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Equilibrium fluctuation formulae for the
quantum one-component plasma in a magnetic
field

P. John and L.G. Suttorp

Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65,
1018 XE Amsterdam, The Netherlands

Received 31 July 1992

We derive a complete set of equilibrium fluctuation formulae for the charge density, the
current density and the energy density of the quantum one-component plasma in a magnetic
field. The derivation is based on the use of imaginary-time-dependent Green functions and
their Kubo transforms. It is shown how the fluctuation formulae involving Kubo-transformed
quantities can be established directly, even in the absence of a detailed knowledge of the full
imaginary-time dependence of the Green functions. The resulting fluctuation formulae for the
Kubo transforms are found to have a considerably simpler structure than those for the
equal-imaginary-time observables.

1. Introduction

Fluctuation formulae are important tools in understanding the equilibrium
behaviour of macroscopic systems. In general, they connect the large-scale
correlations of fluctuating physical quantities to simple thermodynamic prop-
erties. For classical plasmas the fluctuation formulae for the charge density, the
current density and the energy density are well known, both for the one-
component plasma (OCP) [1,2] and for the general multi-component ionic
mixture [3]. All these classical fluctuation formulae are equally valid if the
plasma is situated in a uniform magnetic field. This is no longer true for
quantum plasmas. For these plasmas only part of the fluctuation formulae are
available in the literature. For the unmagnetized quantum plasma, fluctuation
formulae involving the charge and the current densities can be found in refs.
[4-6]. For the magnetized case not much is known. The fluctuation formula for
the charge density in a magnetized OCP is given in ref. [6], while in ref. [4]
some remarks are made about the current density fluctuations.

In this paper we will analyse the equilibrium fluctuation properties of the

0378-4371/93/$06.00 © 1993 - Elsevier Science Publishers BV. All rights reserved



P. John, L.G. Suttorp | Fluctuation formulae for quantum plasmas 281

quantum OCP in a magnetic field in a systematic way. In particular, we shall
derive the complete set of fluctuation formulae for the charge density, the
current density and the energy density, considering both the auto-correlations
and the cross-correlations of these quantities. In the standard type of fluctua-
tion formulae these correlations refer to a pair of fluctuating local observables
at the same time. However, it is a well-known feature of quantum statistics that
the introduction of observables depending on an imaginary-time variable often
helps in understanding the basic structure of the theory. For that reason we
shall consider more generally imaginary-time-dependent fluctuation formulae,
as has been done before [6].

In general it can be said that quantum fluctuation formulae are more
complicated than their classical counterparts. This is true both for the equal-
time and for the general imaginary-time-dependent formulae. The present case
is no exception to that rule. Simpler fluctuation formulae are often en-
countered in linear-response theory. In this theory a central role is played by
so-called Kubo-transformed fluctuation expressions which follow by integration
over the imaginary time. The Kubo transformation has become a familiar tool
in quantum statistical physics, for instance in the analysis of collective modes
with the help of projection operators. In the following we shall derive these
Kubo-transformed fluctuation formulae for the magnetized quantum OCP as
well.

In contrast to what might be expected it is possible to derive the Kubo-
transformed fluctuation formulae directly without making use of the corre-
sponding imaginary-time dependent formulae. To stress this fact we shall start,
in section 2, with a discussion of the former, while the latter will be discussed
afterwards, in section 3. As a starting-point for the derivation of both sections
we shall take the imaginary-time-dependent equations of motion for the charge
and the current density, which follow by commutation with the Hamiltonian.
In an appendix it will be shown that the results of section 2 (but not those of
section 3) can be generalized to an ionic mixture in which several species of
particles move in a neutralizing background.

2. Calculation of Kubo-transformed fluctuation formulae

The system we shall consider is the OCP in a uniform magnetic field in the
fluid phase. The OCP consists of N quantum particles of charge e and mass m
in a volume V. The particles move in an inert neutralizing background of
charge density —q, = —eN/V. The Hamiltonian reads
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where B denotes the magnetic field and where ¢ (k) and (k) are the creation
and annihilation operators satisfying the standard (anti)commutation relations.
In the following we will forget about the spin dependence of the particles.

The charge density in Fourier language is given by Q(k)=(e/V) I,
' (k' — k) ¢s(k'). The current density J(k) is

— k) <2k’—k—i—eB/\Vk,> P(k') . (2)

eh
J k) = 2 he

The energy density is the sum of a kinetic part and a potential part. The former
is defined as

hZ . 2
E) =5 ~i) (2K~ k- 1 B A, ) uik), (3)
For the potential part of the energy density one has a choice between several
alternatives. If one adopts the expression 1E° with E the electric field, and
omits self-terms, one finds in Fourier language

2
_— eq (k—q)
Epot(k) - 2V"§ 0 (02 qz(k B q)z
X %” (l’f(k’ —k+ q) l/JT(k” _ Q)¢(k") l!l(k') ] (4)

A somewhat different expression is found by localizing the energy at the
particles and taking as the potential energy density the product of the local
values of the charge density and the electric potential [2]. With this choice one
gets in Fourier space

1

k —
Epol)= 55

e "? " ’
PR A AU LACE FTCORICORNC
#0,#k k'k”

The total energy density corresponding to the alternatives (4) and (5) will be
denoted as E(k) and E(k), respectively. For both choices one has E(k =0) =
E(k=0)= H. We shall derive fluctuation formulas for each of these energy

densities and compare the results.
In the following we will use the equations of motion for the charge density
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and the current density. We will therefore need the commutation relations of
these densities with the Hamiltonian. They read

[H, Q(k)] = —fik-J (k) , (6)

(H, 9G] =~ 22 gy B - 2 k- T, (8)

PN E S WU k) bR - @) ) ),

3
mV: gzeq kK"

(7)
where the kinetic pressure tensor T,;, is defined by
T. (k)= A > *(k'—k)(zk'—k—i—eB v )
kin 4mV ¢ v i N e
ie
X (Zk’ - k- e B /\Vk,>¢//(k') . ®)

In the last expression the first gradient V,. acts only on (k') and not on the
preceding factor.

The imaginary-time-dependent Green functions in a canonical ensemble are
defined by

(A.B)=2Z "tr{exp[—(B ~r)H] Aexp(-7H) B}, %)
where Z is the partition function and 8 is the inverse temperature. In (9) we
have taken the thermodynamic limit, as we will always do in the following. The
Green functions satisfy the so-called KMS condition:

(A,B)=(B, ,A), 0<r=g, (10)

which serves as a boundary condition for the imaginary-time-dependent equa-
tions of motion

= (A,B)=([H. ALB). (1)

We are interested in the Green functions for operators A and B that depend
on position. Introducing truncated Green functions as

(A(r) B(r2)>'r=<[A(’1)—<A>][B(r2)_<B>]> (12)
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we may take the Fourier transform and write

1 33 :
v (A(k) B(—k)), = ‘l/ J'drl d’r, exp[—ik - (r, — r,))] (A(r)) B(’z))T(~
13)

For k # 0 there is no difference between the truncated and the ordinary Green
functions, but for k = 0 it is important to use the truncated version.

Fluctuation formulae are in general defined as relations for Fourier-trans-
formed imaginary-time-dependent Green functions for small wavenumbers. In
particular, one is interested in the so-called equal-time fluctuation formulae, in
which one puts 7 =0. Alternatively, a Kubo transform of the imaginary-time-
dependent fluctuation formulac may be considered. The Kubo transform of a
quantity depending on the imaginary time 7 is defined as

B
%:zg*‘fdf. (14)
¢}

It appears naturally in linear-response theory. Often the Kubo transform of an
imaginary-time-dependent fluctuation formula is simpler than the correspond-
ing equal-time version. For that reason these transforms are preferred in
calculations involving projection operator techniques, for instance in deriving
the hydrodynamic modes. We will present in this section a method to calculate
the Kubo-transformed fluctuation formulae of the OCP directly from the
equations of motion, deriving a complete set of fluctuation formulae involving
the charge density, the current density and the energy density. In section 3 we
will treat the general imaginary-time-dependent fluctuation formulae.

We start with the simple observation that the Kubo transform of an
imaginary-time derivative of a correlation function yields a commutator:

] a1 1
I (4,00 B0 =7 (A0 BR) 1~ (A BC-R) )

=B 3 {[B-K). AM)) . (15)

where we have used the KMS condition in the last equality. So the Kubo-
transformed equations of motion have the form {5]

1

< ((H. AGRLB(-K) 7 = 8" 3 ([B-K), AK]) (16)

In the following we drop the subscript 7 in the Kubo-transformed fluctuation
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formulae. We shall use (16) with the commutator relations (6) and (7) to
derive a set of equations for (1/V){Q(k) 2(—k)) and (1/V){(J(k) 2(—k))
for arbitrary local operators (2.

In its present form the commutator relation (7) is not very useful. It can be
rewritten, however, by splitting the sum appearing at the right-hand side in two
terms, with a different behaviour for small values of k. The term with ¢ = k is
singular for k— 0. It is proportional to the charge density. The remainder of
the sum, with ¢ # 0,# k, can be written in such a form that it obviously
vanishes for k— 0:

2

1 e e
kT, (k)= (— + 7 (k- >
m=55 2 | Gat T k0

X2 WK = k4 g) 0K = ) bk WK, (17)

with T

ot the potential pressure tensor. As a result we have found from (7)

(H, J(K)] = ~ho, % Q(k) — ihw J(k) A B

eh eh
- "; k. Tkin(k) - —Z k. Tpol(k) » (18)

where w, = (ne’/m)""* and w, = (e/mc)|B| are the plasmon and the cyclotron
frequency, respectively. Furthermore, B denotes the unit vector in the direc-
tion of the magnetic field. By expanding (17) in lowest order of k, we can write
the potential pressure tensor for k = 0 as

1 ? 2 . .
Tlk=0)= 505 3 5 (U= 2) 5 4 +.0) ' - 0 0k k),
(19)

where U denotes the unit tensor.
Substituting (6) and (18) in the Kubo-transformed equation of motion (16)
we get the following set of linear equations:

—hk- X ‘l, (J(k) Q(—k)).=B"" %, ([2(-k), 20)]) , (20)

ko1 . ;
~ho} 23 A 3 (QU) DKy = e - (JG) (~K))s A B

_¢eh
m

k-%‘l/ (T(k) Q(~k)) =" %, ([2(=k), J(K)]) , (21)
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where we introduced the abbreviation T:= T, + T,
tensor.

We can solve this set of equations by taking the outer product with & and the
inner product with B in (21). The resulting set of three equations can easily be
solved to obtain

for the total pressure

11

- W v ([2(=k), J®)]) - B

1 ~
K (000 (-K)) ¢ =

1 .
s ke  (T(K) Q(—K)) - B
mw;, cos O | %4
(22)

1 1 |
K 3 (JK) A(=k))r =~ 7Bk cos § B 4 ([02(=F), Q()])

i .1
* fBocos s K (0. IR

1e

" o8 D <k- K % {T(k) Q(—k))T> Ak,
(23)

in which we have defined cos & = k- B.

These solutions are quite general, as they are valid for arbitrary wavevectors.
They are of limited use, however. More useful results are obtained by
expanding the Green functions in powers of k. Let us write

1 1 0 1 1
7 (A(R) BER) = 3 (A) B-R)Y" + k 1, (A(k) B(-K))5’
+ & ‘1/ (Alk) B(—k)P +---, (24)

so that (1/V){ A(k) B(—k))% is the sth coefficient in the wavenumber expan-
sion of (1/V){ A(k) B(—k)). Mark that (1/V){ A(k) B(—k)) still depends
on k. Using this expansion we will derive now explicit fluctuation formulae in
leading orders in the wavenumber.

We start with the zeroth order in k. One can derive an exact sum rule in this
order, since (22) implies that the charge sum rule [5]

H ‘1—/ (Q(k) Q(—k)) =0 (25)

holds for all operators (2.
In the next order of the wavenumber a further general result can be
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established by limiting ourselves to purely configurational operators (2. For
these type of operators one has, of course, (1/V){[Q2(—k), Q(k)]) =0 in all
orders of k, and moreover

¥ (00, 1) =0, (26)

since J(k) for vanishing k is proportional to the generator for translations.
Hence, one finds from (22) and (23)

H <Q(k) -k =0, (27)

A 3 TR R = 0. (28)

This is as far as we can go for general operators 2. In addition one may
derive symmetry properties of the Kubo-transformed Green functions by
considering the transformation character of {2 with respect to rotations, spatial
reflection and time reversal. In particular, from the latter one proves for any
local gauge-invariant operator {2, which is even (or odd) in the momenta, that
the left-hand side of (22) is even (or odd) and that of (23) is odd (or even)
under inversion of the direction of the magnetic field.

Further results follow by specifying the operator (2. We will make three
different choices for (2, namely the charge density, the current density and the
energy density.

Case Q(k) = Q(k)

The charge density Q(k) is purely configurational so that the zeroth- and
first-order terms in the expansion of the charge—charge Kubo-transformed
Green function vanish on account of (25) and (27). We therefore consider the
second-order term. Using (25) once more we see that the terms with T drop
out from (22). Making use of the commutator relation

- ([Q(—k), J(W) = ~haolk (29)
we get
H - <Q(k) Q(—k)Y = (30)

This is the quantum-mechanical Kubo-transformed version of the famous
Stillinger—Lovett condition [7], which has been derived here for a magnetized
OCP. For the unmagnetized plasma it has been established in ref. [5]. It should
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be noted that the dependence on the magnetic field has dropped out. We shall
see in the next section that the general imaginary-time-dependent charge—
charge fluctuation formula is a lot more complicated and that it does depend on
the magnetic field.

The charge—current Kubo-transformed Green function in zeroth order van-
ishes on account of (28). The first-order term is calculated by again using the
charge sum rule (25) and the commutator relation (29). It turns out to vanish
as well:

# 2 (I QR = 0. (31)

The charge—charge and charge—current Kubo-transformed fluctuation formulae
can also be written in a form valid in all orders of k. This form reads

! S NP YVS O
K (QKk) Q(=k))r =Bk —Wk ¥ 3 (Tk) Q=) B,
32)
iek . .
3 I QU1 = = s (k3 (TG QD). ) A k.
3)

The Kubo-transformed Green function with the pressure tensor appearing in
these formulae is at least of order k on account of the charge sum rule (25).

Case Q(k) = J(k)

The charge—current fluctuation formula has already been obtained above.
This leaves us with the Kubo transform of the current—current Green function.
In order k' the terms with T drop out from the right-hand side of (23). On a
par with (29) we need the commutator relation

‘l—, ([J(=K), J(K)]) =ik we- B, (34)

with £ the Levi-Civita tensor. In writing (34) we have used that the average of
the current density vanishes as can be seen by parity considerations. Employing
(29) and (34) we get from (23)

H ‘1—/ (JR) J(— k)Y = — B(-hw'k)

1

B cos ¥
i

* fiBw,_ cos ¥ [

=g 'wiU, (35)

ihwf,wc(— U cos 9 + Bk)]
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where U denotes the unit tensor. The dependence on the magnetic field has
dropped out, as before. Because (34) is valid in all orders of the wavenumber,
we can write the current—current Kubo-transformed fluctuation formula for
any k as

iek

. 1 .
W k-X ‘7 (T(k) A kJ("k))T .

(36)

XA ‘l/ JK)J(—k))r=B o U~

Case Q(k) = E(k) or Q(k) = E(k)

This case is somewhat more involved because the Kubo-transformed Green
function with the pressure tensor in (22) and (23) does not vanish in zeroth
order in k for this choice of £2. We start by giving the relevant commutators.
The energy density E is found to commute with the charge density Q for all
values of the wavevector:

= (LE-8), QW] = 0. (37)

The same result is found for E, since the potential part of the energy density
commutes with the charge density anyway.

Turning to the commutator of E with the current density J one gets a
nontrivial result already in first order of k:

([ECK), JDP =0, (38)

—_ <=

5 ((ECR, 701" =~ 2 ((E) +k-(T)) (39)
The averages of the energy density and the pressure appearing here are
independent of position, since for any local observable (2 one may write
(1/V){2k=0)) =(2(r)) ={2(r=0)) = () on account of translation in-
variance. The commutator of E with J in zeroth and first order of & yiclds the
same results as (38) and (39). Differences show up only in order k° or higher
(see appendix A). Since we shall use the commutator relations up to first order
in k only, the alternative definitions of the potential energy do not lead to
different versions of the fluctuation formulae we are going to derive below. For
that reason we shall write down the formulas for the energy density E(k) only.

In lowest order of k the T terms still drop out in (22) and (23) and we find
the following fluctuation formulae:

K ‘1/ (Q(k) E(—k)Y" =0 (40)
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and
4 ‘1—/ (J(k) E(-k)){ =0 (41)

To derive the fluctuation formulae in the next order of k we have to employ
(39). The average of the pressure appearing in this commutator can be
simplified somewhat by invoking the symmetry properties of the system. Since
there is only one preferred direction, we can write the pressure tensor as

(T)=AU+ uBB . (42)

Here we used the fact that ( T) is a symmetric tensor. For the kinetic part of
the pressure this property can be verified from (8). Furthermore, the Fourier
transform of the potential pressure as given by (19) is symmetric as well. From
(42) we derive

k-(T) B=cosd B-(T)-B, (43)
k- ATHYAk=-3cosOknBB-(T)-B-1u(T)). (44)

Insertion of (37) and (39) with (43) and (44) in (22) and (23) yields

1 e 5 P
A (QU) Bk = s (B-(T) - B+ (E))

p

e . 1 )
b = AT EKY" B (45
mwf,cosﬂ V< (k) EC )>T (45)
and
l _ y _ 3ie . . 5 e
K k) ()5 = = 500 kn B(B-(T) L (TY)
.____ie___ A_ _]; _ (0)) ~
mwccosﬂ(k 7{V<T(k)E( K)r ) nk.

(46)

To evaluate the Kubo-transformed Green functions with the pressure tensor
appearing at the right-hand sides of these equations we remark that in zeroth
order of the wavenumber (1/V){Q.(k) E(—k))\" =(1/V){Q2.(k) HY{" is
independent of 7, so that the Kubo transformation becomes the identity
operation for this case. Furthermore, we can use the thermodynamic relation
(QH),.=—3(2)/3B. Hence, upon using once more (43) and (44) we can
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rewrite the Kubo-transformed fluctuation formulae (45) and (46) as

e i e

1 2 g 3 - 3 7,
:%;<Q@)H—mﬂﬂ—ﬁmwiﬁg38<T>B)+ ma? (EYs (D)
9{1 (J(k) E(=k))\V = - Sie ing 2 [BB-(T)-B-1tr(T))]

1% T 2Bmow, B 3 :

(48)

These fluctuation formulae get a simpler form if the average pressure tensor is
taken to be isotropic. It may be argued that in the fluid phase, i.e. below the
Wigner crystallization point, the equilibrium quantum OCP cannot sustain
shear forces. However, it is not clear whether this argument still holds if a
magnetic field is present. If it is valid one may write B+ (T)-B =1 tr(T) =p,
with p the scalar pressure. The right-hand side of (48) vanishes then, while the
right-hand side of (47) reduces to (1/8)(de,/dq,),, with e, = (E) the energy
density.

By now we have nearly completed the task of deriving all Kubo-transformed
fluctuation formulae for the charge, the current and the energy density. The
only formula that is missing still is the energy—energy fluctuation formula. Its
derivation is trivial, however, in view of the general properties of the Green
function (1/V){£,(k) E(—k)) " discussed above. We immediately find

nc

|4
o (49)

1 o_
K 5 (E(k) E(—k))y" =

with ¢, the specific heat at constant volume.

One should notice the relative simplicity of the Kubo-transformed versions
of the fluctuation formulae. They should be compared to the more complicated
expressions that occur in the imaginary-time-dependent fluctuation formulae,
which will be derived in the next section. In fact, use of the Kubo transforma-
tion simplifies the calculations so greatly that we can even evaluate the
Kubo-transformed fluctuation formulae for the multi-component ionic mixture
in a magnetic field. This will be shown in appendix B.

3. Imaginary-time-dependent fluctuation formulae

Kubo-transformed fluctuation formulae are useful in describing the response
of a quantum system to external disturbances. More detailed information on
the equilibrium properties of the quantum OCP is obtained by studying the full
imaginary-time dependence of the Green functions for the charge density, the
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current density and the energy density. In the long-wavelength limit this
dependence is given by the imaginary-time-dependent fluctuation formulae, the
derivation of which will be considered now. The starting-point of our calcula-
tions will be once again the equation of motion (11) and the KMS condition
(10). Employing the expressions for the commutators [H, Q(k)] and [H, J(k)]
as given by (6) and (18) we get the following set of linear differential
equations:

Jd 1 1
2L 0,00 A1) =~k {4, (6) A=K)) (50)
Jd 1 > k1
57 7 (0 2(=k))r =~ ke, 2V (Q,(k) Q(—k))+
) 1 .
~ifw, v (J(k) Q(—k))r A B
e AT 2 0) 1 (1)

We will solve these equations using the KMS condition as a boundary
condition. The latter implies

=B

1 = {12k, Q) . (52)

(Q.(k) 2(—k))+

T
T=

=B

<l— <

(L0 DR _ = ([2(—k), JB) (53)

=

We start the calculation by giving a few definitions. First, we combine the
imaginary-time Green functions involving the charge and the current density
into a four-dimensional vector:

k~'v! k) Q(—k
Xr:(wp M (Q. (k) £( )>T>_ (54)
V7T (k) Q(=k)) ¢
Furthermore, we introduce the Hermitian 4 X 4 matrix
—w k
L’”:=ﬁ( 0 “ ) (55)

—~w,k —lw.€-B

with £ the Levi-Civita tensor, and the four-dimensional vector

we = —(eﬁ/m)k-v‘o< T,(k) n(-k»T> E<A3> | (56)
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Making use of these definitions we can write (50) and (51) in the following
way:

% X' = LPXY + M” (57)

The homogeneous equation related to (57) can easily be solved. The
eigenvalues of L"" are fipw,, with A, p = %=1 and with the basic frequencies

w, = %\/wé + ! + 20,0, cos ¥ + %A\/wf, +wl— 20,0, c0s Y . (58)

The eigenvectors associated to these eigenvalues are

xi,=(,"), (59)

v,,
with the vectors

pO_w, . pw, iww, . .
25k k- kB, (60)

w, w, —w

v, (k)= — —
W, —w

in which I::H =cosd Band k, =k- l::”. The eigenfrequencies found here are
the fundamental frequencies of the so-called “gyro-plasmon modes” that have
been discussed before for the classical magnetized OCP [9]. The vectors v, , (k)
show up in the amplitudes of these modes. A few useful properties of these
vectors have been collected in appendix C.

According to the method of variation of constants the general solution of the
inhomogeneous equation (57) can be written as

X* =2 c,, (1) X% exp(fipw, ), (61)
Ap

with time-dependent coefficients c,,(7). These satisfy the equations

ac, (1)
AZ A;T exp(fipw,7) =0, (62)
P
ac, (1)
AZ -—'g—;— v,, exp(fipw, 7) =M, . (63)
P

Taking the inner product with vy, . and using identity (C.2) of appendix C we
can solve for c,,(7):
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2

2 T
w - wC 12 !
(1) = - 2 — jd*r M, vy, exp(—hpw,7') + c,,(0). (64)
2((‘),\ w”,) 0

This leaves us with the problem of finding c,,(0). Employing the boundary
conditions (52) and (53) we get

2 2
W, — W, 1

2(wi - wz—)\) exp(ﬁprB) =1

,,(0) = (-2 L tac-w, o)
+of, 3 ([2(-R), JGO))

8
- | a7 M, 0, expl-hpa, (- B)) (69)

So our general solution for the imaginary-time-dependent Green functions is

7 (0.0 Q)= = 5 ¢, () expl(ipu, 7). (66)
§ 0 Q) =5 vy, (5) explipu ). (67)

with the coefficients

0, — w;

e 1 w, 1
= 5= | i =T (2 ¥ {12(-h0, 06

ol 5 (120, WD)

eh 3 1 "
~ 2 ([ar ke & (T 0 20 1 - 01, expl(=hpo, )
0

B
exp(fipw, B) o, 1 N
'Wf ar' ke 4 (T, 00) =) 0],

X exp(—hpwﬂ’))] . (68)

Note that we recover eqs. (22) and (23) for the Kubo-transformed Green

functions when we take the Kubo transform of (66) and (67). In proving this it

is convenient to employ the properties (C.5) and (C.6) of the vectors v, ,.
The general solutions (66) and (67) can be used to derive explicit results in
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successive order of the wavenumber. First, one immediately derives the charge
sum rule

2 (0,00 2(-R){ =0 (69)

for general operators (2. For configurational operators {2 we can go one step
further. Making use of the commutator relation (26) for a general configura-
tional operator we get

% (0.0 D(-k)Y =0, (10)

= <J (k) Q(—k))s = (71)

because the integral terms in (68) vanish in this order. No further results for
general operators (2 are available. We will derive specific fluctuation formulae
for the charge density, the current density and the energy density by making
use of the properties of these observables.

Case Q(k) = Q(k)

In view of (69)~(71) we consider the charge—charge Green function in
second order and the charge—current Green function in first order of the
wavenumber. Hence, we need the coefficients (68) in first order. The T terms
then drop out on account of the charge sum rule (69). Substituting the
commutator relation (29) we arrive at the charge—charge and charge—current
fluctuation formulae

1 0’ -’ exp(hpw, 7)
1 —IN® = 1 A c A
y (0.0 0(=k))r" = 3 %” Wl ~ w2, “ explhpw,B)~ 1

(72)

22
\ oo vl ot exp(hpo, 7
<J (k) Q(=k)) 1 A, %:‘ P 0 —w’, ©ali exp(hpw, B) — 1 '(73)

The first of these has already been given in ref. [6]. The fluctuation formulae
found here depend explicitly on the magnetic field, in contrast to their
Kubo-transformed counterparts (30) and (31). The Kubo transforms of the
time-dependent fluctuation formulae given here can be evaluated conveniently
with the help of (C.7). In particular, one checks in this way that the
charge-current formula yields zero when Kubo transformed, in accordance
with (31).
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Case (k) = J(k)

In this case we confine ourselves to the evaluation of the current—current
fluctuation formula in zeroth order of k. The relevant commutator expressions
have been given in (29) and (34). The pressure terms again vanish in this
order. We readily find

v OR300 7z ot Sothpnp) T
74

Upon taking the Kubo transform and using (C.8) one recovers (35), from
which any reference to the magnetic field has disappeared.

A special form of the current—current fluctuation formula has been given
before [4]. It can be derived from (74) by choosing the wavevector to be
parallel to the magnetic field. For that case (74) reduces to

exp(fiw,7) exp(—fw,7) )

exp(fhiw,B) — 1 * 1 —exp(—fiw,B)
exp(fiw, 1) N exp(—fiw.7) )

exp(fiw.B)—1 1—-exp(—fw.B)

—%iﬁwiwcs-)@( exp(fw,7) exp(—hw,.7) >

LW IR = Shoik (

+ horo U - 1212)(

exp(fio ) —1  1- exp(~hw,B) (7)

Clearly, the fluctuations of the longitudinal and the transverse components of
the current density decouple for this particular configuration. Focussing on the
transverse components we indeed recover the fluctuation formula given in ref.

[4].

Case (2(k) = E(k)

For this choice of 2 the coefficients (68) vanish in zeroth order of the
wavenumber, since the commutator expressions (37) and (39) do not contrib-
ute. Hence, one immediately finds

= <Q (k) E(—k))$" = (76)
<J (k) E(—k))Y = (77)

In one order higher in k we have to insert (37) and (39). Moreover, we can



P. John, L.G. Suttorp | Fluctuation formulae for quantum plasmas 297

write the fluctuation expression with the pressure tensor as a derivative with
respect to B, as before. Taking similar steps as in the previous section we
obtain the fluctuation formulae for this case as

11/<Q,<k)E(—k)>‘T”= LS AT e (TY+(E)) 0,

2mwp Ap Wy — a
exp(fpw, T)
exp(fipw,B) — 1
e J 4
— (B-(T):B), 78
i 35 B (7B (78)
eh 5 w0y~

7 v, (k- (T) + k(E))- v},

—A

1 H_
7 () E(-R))Y =

2m 5, 0l - w
exp(fipw, 7)
exp(fipw, B) = 1
3ie

—meck/\B

9 .
ZBAT)-B-1w(T)).  (79)
B
Just as in the previous section the energy—cnergy fluctuation formula is the
only one that we have not come across here. However, since it is independent

of the imaginary time in zeroth order of the wavelength, we immediately get
from (49)

1 AV O
y (B ECR)Y = s (80)

We have now obtained a complete set of imaginary-time-dependent fluctua-
tion formulae for the charge density, the current density and the energy
density. Comparing them with the Kubo-transformed fluctuation formulae of
the previous section we see that the time-dependent fluctuation formulae are a
lot more complicated. In contrast with the former the latter all depend
explicitly on Planck’s constant. Taking the classical limit is a trivial operation
for the Kubo-transformed fluctuation formulae, whereas it leads to profound
changes in the time-dependent formulae, with results that are identical to the
simple Kubo-transformed expressions. Furthermore, the time-dependent for-
mulae contain the basic eigenfrequencies of the magnetized OCP, which are
sensitive to the orientation of the magnetic field with respect to the wavevec-
tor. The characteristic vectors v,, entering the time-dependent fluctuation
formulae also depend on the magnetic field. The Kubo-transformed fluctuation
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formulae, on the other hand, are mostly independent of the magnetic field, the
only exception being those containing the energy density.

Having discussed the explicit magnetic-field dependence of the fluctuation
formulae derived in this section we now consider the limit of vanishing
magnetic field. In this limit w. goes t0 @, and w_ to 0. The associated
eigenmodes of the unmagnetized plasma are the plasma oscillation modes and
the viscous modes, respectively. The charge—charge and charge—current fluc-
tuation formulae become

exp(fhw,7) exp(—fiw,7) )

exp(fiw,B) =1 1 —exp(—hw,B)
(81)

lim > (0,() O(~ k)7 = 1o

|B|—0

. l _ 1y _ 1 27 M
am, 3 () Q(=h)s” = zﬁwp"(exp(ﬁwpm—l

exp(*hwpa-) )
a 1 —exp(—hw,B)/ "

(82)

For general 7 the first formula can be found in [6], while for 7 =0 it has been
known already for a long time [4,5,8]. The second one has been given in ref.
[12].

The current—current fluctuation formula in the limit |B|— 0 takes the form

im L O _ 15 3ppf  Sxp(hw,T) exp(—fiw,7)
\}‘ﬂr—r’l" y L0 JR) = zha, k( exp(hw,8) -1 1-— exp(—ﬁwp3)>
+ B o (U — kk) . (83)

This formula is found to contain a term independent of the imaginary time. It
originates from the A = —1 term in (74) and is hence related to the presence of
viscous modes in the unmagnetized OCP. Terms of this type are absent from
the charge—charge and the charge—current fluctuation formulae.

A second remarkable feature of (83) is that it still depends on k in the
long-wave-length limit. Hence, the current—current fluctuation expression is
not uniquely defined for k— @; its value depends on the direction from which
the origin is approached. Taking the inverse Fourier transform one finds that in
position space the imaginary-time-dependent current—current Green function
contains terms proportional to a dipole—dipole interaction tensor, which decays
as r > for large separations r between the observation points. This slow
non-integrable algebraic decay has been noticed before [4,6]. The slowly
decaying tail disappears upon taking the classical limit. Recently, it has become
clear that an algebraic decay of correlation functions is a general feature of
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quantum plasmas [10-12]. It should be noted that the current—current fluctua-
tion formula (74) for the magnetized OCP also depends on the orientation of
the wavevector, via the frequencies w, and the vectors v,,. Hence, similar
conclusions on the decay of the current—current Green function in position
space can be drawn in that case as well.

Finally, we turn to the |B|— 0 limit of the fluctuation expressions involving
the energy density. For the charge—energy fluctuations we find

.1 @ ek
\11;1|r—r>10V<QT(k) E(—k))7 mep(P+ev)

( exp(ﬁwp 7) N exp(—hwpf) )
exp(hw,B)—1 1- exp(—fiw,B)

e op
bt 84
ma)f) B (84)

Here we used the isotropy of the equilibrium pressure tensor of an unmagnet-
ized OCP, so that we could write ( T) = pU. Furthermore, we introduced the
notation e, = ( E) for the energy density. For the current—energy fluctuation
formula the limit of vanishing magnetic field is not as straightforward, because
of the factor w_ appearing in the denominator of the last term of (79).
However, the equilibrium pressure tensor depends on the magnetic field only
through the product @ B. Since the pressure tensor is symmetric, it is an even
function of B and hence also an even function of .. As a consequence the
off-diagonal terms of the pressure tensor are at least of order w?, so that the
last term of (74) drops out in the limit of vanishing magnetic field. The other
contributions yield

.1 e _ eh oo
|¢lel|To v (LK) E(=k))7" = 5 K(P te)

( exp(fiw,7) B exp(—hw,7) )
exp(hw,B) -1 1—exp(—fw,B)/"

(85)

This completes our discussion of the |B]— 0 limit of the imaginary-time-
dependent fluctuation formulae.

4. Conclusion

The complete set of formulae determining the large-scale correlations in the
fluctuations of the charge density, the current density and the energy density in
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a quantum OCP has now been established. Starting from the equations of
motion for the charge and the current density we have derived both Kubo-
transformed and imaginary-time-dependent fluctuation formulae. The Kubo-
transformed versions have a similar appearance as the classical formulae. In
particular, they are independent of Planck’s constant. On the other hand, the
general imaginary-time-dependent fluctuation formulae have a more compli-
cated structure. They depend on the basic mode frequencies of the OCP in a
magnetic field and hence on both the strength of the magnetic field and on its
orientation with respect to the wavevector. The frequency dependence also
entails an explicit dependence on #. In taking the classical limit all these
interesting features disappear and one is left once more with the remarkable
simple set of fluctuation formulae for the classical unmagnetized OCP, the
equilibrium fluctuation properties of which are by now wellknown.
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Appendix A. Energy fluctuation formulae: E(k) or E(k)?

In this appendix we will show that it makes no difference whether one takes
the energy density E(k) or E(k) in the commutator (39). Taking account of
(38) and of the remark following (37) we may conclude that in leading order of
k the energy fluctuation formulae are the same for E(k) and E(k).

Since there is no difference in the kinetic parts, we will concentrate on the
potential parts. For the commutator between E_ , and the current density J we
find

pot

e’q-(k—q)(k—q)
a(#0.%K) g’ (k- gq)°

X 2 (0 (K + q) 'k~ g) YK D)

1 eh
;([Epot(—k), J()]) = vl

(A.1)

Expanding up to first order in k we get
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itk-q° ¢ 24 24

Upon substitution into (A.1) the first term vanishes on account of symmetry,
while the last two terms yield the potential energy density and the potential
pressure, respectively. Hence, we arrive at the result

g (k—q)k—q) q 1k 1",(U_Z‘17‘1)_ (A.2)

v ([Epot( k) J(k) >~~_- (k<Epot> +k- < pot>) 4 (A3)

which is equal to the potential part of (39). Calculating the commutator

between E, and J we get

2

7 (=, JOD =~ S5 (gﬂ)(k—q)(}jk—fq—)z)

X ka (W'(k' + @) v' (k" — q) w(k") $(K'))

(A.4)
and expanding up to first order in k as in (A.2) we find
1 ~ eh ~
‘—/ <[Ep0t(hk)7 J(k)]> == ; (k<Ep0t> +k- <Tp0t>) : (AS)

Since (E) = (E) we have again recovered the potential part of (39).

Appendix B. Ionic mixture

In this appendix we will derive fluctuation formulae for a magnetized ionic
mixture consisting of several species of particles with different charges and
masses in an inert uniform background. The particles of species a are described
by creation and annihilation operators ¢ (e, k) and y(a, k) satisfying the usual
(anti)commutation relations. The Hamiltonian of the system is

Vk)z‘l’(a7 k)

2V3§§E S W k) (K - g) e, ) b k).
q#0 (Bl)

where e, and m, are the charge and the mass of the particles of species a.
The total charge density is Q(k) =% (e,/V)Z, ¢ (e, k' — k) ¢(a, k'). The
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current density J(a, k) of species a is defined similarly as in (2). The total
current density J(k) follows by summation over all species. For a general ionic
mixture in which particles with different charge-to-mass ratio are present this
current density is independent of the total momentum density G(k)=
L,(m,le)J(a, k).

The equations of motion are

[H, Q)] = —~hk-J(k), (B.2)

[H, G(k)] = —4q, ;kf Q(k) — iy, J(k) A B — hk- T(k) . (B.3)

The pressure tensor T(k) consists of a kinetic and a potential part of which the
definitions are similar to that of the OCP, with additional summations over all
species. The background charge density is —gq, = — X n_e_ with n_ the particle
density of species . The cyclotron ratio is given by vy, := |B]|/c.

We can repeat the procedure given in section 2 of Kubo transforming and
solving the equations of motion. As before we obtain in this way general
expressions for the Green functions involving the charge and the current
density:

1o, 1 B _1__ 1 B A
K3 5 (00 =Ry = = s 3 (10(=0, GG - B
1 1 .
-y E O (T 2R B
(B.4)
3 5 IO =)y = s ko 3 (190, M)
- 3t B v (1900, 0D
- Ci)s 5 [k-% —‘1; (T(k) Q(—k))T] nk.
‘ (B.5)

These Kubo-transformed fluctuation formulae are quite similar to those given
in (22) and (23) for the OCP. The fact that the momentum density and the
current density are independent quantities for a general ionic mixture has not
prevented us from obtaining these results. One can easily convince oneself that
the situation is not that simple for the imaginary-time-dependent fluctuation
formulae: the treatment of section 3 cannot be followed for an ionic mixture,
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precisely because of the lack of a general relation between the momentum
density and the current density in a mixture.

As in section 2 one easily shows from (B.4) and (B.5) that the charge sum
rule (25) and the higher-order rules (27) and (28) are valid for the ionic
mixture as well. By making specific choices of the operator {2 a complete set of
Kubo-transformed fluctuation formulae can once again be derived. The fluctua-
tion formulae for the charge and the current density as given by (30), (31) and
(35) are valid for the mixture as well. The squared plasma frequency appearing
in the last of these formulae is given by £ _ n_e>/m_ in the present case. In
addition, a few formulae containing the momentum density instead of the
current density can be established as well. They read

A 5 QW) G-k =0, (B.6)
A ) Gk =B, (B.7)

As to the fluctuation formulae with the energy density, the formulae (40) and
(41) remain valid as such, while (47) and (48) have to be adapted somewhat,
by replacing the factors e/ (mwf,) and e/(mw,) by 1/q, and 1/v,, respectively.
The derivatives with respect to B in these formulae have to be taken at
constant g, and constant B, , with g, the chemical potentials as introduced in
ref. [3]. Finally, the right-hand side of (49) gets the form —de /38, with e, the
energy per volume.

Appendix C. Properties of the vector v,

In this appendix we will state a few properties of the vector v,, which is
defined as

L PO, o P, L loe,
UAp(k)=';2—-i—;§kl+—w—'pk”—;)—2%;—2k/\B. (C.1)
A [ A A c

The inner product of two of these vectors is

2w’ - w?))
— 58,5, - (C.2)

¥

* = —
U, Uy, = 1+ 3
W, —w

To solve the eigenvalue equation for the matrix (55) one needs the relations
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A w/\

k.v/\p:pz > (C'S)
P

ok —iwwv,, A B=pw,v,, . (C.4)

The following equations are useful in Kubo transforming the general solutions
(66) and (67) of the imaginary-time equations of motion:

wi-w. 1 1
A C D
— v, =——B, C.5
)\2;) 2w} —w?,) pw, *  w,cosd (C3)
2 wz —(1)2 1 i
A c *® 7

—t — 0, U, =— ————— £ k. C.6

w 2w’ —w?)) pw, M w_cos (C.6)

Lastly, we state two properties which can be employed in taking the Kubo
transform (or the classical limit) of the imaginary-time-dependent fluctuation
formulae for the charge and the current density:

2

_ 2
Z—————‘h wzc v, =0, (C.7)

Ap Z(wi—w_/\) ?

2 2
w, — w
Aty v, =U. (C.8)

Ap Z(wi - wz—)\)
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