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“Period Three to Period Two” Bifurcation
for Piecewise Linear Models

By

Cars H. Hommes, Groningen, The Netherlands, and
Helena E. Nusse, Groningen, The Netherlands, and
College Park, ML, USA*

(Received April 15, 1991; revised version received May 22, 1991)

In Hommes, Nusse, and Simonovits (1990) the dynamics of a simple
economic model was studied. Although this piecewise linear model is quite
simple, its dynamics shows different kinds of behavior such as periodic, quasi-
periodic, and chaotic behavior. In particular, a new kind of bifurcation, namely
a period three to period two bifurcation, was observed numerically. This paper
deals with this new bifurcation phenomenon and we show that the “period three
to period two” bifurcation occurs and is a structurally stable phenomenon ina
class of two-dimensional continuous, piecewise linear systems. In particular,
the “period three to period two” bifurcation is a structurally stable phenomenon
in economic models with Hicksian nonlinearities.

1. Introduction

Studying low dimensional dynamical systems that depend on one or
more parameters, bifurcation diagrams provide some information on the
evolution of attractors when a parameter is varied. Familiar bifurcation
phenomena include saddle node, period doubling, and Hopf bifurcation.
In the literature dealing with bifurcation theory, it is frequently asspmed
that the map corresponding to the dynamical system is differentiable,

* Research in part supported by the Department of Energy (Scientific
Computing Staff Office of Energy Research).
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see for example Guckenheimer and Holmes (1983). In Hommes, Nusse,
and Simonovits (1990) the dynamics of a simple piecewise linear
economic model was studied, and a “period three to period two”
bifurcation was observed numerically.

The purpose of this paper is fo study the occurrence of this bifur-
cation phenomenon for two-dimensional continuous, piecewise linear
maps generated by two linear maps only. We show the significance
of this bifurcation phenomenon for economic models with Hicksian
nonlinearities, that is, models that are linear with ceilings and foors.
To illustrate the phenomenon, consider the one-parameter family of
maps g, (—0.1 < p < 0.1) from the plane to itself, defined by

(=1.250 — 5.25y +p,0) ifz <0,

T,y) =
9u(®0) { (—2z — 5.25y + p,0.52) ifx>0.

For 1 > 0 there is a stable period three orbit which shrinks to a
point Eg as g — 0, and for p < O there is a stable period two orbit
which similarly shrinks to Eg as g — 0. Hence, one observes the
following stable periodic orbits: a stable period 3 orbit collapses to a
point and is reborn as a stable period 2 orbit. The bifurcation diagram
exhibiting the “period three to period two” bifurcation is presented in
figure 1. {The computer assisted pictures (figures 1 and 4) were made
by using the DYNAMICS program (Yorke, 1990).]

We show that a “period three to period two” bifurcation occurs
for a class of one-parameter families of two-dimensional continuous,
piecewise linear maps of which one of the linear maps involved has a
Jacobian matrix with an eigenvalue zero.

This paper is organized as foltows. The main result is stated in
section 2. In section 3 an application for a simple macromodel with
Hicksian nonlinearities is presented. Section 4 contains the proof of the
main result, and in section 5 we make some concluding remarks.

2. Statement of the Result

Let a, b, ¢, and d denote nonegative real numbers. Define the linear
maps Fz, and Fr from the plane to itself by

FL(x,y)z(—a:E—dy,O), FR(T’y)I(‘bm—d’yafﬂi‘) :
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Figure 1. Bifurcation diagram exhibiting the “period three to period two”
bifurcation of the map g,,(x,y) = (—1.25z ~ 5.25y + 1,0) if « < 0,
and g, (xz,y) = (—2z — 5.25y + u,0.5z) if z > 0. The parameter u is
horizontally varied from 0.1 (left) to ~0.1 (right), and z is plotted
vertically from —0.3 (top) to 0.2 (bottom).

Consider the one-parameter family F,, from the plane to itself, de-
fined by

[ Fley) +(n0) if2<0,
Fﬂ(l,y>_{FR(J’,y)+(ﬂ’O) if.’l'>0,

where 4 is in an open interval I including zero. The family F, is a
family of continuous, piecewise linear maps.

We write TT-BIFMAP for the set of all one-parameter families of
maps F), such that (a,b, c, d) satisfies the following four conditions:

(aly a>1,b>1,¢>0,andd > 0;
(a2) c<b<ab<b+1;

(a3) dcd > b?

(a4) a®’b < acd < d®b+ 1.
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Notice that the family g, in section 1 (that is, F}, with a = 1.25,
b= 2.0, c=0.5, and d = 5.25) is in TT-BIFMAP.

Theorem. At p = 0, every family F, in TT-BIFMAP has a “period
three to period two” bifurcation at (0,0).

The proof is given in section 4. Restricting for a moment the
attention to the family g, the idea of the proof is the following. For
> 0, each point p on the X -axis is mapped to a point p’ on the X -axis
after three iterates, so gf;(p) = p'. The graph of the corresponding
return map H of the X-axis is given in figure 2. The map H has

an unstable fixed point p, = 24—7 -1t > 0 and two stable fixed points

qsz—%-u<0andp5= %4--;L>0. The point (py,0) is one of

the three points of an unstable period 3 orbit of the map g,; the two
points (gs,0) and (ps,0) are both points of the same stable period 3
orbit of the map g,..

H(z) |

B s et

8y

b Ds

[uu

Figure 2. The return map H of the map g,, [defined by g, (z,¥y) =

(—1.25z — 5.25y + p,0) if z <€ 0, and g, (z,y) = (—2z — 5.25y
+u,0.52) if £ > 0] on the X-axis when p > 0. The map H, defined
by H{z) = g3(x,0), has an unstable fixed point p,, = £ - 4 > 0 and
two stable fixed points g, = —% ~u < 0and ps = 1?4 -u >0
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For yu < 0, write W), for the interval [+ 14, c0) = [0.8- 1, 00) on the
X-axis. We have (1) the image g,.(p) of each point p on the X -axis but
not in W, is in W, and (2) each point p in W, is mapped to a point p’
on the X-axis after two iterates, so gﬁ (p) = p'. In figure 3, the graph
of the corresponding return map G on W), is given. G has an unstable
fixed point p,, = % -1t < 0 and a stable fixed point ps = —% - > 0.
The point (p.,0) is the unstable equilibrium point of the map g,,; the
point (ps,0) is a point of a stable period 2 orbit of the map g,,.

G(z)

51

Figure 3. The return map G of the map g,, [defined by g,.(x,y) =
(~1.25z — 5.25y + p,0) if z < 0, and g, (z,y) = (—2x — 5.25y
+4,0.5z) if z > 0] on the interval [ - 1, 00) = [0.8 - 41, 00) on
the X -axis when p < 0. The map G, defined by G(z) = g% (z,0),
has an unstable fixed point p,, = % - < 0 and a stable fixed point
bs = _% cp > 0

3. Application: A Simple Macro-economic Model

As an application, we consider a simple macro-eco_norr}ic model of
a socialist economy. This model was extensively studied in Hommes,
Nusse, and Simonovits (1990). In fact, the piecewise linear model is
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a control system with two state variables and two control variables
which interact: the changes in the state variables depend on the contro!
variables, while the control variables react to the lagged state variables.
For many parameter values, the equilibrium of the associated linear
system is unstable. However, we have truncated control, that is, there
are lower and upper bounds for the control variables. In the resulting
piecewise linear system all the time paths are bounded.

In order to illustrate the theorem, we recall the equations of the
piecewise linear model; for more details, see Hommes, Nusse, and
Simonovits (1990). All the variables are GDP ratios: investment ratio 2,
net import ratio b, start ratio s, and commitment ratio k. The minimal
value of the commitment ratio is denoted by £*, and the minimal value
of the net import ratio is denoted by b*. The GDP grows at a constant
rate, denoted by I'— 1, where I > 1. The internal tension e and external
tension a are defined as the deviations of the commitment and the net
import from their minimal values, respectively.

An important characteristic of the model is that the control variables
start and investment are truncated. The upper and lower bounds of the
start and investment ratios are time invariant and are denoted by s*,
i, %, and i, respectively. The model is given by the following eight
equations:

Commitment: ki = fhki-1+ 058t — iz ; (E1)
Internal tension: et = ks — k™ ; (E2)
Net import: by = =B+ Oite ; (E3)
External tension: at = by —b" ; (E4)
Intended start: sf=0—0cei_1— 0ali-1 ; (E5)

st if 8P < gt

Start: st= § s} if st < st <%, (E6)
st if sf > 8%

Intended investment: It = L+ te€t—1 ; (E7
i if P <t

Investment: i = P ifit <P <, (E8)

AP >

where f=1/T <1<0s,>0,8>1,0>0,06>0,0, >0,
t > 0, and ¢t > 0. From the equations (E1)—(E8) we can eliminate
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four variables resulting into the following two equations:

et =fer1+ 055t — i — (1~ )K", (E9a)
at = Biie — (B +0") (E9b)

where s; and 7; are defined in (E6) and (E8), respectively.

The dynamics of the model can be analyzed, using the equations
(E9a) and (ES9b) only, since the future values of the variables start,
investment, net import, and commitment are obtained by substitution
in (E1)—(E8). We choose the parameter values: o, = 1.2, 3; = 1,
B=020b" =0k =04T=2 0=04, and ¢ = 0.2, and the
bounds are st = 0.18, s* = 0.29, 7* = 0.23, ¥ = 0.28. The reaction
coefficients o., 04, and ¢ will be specified later on. Substituting these
values in Eqs. (E9a) and (E9b) yields

er = 0.95e4—1 +1.28; — 2 — 0.02 (E10a)
ar =i — 0.2, (E10b)

with s; and ¢; defined as in (E6) and (E8), respectively.

Selecting the parameter values g, = 1.75 and t. = 0.6, the bifur-
cafion diagram in which the parameter o, is the parameter to be varied,
exhibits a “period three to period two” bifurcation at o, =~ 3.4028, see
figure 4.

The theorem presented in section 2 of this paper can be applied
using a simple linear coordinate transformation.

4. Proof of the Theorem

In this section, we present a proof of the theorem. The geometrical
proof might give insight whether or not other bifurcations (for example,
period 5 to period 2 bifurcation) may occur in models fitting in the
Hicksian tradition, that is, linear models with ceilings and floors.

Let F, be a one-parameter family in TT-BIFMAP. We write
po = (xo,yo) for an initial condition and pn = (Zn,yn) for its
n-th iterate, that is, p, = F(po) for any parameter u. For the
particular initial value (0,0), we write Ap = (0,0), A1 = F,,(Ao),
Ag = F”(Al), A3 = F“(Az), and A4 = Fp,(Ag).

The map Fj, has a unique fixed point denoted E,, that is,
Fu(E,) = E,. Then E,, = (H;a -1, 0) if p < 0 and E, =

i .
(1+b+6d ) 1+b‘i|-cd . /L) if u > 0.
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Figure 4. Bifurcation diagram exhibiting the “period three to period two”
bifurcation of the map corresponding to the macro-economic model
described by the equations (E1)—(E8). For o, = 1.75 and ¢ = 0.6, the
bifurcation diagram in which the parameter o is varied horizontally
between 1.2 (left) and 4 (right), exhibits a “period three to period two”
bifurcation at o, =~ 3.4028. The coordinate e is plotted vertically,

0 < e < 0.1

Let My, = [_E)a —E)d} and Mg = [_Ob ”Od} be the matrices
that correspond to the linear maps Fr, and Fr, respectively.

The eigenvalues of My are O and —a, so if p < O then the
fixed point F, is unstable since a > 1. The eigenvalues of Mg
(—0.5b 4 0.5v/6% — 4cd) are complex, since 4cd > b2. For 2 > 0
the fixed point £, is unstable (repelling), since the product ¢ d of the
eigenvalues of Mg exceeds 1 {this follows from the assumptions (al)
and (a4)].

For each initial value pa = (2o, y0) we have if zo < 0 then y1 = 0,
and if zp > 0 then y; = cxzo > 0. Hence, it is sufficient to consider
initial values in the upper half plane.
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Assume first, p < 0. Assume pg = (xg,yo) is any initial value with
yo = 0, then we have if xg < 0 then y; = 0, and if g > 0, then
21 = ~bxo ~ dyo + u < 0 and so y2 = 0. Therefore, it is sufficient
to consider points on the X -axis, and we will do so,

Computation of the iterates of pg = (0,0) = Ag yields A; =
(14,0), A2 = ((1—a)p,0), Az = ((b(a —1) + Lp, (1 — a)p), and
A4 = ((a—1)(cd — ab ~ 1)u,0). The assumption a®b < acd <
a*b+1 implies 0 < x4 < z3. Notice that | x3 | > ys, since 0 < ¢ < b.
Hence, A; is on the X-axis to the left of Ag, A3 is above and to the
left of Az, and both Ay and A4 are on the X-axis to the right of Ag
and A4 is between Ag and As.

Let po = (20,0) be any point. If z¢ > 0 then py = (—bxo +
t,cxo), and if zg < O then p1 = (—azg + u,0). Therefore, the
image of the right half of the X -axis with end point Ag is the half line
through As with end point A; = F,(Ag), and the image of the left
half of the X -axis with end point Ag is the half line on the X -axis to
the right of A; with end point A;.

2

Define @ = (5 - 11,0) = (2q,0) and R = (ryyias=eay ~ 4 0)
= (zg,0). The point () is mapped to Ag iterating F}, once, that is,
Fu(Q) = Ao, and @ is on the X-axis between A; and E,, since

= (1,0}, Eu = (337 - #,0) and a > 1. The point R is on the
X-axis to the right of Ag, and R is mapped to E,, iterating F, twice,
that is, F2(R) =

Let po = (x0,0) be any point. Straightforward computation gives
the following, If z¢ > O (that is, pg is on the X -axis to the right of Ag)
then p1 = (—bzo + p,czo) and p2 = ((ab ~ cd)zo + (1 — a)u,0),
so pa is on the X-axis. If zo = O (that is, po = Ag) then p1 = (i, 0)
and ps = ((1 — a)u,0), so p2 is on the X-axis to the right of Ag. If
1 - < zg < 0 (that is, po = Q or pp is on the X-axis between ¢}
and Ao) then P = (—axo+ p, 0) and pa = (—a(—azqo + ) + 1, 0),
$0 pg is on the X-axis. If zo < £ (that is, po is to the left of Q) then
p1 = (—azo+p,0) and py = (—b(»~aa:0+u)+u, c(—axo+p)) and
P = ((—a2b+acd)xo +(ab—a—cd+1)u,0), and so ps is on the
X-axis while pq is not. Summanzmg, for each point pg on the X -axis
to the right of Q we have py = Fy(po) is on the X-axis. Therefore,
we have a return map on the mterval consisting of the points on the
X-axis to the right of Q.

Let @ denote the return map of F, on [@, o), so G(I) Fj(z,0)
for each x > zg. The above results imply G(z) = a*z + (1 — a)u
for E p <z <0, and G(z) = (ab— cd)x + (1 — a)u for
x > 0. The graph of G is similar to figure 3. The map G has two
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fixed points, namely p, = T_—lg gy and ps = 3=t -y, and
pu < 0 < ps. The fixed point p, is unstable since the slope of &
in p, is a? > 1, and the fixed point p, is stable since the slope of &
at ps is a b — c¢d for which —1 < a b~ c¢d < 0. Furthermore, for all x
with p, < = < xgr we have lim,_.o G"(z) = ps. The properties
(1) zq < 13 -1 <0, (2) G has slope a® > 1if 2g <2 < 0,(3) G
has slope —1 < ab—cd < 0 for z > 0, and (4) G(0) > 0, imply that
F,, has a stable 2-cycle consisting of the points P, = (HETIT:I -, 0)
and Py = F,(P1) = (2ged=l .y (e=le ) Notice that the
norms of both these points converge to zero as 4 goes to zero, that is,
both || Py ||—0and || P2 ||— 0as u— 0.

Now assume 1 = 0. Assume po = (xo,%o) is any initial value with
yo > 0, then zo < 0 implies y1 = 0, and zg > 0 implies 1 = —bxg
yielding y2 = 0. Hence, it is sufficient to consider points on the X -axis.
Let po = (x0,0) be given. If o < O then p; = (—~awxo,0) which
is on the positive X-axis. If zp = O then p; = (—azp,0) and so
po is the fixed point of Fy. If o > 0, then py = (—bxo, cxo), and
pe = ((ab — cd)zg,0). Consequently the point Ag = (0,0) is a
globally stable fixed point of Fg, since ~1 < ab—cd < 0.

Now assume i > 0. The fixed point Ep, = (1paq 1 17 - 4) 1s
unstable with complex eigenvalues since it was assumed ¢d > 1 and
dcd > b*. Assume po = (o, yo) is any initial value. Then zp < 0
implies y; = 0. Now assume that zp > 0. Since the equilibrium
Eu=(3 +r;1+c 7" M Trea - M) s repelling with complex eigenvalues,
there exists a smallest positive integer N such that zy < 0. Hence,
it, follows that y+1 = 0. Therefore, it is sufficient to consider initial
values on the X -axis.

Let po = (zo,y0) = (x0,0) be any point on the X-axis. If
zo < 0 then p1 = Fyu(po) = (—azo + 1,0) = (z1,91), s0
z1 > 0. Every point go = (wo,0) such that wg < zy < 0 satisfies
@1 = Fulqo) = (mawo + 1£,0) = (wy,21), so wy > x1 > 0. The
conclusion is that points on the X-axis to the left of Ag = (0,0) will
be mapped monotonically into the X-axis to the right of (, 0).

Let po = (0,0). A simple computation shows p1 = (11,0), p2 =
(-d)p,cp), ps = ((ab—a—cd+1)u,0), and ps = (—az3+u,0).
Notice 3 < 0, hence z4 > p = z1. Recall that py = Ag, p1 = 41,
py = Ag, ps = Az, and py = A4. The conclusion is that Ag, A1, Aa,
and A4 are on the X-axis, and Az is to the left of Ag, and both A;
and A4 are to the right of Ay with A; between Ag and Ag4.

Let po = (zo0,0) be any point on the X-axis for which zg > 0.
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Then p1 = (=bzo + p, cxp). Notice that if zg = % - then zp = 0
and y1 = § - p. Write Bo = (% -1,0), Br = Fu(Ba), B2 = F,,(B1),
and Bs = F,,(Bz). Then By = (0,% - ), B2 = ((1 = %)p,0), and
Bs = ((a(%% — 1) + 1)p,0). Notice that By denotes the point on the
Y-axis at which the line segment [A;, As] intersects the Y -axis, and
that By is a point on the X-axis to the left of Ag. The assumption
cd > abimplies that Az = ((ab—a —cd+ 1)u,0) is on the X-axis
to the left of Ba.

The image of the half line [4;, c0) through Az under the map F),
is the kinked half line [A3, Ba] U [B2, oo) through Asz. The image of
this kinked half line [A2, B2] U[Bz2, 00) is on the X -axis. In particular,
the image of the line [Bs, co) through Az is [Bs, co) on the X-axis to
the right of Ay = (g, 0) and the image of the line segment [A2, B2] is
[As, Bs).

Let po = (z0,0) be any point on the X-axis. Straightforward
computation shows the following. If 29 > %-u (that is, pg is to the right
of Bg) then p1 = (=bxzo+p,cxo), p2 = ([ab—cdlza+ (1 —a)u, 0),
and p3 = (—alab — cd]zo + ¢ + aa — 1)u, 0). Hence, the points po
and pa are on the X-axis for zo > - . If 0 < xo < § - p (that is,
Do is on the X-axis between Ag and By) then p; = (—bxo + i, czo),
p2 = ([b*—cdlzo+(1—b)p, —bcro+cu), and ps = ({b{cd—ab)+
acdyro+{l+ab—a—cd}pu,0), so the point p3 is on the X -axis. If
2o < O0thenp; = (—azo+1,0), pe = (abxo+ (L — b, —aczo +
cp), and p3 = (—af{ab ~ ed}zo + {1 + a(b — 1) — cd}p,0), so
the point p3 is on the X-axis. The conclusion is that for each point
po = (xo,0) on the X -axis, the third iterate of pg is also on the X -axis,
that is, Fg (po) = (z3,0). Hence, a return map exists on the X -axis.

Let H denote the return map of F, on the real line, so H(x) =
F2(z,0). The above results imply H (z) = a-(cd—ab)z+(1+ab—a—
cd)-pforr <0, H(z) = (bed—ab*+acd)z+(14+ab—a—cd)-p for
0<z<j-pand H(z)=a(cd—ab)z+(a®*—a+1)-puforz > +-p.

The graph of H is similar to figure 2. The map H has three fixed points,

—. ab—cdtl—a | _ cd—abta-—1 .
namely ¢s = 14+a(ab—cd) <0, pu = blcd—a b)+acd-—1 (., and

Ds = ﬁ% -0 > 0. The fixed point p,, is unstable since the slope

of H in p, is bigger than 1, and the two fixed points gs and ps are stable
since the slope of A at both g5 and p; is between 0 and 1. Furthermore,
for all z with z < p,, we have limp .o H™ () = g5, and for all z with
Z > py we have limp—.oo H"(z) = ps. The properties (1) H has slope
between 0 and 1 for z < 0, (2) H has slope bigger than 1 for 0 < z <
%-p,, (3) H has slope between 0 and 1 for z > %'u, and (4) H(0) < 0O




168 C. H. Hommes and H. E. Nusse:

and H(}-p) > %+ p, imply F, has a stable 3-cycle consisting of the
. b—cd+l— a{a—1)+1

points 51 = (%ﬁﬁf%d% 1,0), S2 = (1i(aa(ai)—+c1d) - 4, 0), and

S5 = ({_—T%(%%i%-%_) +1}-4, ﬁ%(%"bi_)—c% - ). Notice that the norms

of all three points converge to zero as 4 goes to zero, that is, all three

S ||—0, || Sz2}]—0,and || S3 || — 0 as u—0.

5. Concluding Remarks

We have shown the occurrence of a new bifurcation phenomenon,
namely a period three to period two bifurcation. This bifurcation
phenomenon is structurally stable in the class TT-BIFMAP, that is, for
any F), in TT-BIFMAP, there exists an open neighborhood U of F),
in TT-BIFMAP such that for each G, in U the family G, has a
period three to period two bifurcation at u = 0. The geometrical proof
presented above might give insight whether or not other bifurcations
(for example, period 5 to period 2 bifurcation) may occur in similar
piecewise linear models.

The theorem guarantees that if F), is in TT-BIFMAP, then at 1 = Q,
the family £}, exhibits a period three to period two bifurcation at (0, 0).
It is not true that the property “F), has a period three to period two
bifurcation at p = 0” implies that the map [}, is in TT-BIFMAP. To
illustrate this, the family F,, correspondingtoa =2,b =2, ¢ =1, and
d = 4 is not in TT-BIFMAP, while F}, has a period three to period
two bifurcation at p = 0.

We emphasize that the “period three to period two” bifurcation
phenomenon (and related bifurcation phenomena) can be expected to
occur in many economic models being of Hicksian type, that is, linear
models with ceilings and floors. For models with Hicksian nonlinear-
ities there are generally regions in the phase space in which one of
the variables assumes its lower or upper bound. In such a region the
Jacobian matrix of the corresponding linear map has an eigenvalue zero,
Therefore models with Hicksian nonlinearities are a natural application
of models exhibiting these bifurcation phenomena.
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