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either over-exploit their host plant or are driven to extinction by predators. Starting 
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1. INTRODUCTION 

This paper reports some recent work on a coUection of mathematical models for 
the interaction of phytophages and their natural enemies in an ensemble of local 
p~itches of host plants. The key idea is to consider a local colony as an "individual" 
characterized by the number of prey x, the number of predators y and, possibly, 
some index for the available food for the prey such as host plant leaf area or 
biomass. Once the dynamics at the "'individual" level are specified one can employ 
a general methodology (essentially just correct bookkeeping; see Metz & Diek- 
mann, 1986) to derive a "population" model. 

The ideal then is to understand the global dynamical behaviour and in particular 
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how this behaviour is affected by the various ingredients of the (sub)model(s). To 
attain this ideal for a nonlinear infinite dimensional dynamical system involving 
many parameters is a next to impossible task. Therefore we have to have recourse 
to simplifications. 

A true understanding of natural phenomena quite often requires a whole spec- 
trum of supplementary models rather than one particular model. We advocate the 
use of structured models to fill the gap between realistic but complicated simulation 
models on the one end and qualitative caricatures in terms of ordinary or func- 
tional differential equations on the other extreme. The exercise of formulating expli- 
citly a complicated structured model is useful in itself since foggy notions are 
clarified in the process and questions are identified. As a next step time scale argu- 
ments (quasi steady-state assumptions or neglect of delays) or special choices of 
model ingredients may be employed to derive analytically tractable simplifications. 
Thus one obtains a coherent network of models, and qualitative insights derived 
from the simplest elements may be used to give direction to numerical experiments 
on the more intricate elements and to guide the interpretation of the outcomes. 

In a recent survey (Diekmann, Metz & Sabelis, 1988) we have illustrated this 
approach to the modelling of predator-prey interactions in a patchy environment 
by means of several examples of possible simplifications and the biological conclu- 
sions derived from these. In the present more limited paper we concentrate on one 
rather drastic simplification resulting in a system of three ordinary differential 
equations which we shall analyse in some detail. 

In section 2 we present the structured "master" model while section 3 is devoted 
to a time scale argument and the resulting simplification. Section 4 deals with the 
existence, multiplicity and stability of steady states of the three dimensional ode 
system and, finally, in section 5 the main conclusions are translated into biological 
terms. 

2. MODEL FORMULATION 

Consider a herbivorous prey population living scattered over many local patches. 
New prey colonies are founded by individuals emigrating from existing prey 
colonies and invading "empty" patches of host plants. Prey colonies come to an 
end when the host plants are locally over-exploited or when predator invasion has 
eventually resulted in complete extermination of the prey followed by dispersal of 
the predators. 

Let x denote the number of prey in a given patch. Consider a patch in which 
only prey are present. We assume that the process of prey colony growth is 

dx 
described by the ordinary differential equation --~-=v(x) until the host plant is 

locally over-exploited or the colony is invaded by a predator. If we assume that all 
empty patches offer an identical prospect for the prey then the number of prey in a 
colony which crashes due to host plant over-exploitation is a constant, which we 
shall call x ~ ,  (so x ~  is the exploitable energy of an empty patch expressed in 
prey equivalents). 

Let Q(t) denote the number of potentially invading predators around at time t. 
Assuming mass action kinetics we let the per colony rate at which prey colonies of 
size x are invaded be given by ~(x)Q(t), where the vulnerability ~ describes how 
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attractive (or, conspicuous) a prey patch of size x is. 
Let no(t) denote the number of suitable empty patches at time t and let P(t) 

denote the number of potential prey colonists around at time t, then, again assum- 
ing mass action kinetics, the rate at which new prey colonies are founded is given 
by ~;no(t)P(t), where ~ denotes a reaction constant. 

To describe the "population" level we now introduce the density function n (t,x) 
which is such that the number of patches at time t with prey level between x l and 
x2 is given by 

X2 

f n(t, Od~. 
XI 

Straightforward bookkeeping arguments (Metz & Diekmann, 1986, p. 15, 92-97, 
101) then yield the balance laws 

an "t x" _ a(v -fit, (x)n (t,x)) 
"dx 

= -Tl(x)Q(t)n(t,x), 1 <X<Xmax, 

v(1)n(t, 1) = ~no(t)P(t). (2.1) 

Any invaded prey patch becomes a (prey-) predator patch. To describe such 
patches we introduce the number of predators y as another state variable. We 
assume that the local prey-predator interaction is described by the system of ordi- 
nary differential equations 

dx _dy_ = h(x,y). 
= g(x,y) , dt 

Let the density function m(t,x,y) be such that at time t the number of patches with 
prey level between Xl and x2 and predator level betweenyl andy2 is given by 

x2 Y2 

f f m(t,x,y dx 
XI Yl 

then our assumptions entail the balance laws 

{ -~m(t,x,y) -t- -~x(g(x,y)m(t,x,y)) + ~y (h(x,y)m(t,x,y)) = O 

h(x, 1)m(t,x, 1) -- 71(x)Q(t)n(t,x) (2.2) 

A precise description of the domain in the (x,y)-plane in which the differential 
equation holds requires a submodel for host plant consumption by the prey in 
order to compute the "resource exhaustion boundary" (see Metz & Diekmann, 
1986, p.82 for the simplest possible example). Here we shall neglect this point since 
the limiting case we are going to consider is chosen such that it becomes irrelevant. 
The assumption that the predators drive the prey locally to extinction translates 
into the assumption that the orbits of the prey-predator interaction system connect 
the invasion boundary y = 1 with the extermination boundary x = 0. 

Let/x and ~, denote the death rates of, respectively, the prey and predator aireal 
plankton. In accordance with our previous assumptions we describe the dynamics 
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of P and Q by (see Metz & Diekmann, 1986, p. 98-99) 

dP 
dt (t) = XmaxV(Xmax)n(t, Xmax) -- laP(t) (2.3) 

Y ~  

d dt (t) = - f yg(o,:,)m(t,o,:,)dy - rQ(t) (2.4) 
I 

where we have ignored the possible increase of P and Q due to prey and predators 
dispersing from patches reaching the resource exhaustion boundary in the (x,y)- 
plane. Concerning the number of empty patches no we shall assume that 

dno 
dt - f ( n ° ) -~n°P  

where f is, for example, the familiar logistic function 

(2.5) 

no 
f(no) = rn0(1 ---~--). 

Provided with appropriate initial conditions the equations (2.1) - (2.5) yield a com- 
plete dynamical description of the system. 

3. INSTANTANEOUS HOST PLANT DESTRUCTION 

Suppose the prey exhaust their host plant very quickly compared with the time 
scale of dispersal, then the founding of a prey colony leads almost instantaneously 
to the production of new searching prey unless predator invasion precludes over- 
exploitation in which case the yield consists of predators rather than prey. How do 
we translate this verbal description of a limiting case into a mathematical 
simplification of (2.1) - (2.5)? 

Solving (2.1) and (2.2) by integration along characteristics (see e.g. Metz & 
Diekmann, 1986, p. 68-69, 104-105) one can express n(t,x) and m(t,x,y) in past 
values of no, P and Q. Substitution of these expressions into (2.3) - (2.5) then yields 
a dosed system of three delay differential equations. In the limiting case this 
becomes a system of three ordinary differential equations which describes the sys- 
tem by following the number of empty patches as well as the prey and predator 
aireal plankton as a function of time, while the rise and annihilation of local 
colonies are reduced to point events. 

To actually calculate the fight-hand side of the differential equations we special- 
ize by taking v(x )=ax ,g (x ,y )=ax- f l y  and h(x,y)=~,y (that is, we take exponen- 
tial prey growth in the absence of predators and a constant functional and numeri- 
cal response) and let a,fl,,t~o¢. To let predator invasion still be appreciable we 
have to let ~/--->oo as well with a and , /o f  the same order. The interpretation sug- 
gests to take fl and ~, of the same order. In order to avoid the complication of 

patches reaching the resource exhaustion boundary in the (x,y)-plane we let a----->0 -y 
or, in other words, we assume that the predators reproduce an order of magnitude 
faster than the prey. In Appendix II of Diekmann, Metz & Sabelis (1988) it is 
shown that under these assumptions the limiting system of ode's is 
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d n  0 
dt = f l n o )  - ~ n o P  

dP = Xmax~noPe_,~Q _ p. P 
dt 

dQ = ~noPh(Q)_p Q 
dt 

where by definition 

X~ 

,o = f do 
oto 

1 

(3.1) 

-Q [ ~(°) d° 
h(Q) = if-- f ya[1-e  4o ] .[ 

1 + I  

So the rate of production of prey aireal plankton equals the product of the yield 
factor Xmax, the rate of founding of new prey colonies ~;noP and a reduction factor 
exp ( - ~ Q )  to account for predator invasion. The function h describes how the 
mean yield of predators per founded prey patch depends on the current predator 
aireal plankton Q(t). (Note that the yield in predators depends on the size of the 
prey colony at the moment of invasion while the probability of invasion at some 
~articular size depends on the vulnerability ~ as well as on Q. The per capita yield 

Q)/Q is monotone decreasing.) 
Specializing still further we take ~(x)=aSx which means that we assume that the 

probability of predator invasion is proportional to the prey colony size. Then 

o~ = 6(Xmax - 1) (3.2) 

h(a) = (ff-+XmaxXl-e-'~Q+p( ' l - e - ~ Q  1)), Q>O (3.3) -y ~Q 

and h (0) =lirnh(Q):O. Here 
Q~0 

Xma x -- l 
P -- Xm~x +/3/'/ (3.4) 

The graph of h is sketched in Figure 1. Note that h decreases for large values of Q! 
One can prove analytically that h has exactly one maximum for positive Q. 

In the next section we shall analyse the system (3.1) with the empty patch pro- 
duction function f given by 

no 
f(n0) = rn0(1 ---~-) (3.5) 

t ~  
The relation between h and Q for ~ =  1, ~ +Xmax = 1 and various values of p 

Y 
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FIGURE 1 

4. STABILITY AND BIFURCATION 
We begin our analysis of (3.1) (with w,h,o and fg iven  by (3.2) - (3.5)) by perform- 
ing a scaling. Define 

~(t) - Xm~._____~ no(-~) 

w(t) = .,Q(-~ ) 

Xmax~ Y 

Xmax~K d = ~ 
# ! ~ 

(4.1) 

(4.2) 
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then the system (3.1) can be rewritten as 

du = b u ( l _ U ) _ u v  ¥ 
dv --~ = uve-W--v 

dw - ~  = auv(l-e-W +P( 1-e-Ww 

The equilibria of this scaled system are: 

i) 

ii) 

iii) 

iv) 

O )  - 

u =v =w =0 (no empty patches; no herbivores; no predators) 

29 

(4.3) 

u ( u - 1  v = b ( 1 - U ) , w = l n u , ( 1 - ~ X u  - l +o ~nu -1))=--fffflnu (steady state 

with three trophic levels present; no explicit expression for u) 

The steady state (i) is unstable for all b>0,  whereas (ii) is stable for 0 < c <  1 and 
unstable for c > 1. Linearization about the steady state (iii) yields the matrix 

b - - -  - 1  0 
¢ 

~,(1 1 )  0 -b(1 1 1  
C 

0 0 a b ( 1 - 1 ) ( l - l p ) - ~  

which has elgenvalues 

X 1 : a b ( 1 - 1 ) ( 1 - 1 o ) - d  

b +  

Clearly Re~2,3 <0 for c > l ,  while Xl <0  if and only if 

c ( 1 - 1 o - O ) < l - l o  

where by definition 

d (4.4) 

u =l ,v  =b(1--c-l) ,w =0 (requires c > l ;  the density of empty patches is 
completely set by the "predation" pressure of the herbivores; no predators) 

u =c,v =w =0 (empty patches at carrying capacity; no herbivores; no pre- 
dators) 
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The definition of p (see 3.4) implies that 0.<o<l (we will make this hypothesis 
throughout the rest of the paper), so 1 - ~ - O > 0 .  Hence the steady state (iii) is 

1 
stable for all values of c > l  if 1 - T O - 0 < 0 ,  whereas it is stable for 

1 
1 - - ~ - p  

and unstable for larger values of c if 1 - l p - O > O .  l < c <  1 - -~p- -O 

We now turn our attention to the steady state (iv) which is only implicitly 
defined. The easiest way to proceed seems to change our point of view and consider 
c as a function of u: 

u - 1 - ulnu ) 
u(u - 1 + p  lnu 

c(u) = (4.5) 
u - 1 - uinu 

u - 1 + p. 8lnu 
lnu 

We first investigate where and how this curve in the (c,u)-plane intersects the line 
u = 1 corresponding to the steady state (iii). If we put u = 1 + c and make a Taylor 
expansion with respect to ~ we find 

1 l p  ( l _ _ ~ p ) ( 1  l p _ O ) _ ( 1  1 . i , ,  l , 
- - f  p ) t - f  ~ - - - ~  P ) 

c(1 +c) = 1 -1- ( ~-h.o.t. (4.6) 
1 --TP--O (1 --lp--O)2 

1 
U 

f 
U 

" -  1 s 
s - ~ s  us c - -  ~us us 

q <0 q >0 

C___~ 

FIGURE 2 
Local bifurcation diagram, q is the coefficient of c in (4.6). 

s means stable and us unstable. 

Thus we find, as to be expected, that for 1 - 1 0 - 0 < 0  no intersection occurs in the 

positive quadrant while for 1 - 1 0 - 0 > 0  intersection occurs exactly at the point 

where steady state (iii) loses its stability. Define q =q(p,#)  to be the coefficient of c 
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in the expansion then th% local configuration is as depicted in Figure 2, where the 
stability assertions about steady state (iv) are based on the general principle of the 
exchange of stability in a bifurcation point (see Metz & Diekmann (1986) VI. 1.2 
and the references given there). Note  that the branch with u <  1 is biologically 
meaningless since w < 0 .  The direction of bifurcation changes for q = 0  which 
corresponds to 0 =  3 (2 -0)2 / (18  - 10p) (see Figure 3). 

I 
0 

0 
0 P-" 

iiiiiiiiiiiiii ~::: ..... t 
iii!iiiiiiiiii i i iiiiiiiiiii i i !i~i~:~:::::::.:.:.. I 
i iiiiiiiiiiiii iii!iiiiiiiiiiiiii!!iiiiiiiiiiiiil i i i i i iiiii ~ ~ ~ ~ ~: ....... I 

I ! 

1 2 

FIGtrg~ 3 
The set in the (p,0)-plane such that bifurcation occurs is 

1 
the triangle p,0~>0, 0 <  1 - ~-p. 

Within the hatched area bifurcation is supercritical and 
steady state (iv) is stable near the bifurcation point, whereas in the 
unhatched area of the triangle we have subcritical bifurcation and 

steady state (iv) is unstable near the bifurcation point. 

Let us now try to obtain information about the global aspects of the bifurcation 
diagram. We have to address two partly related problems: what is the shape of c(u) 
and what is the stability character. We begin by investigating the shape. 

Since the numerator of c(u) is always positive for u > l  and 0~<o<l  the follow- 
hag lemma shows that c (u) has precisely one positive branch for u > 1. 

LI~MMA 4.1. The denominator of  c(u) as defined in (4.5) has no zero's for u > l  when 
1 1 

1 - T 0 -  0 > 0  and precisely one zero when 1 - T O -  0<0 .  
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PROOF. We define 

~ z )  = (1 -p ) ze  ~ + pe ~ - p - z - Oz 2 

and note that the zero's of ~k with z > 0  are in one to one correspondence with the 
zero's of the denominator via u = e ~. Then 

~p'(z) = (1 -p ) ze  ~ + e z - 1 - 20z 

~k"(z) = (1 -o ) ze  ~ + ( 2 - o ) e  ~ - 20 

~p'"(z) = ( 1 - o ) z e  z + ( 3 -2 p )e  ~ 

and consequently ~p'"(z)>0 for z >0 .  For z--~0 we have 

~ z )  ~ ( 1 - ~ p - 0 ) z  2 

and for z---)oo we have ~(z)~oo.  Suppose 1 - l p - O > O .  If ~p has one positive zero 

it has to have at least two positive zero's. Since Lp is increasing for small positive z 
the function ~k' has to have at least two positive zero's as well. Consequently ~k" 
has at least one positive zero. But ~k"(0)= 1 - + p - O > O  and q /" (z )>0  for z > 0 ,  so 

q/' cannot have a positive zero. 
Next consider the case that 1 - ~ p - O < O .  Then qJ has an odd number of positive 

zero's. Assume this number is three or more. Since ~k is decreasing for small positive 
z the function q /has  to have at least three positive zero's. Applying the same argu- 
ment to 4/ we deduce that 4"' has at least three positive zero's. However, since 
q / " > 0  we know that ¢" has only one positive zero. We conclude that ~k cannot 
have more than one positive zero. [] 

In principle the branch could have several wiggles and therefore we could have, 
for specific values of c, even more than two steady states with three trophic levels 
occupied. In the special case p = 0 we can exclude the possibility of wiggles. 

LEMMA 4.2. L e t  c ( u )  be defined by (4.5). For  O=0 and  any  c > 0  the set 

{ u > l  l e ( u ) = c }  contains at most  two elements. 

PRoof. Define for fixed c the function F by 

F ( u )  = u(u  - 1 ) - c ( u  - 1 - O l n u ) .  

Clearly there is a one to one correspondence between the zero's of F with u > 1 and 

the set ( u > l l c ( u ) = c } .  Note that F ' " (u )=Z , -~ ->0  for u > 0  and that 

F ( 1 ) = 0 , F ( o o ) = o o  and F ' ( 1 ) = l - c ( 1 - O ) .  Employing the same arguments as in 
the proof of Lemma 4.1 it then follows that F has precisely one zero for u > 1 if 
F ' ( 1 )<0  whereas F has either no or two zero's for u > l  when F ' (1)>0.  Note that 
F ' (1 )=0  exactly at the bifurcation point e = ( 1 - 0 )  -1. [] 
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FIGURE 4 
Global bifurcation diagram (rigorously verified only for p = 0). 

s means stable and us unstable. 

We have now verified the pictures of Figure 4 for the special case p = 0. We conjec- 
ture that they are correct for 0 < p < l  as well, but for this we only have some 

d numerical evidence obtained by solving -d-~u c(u)=0 for 0 and plotting 0 so defined 

as a function of u, for many values of 0~(0,1). The results suggest that for fixed # 

and 0 there is at most one turning point (i.e. a point where ~uC(U)=0). We tried 

to exclude the "birth" of a turning point analytically by looking at second deriva- 
tives but even though one can reduce the problem to a quadratic equation in 0 
(with coefficients depending in a complicated way on u) we did not manage to find 
a proof. 

Next we turn our attention to the stability problem. The Jacobi matrix at a 
steady state c(u)=c is given by 

b 
- - - u  - u  0 

¢ 

o 

d i n  u dlnu dlnu g'(lnu) 

u b(1 _ u )  g(lnu) 
c 

where by definition 

l - - e  - w  1 - - e  - w - w  
g(w) - + p. 

w w 2 

The characteristic equation reads 
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where 

Jk 3 + a l~ .  2 + a2~k + a3 : 0 

b 
a I : - - u  - -  dlnu g'(lnu) 

c g(lnu) 

a2 - bdulnug ' ( lnu)  + dlnu + b(1 u 
c g(Inu) - c  ) 

u I 1 a3 = b d ( 1 -  )lnu u - 1 -  
c - u  g(lnu)  " 

Note that )~=0 is a root itt" a 3 =0 and that a3=0  iff either u = 1 or 
g'(lnu) u 
g(inu)  - 1  c - u _  . The  first possibility corresponds to the bifurcation from the 

(u = 1,v = b ( 1 - ~ ) , w  =0) branch and the second, 

turning point(s) of the c(u) branch. Indeed 

c ( u ) =  u2g(lnu) 
u g ( l n u ) - O  

and therefore 

as we are going to show, to the 

(ug(lnu)-O)Ec'(u) = uEge(lnU)c ((u -c )  g(lnu) + 2u -c} .  

So c '(u)>0 iff 

g'(lnu) < c - 2 u  = - 1  + u---E-- 
g(Inu) u - c  c - u  " 

It follows that for u > l  a3>0  iff c'(u)>0. In other words, at turning points of the 
c(u)  branch a real root changes from the left half plane (when c'(u)>0; this fol- 
lows from the Routh-Hurwitz criteria, see below) to the right half plane (when 
c'(u)<0). 

The stability of the steady state may also change by a pair of complex conju- 
gated roots crossing the imaginary axis. Note that the characteristic equation has 
roots exactly on the imaginary axis iff a2>0  and ala2  =a3. Finally, recall that the 
Routh-Hurwitz criteria for stability are 

a l > 0 ,  a3>0  and a l a 2 > a  3 

(and that this necessitates a2 to be positive as well). 
Armed with the above observations we will now show that the stability problem 

does not admit a simple solution. Clearly c ' (u)<0 and u > l  imply instability but 
the tempting conjecture that c'(u)>O and u >  1 imply stability is false. A key point 

is that the c(u)  branch depends only on the compound parameter #=__d_d whereas 
ab 

the coefficients al ,a2  and a3 of the characteristic polynomial depend on b and d 
individually. If we let a and d tend to zero while keeping b, O,p,u and c constant the 
expressions for a l ,a  2 and a3 show that both al and a2 are positive and bounded 
away from zero while a3 tends to zero from above when c'(u)>O. It follows that 
the Routh-Hurwitz stability criteria are satisfied for small a and d. 
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If, on the other hand, we let a and d tend to infinity while keeping all the other 
quantities constant then (note that g '<O) a i becomes negative and the steady state 
is unstable. In fact a pair of eigenvalues must cross the imaginary axis so that 
Hopf bifurcation theory implies the existence of a branch of periodic solutions of 
the system of ordinary differential equations. 

We conclude that any given steady state on a part of the c(u) branch with 
c'(u)>O may either be stable or unstable, depending on the precise values of the 

1 1 
parameters a,b, and d. For small a and d and 1 - ~ p - O < O  or 1 - ~ p - O > O , q < O  

we have at least two stable steady states. It seems very likely that for large a and d 
and 1 - 1 p - O < O  or 1 - l p - o > O , q < O  a stable steady state and a stable limit 

cycle coexist. 

5. BIOLOGICAL CONCLUSIONS 

The limiting ode system admits two stable steady states (as well as one unstable 
steady coexistence state) in a large domain of parameter space. In one of the stable 
steady states the predators are absent and the herbivores keep the number of 
"empty" host plant patches no far below the carrying capacity K. If one tries to 
apply biological control by introducing a small number of predators the stability of 
this steady state prevents success. However, the introduction of a large number of 
predators may bring the system into the other stable steady-state in which the 
plants are almost at the carrying capacity (note that c(u)..~c for u-->oo) while the 
herbivores are kept at a low level by the predators. There also exist regions in 
parameter space in which the latter steady state is unstable and, presumably, stable 
oscillations around this steady state exist. 

In terms of the original parameters we have 

VXmax~ Xmax -- 1 
0- - - -  , p - -  

ParS(x max - -  1)(~ if-" +Xmax) Xmax +fl/~/" 

Hence 0 >  1 -  2 P  if and only if 

 f+l+2  
Xmax < p.r8 - y / o - 8 - y  y 

So if we think of situations with equal total exploitable host plant biomass XmaxK 
then one can expect multiple stable steady states when there are many small 
patches and a single stable steady state when the patches are large but few. 
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