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ON THE EQUIVALENCE OF CONVERGENT KINETIC
EQUATIONS FOR HOT DILUTE PLASMAS

III. COLLISION TERMS WITH EFFECTIVE INTERACTIONS

J.S. COHEN and L.G. SUTTORP

Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65,
1018 XE Amsterdam, The Netherlands

Received 22 April 1982

A general class of approximate expressions for the pair correlation function of a classical
one-component plasma with small plasma parameter € is discussed. The collision terms which
follow from these approximate correlation functions are characterized by effective potentials that
differ from the bare Coulomb potential by modulation factors depending on the interparticle
distance. It is shown that for small € the transport coefficients are independent of the precise
form of the modulation factors.

1. Introduction

In this series of papers convergent kinetic equations for classical one-
component plasmas with a small plasma parameter are studied. In particular,
in papers I and II'?) we discussed the consequences of a collision term put
forward recently by Kleinsmith®) and Mondt*). To obtain their result these
authors introduced as an essential ingredient a particular approximation for
the non-equilibrium pair correlation function. The linearized version of their
collision term contains Boltzmann-, Balescu~Guernsey-Lenard- and Landau-
like contributions, which are each separately convergent. This convergence is
guaranteed by the occurrence of effective interactions that differ from the
bare Coulomb interaction by additional ‘modulation’ factors depending on the
interparticle distance; these factors are determined by the equilibrium pair
correlation function. In papers I and II we have shown that the dominant
terms of the ensuing transport coefficients for small plasma parameter are the
same as those following from an earlier type of convergent kinetic equa-
tion*”). It remained unclear, however, whether this equivalence is a special
feature of the particular approximation for the pair correlation function used in
refs. 1 and 2.

To settle this question we shall investigate in the present paper a larger
class of convergent kinetic equations. This class arises by weakening the
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156 1.S. COHEN AND L.G. SUTTORP

assumptions that lead to the approximate expression for the pair correlation
function. As a consequence the linearized collision term is again the sum of
Boltzmann-, BGL- and Landau-like expressions with effective interactions.
However, the modulation factors are now left unspecified; only certain
scaling properties are required. In fact, in the Boltzmann case the modulation
factor varies appreciably only over distances of the order of the Debye length
rp; in the BGL case the modulation is present only for distances of the order
of the Landau length r,.

The paper is organized as follows. In section 2 the general properties of the
modulation factors are established. To that end a general approximation
scheme for the pair correlation function of a non-equilibrium plasma is
developed. Subsequently, in section 3, the asymptotic form of the generating
function for the collision brackets is calculated with the use of the techniques
described in the preceding papers of this series.

2. Approximate expressions for the pair correlation function

For a spatially homogeneous plasma the single-particle distribution function
f, satisfies the equation:

af](rl; t) — _1__8_ .

at m o J’drz doo[ V. o(ri— r)lIg(ri— 1y, vy, 02, 1), 2.0

where g(ri—ra, vy, 03, 1) = fo(¥y, 2, v, 05, )= Fi(r, vy, )f1(rs, v, t) is the pair
correlation function and ¢(r) = e*/4wr the Coulomb potential. For a hot dilute
plasma, with plasma parameter € <1, the three-particle correlations are neg-
ligible. Then the pair correlation function is the solution of

i}
B_t_g(rl — T2, Uy, U2, t) =—0v Vr[g(rl — T2, Uy, U, t)

2
+ ';};[an’(rl -r)l b_v“[fl(r\, vy, Dfi(ry, v, ) + g(ri— 1y, 04, 02, 1))

0
;11‘ 0, I dry dos(V, o (ri— r)lfi(r1, 01, 1)8(r— 13, v, 3, 1) + (1 & 2),
2.2)

where (1< 2) stands for the preceding terms with the indices 1 and 2
interchanged. For a hot dilute plasma the pair correlation function relaxes
much faster than the single-particle distribution function. Hence, the pair
correlation function depends on the time only through the time dependence of
the single-particle distribution function. The eq. (2.2) then determines the pair
correlation function as a functional of the single-particle distribution function.
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Substitution of this functional in the right-hand side of (2.1) yields the kinetic
equation.

Eq. (2.2) is too complicated to be solved for g. However, as is well known®),
approximate solutions can be found by considering the scaling properties of
the various terms in the right-hand side. To that end we introduce the
dimensionless quantities r/ry, v/vy, and t/t,, where ry is either the Landau
length r, or the Debye length rp= e 'ry; furthermore v, = (Bm) " and t,=
rofve. In the case ry= ry the integral in (2.2) turns out to be negligible, since it
is of order e with respect to the remaining terms. The solution of the ensuing
equation is the Boltzmann expression gg for the pair correlation function. It
depends (apart from the velocities) on r/r.; for r > r_ it shows no structure.
Such functions will be called of short-range type in the sequel. On the other
hand, if ry = rp the second term within the brackets in (2.2) is of relative order
€ and may be omitted. Then the Balescu—-Guernsey-Lenard expression ggg, is
obtained for g. It varies appreciably only over distances of the order of ry and
will hence be called a function of long-range type. Under suitable circum-
stances both the Boltzmann- and BGL-expressions for g reduce to the
Landau form g;.

By using scaling arguments an approximate solution of (2.2), which holds
for all values of the interparticle distance r, has been obtained by Kleinsmith®)
and Mondt?), independently. We give a succinct version of their argument.
Since g = gg for r < r, one may write

g =288, 0=sr<omo, (2.3)
where g, = 1 for r < r,. Similarly, since g = ggg, for r = rp, one may write

g = 8pcLg2, 0=r<o, (2.9
where g, =1 for r = rp. One can combine (2.3) and (2.4) as follows:

g = gngBoLE3, 0=r <o, (2.5)

Then gggrg3=1 for r<r; and gggs;=1 for r=rp. Since gpgL =g for r<r_
and gg = g for r = rp, we have

g3=g£" rsrL’ r">"rD~ (2-6)

As the crucial step in the derivation one now assumes that (2.6) holds for
r. <r =<rp as well. Then one concludes

8B8RGL <y < oo, Q.7

&= 8L

The solution (2.7) is not unique. The particular choice (2.3), (2.4) can be
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replaced by

g=28s+ 8 (2.8)

g = 8roL t 82, (2.9)
or equivalently,

g =8st grci. T 8 (2.10)

Now g; must satisfy

8i=—8., r=<nr, r=r. .11
The assumption g;= —g; for r, <r < rp yields

g8 = gs* 8ssL. — 81 2.12)

The kinetic equation which one obtains from (2.12) has been put forward by
Hubbard®).

The argument leading to (2.7) and (2.12) can be generalized in the following
way. We put forall r=r —r, )

g(rs vy, U, t) = Gl[gB(r7 vy, U, t) | r, v‘,’ vZ]v

g(r,v,, vy, t} = Gygacilr, vy, 05, 1) | r. vy, v, (2.13)
or equivalently

g = G(gs. 8oa1. | 1, 01, 0. (2.14)
Then we have

Gi(gg, ng F,v,v)=gs, Fr<rg,

Gi(g1, gBGL‘ r, vy, ) = gsoL, ' = I (2.15)

Hence the (r, vy, v.)-dependence, which is written explicitly in G, is implicit
via ggand g, forr<r,, and!implicit via g and g, for r = rp. We now assume
that the (r, v, v.)-dependence is governed by gg, ggc. and g, for all r. Then g
gets the form

g8= G(gBa £8GL» gL)7 (216)

for some as yet unknown function G.
Since both the arguments of G, and G itself, are pair correlation functions
the function G must be homogeneously linear. We use this property to write

G(gs, oL, 81) = 81.G (%, 'g—g%, 1>- Q.17

With the variables

x =gplgL, ¥ =8sal8L 2.18)
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and the abbreviation

G(x, y)=G(x,y,1), (2.19)
we then have from (2.17)
g =g.G(x, y). (2.20)

From (2.15) we deduce the following properties of the function G:

G(gn, 81, 1) = gs,

2.21)
G(g., gscr, 81) = gsaL-

Since the arguments of G can be regarded as independent variables these
relations are valid for all values of g. The corresponding properties of the
function G read

Gix,D=x, G,y)=y. (2.22)
In the special cases (2.7) and (2.12) we have

G(x, y) = xy (2.23a)
and

Gx,y)=x+y—1, (2.23b)

respectively. In both cases the relations (2.22) are satisfied.

It is clear, that the relations (2.22) do not determine G uniquely. One might
expect that different choices of G, which correspond to different approximate
solutions of (2.2), would lead to alternative expressions for the transport
coefficients. However, the dominant terms for small € in the transport
coefficients will turn out to depend only on some general properties rather than
on the specific form of G.

To obtain the transport coeflicients we have to linearize (2.1) about local
thermodynamic equilibrium. To that end we need a linearized expression for
the pair correlation function, which can be obtained from (2.20), if we assume
G to possess sufficient differentiability properties. With the notation Ag =
g—g2and G®=Gx?, y?), we have:

5G1° 5G 1" 5_ 36 _ 8G1°
Ag = [‘5;] Agg+ [g] AgpoL + [G RS y-a—y—] Agy. (2.249)

We illustrate this relation for the case (2.23a):
Ag = y©Agy + xPAgac — xVy4Ag;. (2.25)
From (1.3.8)-(1.3.10) one has

xO _g_g; _1—exp(=r/r)
L rr

I
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©
yO = &39‘?% = exp(~1/rp). (2.26)
Clearly, the coefficient y© of Agg in (2.25) is of long-range type, while the
coefficient x© of Agpg, is of short-range character.

As a generalization we shall now consider functions G such that the
coefficients [6G/6x]® and [6G/5y]® in (2.24) have the same properties with
respect to their range as in (2.25), (2.26), without being specified in any more
detail. In other words, we shall write

(5] =)

SG © _ (s) r

5] =76 @2
= G 8G1° _paf T

[G~X§_)’“6-y‘] =R ("D’ "L)’

with labels 1, s and Is indicating long range, short range and mixed range,
respectively.

The assumptions (2.27) determine the pair correlation function nearly
completely. In fact one has

g= a—ngLBGL" +(1—a)gs+ gseL— 8L)s (2.28)

for any real number «. The proof is as follows. Since G depends on x® and
©

y" only one may conclude from (2.27)
) 5 1O
&
[52] = e [3] =va", (229

for some functions ¢ and . These relations retain their form outside equili-
brium, as G depends only on x and y. Hence we have:

o)

8 (2.30)

o
XJ
i
(=]

Similarly

e
()

231

2
<
Il
<

Consequently G must be some linear combination of xy, x, y and 1. Finally
(2.22) with (2.20) implies that g is the convex combination (2.28).
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From (2.27) and (2.28) we are able to identify
g
RO = a?B(%L+ (1-a),
L

(s) — gg)) _
RY® = ag(o;+(l o), 2.32)
L

g(O)g(O)
R® = —¢q Bg BOL _ (1 _ o),
L

According to (2.28) g is a convex combination of the two particular
approximations of the pair correlation function which we have discussed
before. These approximations are known to lead, for small ¢, to the same
values of the collision brackets, and hence of the transport coefficients'*'?).
Since the collision brackets depend linearly on the pair correlation function it
is clear, that the Kkinetic equation corresponding to the approximation (2.28)
for g yields again the same values for the transport coeflicients in the limit of
small e.

Summarizing, we have found that, if the pair correlation function can be
approximated by a function of the general form (2.16) or (2.20) and if
moreover, its functional derivatives have the scaling properties embodied in
(2.27), then g has the form of the convex combination (2.28); the ensuing
transport coefficients are then uniquely determined for small e.

Let us consider now a generalization of the basic assumption (2.16). In fact,
we shall allow the function G to depend not only on gy, gsg. and g;, but also
explicitly on the interparticle distance r. To be able to distinguish short-range
and long-range dependences it is convenient to introduce two arguments,
viz. r/rp and r/r.. Using the homogeneity of the first degree in g; we can write

= rr

g=8.G6 (x, i r—)- (2.33)
D 'L

where x and y have been defined in (2.18). Since g must coincide with the

Boltzmann expression for r < r;, we have

r r
r—D, Z) =X, r<rL. (2-34)

Gix, 1

Similarly, demanding g to reduce to the BGL-expression for r = rp, we find

r r

r—D, -r:) =y, r=rp. (2'35)

G(l,y

When we linearize g about local thermodynamic equilibrium we obtain
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again (2.24). From (2.35) we have, since x =1 forr = rp

y%% =y=G, rzrmn (2.36)

As a consequence we get
2.37)

For r=<r., so that y = 1, we obtain a similar relation as (2.37), but now with x
and y interchanged. As before we assume the coefficients of Agg and Aggg, in
(2.24) to be of long-range and short-range type, respectively, so that we may
introduce the notations (2.27). The relation (2.37) and its counterpart for r < r,
then yield

_'R(D(L), r= rD,
ror o
Ras)<7_, 7_) - (2.38)
boP —R‘”({—), r<r.
L

Furthermore, we have from (2.36)

R(s)<rL) =1, r=rm, (2.39)
L

and analogously
R(D(L) =1, r=<r. (240)
'n

In the next section we show that, if (2.38)—(2.40) hold, the ensuing transport
coefficients are independent of the precise form of R®, R® and R™, at least
for small values of the plasma parameter.

3. Uniqueness of the transport coefficients

For a plasma close to thermodynamical equilibrium the single-particle
distribution function satisfies a linearized Kinetic equation with a collision term
that follows from the right-hand side of (2.1) by replacing g by Ag =g —g“.
Under fairly general assumptions Ag reads according to (2.24) and (2.27):

Ag = R®Agy+ RYAges + R Ag,, @G0

with functions R® satisfying the relations (2.38)—(2.40). The ensuing linear
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collision operator I can then be written as
I =15+ Igg + Ii. (3.2

The operators I; are analogous to those discussed in paper I. In particular, Iz has
the form (1. 3.20). In the present case the effective potential ¢5 is defined through:

Vou(r) = R‘D(L)V<—ei). (3.3)

p 4nr

Furthermore, Ipg; has been given in (I. 3.24). The effective potential ¢pg now
follows from

Veps(r) = R(s)(f‘L)V (4%:;); (3.9
its Fourier transform is (cf. (I. 3.23)):
e’ ; ry.
MO ] drR(S-)ian. (3.5)

Finally, I; has the same form as (I. 3.25); the effective potential ¢; is defined by
means of the relation

Vor(r) = R“s)(i l)v(z%), (3.6)

rn rL

or equivalently,
a 32 ; awfr T\.
éu(@) =5 [ ArR™(, D)irCan. (37
0

The transport coefficients are determined by the collision brackets [h, k],
which are the matrix elements of the linear collision operator I. As in paper II, the
general properties of the collision brackets can be studied by making use of a
generating function, which we have defined as

B(x,y)=[e* T, eV, (3.8)

with ¢ = (%Bm)”zv the dimensionless velocity of an individual particle and V the
dimensionless hydrodynamical velocity. From the generating function @ all
brackets determining the transport coefficients can easily be derived with the
help of (II. 2.4), (II. 2.10) and (II. 2.19).

The generating function for the Boltzmann-type brackets can be discussed
along the lines of section 4 of paper II. It has the general form

By(x, y) = 26+ };' Q1+ DP(E - I R(x, ¥), (3.9)
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with

Ig(x, y) = 377(Bm)™'? f dii dr exp(— TR %)

X i - v,[R‘D(rLD)]i,(%xa)i,(—;yw)P,(a W) (.10)

(cf. (II. 3.5) and (I1. 4.3)). Here i, are modified spherical Bessel functions and P,
Legendre polynomials. Furthermore, w is the dimensionless relative velocity in
the infinite past of two particles that have a dimensionless relative velocity i and
a relative position r at a finite time; its explicit expression has been given in (I.
3.16). Upon introducing new integration variables in (3.10) and expanding the
Bessel functions we obtain (cf. (II. 4.4) with (I1. C.1) and (II. C.2)):

4032 x i

I[ﬁ(x’ }’) =- 8’:17@’" 172¢€ ‘0 (l + mc;nr;l _ 1)'1 'mn(e)(éxz)”Z+m(fl§y2)l/2+"’ (311)

with numerical coefficients c},, that have been defined in (I1. 3.16) and with

«©

1
(€)= — Oj d¢ Oj dmg! (1 — ) Prmig e‘gF,(n)[d/d(fgﬂR“)(fE),

(3.12)

which is a generalization of (I1. C.3). The dominant contributions for small € may
be found by dividing the £-integration domain into two parts, viz. [0, €”] and
[€%, ). The choice of a will depend on the behaviour of R? for small values of its
argument. According to (2.40) R%(t) tends to 1 for small ¢. If one has for smali ¢

R®t)=1+0("), (3.13)

with p >0, the dominant contributions to J',, are found to be

JL (€)= ’—(%(1 tmAn- 1)![— J dg"im;ih alog e

+ y -—210g2— S,+m+n_1+%s,/2+ T"2+ O(Eq)], (314)

with ¢ = min[a, (1 - a)p]. The numbers S; and T, have been defined in (IL. 3.10).
An alternative form for J',, is obtained by using (3.13) to write

j d&'—Ru;('g‘,) =—aloge+0("™). (3.15)
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Then (3.14) becomes

IN(ES) ol ¢ ROE)
Tone) =22+ m o+ 1)![ fd.g 5

+y=21082 — Stimens + %suz + T+ O(Eq)]. (3.16)

The smallest relative error is obtained by choosing a such that q is as large as
possible. This is achieved by putting a = p/(1+p)=q.

The BGL-type collision brackets are generated by the function Bgg; which
reads according to (II. 5.2)

40302 ~
Bun(x,3) = L2 B [y cioodiemint Dyt y). BT

The lables || and L denote components parallel with and perpendicular to the unit
vector 4. The integral Ipg, is defined as

Losi(2) = € f dZ e HEK(L €), (3.18)

with

©

K@, = [ dg [ anRO@)p 1 Ler) (3.19
0

J [Fi(Q) + n’) + F0)
(cf. (I1.5.6) and (1. B.1)); the functions F;({) appearing here have been given in (I.
5.20). The dominant contributions of (3.19) for small € can be obtained by a
reasoning which we developed in appendix B of paper 1. Both the £&- and
n-integration domains are divided into two intervals, with boundaries depending
on € and on the behaviour of R®(¢) for large t. We shall assume, in accordance
with (2.39), that for large t the asymptotic form of R® is given by

ROM)=1+at™"+01™"), (3.20)

with exponents r’' > r > 0 and with an arbitrary constant «. The n-domain is split
now at the point € °, and the £-interval at € © for n € [e®, ©) and at € for
n €10, €1, with b, ¢, ¢’ €[0, 1] as yet undetermined. Then the dominant terms
of K(¢, €) for small € are found as

€ ¢ "
K(L €)= e-‘“ d§%—(l—c)loge—y+ 1+& 67— G + O(ES)].
0

(3.21)
The function G({) has been defined in (1.5.24). Furthermore, s = min[2b,
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1-b—c,2(1-b '), cr', ¢’r]. With the use of the auxiliary relation

] dg% =-(1-)loge — He'— ") +O(e™), (3.22)
one ;rrives at the simpler expression for K(¢, €):

KGo=e'| f ng(S)(f) y+1-G@)+0(e)] (3.23)

The choices of ¢ and ¢’ that lead to the best estimate of the error term are
therefore ¢ =(1—b)/(r'+1) and ¢’'=2(1-b)/(r+2). For b we take b=
r'/Gr'+2) if ¥(2—r)<2r and b = r/2r +2) elsewhere; in both cases s = 2b.

Finally we consider the generating function for the Landau-type collision
brackets. The function %B; is similar to Bygr, as given by (3.17) with (3.18).
Instead of (3.19) we now have:

K%e) = j de j dnR™(E, ed)ifens). (3.24)
4] 0

By introducing the variable ' = en£ and performing the n’-integral we get
; [ 1 R €0
K%e) = ¢! f agm— o<, (3.25)
0

We have to use now the properties (2.38) of R%. These will be specified in more
detail, as follows. For £ > 1 we assume

R™(¢, e£) = —RY(ef) + £7'QY(e0), (3.26)

where QU is bounded and t a positive constant. Likewise, for e£ <1 R® is
supposed to have the asymptotic property:

R¥(g, e£) = RO + (e6)'Q™(D), (3.27)

with Q® bounded and u a positive exponent. To determine the dominant terms
of (3.25) for small € the integration domain is again split, this time at the point ¢ %,
with 0<d <1 as yet unspecified. The contribution from the interval [ ¢, =)

becomes upon insertion of (3.26) and introducing the variable ¢’ = e£:

)y g1
Klo(e)=e"1[— j dg’R(l(§)+0( ‘“)] (3.28)

el-d
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or, by changing the lower bound of the integral, as in (3.15):
. Wy g1
K¥o = [~ [ R g - dog e + o) + 07| (3.29)

Similarly, the contribution from [0, € ] is found upon substitution of (3.27) and
with the use of (3.22)

Ke)=e ‘[ j FPZSut) (S)(f) —d)log e+ 0(e™) + 0(5“"”")]. (3.30)

Adding (3.29) and (3.30) and choosing d = v/(v + w), with v = min(p, u), w =
min(r, t) we finally obtain

My gr N (s)
K%e) = e [ j ng €)_ Of d§R—§(§—)—loge+O(e”wK"+“”)]. (.31)

The brackets corresponding to the complete collision operator I (3.2) are

generated by the sum of the partial generating functions %,(i= B, BGL, L) for
which explicit expressions valid for small € have now been obtained. These

expressions still depend on the unknown functions R® and R®. If we write the
contributions to the generating functions that contain R” or R® as A%;, with

Ag = B ez (.32)

we find for i =B from (3.9) with (3.11) and (3.16)

o

[ f dg'~— 2 m(g') ] '@+ DIA + DPE - §)

X E C ( 2)1/2+M(§y2)l/2+n' (333)

m,n=0

Likewise (3.17) with (3.18) and (3.23) vyield

R(S)
A = 2[ f dd—— (g)] f 2;? xpyle I — oGy (3.34)

Finaily, (3.17) with (3.18) and (3.31) give rise to:
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e 2[ deg u>(§’) J' R(s’(g)] dq x"y[e("“h”s~e‘ﬂ sy

(3.35)

It has been proved in paper I (see (I1. 6.6), (IL. 6.7) and (I1. 6.22)) that the factors
which multiply the integrals in (3.33) and (3.34) or (3.35) are equal. Hence, it
follows that

ABp+ ABpar + ABL =0, (3.36)

with an error following from (3.16), (3.23) and (3.31).

From (3.36) we conclude that the dominant terms for small € in the generating
function @B which determines the collision brackets do not depend on the precise
form of the functions R®” and R®. The same applies to the transport coefficients
which follow directly from the collision brackets. Hence, it turns out that
knowledge of the range character of R”, R®, R™ and of the properties
(2.38)-(2.40) is sufficient to prove the uniqueness of the transport coefficients for
a hot dilute plasma, with small plasma parameter.
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