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UNIFORM-FIELD THEORY OF PHASE INSTABILITIES IN
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Starting from the Maxwell-Bloch theory in the uniform-ficld approximation we investigate
the stability of the phase of the output ficld for absorptive optical bistability in a Fabry-Pérot
cavity. Our main results arc analytical. We show that a truncation of the Maxwell-Bloch
hicrarchy introduces serious anomalics in the instability spectrum. For the full Maxwell-
Bloch hicrarchy phase instabilitics are found to occur only if the ratio y,/y, of the medium
damping coefficients is larger than 1. In that case phasc instabilities can be present along the
upper branch of the steady-state curve.

1. Introduction

In a recent article [1] we have carried out a linear stability analysis for
absorptive optical bistability in a Fabry—Pérot cavity. The linearized Maxweli-
Bloch equations were shown to fall apart into a set determining the stability of
the amplitude of the output field and another set governing the stability of the
phase of this field. Subsequently both infinitely dimensional sets were reduced
to two-dimensional systems of linear differential equations. Invoking then the
uniform-field approach we derived a solution of these equations for the
amplitude case and performed a detailed analysis of the ensuing instability
spectrum.

In the present paper we shall focus on the phase of the output field,
completing in this way the stability analysis given in ref. [1]. Until recently [2]
the phase stability problem for the Fabry—Pérot cavity has not received much
attention. Yet it turns out that in order to get a comprehensive view on ihe
instability spectrum in a Fabry-Pérot cavity it is imperative to study not only
the stability problem for the amplitude but also that for the phase of the output
field [2].

Of course it is true that uniform-field predictions of instabilities cannot be
applied when it comes to obtaining agreement between theory and experiment.
On the other hand it is important to have some analytical results at our
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disposal. The treatment we present offers a firm basis for the understanding of
the numerical results we have obtained for the general phase stability problem
lately [2]. Another reason to do the uniform-field calculations is that for the
amplitude case the uniform-field theory has been analyzed extensively [3-5]. so
that a direct comparison is possible.

2. The phase stability problem in the uniform-field case

The phase stability problem for absorptivc optical bistability in a Fabry-
Pérot cavity can be formulated as follows [1]:

) =0 e, @

Af(¢=0)=R"7Ab({=0), Af({=1)=R" Ab({=1). (2.2)

The quantities Af and Ab are the deviations of the phase of the forward and
the backward electric field, respectively. The matrix elements H, depend on

the eigenvalue A of the stability problem and the stationary forward and
backward electric fields f and b.

In genceral the fields f and b are functions of the spatial variable { = z/L; in
the uniform-field case, that is when the mirror transmission coefficient 7 =
1 — R approaches zero at a constant value of the cooperation parameter C, one
can wnte f=b=x/2+ O(T). with x the square root of the output intensity.
Then the stability problem (2.1)-(2.2) takes the form

R W AR B A NS

Af(0)=(1-3T) Ab(0), Af(1)=(1+ iT)Ab(1). (2.4)

We neglected terms of €(7°) and expanded the cigenvalue X=AL/cin powers
of T. The matrix in the second line of (2.3) is given by [1]

1 -1

I+ A, . 71 | 1
A= 4x° G+a(1-A, DD, \D,,+A D, (2.5)
1+A7" , . y §
B=- Ax2 G-5(1- A )DNDA,I\'DA.U +A D, . (2.6)

L U8)D, - Dy, L)

- -1 —
A, =1 A, =1 -2,

G=-1

D.\D, \D,,, (2.7)
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and the definitions A, = A, A, with A, =1+ v, "A for i = L. ||. The symbols vy,
and vy, denote the medium damping coefficients. The quantities {D,}., . are
the slowly varying envelopes of the harmonics of the population inversion. In
deriving (2.5)-(2.7) we assumed that D, =0 if m> N, with N a positive
integer.

The envelopes {D,}~_, are determined by x according to the relations {1]

(=D""'Cy

”t = (l + 2x2)CN _ ZXICN_l ] (2“8)
2y = _]_ “_—_.1. r
Co(x) = = T, () + —— U, ()
cos 0 —1
= 4+ - 1 o4
cos(mé@) P sin(m@) . (2.9)

with m=0.1.2,...,N and u=cos@=1+1/(2x’). From (2.8) the ficlds
{D,\_,,,};‘,‘;,_(, can be obtained by making the substitution x*— z\r’,'x:. At the
right-hand side of (2.9) the Chebyshev polynomials of the first and the second
kind occur [6].

If we solve the stability problem (2.3)-(2.4) in lowest order of T we find
A = zni, with n an integer. In first order we obtain for the resonant mode

~

A=~ L+ CA(A—0) + CB(A—0). (2.10)
and for the side modes
AV = — L+ CA(A—>ni), (2.11)

with non-vanishing integer n. After substitution of (2.5)~(2.7) into (2.10) and
taking the limit A—0 one arrives at
1 1+ D, y

—C— = - (2.12)

Sy 1
A() 2 2x__ 2x )

where y is the square root of the input intensity [1]. From the last equality we

see that the resonant mode is always stable against phasc fluctuations.

3. Influence of truncation on phase instabilities

The influence of standing-wave effects on the side-mode instability spectrum
can be assessed by analyzing this spectrum for various values of the truncation
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parameter N. We have performed such a program for amplitude instabilities in
ref. [1]. The subject of the present section is to carry out a <.milar anaiysis for
phase instabilities.

Insertion of (2.5) into (2.11) yields

. 1 1+A7 [ (1+4x*)D, Dy} ]
w__ Ll 1A, 1 b=t
A, 3 +C 5 1 N -1 ,\;1 1
. (1+a] )(l+/\ ) .
+CAT'D, + = +1-A7'|DyD, WD), (3.1)
where A; must be taken equal to 1+ iwr; with 7, = nc/(Ly;) for j= L, || and

n#0. If we choose N=1 in (3.1) and calculate the real part of A(” we can
prove immediately that it is always negative. Thus in lowest-order truncation
phase instabilities do not occur, at least in the uniform-field approach. It has
been shown earlier [3] that there are amplitude instabilities for N = 1.

From numerical work one learns that for values of N greater than unity the
side modes do generate phase instabilities. This means that there is a qualita-
tive difference between the cases N=1 and N>1. In order to analyze the
latter case in more detail one can compute the boundaries of instability regions
in the (x, 7, )-plane at fixed values of the cooperation parameter C and the
ratio d = y,/y,. The outcome of such a computation is most surprising: for
N >1 the result (3.1) gives rise to instability domains which are needle-shaped
and which seem to be of infinite length. The last mentioned property is
unphysical and asks for a careful examination of the right-hand side of (3.1).

On the basis of numerical explorations we propose to evaluate the eigen-
value A(” in the following limit:

T, —>x, X—>w

, wT, /Ix=a, (3.2)
with a and the ratio d fixed. For our purposes we must know the asymptotic

behaviour of the envelopes D, and D,,. For x > 1 the Chebyshev form C,, can
be written as

C,(x)=1+1m(m+1)x>+ 0. (3.3)

form=0,1,2,..., N, so that we have with (2.8)

-1

fim Dy = lim (~1)*Dy = 37— . (3.4)

Using this result and (2.8), with x* replaced by /\;lxz, we can calculate each
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term of the right-hand side of (3.1) in the regime (3.2). This brings us to

X(l)=_ 1+CI\—I (ZN-—1)Ct\.N-—(2N+1)C,\.N—I
" 2 P 22N +1)C,
_ad N CA;!
IN+1 @N+1)C, " (33)

where C, ,, = C, (A, 'x?). Clearly the third contribution of the right-hand side
can be dropped. In the remaining terms one should insert

dy .dd+1 d -2
CA.m = Cm(_ ——2) ( ) m(- _2) + @('Y ‘-) ’ (36)
a a x a

an expansion, which follows directly from

1 d .dd+1 -
Aplx”=—;5 g+@( ). (3.7)

ax

The prime with C,, indicates that one must take the derivative with respect to
the argument.

At this point it is easily seen that as long as the form C, , remains finite in
the limit (3.2) the eigenvalue Xf,” converges to — 1. In the case that the
equality

cy(- %) =0 (3.8)

is satisfied the limiting behaviour of the expression (3. i) for Xf,” must be
considered separately. It appears that if C, , is of order x ' the last term of
(3.5) gives a finite contribution in the limit (3.2). This implies that A" does
not converge to — ;. Instead the limiting expression becomes

-

L Ca
2 d(d+1)2N+ 1)Cp(-dla’)’

A = (3.9)

where C, , = C, (A, 'x*). Clearly the third contribution of the right-hand side

can be dropped. In the remaining terms one should insert

a=2d'""sin ¢, . (3.10)

with

2k +

‘bk='2—_

r—il"‘
NI:I

(3.11)
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for k=0,1,2,...,N—1. Obviously the final result for X ‘D follows from
substitution of (3.10) into (3.9). The derivative in (3.9) can be calculated from
(2.9) and reads

d C'( d)___N+1 sin(N6)
at N ~2d  sing
(1 — cos 6)[cos 8 sin(N@) — N sin 8 cos(N9)]
+ -« 3 ’
2dsin” 0
with cos 8 = 1 — a”/(2d). The substitution can be done directly now and leads
to

2
a

(3.12)

1 2(=1)""'Ccos’e,

A = oy ; .
n 2 (d+1)(2N + 1) sin ¢,

(3.13)

The new contribution to A'" is positive for odd k.

The analysis of (3.1) has taught us that in the limit (3.2) side-mode
instabilities are present for sufficiently high C if the constraint (3.10) is fulfilled
for odd k. Thus indeed expression (3.1) may lead to instability domains of
infinite length. For a given value of N there can be present [ N/2] infinitely long

“needles’ in the (x, 7, )-plane. The stability threshold of the needles is given
by

41 3
drl N 3 (3.14)

¢= 4 cos ¢,

with & odd. The threshold values for C increase monotonously with k. Atd =1
the value for k=1 attains a minimum for N =3, namely C=24.99. The
corresponding needle lies along the line 7, =0.3969x. As a check we have
done numerical work for N =3 and reproduced these figures. The needle
instabilities are observed to retreat towards infinity if C is lowered to its
threshold value.

For a truncation parameter N much greater than unity the criterion (3.14)
reduces to

C=3in(d+1)N+ (1), (3.15)

where we took kK =1. From this result it is evident that the occurrence of
infinitely long instability domains is an artifact resulting from the truncation of
the Maxwell-Bloch hierarchy. We may thus conclude with the statement that,
while for the amplitude case truncation introduces serious quantitative errors
[1]. its consequences for the phase instability spectrum are even more radical:
after truncation this spectrum exhibits unphysical properties.
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4. Phase instabilities for the complete Maxwell-Bloch hierarchy

To investigate whether phase instabilities can occur in the physical case
N— > we start again from (3.1). In the limit N—> the envelope D, ,
vanishes. The envelopes D,"' and D}, converge towards —U = —(1 +4x%)""*
and -U, =—-(1+ 4/\;'x2)”2, respectively, with Re U, >0 [1]. Hence expres-
sion (3.1) becomes

~ 1 1+a7! ( U U
(D)) 1 . A
) — C + +

" 2 4x2 1 A

- )— CAU'UTY. (4.1)
p_] Apl—l i

Writing w7, = a the real part of the right-hand side is found to equal

~ 1 C [2+a” d,ReU
Re AV = _ = 1[ _ -2 A
©n 2 4x ll+a” d,
_Ad-Dtaiyxitd, 2d(d+1)d3x3] 42)
(1+a’)d,U d,d,Re U, '

with the abbreviations d,=(d+1)] +a’, d,=d’+d+a’ +2. d,=2d" +
2d+a’d,=d +da’+3dand d,=(d” + a”)(1+ a”). The real part of U, is

2 2 ’ sy 2 2 R N I T
L 2d(d —a’)x +%(1+8d(a a”)x +1(m’x) ] .

[
Rel,={3" d. d.

(4.3)
We shall prove now that the right-hand side of (4.2) is always negative for

0< d < 1. Since it can be shown easily that Re A'"* <0 for a =0, we choose
a >0. We shall consider the expression

A 2+a’ d,RelU, 4d-D(+ @ )x +d, 2d(d+1)d.x’
1+ a’ d, (1+a’)d,U d,d,Re U,

(4.4)

It is sufficient to demonstrate that A is nonnegative for 0 <d <1.
Employing the trivial result d —a™ < d}"* one obtains from (4.3) the follow-
ing inequality:

204 2 102y q1:2
2= 1), @9

ReUns[l-i— .

Because of the fact that d}'” = « the expression between the square brackets
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is always positive. After replacing Re U, by V in (4.4) we find

2+ a’ d, d, 2x°
= 5 k] - +
l1+a° (I+a’)dU 4V d,

F. (4.6)

with

_2(1-d) dd, , d(d+1)d,—d(d~- a’)d,

F==7 —am* v

4.7)

The sum of the first three terms at the right-hand side of (4.6) attains its
minimum value for x = 0. Since this value amounts to zero it follows that this
expression is nonnegative. Next we focus on F. With the help of the inequality

d

2“—,
FREY,

v (4.8)

we can eliminate U in (4.7) and derive in this way
d 'dVF=a'+a’(d*+d+3)+d* +3d’ - d)'*(a* + d* +3d), (4.9)

for 0 <d < 1. Since the right-hand side is nonnegative for these values of d the
proof is complete.

If d is greater than unity the systern can become unstable against phase
fluctuations. For the proof of this statement we assume x> 1 and « = €(1).
The relation (4.3) then reduces to

2d(d — o* + d}"?
ds

Re UA=[ )]|/2x+(f)’(l). (4.10)

The root with square brackets will be calied V. After substitution of (4.10) into
(4.4) the leading term of A can be calculated. It reads

_2(1-d)x _ 2dx

A a
0 d, ' ddy

[(d+1)dy—dyd— o’ +dl7)]. (4.11)

Using in the first term of the right-hand side the inequality

2d(1 - d)d)"”

(1-d)= R , (4.12)

valid for d > 1, we arrive at
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Table 1

Values for the cooperation parameter C at which
side-mode instabilitics appear (first row) and at which
upper-branch instabilitics appear (sccond row).

d
1.0 1.2 1.4 1.6 1.8 20
o 2930 890 4an 31t 231
£ 3090 941 501 332 248
2dx 3 2, 42 3 2 112, 2 2
Ausm[a +a’(d +d+3)+d +3d —-d;(a” +d +3d)].
145

(4.13)

The factor between the square brackets has been encountered alrcady in (4.9).
For d > 1 this factor is negative. As a consequence, Re A" is positive for
x>1,d>1, a=0(1) and C sufficiently large.

We have numerically calculated the values for the cooperation parameter C
at which instabilities come into being in the (x, 7, )-plane for various d. The
results are displayed in table I; indeed the critical value for C diverges as d
approaches unity.

In conclusion, we compare our uniform-field predictions on instabilitics in
absorptive optical bistability with those for a unidirectional ring cavity. It is
well known that in the absence of a backward electric field phase instabilities
do not occur [1, 7], while fluctuations in the amplitudes of the ficlds can be
responsible for so-called positive-slope instabilities [8]. Now, if one incorpo-
rates standing-wave effects in the theory the picture becomes markedly differ-
ent. First of all, amplitude instabilities are restricted to the negative-slope part
of the bistability curve [1, 5]. Secondly, phase instabilities are no longer absent;
for suitable values of the cooperation parameter they are even predicted along
a part of the upper branch of the bistability curve. The values of C at which
these positive-slope instabilities emerge are listed in table 1. In assessing the
relevance of positive-slope instabilities in the phase one should bear in mind
that in the full nonlinear Maxwell-Bloch equations the phases of the fields are
coupled to the amplitudes. Therefore, one expects that an instability which
arises in the phase of the output signal alsc affects the output intensity as the
instability grows in t'me.
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