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ON THE EQUIVALENCE OF CONVERGENT KINETIC
EQUATIONS FOR HOT DILUTE PLASMAS

II. GENERATING FUNCTIONS FOR COLLISION BRACKETS

J.S. COHEN and L.G. SUTTORP

Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65,
1018 XE Amsterdam, The Netherlands

Received 24 August 1981

The generating functions for the collision brackets associated with two alternative convergent
kinetic equations are derived for small values of the plasma parameter. It is shown that the first
few terms in the asymptotic expansions of these generating functions are identical. Consequently,
both kinetic equations give rise to the same transport coefficients in arbitrarily high order of the
Chapman-Cowling truncation scheme.

1. Introduction

In the first paper') of this series we have studied the heat conductivity and
the viscosity of a hot dilute plasma by applying the Chapman-Enskog scheme
to two alternative convergent kinetic equations. In lowest order of the
Chapman-Cowling truncation procedure both equations turned out to lead to
identical asymptotic forms of the transport coefficients for small values of the
plasma parameter €. The purpose of the present paper is to extend these
results by including higher-order terms in the Chapman-Cowling ap-
proximation procedure.

In order to derive the higher-order contributions to the transport
coefficients collision brackets of increasing complexity must be determined. A
convenient tool to achieve this is furnished by the generating function for
these brackets. Once the generating function is known general conclusions
about the brackets of arbitrarily high order can be drawn. In particular, a
comparison of the generating functions associated with the two convergent
equations will enable us to establish the equivalence of these equations in so
far as the ensuing transport properties are concerned.

In section 2 the definition and some general properties of the generating
functions for collision brackets will be presented. These functions will be
evaluated asymptotically in sections 3-5 for the various partial collision terms
that occur in the convergent Kinetic equations. In the final section it will be
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444 J.S. COHEN AND L.G. SUTTORP

proved that the generating functions for the convergent kinetic equations are
identical in the limit of small plasma parameter.

2. Definition of generating functions for collision brackets

For the calculation of the heat conductivity and the viscosity in arbitrary
order of the Chapman-Cowling approximation one needs collision
brackets'?) of the general form

[SE2EBm (v — VAT O — V) -, SU28Bm (v — VAT (v — V). (2.1)

Here | denotes the rank of the tensor T" associated with the transport
phenomenon. In particular, [ =1 corresponds to heat conduction, with
TPa) = a, and | = 2 to viscosity, with T?(a) = aa — 3 a*U. The dot - denotes the
complete contraction of the tensors T’. The Sonine polynomials appearing in
(2.1) are defined as:

. rd+p+3 .
(+112)¢ oy _ _
Sy ) 20 P-nrTa+rey 2" (2.2)

Both SU*? and T depend on the velocity v of an individual particle and the
hydrodynamical velocity V. Dimensionless velocities will be denoted by a bar,
i.e. ®=(@3Bm)"v, with B the inverse temperature and m the mass of the
particles.

A more convenient form of the collision brackets is obtained by introducing
the spherical-tensor formalism®). Then (2.1) becomes (apart from a trivial
factor)

!
Bro= 2 [Sy7™(@ ~ VU@~ V). ST - VIAYLG - VI 23)

with ¥, the regular solid spherical harmonics. In (1.4.15) and (1.4.17) the
quantities AP* and H", which determine the heat conductivity and the
viscosity, have been defined. They are related to Bb, in the following way:

327T m@ 1
pq _ “ 28
A" =555 %, Bra

2.4)
167
H™ === BBj,.
Instead of discussing (2.3) for various values of I, p and q we will introduce
a generating function which itself can be written as a collision bracket. We
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define:
1 - - —
Bl(x,y) = Z_I li(x]|B — V) Yim(D — V), i(y|o - VDY?:n(ﬁ - V)L (2.5)

Here i, is the modified spherical Bessel function of order . In contrast to the
solid harmonics appearing in (2.3) the spherical harmonics Y,,, occurring here
depend only on the direction of their vectorial argument.

We will now demonstrate the generating character of 3'(x, y) by expanding
it into a power series in x and y with coefficients that contain B},. Sub-
stitution of the expansion

o 1_~Ni+2r
i((Z) = % \/'77 < ﬁ%:{ (26)

in (2.5) yields

. _ _71 o o (%x)HZr(%y)HZs .
BN =G 2 2 7T+ r T HIAFs+h O @7
where Bl is the collision bracket
l — —_— —_— —
Bi= 2 (G-V)"Yiu@~ V), (6 - V)*YiE - V). 2.8)
By employing the relation®)
. rd+n+j (A+1/2)
n_ 1 — 1\
D NI TEs R @9

which is the inverse of (2.2), one may express B!, in terms of B}g. Sub-
sequently (2.7) becomes

©  ® 1 N1+2pgl  \1+2q
1 - 1 (x2+y2)/4 -__1\P+q (Zx) (2)’) 1
B'(x,y)=7e pgo .,2:0( D i3 p +5ravqrh Bre 210

Hence the relevant collision brackets B}, can indeed by derived from %"

The family of [-dependent generating functions (2.5) can be obtained from a
“master” generating function as we will show by the following reasoning.
From the Rayleigh-like expansion

o i
e =47 Y > i(ax)Yim(a)Y pm(x) (2.11)
1=0 m=-I
and the orthogonality of the Y;, we have

(@) Yin(@) = [ §5 Yint) e+ @12)

Here £ is the unit vector x/|x| and [ d£ denotes the integral over all directions
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of x. Upon insertion of (2.12) into (2.5) we get

i 2 3 - -
B'(x,y) = Z,, %% Yrm(x)Y:':,,(y)[e""‘7’'”.e'v“c V1. (2.13)
If we define
%(x,y):[ex%ﬁ V)‘ey-(l?*‘r'}‘l‘ (214)

then (2.13) can be written as

B'(x, v)= PUB(x. y)). (2.15)

with
L[ df dy "

P = pabodihat 4 X ”

Pi(-) ,,,Z, am 25 Ym®)Y (). (2.16)
Since »

! 20+ -
E Yi(a)Y mi(b) = 14 ! Pi(a - b), (2.17)
m- | v

whereP,; is the Legendre polynomial of order I, we have

@(-)zzl“fd"d?(‘-w(» (2.18)
g m xdyrtx -y . 2.

One may regard ?; as an operator, which selects the contribution of a specific
value of [ By a rotational-symmetry argument it is easily seen that
[4Y . ir Y] vanishes, unless | = 1" and m = —m': hence, from (2.5) and (2.14)
the formal solution of (2.15) is found as

B(x.y) =47 120 Pi(x - $)B'(x. v). (2.19)

The brackets for the convergent collision operators discussed in paper [ are
linear combinations of the Boltzmann-, Balescu-Guernsey-Lenard- and Lan-
dau-type brackets. From (2.14) it follows that the generating functions asso-
ciated with the convergent collision terms are likewise combinations of those
generating the partial brackets. The latter will be discussed in the following
sections.

3. The generating function for the Boltzmann collision brackets

The collision bracket associated with the Boltzmann collision operator is
given by (1.4.3). Hence the explicit expression for the generating function



EQUIVALENCE OF KINETIC EQUATIONS II 447
(2.14) reads in the Boltzmann (B’) case:

1 d = -
Bo(x.y) = 3 f do dv' 40 $Z o~ o'| (o) u(v)
~ [ex-<a—€/)+ ex-(a'—"')_ exA(a,—V)_ ex-(a;—t‘/)]
x [ey-(a—if) + ey‘(a'—if) _ ey«(él—f') —e’ ~(6i—€’)]’ 3.1

where fy is the local Maxwell-Boltzmann distribution, given by (1.3.3). Let us
introduce the centre-of-mass and the relative velocities U = 3@ + ') =
Yo, +0), a=5-9 and &, = b, — o). Since da/dQ depends only on #; and i,
but not on U, the U-integration can be performed. The result reads:

%B’(x y) = l 77.“3/2(Bm)~l/2 e(X*Y)Z/SJ'dﬁ dQ d_olal e—ﬁ3/2
’ 2 df

X P(x)P(y)e® Ty DR _ glxriry i

gy ey iy 3.2)

Here we introduced the symmetry operator $(a) which is defined as

#(a)F(a) =1F(a)+3F(-a) for arbitrary functions F(a). We now apply the
expansion (2.11) to the expression in brackets in (3.2). From the first term we
obtain

(4mr)? IE' > 2 i Gx)inGyE) Yim () Ym0 Y Fom (@) Y fom (i) (3.3)

I mpmy

Here and in the following the primes at the summation signs indicate the
restriction to even values of the summation variables. In the integrand of (3.2)
the expression (3.3) is multiplied by a factor, which depends only on |a] and
4 - u,. Hence only the part of (3.3) that is independent of the direction of &
contributes to the integral in (3.2). This rotational-invariant part reads

Z’ QL+ DiGxa)iGyd)Pi(# - §), (3.4

as follows from (2.17). Since one has |i| = |a,| the fourth term in (3.2) yields
an identical contribution. The second and the third term in (3.2) can be treated
similarly. Since the argument of Y}, in (3.3) is now i, instead of &, the part
that is invariant with respect to simultaneous rotation of &, and @ (keeping
u, - i fixed) is found to be of the form of (3.4), with P,(ii - ii;) appearing as an
extra factor in the summand. In this way (3.2) is seen to evolve into

Bi(x, y) =2 e 2' QL+ DP(x - Ix, y), 3.5)
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where the index i1 equals B’ and where

Thix.y) =137 "(Bm) ‘“Jda d!léi—%lﬂe PR GG Y[ — P - i)l
(3.6)
with even [ = 2. For | = 0 we trivially have I}, = 0. It should be noted that I,
and hence @By, is symmetric under an interchange of its arguments.
The integrals I'y can be linked to the Q-integrals (I.5.3). To this end we
express the Legendre polynomials for even | as a hypergeometric function®):

P(z) = (—-1)”2(1”>2 LR L 2, (3.7)

ower series expansion (2.6) for the i, we obtain

. 2
By =m0 ([ S S

mn O p O

Fal—

(‘%l)p(%l + %)p L2\ 12+mgl 3 2+n A Cpd-men
M T wm + DT 7 hl, ¥ Gy

(3.8)
for even [ =2, The (2-integrals satisfy an asymptotic expansion for small
plasma parameter e, which has been derived by Kihara®). In appendix A we
show how his result can be written in a more elegant form, which reads

4,32
0= 3—2%%;—”5 Ir=1DN—loge—2y+2log2+ S, | — Ty).

(3.9)
for even = 0 and r = 2. Here we have introduced the notations
]
|
Si=> i P+ 1) — (1),
R
!
l 1 1 1 1
T: T2 l+?*i 2), (310)
1 ~ 2} _ 1 »LL'( ._) d]( )

with Y (z) = dlog I'(z)/dz.

The asymptotic expression for Iy follows by insertion of (3.9) into (3.8).

The summation over p in (3.8) can then be performed. To that end we note
that the first four terms in (3.9) give rise to

n _ +%)
PZI ( n’: 'xl) . p- (3.11)
- \2)p
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which can be evaluated as a hypergeometric function:

n-1 n2n + Hn!

—nn+1):F(-n+1,n+335)=(=1) On =D (3.12)
The last term in (3.9) leads to the sum
) (St 2), ,E") pli(p +H— v, (3.13)
“

It may be written in terms of a hypergeometric function and its derivative

_1d [ En)ntd)
2dz[z: pliz+3), sz:o
1

p=1

_1d[n@n+l - ERY J
_2d2[ 37 + 1 QF]( n+1,n+2,z+2,1) oo
pna 20+ D!
—(-1)"2 2"—((27"t1—))!’!’—(sn+2n—1). (3.14)

To obtain the last line we expressed the hypergeometric function in I'-
functions, which lead upon differentiation to the sums defined in (3.10).

With the use of (3.11)-(3.12) and (3.13)-(3.14) we find from (3.8) with (3.9)
the asymptotic expression for I:

32
Ta(x, y)= f—ﬁm—nl(lﬂ) Z Chn (—log € + TE MG > "Gy?) 2,

mn=0

3.15)
with the abbreviations

. (d+m+n-1)!
Crn = M ITA T m )T +n+Y)’ (3.16)

If=-2y+2log2+4+ Si 1 =38~ Tin. (.17
The asymptotic expression for the generating function is obtained by sub-

stituting (3.15) in (3.5).

4. The generating function for the modified Boltzmann collision brackets

The collision bracket (1.4.10) associated with the modified Boltzmann
operator becomes upon insertion of exponential functions according to (2.14):
Bp(x, y) = —3 f dU du drfu(U +3m)fu(U — 3u) exp(~ kpr — Lr'—‘)knu - F

(O+a2—-v (C—al2-v (D+wl2-V (O-w2-V,
% [ex (U+al2 V)+ex U - )][ey +w )_+_ey (U~—w )]’ (4‘1)
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where kp = e(Bn)'" is the reciprocal Debye length and r; = Be*/47 the Landau
length. The velocity w has been defined in (1.3.16). The U-integration in (4.1)
is readily performed. We obtain

Ba(x.y) = —m (Bm) e"”':”‘f da dr exp(\é i’ kpr 77)

X kpit - FLx)SL(y) explix - u +y - w)l. (4.2)

By a reasoning, which is quite similar to that of the previous section. we find
that By can again be written as in (3.5). with i = B. Instead of (3.6) we now
have

Ihx.v)=—3= *(Bm) j du dr exp(f'gﬁZ —kpr 7'“71)

X kpit + i3 x@)ii (3 yWw) Py - w). (4.3)

for even [ 2 2. In the case | = 0 one has I% =0 owing to the antisymmetry in
the r-integration. In contrast to (3.6) I'g(x. v) is not symmetric under per-
mutation of its arguments, since the norms of @ and w differ. Hence the
generating function Ba(x, y) itself is not symmetric with respect to x and y.

As in section 5 of paper I we introduce in (4.3) the variables & = BE.
1 = ¢/E (where E =imu’+ ¢ and ¢ = e*/47wr) and ' = i - w. Then we obtain
the following expression for I[:

l

. B et 1 ; €
Falx, y) = 2'7;1'13'”1726 { d¢ ! dn E:n:(l‘:}; eXP( *n“’f)
(
X ilG OO0 — )" x i [C O VIFim). (4.4)
with

2(1 _ n)l’/ZA gr(z__
[2-nm-20U-n)

Fitn) = (1 m)? f dy ]2]’; PUL). 4.5
{

The function Fi(n) can be looked upon as a generalization of F(n), which we
introduced in (I1.5.15): in particular. we have Fa(n)=1F(n). On the interval
(0, 1] the function Fi(n) is regular, while for n | 0 its asymptotic expression is:

Fi(n)y =351l + (logn — 210g 2 + 18-+ Tin). (4.6)

as will be derived in appendix B: the numbers S, and T; have been defined in
(3.10). We will use this expression in appendix C to obtain the asymptotic
form of the integral in (4.4) for small plasma parameter e. From (C.9) we
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have
Fi ) = b A1) 3 cha (Slog e+ TE™x) ™7y,
327'"m a0 B
4.7)
where ¢!, has been defined in (3.16) and where
[§=—2y+2log2+ St —4 Sp— T (4.8)

We note that the difference between (4.7) and (3.15) is contained in the I'*. In
fact, we have from (3.17) and (4.8)

rs=ri-i (4.9)

The asymptotic expression (4.7) for I'g is invariant under the interchange of

x and y. From (3.5) it follows that the generating function %'g becomes

likewise symmetric for € —»0. Consequently, although the collision brackets

B!, associated with the modified Boltzmann collision operator are in general

asymmetric in p and g, the symmetry is restored in leading order with respect
to e.

5. Generating functions for the Balescu—Guernsey—Lenard and the Landau
collision brackets

In this section we shall derive expressions for the generating functions of
the brackets associated with the BGL and L collision terms, both in their
original and in their modified form.

The collision bracket that follows from the ordinary BGL equation has
been given in (1.4.4). With the use of this expression the generating function
(2.14) becomes

4
RBoaLlx, y) = T&%’TP f dov dv’ dgd[q - (v — v')]

1 L
X ——o—————3 fm(0) fm(o’
27€%(q, g - 0| fu(v)fm(v’)
d d x-(6-V) x-(5'-V)
Xqe|———
1 (Bv av’)[e e ]
X g+ (5o Jler e P er €T, 5.1

Here € is the dielectric permeability of the plasma in local equilibrium. The
integral over q is logarithmically divergent for large |q|; for that reason a
cut-off at |q| = kpA, with A > 1, is implied in (5.1). For the evaluation of ®BpcL
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it is convenient to introduce instead of v and v’ centre-of-mass and relative
velocities U and a, of which the components orthogonal to and parallel with g
are denoted by labels | and ||, respectively. The integral over i, then becomes
trivial on account of the &-function, while the & ,- and [_Jl-integrations are
Gaussian. After a transformation to the new variables ¢ = (U — V), and
n = g/kp one gets with the help of (1.5.19)

\/58463/: dé xl+y? x, ¥y 2
%i(x.y):?ﬂ_w EXH)’HG( : '”/4(6 P I)Ii(xHern). (5.2)

with i = BGL. The n-{-integrations are contained in the integral

1 "
3
MEEN

7) = n'e ‘
Ty (2) J’ dn j dg [F1(€)+712]2+ Fg(g)l' (5.3)

0 ”

where F, and F, have been defined in (1.5.20). The n-integral is elementary;
for large A one finds

TR : -
Ty (z) = <g) e’ log A ~ f die *'“G). (5.4)
with
hl 9 F
G(0) = b ogl Fu({P + FA(0)] + ;‘fé’) {gf arctg[,—:—i:-g”. (5.5)

The generating function for the brackets of the modified BGL collision term
follows directly from (5.1) by replacing a factor e’q * by the Fourier trans-
formed effective potential ¢pai(q). as defined in section 3 of paper I. Intro-
ducing in (1.3.23) the dimensionless variable £ = r/r; and taking the same steps
as above we arrive again at (5.2), with Iz (2) given by

. . . .
. (em€)e '
I G zZ)= J’ d f d J’ d l“ e n ]l 3173 3 . 56
A R R N G s o XTsk o
0 [y E3
In appendix B of paper | the asymptotic form of the £-m-integral for small
values of € has been derived. Inserting the result (I.B.13) into (5.6) we obtain:

m

" 2 . 24 e
Inci(z) = (;) e (~loge -2y +2)- f dg e *EGY). (5.7)

Let us consider now the generating functions for the brackets associated
with the Landau-type collision terms. The brackets for the ordinary Landau
collision term L' follow, according to the remark below (1.4.4), from those for
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the BGL case by putting € equal to 1 and inserting a factor q*/(g>+ k})>.
Carrying out these manipulations in (5.1) we are led to (5.2) with an I(z) that
is found from (5.3) by deletion of both F; in the denominator and insertion of
a factor n*/(1+ n%%
A £
1 _ "13 “utg o (T " 228 _!
u@= [ an [ g giome ™ e=(3) e ™og 4 -, 58)

0

hae madifiad T andan ~age | PN
o HIuygiiicu  Lalldau vadc 10 1D

T ikoawice +the ganearating fiinetian for
LARCWINC, LIC EgUlClalilly 1ullivuull 1ul

obtained from that of the BGL case by the replacements €®—1 and
¢saL(q) = ¢1(q) (as given by (1.3.27)). Correspondingly, we put Fy =0 = F, and
insert a factor exp(—€£) in (5.6):

@) =e [ e [ dn [ dzea-e e jeng e (5.9
0 0 —%

The first terms in the asymptotic expansion of the £—m-integral for small €
have also been derived in appendix B of paper I. From (I.B.19) we get

12
Ii(z) ~ (%) e (“loge — 2y + 1). (5.10)

The linearized collision terms and the collision brackets associated with the
convergent Kinetic equations labelled P and P both contain the difference of a
BGL-like and a Landau-like contribution. For that reason we are interested in
the generating functions Bpci-1- and Beai-i, which follow by substituting in
(5.2) either the difference of (5.4) and (5.8), viz.

1/2 N
oo (2 = hoau ()~ (@) =3 (3 ) ™ - j dge*¢GQ), (.11
or the difference of (5.7) and (5.10)
12 z
Isor 1(2) = Ing(z) — I(z) = (%) e™™ - J’ dg e #HEG(). (5.12)

It should be noted that the cut-off parameter A has dropped out of (5.11).

6. Comparison of the generating functions associated with the convergent
kinetic equations for plasmas with small e

The generating functions discussed in the previous sections have the form
of a collision bracket according to (2.14). Hence, we observe from (1.4.2) that
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the generating functions associated with the convergent kinetic equations
labelled P and P in (1.3.1) follow directly from those generating the partial
brackets. In particular, we have for the convergent equation with label P:

By = By + Brci -1 - (6.1

Here By and Bpgr.o are given by (3.5) with (3.8), and (5.2) with (5.11),
respectively. For small € (3.8) may be replaced by its asymptotic version
(3.15). The generating function for the convergent equation with subscript P
reads likewise:

Be = B+ Brai-1. - (6.2)

with By following from (3.5) with (4.4) and Bgegr. . from (5.2) with (5.6) and
(5.9). For small € (4.4) has the asymptotic form (4.7), while (5.6) and (5.9) lead
to (5.12).

In paper I it has been proved that the asymptotic expressions for the
lowest-order collision brackets are the same for both convergent Kkinetic
equations. In this section we shall prove that this is a property shared by all
collision brackets of the general form of B, (2.3). In fact, it will be shown
that the generating functions (6.1) and (6.2) for these brackets have identical
asymptotic expressions for small e. To establish this result we shall study the

functions
ARy = By — By .
ARBpcr 1. = Bacr-1> — Baai-i (6.3)

which together determine the difference of (6.1) and (6.2):
%P*%?:A%B*'A%BGL—[J (64)
The asymptotic expression of A%y is obtained from (3.5) with (3.15), (4.7)
and (4.9) as

430 o
Ay = fatmm e ARy (6.5)

where ABy is defined as

= 1 LA N Al b em 2
ABp=1m D' QL+ DI+ DPUE - §) D Chali )G y) (6.6)
1 mn—0

Likewise, from (5.2) with (5.11) and (5.12) an asymptotic expression for
ABgcr -1, is found that is analogous to (6.5). Instead of (6.6) one has in this
case

vy dg (x 4y 28 _ e, -y 8

ABpgL 1. = *f yp x||y||[e AR ey (6.7)

The expressions (6.6) and (6.7) will be studied now consecutively.
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The coefficient cl,, occurring in (6.6) has been defined in (3.16). It contains a
product of I'-functions, which have originated from the series expansion (2.6)
for the modified spherical Bessel functions i. An expression that is closely
related to the right-hand side of (6.6) follows by starting from the Rayleigh
expansion (2.11). Using (2.17) and the orthogonality of the spherical har-
monics one may prove the identity
Z’ QL+ DPi(£ - 9)ig(kx)ir(ky) =3 2—; (e**+e M) +e*). (6.8)
If the power series (2.6) for the i; functions are inserted in the left-hand side
we arrive at a triple sum of a similar type as in (6.6). However, one may
observe the following differences. In the first place an extra factor [(I+ 1)
occurs in (6.6); furthermore the coefficient cl, (3.16) contains the factorial
(I+m +n—1)!, which is absent in (6.8). The factor I(I + 1) can be generated in

(6.8) by making use of the Legendre differential equation in the form

(P () =11+ 1)P(t), 6.9
with the operator

L(t) = (t* = 1) d*/de* + 2t d/dt. (6.10)

If this operator acts on both sides of (6.8) one gets
El’ QU+ DI+ DP(x - y)iy(kx)i(ky)
L dk | 4. .
=.,<£(x.y)%f4—7;[e* ) 4 gk o) (6.11)

Since Z(x -y) is a differential operator one may add a constant to the
integrand at the right-hand side. For reasons that will become clear presently
we use this freedom to insert a term — 2 between the square brackets.

The factorial (I + m + n — 1)!, which is still missing in (6.11) as compared to
(6.6), can be produced by making use of the identity

F(n) :J’ dt tn--l e—l — 2n+1 f dk k2n7| e72k2' (612)
0 0

In fact, if we multiply both sides of (6.11) by 4k ' exp(—2k?) and integrate the
result over k, the left-hand side becomes identical to (6.6). At the right-hand
side the integrals over k and k combine to an integral over the vector k, so
that we find:

A= 22 5) [ 5oz Wet wnp et e _g] 6.13)
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Owing to the presence of the term —2 the integrand is finite in the origin.
Substituting the power series expansions of the exponentials and using (6.12)
we get

o n— 1!

__:zA.A 17—7211 _,%n

ABp = F(x y);] R G ). (6.14)
where we introduced the vectors

zi=3x+y) z=ix—y). (6.15)

An expression for £(x - )zi" may be found by writing z3} as a function of x°,
y?, % -y and performing the differentiations contained in .#. If z, and 2. are
reintroduced subsequently we get

PE Pzt =nlzt - nzizd+ (n— Dz, - )z (6.16)

for i = 1,2. The final form for A%y is obtained by substituting (6.16) in (6.14):

x

—_— 2Mp!
ABy=3 ==

2 Gn g pilF o ezizi (e Dz 2z T (e D), (6.17)

where (1 < 2) stands for the preceding terms with the indices 1 and 2
interchanged.

Let us consider now the BGL expression (6.7). Again the variables z; (6.15)
will be introduced; in particular, one has xjy;= zi;— z3;. If the exponential
functions are replaced by their power series, we obtain

e - l 7 Rk hd
ABgar 1. = ‘z “(ANizi— ALz +(l o 2), (6.18)

n-0 2"n!

with the angular integrals
Al = j dq sin?6; cos? 0. (6.19)
47

containing the angles 6; made by z; with ¢. For i =j the integral is easily
evaluated®):

(2n)!!

A= Gn sy

(6.20)
For i# j it is convenient to choose the polar axis of the spherical-coordinate
system in the direction of z. The polar angles of ¢ then are (6., ¢;), while those
of z; will be denoted by (8, ¢). The integral (6.19) then becomes

Al = 4—17; j d6; dg; sin®*'8;{cos 0 cos 6, + sin 0 sin 6; cos(¢ — ¢i)]’
" s
:%(H+I*HCOS“6). (6.21)
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Upon substitution of {6.20) and {6.21) in (6.18) we arrive at an expression for
ABpgL-1 which is the inverse of (6.17), so that one has
AgBB + A% BGL-L — 0. (6.22)

In view of (6.4) and (6.5) this is equivalent to the statement
Bp = Bp (6.23)

for small values of e. Hence we have established the equivalence of the
convergent kinetic equations labelled P and P in so far as the asymptotic
expressions for the ensuing collision brackets are concerned.
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Appendix A

Asymptotic expansion for the {1-integrals

The asymptotic expression for 2" that has been derived by Kihara®)
differs from (3.9) by the replacement of Ty, by B, +5, where B, is to be
determined from

A

I = f [1 - (i . })l] dx = 2I(log A — 2B) + 6(A™), (A.1)

0

for A > 1. Following Kihara an explicit expression for B; can be found by

applying the binomial expansion of (x — 1)' about x = — 1 and integrating term
by term. A more elegant form will be obtained by making use of a recursion
argument.

After a partial integration in (A.1) and substitution of the variable t =
(x — D/(x + 1) we have:

(A-D/(A+D)

A= _ (A=l f 1+t
J,—A[l (A+1)]+l dtt T~ (A2)

-1
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For | = 1.2 we obtain by separation into partial fractions:

J{=2log A.

(A.3)
Ji=4logA -4

To determine Ji* for { =3 we now derive a recursion relation. From (A.2) it is
easily seen that in the limit A — = the following equality holds:

Jin ~ QL+t (1)

_ _ I —
T fdtt (1+1) ST (A.4)
By repetition we arrive at
f’——jfl. even [ =2,
Ji. J7
i7" (A.S)
+
‘ﬁél‘((ll+;)) odd I = 1.
These recursion relations can be iterated to obtain (A.1) with
” T,‘/z—; . even | =2,
B, = ‘\ (A.6)
=1
Ty AT odd { = 1.

where T, has been defined in (3.10).

Appendix B

Asymptotic behaviour of the functions F,

The functions F,, which we have defined in (4.5), can be slightly general-
ized. We will consider

F(m)=41-m)"2-n j dcT%P(g). (B.1)

where P({) is a polynomial function and £, = (1 —39)1—7) " In order to
obtain an asymptotic expansion for n — 0 (and hence ¢y,— 1) we first note

L' .
f“(g 5N (B.2)
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Consequently, P({) in (B.1) can be replaced by P({)— P({o). From the Taylor
expansion of P({) about {, we have

P()- P _ P _ 1P"(%)
-0 (=& 20—

+ R(Z, o), (B.3)

where R is the polynomial function

R(Z L) = (L = Lo [P(0) — P(Lo) — ({ — L)P'(Lo) = (L — Lol P"(Lo))- (B.4)
Substitution of (B.3) in (B.1) and separation into partial fractions yields for

n—0

1
F(n)=%P'(1)[log(%)+1]+%P"(1>+% f dZ({— DR D)+ 0(n).  (B.S)
-1

Let us consider the special case that P is a simple even power of ¢, i.e.
P({) = ¢™. Then the integrand in (B.5) reads:

2n—-1

(- DR D= kz k% = n(2n - 1). (B.6)
=1

Only the terms in (B.6) with odd k = 21 — 1 contribute to the integral; in fact,
we have

21—1

1
L[ ae-vR@ D=3 S -n@n—D=aT, -0t B)
-1
Hence in this special case (B.5) becomes
F(n)=n(logn —2log2+ T, +2). (B.8)

From (B.8) the corresponding asymptotic expression for Fi(n) follows,
since F, is obtained by inserting a Legendre polynomial of even order [ into
(B.1). Using (3.7) we arrive at

if2

1 1 1
R =07 )2 3 GG D pog y 21082+ T, 4. (B
p= (),

We can perform the p-summation with the help of (3.10)-(3.14). Then the final
result reads

Fy(n)=41(1+ D(log n —2log 2 +3 Sp+ Tpo). (B.10)
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Appendix C

Derivation of the asymptotic expressions for the integrals occurring in the
modified Bolizmann generating function
In section 4 we encountered the integrals

ES 1

o= [ a [ an gyl ¢)

0
X [ €)1 = m) x il G €)'y ]Fi(n). (C.1)

for even | =2, with Fy(n) given in (4.5). Substitution of the series (2.6) for i

leads to

x 1
ley="T _ Cmn g [ENENT T RN G ]
Mo=4 2 qrmin=n! @Gy (C.2)
The coefficients ¢!, have been defined in (3.16), while J,, stands for the
integral

kS 1

_ €

Jlmn(e) :J’ d¢ J' dnghmm'l(l _ n)lllﬂﬂ”ln 2 eXp( £n - §>F,(T)) (C.3)
O 0

To obtain the dominant contributions to J'., for small e we may proceed as

in appendix A of paper I. First we remark that it is sufficient to consider only

the leading terms in the asymptotic expansion of Fi(n) around m =0; they

have been given in (4.6). If the factors (1l —mn) in (C.3) are accordingly

replaced by | one gets upon introducing the variable n’ = €/(n€) instead of n:

Jtnn(é)zil(l+l)e"jdg f dmiglrmin 1 m ¢
0 ot
x(—log&—logn' +loge—2log2+3Sy+ Ty). (C.4)

The integral over n' is easily performed for all terms between the parentheses
except log . The contribution of the latter may be rewritten by carrying out
two partial integrations, first with respect to o’ and then, by means of the
identity
4 (i l—!gk e’5>:—§'e £ (C.5)
dé \&& k!
with respect to £ As a result we obtain from (C.4)

Jim(€) =311+ De™! f d¢ exp<—§—§>

+m+n 1
(+m+n-0D', .
2 KT £

(C.6)

x [§l+m+rl(— 2log?2+ % Siz+ Tya) —

k=0



EQUIVALENCE OF KINETIC EQUATIONS 11 461

We now split the integration domain into the intervals I,=][0,€"?] and
I,=[€'?, ). In the first interval exp(— &) can be replaced by unity. With the
variable &' = €/£ the dominant terms in the contribution from I, become

T =—41d+DUd+m+n—1e! f %e_g'

2

HA+DUd+m+n—1e'Gloge+y). (C.7

I

Here we used the identity (I.A.8). In the second interval I, one may omit the
factor exp(— €/£). Integration then yields

Jiae) =310+ DU+m+n—-1Gloge+vy—2log2
= Stemen-1+13 S+ T (C.8)

Adding (C.7) and (C.8) we arrive at the asymptotic expression for J.,(€) in
the neighbourhood of € = 0:

J@) =31+ DU +m+n—-1'e'(loge+2y—2log2

— Stemin-1+13Sp+ Tp). (C.9)
The omitted terms are at most of order €'? as compared to the leading
contributions.
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