write the 
model in linear state space form such that it can be analyzed by the Kalman filter 
and smoother. An important step in this process is to linearize the Black-Scholes 
pricing function, viewed as a function of the exponent of the integrated variance, 
around a suitably chosen value. This linearization subsequently ensures that we end 
up with a partly explicit analytical expression for the call premium. We provide some 
promising results that a linearization may not be a too bad approximation. The 
benefit of the state space approach is that it allows to simultaneously exploit the 
information in both the time series of option prices and the time series of the 
underlying stock. Moreover, it readily delivers the filtered or smoothed volatility 
series. We argue that our method may be considered an attractive alternative to 
EMM.  
 
We use daily data on the FTSE100 index to illustrate the method. We provide 
estimation results for a simple special case of the affine class, in which there is one 
factor driving the volatility that follows an Ornstein-Uhlenbeck process. The model is 
estimated using only return data, using just option data, and finally using both 
sources of data. The extracted smoothed volatility series is contrasted to both an 
estimated GARCH volatility series and to observed Black-Scholes implied volatility 
data. The graphs we supply indicate that the method works well. 
 
Diagnostic checks reveal a number of interesting issues that will be explored in our 
future research. First, we find evidence of neglected dynamics in the empirical 
analysis of the 1-factor OU model. This motivates the empirical investigation of 
multi-factor models which may be particularly relevant when considering a panel of 
option price series with different maturities and moneyness. Second, the results 
indicate the existence of level-dependent volatility. This motivates the investigation 
of stock variance driving processes that explicitly model this level-dependent 
volatility, like the Cox-Ingersoll-Ross process for example. In turn, this calls for the 
Extended Kalman Filter which can handle conditional distributions. Third, we find that 
the option data dominates the estimation results when the model is estimated using 
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both return and option data. We argue that a reason for this finding may be the fact 
that squared daily returns are such noisy estimators of the variance. This motivates 
the use of high-frequency intraday return data and realized volatility measures in our 
analysis. As these measures are far less noisy, we expect the information in the 
realized volatility and option data to be more equally weighted in obtaining the 
parameter estimates, than in case of using squared daily returns. Together with an 
extension towards incorporating the leverage effect and towards considering a panel 
of options, this will be investigated in our future research.  
 
 
Appendix 
 

A.  Our model is arbitrage-free: a proof 
 
In section 2.2, we implicitly proposed a possible choice for the non-unique � by 

simultaneously assuming a particular form for the market price of stock risk and the market 

price of volatility risk, and claimed that the resulting model is arbitrage-free. Here we prove 

this claim by showing that the prices of the tradable assets expressed in terms of the money 

market account are �-martingales, as they should be according to the Fundamental Theorem 

of Asset Pricing. 

 

First, and obviously, the relative price of the money market account equals 1 for all t  under 

all measures, such that it is a martingale irrespective of the specific measure. Second, note 

that the other tradable asset is the dividend earning stock. An important notice is the fact that 

the process { ; 0}tS t ≥  itself is not a tradable asset, because it does not account for dividend 

payments. Consider the following portfolio strategy. Suppose at time 0 we buy 0a  (some 

positive number) units of the stock, and that all the dividends we receive are immediately 

reinvested to buy additional units of the stock. Doing so, at time t  we have  

 0

0

exp( )

t

t ua a q du≡ �         (A1) 

units of the stock in our so-called reinvestment portfolio, which we denote by .rS  Notice that 

this reinvestment portfolio is indeed a tradable asset. The value of this asset at time t  equals 
r
t t tS a S= . Notice that ( , )r

t tS f t S= . Invoking Itô’s lemma yields 

 

 ,( )r r r
t t t t t S tdS q S dt S dWµ σ= + + .     (�)  (A2) 

 

Consider now the relative price r
tZ of the reinvestment portfolio, defined by 

 
1r r

t t tZ B S−≡ .         (A3) 

 

Using Itô, it can be shown that it follows the process 
 

 ,( )r r r
t t t t t t S tdZ q r Z dt Z dWµ σ= + − +     (�)  (A4) 

 

under �, whereas under our choice of �, for which   
 

 , , , ,; t t
S t S t S t S t

t

q r
dW dW dt

µγ γ
σ

+ −
= + ≡� ,     (A5) 

it follows    
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 ,
r r
t t t S tdZ Z dWσ= � .      (�)  (A6) 

 

(Notice that the specific form of the market price of volatility risk does not play a role in the 

argument.) This SDE does not contain a drift such that { ; 0}r
tZ t ≥  is a martingale process 

under �. Therefore our model is indeed arbitrage-free. This completes the proof.  

 

 

B.  Proof of the series { }t tω +∆  being white noise 
 

Below we prove that the series { }t tω +∆  is a white noise series. First, notice that t tω +∆  can be 

written as 

 
2

2 2 21
( ) ( 1)t t

t t t t t tr t
t t

ηω µ σ σ +∆
+∆ +∆≡ − ∆ − = −

∆ ∆
.     (B1) 

 

It is not difficult to see that { }t tω +∆  is a covariance-stationary series. It has mean zero, 

[ ] 0t tω +∆ =� . For the variance we find 
 

 
2 2

4 2 4 2var[ ] [ ( 1) ] [ ] [( 1) ]t t t t
t t t t

t t

η ηω σ σ+∆ +∆
+∆ = − = −

∆ ∆
� � �� ,   (B2) 

 

where we made use of the independence of tσ  and t tη +∆ . Now, 

 

 
2 4 2 2

2

2 2

3
[( 1) ] [ 2 1] 2 1 2t t t t t t t t

t t tt t

η η η+∆ +∆ +∆ ∆ ∆− = − + = − + =
∆ ∆ ∆∆ ∆

�� � ,   (B3) 

 

since 4 2[ ] 3t t tη +∆ = ∆� . Also, 

 
4 2

0[ ] [( ' ) ]t tσ δ= + x� �
2
0 02 ' '( var[ ] ')tδ δ= + + +x   (B4) 

 

In another paper25 we performed tedious algebra to show that the unconditional variance of 

the factors equals 
 

 var[ ] 't d=x J M ,        (B5) 

 

in which J  is an ( )nxn  matrix having its ij-th element equal to  [ ] 1 /( )ij i jk k= +J , and 

where  represents the Hadamard product; i.e., element-by-element multiplication. Hence, 

the variance of t tω +∆  equals 
 

 ( )2 2
0 0var[ ] 2 4 ' 2 ' ' 't t d ωω δ δ σ+∆ = + + + ≡J M .   (B6) 

 

Note that the series { }t tω +∆  is homoskedastic as it should be because of its covariance-

stationarity. Consider next the autocovariance of order 1,2,...p = , 

 

 
22

( 1)2 2
( 1)cov[ , ] [ ( 1) ( 1)]

t p tt t
t t t p t t t p t

t t

ηηω ω σ σ − − ∆+∆
+∆ − − ∆ − ∆= − −

∆ ∆
�  

 
22

( 1)2 2[ ] [ 1] [ 1] 0
t p tt t

t t p t
t t

ηησ σ − − ∆+∆
− ∆= − − =

∆ ∆
� �� � ,  (B7) 

                                                
25 These calculations are available on request from Antoine P.C. van der Ploeg. 
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where we made use of the fact that the volatility process is independent of { }t tω +∆ , and that 

~ i.i.d. (0, )t t tη +∆ ∆N . Hence the series is serially uncorrelated. To conclude, we find that the 

error term series { }t tω +∆  is indeed a white noise series.  

 
 

C. The statistical properties of the error series { }t t+∆u  

 
Below we investigate the statistical properties of the error term series 2 ( 1){ ,.., }t T t∆ + ∆u u  

belonging to the transition equation. Recall its definition in equation (74). For notational 

simplicity in the computations, we let t  run from 2 , 3 ,..,( 1)t t t T t= ∆ ∆ + ∆ . As the expected 

value of Itô stochastic integrals equals zero, the mean of tu  equals zero,  
 

 [ ]t =u 0� ; 2 ,...,( 1)t t T t= ∆ + ∆       (C1) 

 

To obtain its variance we make use of the following definitions, 

  
 1( , ) exp[ ( )] diag[c ( , ),.., ( , )]d d nu t t u u t c u t≡ − − =C K .   (C2) 

 

1( , ) [ ( , ),.., ( , )]'nu t c u t c u t≡c  

 
( , ) exp[ ( )], 1,..,i ic u t k t u i n≡ − − = . 

 
The variance of tu  is then computed as follows, 

 

,var[ ] var ( , )

t

t d u x u

t t

u t d

−∆

� �
� �=
� �
� �
�u C W 2( , ) ' ( , )

t

d u d

t t

u t u t du

−∆

� �=
� �� C C�  

  ( , ) ' ( , )

t

d d d

t t

u t u t du

−∆

= � C M C ,     (C3) 

 

in which, after remembering that [ ]t =x� , the ( )nxn  diagonal matrix dM  is defined as 
2

1 1 n[ ] diag[ ' ,.., ' ]d u nα α≡ = + +M � . Before proceeding, it is not difficult to show 

that the following result holds. For a general ( )nxn  diagonal matrix 

1( ) diag[d ,.., ]d nnxn d=D , and vector 1( 1) [ ,.., ]'nnx d d=d  and general matrix ( )nxn A , we 

have that 'd d =D AD dd A . Making use of this result we subsequently obtain   
 

  var[ ] ( , ) ( , )' ' ( , ) ( , )' ' '

t t

t d d d

t t t t

u t u t du u t u t du

−∆ −∆

� �
� �= = =� �� � � �
	 


� �u c c M c c M G M   

          (C4) 

where the ( )nxn  matrix G  has its ij-th element [ ]ijG  equal to     

           (C5) 

 
1 exp[ ( ) ]

[ ] ( , ) ( , ) exp[ ( )( )]

t t
i j

ij i j i j
i jt t t t

k k t
c u t c u t du k k t u du

k k
−∆ −∆

− − + ∆
= = − + − =

+� �G . 

 
Notice that the variance is time invariant such that the series { }tu  is homoskedastic. Next, 

consider the autocovariance of order ( 1, 2,...)p p = , given by 
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 cov[ , ] [ ']t t p t t t p t− ∆ − ∆=u u u u� ;  2 ,...,( 1)t t T t= ∆ + ∆    (C6) 

 
This expectation can be tackled by conditioning on t p t− ∆�  to get 

 

 cov[ , ] [ ( ' | )] [ ( | ) ']t t p t t t p t t p t t t p t t p t− ∆ − ∆ − ∆ − ∆ − ∆= =u u u u u u� �� � � � . (C7) 

 

Can we proceed any further? Yes, we can. First, consider the following expectation 

 

,

0

( , ) |

t

d u x u t p tu t d − ∆

� �
� �
� �
� �
�C W ��       (C8) 

, , ,

0

( , ) ( , ) ( , ) |

t p t t t t

d u x u d u x u d u x u t p t

t p t t t

u t d u t d u t d

− ∆ −∆

− ∆
− ∆ −∆

� �
� �= + +
� �
� �
� � �C W C W C W ��

 , ,

0

( , ) ( , ) | |

t p t t t

d u x u d u x u t p t t t p t

t p t

u t d u t d

− ∆ −∆

− ∆ − ∆
− ∆

� �
� � � �= + + � �� �
� �

� �C W C W u� �� �  

 

Remembering that Itô integrals are martingales with respect to the natural filtration of the 

Brownian motion driving the integral, it must be the case that 
 

 ,( , ) |

t t

d u x u t p t

t p t

u t d

−∆

− ∆
− ∆

� �
� � =
� �
� �
� C W 0�� , |t t p t− ∆� � =� �u 0�� .  (C9) 

 

But this implies that  

 
 cov[ , ]t t p t− ∆ =u u 0 ; 2 ,...,( 1)t t T t= ∆ + ∆ .     (C10) 

 
A similar argument can be used to show that cov[ , ]t t p t+ ∆ =u u 0 . Thus, the error term series 

{ ; 2 ,...,( 1) }t t t T t= ∆ + ∆u  is serially uncorrelated.  

 

Recalling the state space model formulation, we should also check if the error term at time t  

is uncorrelated with lagged values of the state. For this we need to assume that the initial 

state is uncorrelated with the error term series, as in, e.g., Hamilton (1994): 
*[ '] 2 ,..,( 1)t t t t T t∆ = ∀ = ∆ + ∆u x 0� . It is then relatively easy to show that this indeed holds 

in the present setting. Namely, we have for 1,2,..p =  , 

 

      * * *cov[ , ] [ ( ' | )] [ ( | ) ']t t p t t t p t t p t t t p t t p t− ∆ − ∆ − ∆ − ∆ − ∆= = =u x u x u x 0� �� � � � , (C11) 

 
where we made use of the fact that [ | ]t t p t− ∆ =u 0��  which we just proved.  

 

What remains to be checked is the correlation between the errors of the measurement 

equation and the errors of the transition equation. These ought to be zero in the state space 

formulation. And indeed they are, as we will now argue. The error term of the measurement 

equation is given by ( , )'t t t tω ε+∆≡w , whereas the error term of the transition equation is 

given by t t+∆u . By assumption, the series { }tε  is uncorrelated with any other series. For the 

covariance between t tω +∆  and s t+∆u , , ,..,( 1)s t t T t= ∆ + ∆ , we find  
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2 2

2 2cov[ , ] [ ( 1) ] [ ] [ 1]t t t t
t t s t t s t t s t

t t

η ηω σ σ+∆ +∆
+∆ +∆ +∆ +∆= − = − =

∆ ∆
u u u 0� �� � .  (C12) 

 

The argument is as follows. The error term s t+∆u  and the volatility tσ  are driven by the 

Brownian motions xW  and not by the Brownian motion driving the stock price, SW , which 

determines t tη +∆ . Hence, the product 2
t s tσ +∆u  is independent of t tη +∆ , from which the result 

follows.  
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