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Abstract

The Þnite sample behaviour is analysed of particular least squares (LS) and a
range of (generalized) method of moments (MM) estimators in panel data models
with individual effects and both a lagged dependent variable regressor and another
explanatory variable. The latter may be affected by lagged feedbacks from the de-
pendent variable too. Asymptotic expansions indicate how the order of magnitude
of bias of MM estimators tends to increase with the number of moment condi-
tions exploited. They also provide analytic evidence on how the bias of the various
estimators depends on the feedbacks and on other model characteristics such as
prominence of individual effects and correlation between observed and unobserved
heterogeneity. Simulation results corroborate the theoretical Þndings and reveal
that in small samples of models with dynamic feedbacks none of the techniques ex-
amined dominates regarding bias and mean squared error over all parametrizations
examined.

1. Introduction

Economic relationships usually involve dynamic adjustment processes. In time-series re-
gression models it is common practice to deal with these by including in the speciÞcation
lagged values of the current regressors, the regressand or both. The inclusion of lagged
dependent variables seems to provide an adequate characterization of many economic dy-
namic adjustment processes, but it induces inference problems such as small sample bias
and relegation to possibly poor asymptotic approximations.
In dynamic panel data models which allow for unobserved individual effects these

problems are aggravated. In such models least-squares (LS), i.e. Þxed effects (LSDV) or
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of Illinois (Champaign-Urbana), Montréal (CRDE), Hong Kong (HKUST), Melbourne and Sydney for
hospitality while working on this paper.



random effects (GLS), can even be biased in large samples. Although consistent � provided
that the disturbances are white-noise and all regressors are predetermined conditional
on the individual effects � for a large number of time-series observations T, they are
inconsistent for T Þnite and a large number of cross-section observations N . Since in
micro-economics the typical dimension of a panel data set is a short time span for a large
cross-section alternative (generalized) method of moments (MM) estimators have been
proposed. These may be inconsistent for T large, but they are consistent for N large (see
Anderson and Hsiao, 1982; Arellano and Bond, 1991; Blundell and Bond, 1998). However,
in many actual panel data sets the values of both N and T are only moderately large
or even small, for example when in an attempt to mitigate heterogeneity of the slope
parameters sub-samples have to be analyzed. In such situations Þrst-order asymptotic
approximations seem of little use to indicate which technique is to be preferred.
If in a panel data model for a particular dependent variable one of the explanatory

variables is affected by feedbacks from that same dependent variable and this feedback is
instantaneous then such an explanatory variable and the regressand are jointly dependent
and one should resort to ML (maximum likelihood) or specially designed MM techniques
in order to achieve consistency. If this feedback is lagged at least one period and the
disturbances are serially uncorrelated then such an explanatory variable, which may show
permanent dependence on the unobserved individual effects too, is predetermined with
respect to the current disturbance term. In this paper we will focus on the bias and
efficiency of estimators for dynamic panel data models with individual effects and white-
noise (not necessarily Gaussian) disturbances, which include a lagged dependent variable
and another explanatory variable, and we distinguish the two cases where � conditional on
the individual effects � this latter variable is either strongly exogenous or weakly exogenous
due to lagged feedbacks. The particular exogeneity properties of both regressors imply a
range of valid moment conditions and thus deÞne a range of consistent MM estimators,
including the asymptotically most efficient implementation.
Obviously, it would not be wise to use just the standard Þrst-order asymptotic prop-

erties (consistency and asymptotic variance) for choosing between the various LS and
MM estimators when the goal is to obtain accurate inference in samples where both N
and T may be small. After all, these asymptotic properties would suggest that there
are little worries regarding bias (because all estimators are consistent, either for large T
or for large N) and among the MM estimators they naturally favor the asymptotically
efficient GMM (generalized method of moments) implementation, which uses all available
moment conditions and employs the asymptotic covariance of these moment conditions
as a weight matrix. It has been observed, though, that in moderately large samples con-
sistent � especially asymptotically most efficient � estimators may show substantial bias,
and that actual MSE (mean squared error) may deteriorate by using an abundance of
moment conditions, see Ziliak (1997) and Koenker and Machado (1999).
In order to obtain a better understanding of these phenomena in the context of panel

data we will apply in this study higher-order asymptotic methods to obtain for the various
estimators the leading term in an expansion of their estimation error. This will uncover
the asymptotic order with respect to both T and N of the bias of the various estimators
and it will disclose also the model parameters which seem important for any inaccura-
cies of the Þrst-order asymptotic approximations. Asymptotically the bias of consistent
estimators is invariant with respect to all parameters of the data generating process, but
the leading term of its expansion will contain information on the parameters that promi-
nently determine any bias in Þnite sample. In addition to these analytical investigations,

2



the actual Þnite sample bias, standard deviation and MSE of the various LS and MM es-
timators will be assessed in a series of Monte Carlo experiments. The theoretical Þndings
will also prove to be helpful in designing the simulation experiments because they provide
the major determining factors of the actual Þnite sample behaviour.
In Kiviet (1999) higher-order asymptotic methods have been applied to LSDV and to

particular simple MM methods in dynamic panel data models with predetermined regres-
sors which employ a number of instruments equal to the number of regressors. Hence,
they are not asymptotically efficient and moments may not exist. The actual accuracy
and relevance of these particular higher-order asymptotic Þndings have not been exam-
ined yet in a Monte Carlo study. Most Monte Carlo studies that have made comparisons
between LS and alternative MM estimators in dynamic panel data models examined the
case of no or only strictly exogenous regressors. Small T with relatively large N simu-
lation studies are Arellano and Bond (1991), Blundell and Bond (1998), Kiviet (1995)
and Alonso-Borrego and Arellano (1999). These show that the bias of LS estimators can
be severe, but MM implementations can have a very poor performance too, but less so
for larger N . A complication of MM estimators is that the instruments may become
weak, especially when the coefficient of the lagged dependent variable regressor is large.
Judson and Owen (1999) performed simulations with both dimensions of the sample size
small or moderate. They Þnd that the bias of LSDV is relatively large compared to sim-
ple MM estimators and is more or less equal in magnitude to the bias of a particular
GMM estimator. Like Ziliak (1997), they also present some evidence that the bias of MM
estimators increases with the number of instruments employed. Generally, it has been
established that the variance of LS estimators is relatively small. Therefore, based on a
MSE criterion, LSDV estimators which exploit bias correction techniques, as suggested in
Kiviet (1995), perform well under particular circumstances. However, clear-cut guidelines
for practitioners are not yet available, especially not for the situation where N and T are
both small and regressors next to the lagged dependent variable may be weakly and not
strongly exogenous. Some Monte Carlo results for models with instantaneous feedbacks
are presented in Blundell, Bond and Windmeijer (2000).
We shall produce simulation evidence for models with various forms of lagged feedbacks

and with correlation between observed and unobserved heterogeneity and compare actual
bias with a numerical evaluation of the higher-order asymptotic approximation of the bias.
We do this for LSDV, GLS and for various forms of 1-step (G)MM estimators, including
the so-called system estimator, and compare the numerical and the analytic effects of
using all available instruments, amounting to a number of order O(T 2), with omitting
instruments and use only a number of order O(T ) of them, or just a Þxed O(1) number.
The structure of this paper is as follows. After the introduction of the model and its

particular stochastic structure in Section 2, and the presentation of the various estimators
in Section 3, we obtain in Section 4 the leading terms of the estimation errors of the various
estimators. There we examine for all estimators the order of magnitude of bias in terms of
N and T and the effects on estimator location of various forms of lagged feedbacks and the
prominence of the unobserved individual effects. In Section 5 appropriate simulations are
designed and experiments are performed to examine whether the analytical higher-order
asymptotic results are corroborated by the actual performance of the estimators in small
samples. Section 6 concludes.
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2. Stochastic structure of the model

We consider the standard Þrst-order dynamic panel data model with only one further
explanatory variable1, i.e.

yit = γyi,t−1 + βxit + uit, i = 1, ..., N ; t = 1, ..., T, (2.1)

where the disturbance term uit = ηi + εit contains two error components, viz. an unob-
served individual speciÞc effect ηi and a general disturbance term εit. We assume that the
time-variant regressor xit may be correlated with ηi and is predetermined with respect to
εit, i.e.

E(xisεit) = 0, s ≤ t
E(xisεit) 6= 0, s > t

)
i = 1, ..., N. (2.2)

Below we will formalize the correlation of xit with ηi and the lagged feedback mechanism
of past disturbances on xit. We assume mutual independence of the cross-section units
and serial independence of the disturbances, i.e.

ηi ∼ i.i.d.(0, σ2η)
εit ∼ i.i.d.(0, σ2ε)

)
i = 1, ..., N ; t = 0, ..., T, (2.3)

and hence we also suppose that, probably after a successful weighting operation, the
disturbances are homoskedastic, both in the time and in the cross-section dimension. We
deÞne εi0 because it will enable to specify the random characteristics of the start-up values
yi0 and lagged feedbacks in xi1. As usual we assume

E(ηiεjt) = 0, ∀i, j, t, (2.4)

E(yi0εjt) = 0, ∀i, j, t > 0, (2.5)

hence the two error components are uncorrelated and all N initial observations yi0 are
uncorrelated with all disturbances for t > 0. Furthermore, we suppose that the model in
(2.1) is dynamically stable, i.e. |γ| < 1.
In order to obtain higher-order asymptotic results we need expressions that make fully

explicit how all observations on yit and xit depend on both error components. As in Kiviet
(1999) we therefore decompose y and x into a zero-mean relevant random component,
denoted by a tilde, and irrelevant random plus deterministic components, denoted by
a bar. The relevant random components are those which are related to the individual
effects ηi and the disturbance terms εit. In the analysis to follow we shall condition on
x̄it = xit − �xit, ȳit = yit − �yit and on ȳi0 = yi0 − �yi0, ∀i, t.
Regarding x we start by examining the same simple setup as in Kiviet (1999) where

xit can be decomposed as

xit = x̄it + �xit
�xit = φεi,t−1 + πηi

)
i = 1, ...,N ; t = 1, ..., T, (2.6)

with E(x̄itηj) = 0 and E(x̄itεjs) = 0 for ∀i, j, t, s. The parameter π allows for correlation
between observed and unobserved heterogeneity and φ determines the feedback of the
lagged disturbance into the explanatory variable xit.When φ = 0 regressor xit is strongly

1Our Þndings can be generalized � though will not yield qualitatively different results as it seems � for
models with higher-order lags and more explanatories. For ease of exposition we thus restrict ourselves
to the relatively simple model (2.1).
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exogenous, and when φ 6= 0 then xit is weakly exogenous, because, conditional on ηi and
the past, the joint density of yit and xit can be factorized in the density of yit conditional
on xit and the marginal density of xit such that the parameters of these two densities
are unrelated. The form of weak exogeneity in (2.6) is very speciÞc, but it captures the
essentials of lagged feedbacks, whereas its simplicity makes further derivations relatively
easy. Later we will discuss and simulate more general forms of weak exogeneity.
For the relevant random component �yit of yit and its complement ȳit we have

�yit = γ�yi,t−1 + β�xit + ηi + εit
ȳit = γȳi,t−1 + βx̄it

)
i = 1, ..., N ; t = 1, ..., T. (2.7)

To be able to decompose the relevant random components of �yit into the two error compo-
nents ηi and εit we have to make an assumption on the accumulated size of the individual
effect ηi in yi0. For the sake of simplicity we shall assume that the full long-run impact of
the individual effect ηi on yit is already present in yi0, which implies

E(�yit | ηi) = αηi, i = 1, ..., N ; t = 0, ..., T, (2.8)

where α = 1+βπ
1−γ , so we assume effect-stationarity (labelled mean-stationarity in Blundell

and Bond, 1998) for both xit and yit. For the N initial values we further assume

�yi0 = αηi + ωεi0, ∀i (2.9)

where ω is either 0 or 1. In case of lagged feedback (i.e. φ 6= 0) xi1 depends on εi0 and
then �yi0 should also contain εi0, because it is in this case a relevant random component
of yi0. Hence, when φ 6= 0 we take ω = 1 giving �yi0 = αηi + εi0. However, we choose to
take ω = 0 in case φ = 0, because when xit is strongly exogenous the normal procedure
is to condition on xit and on ȳi0 = yi0 − αηi. Hence, in that case �yi0 should not contain
εi0 (because it is an irrelevant random component now), thus �yi0 = αηi when φ = 0.
Stacking the observations over time we get (i = 1, ...,N)

yi = γyi(−1) + βxi + ηiιT + εi, (2.10)

xi = x̄i + φεi(−1) + πηiιT , (2.11)

where yi(−1) = (yi0, ..., yi,T−1)0, εi(−1) = (εi0, ..., εi,T−1)0 and ιT = (1, ..., 1)0 a T × 1 vector
of ones. From the above it follows that

�yi = γ�yi(−1) + βφεi(−1) + (βπ + 1)ηiιT + εi
= γ(LT �yi + �yi0eT,1) + βφ(LTεi + εi0eT,1) + (βπ + 1)ηiιT + εi,

where we introduced the T × T matrix LT with ones on the Þrst lower subdiagonal and
zeros elsewhere and the q × 1 unit vector eq,p with pth element equal to one. DeÞning
ΓT = (IT − γLT )−1 and using (2.9), the relevant random part of yi is

�yi = αηiιT + ΓT (IT + βφLT )εi + (ωγ + φβ)ΓT eT,1εi0. (2.12)

Stacking the T observations per individual over all N individuals yields

y = Wδ + u, (2.13)
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where δ = (γ, β)
0
, y and u are NT × 1, W = (y(−1), x) is NT × 2, u = Sη + ε, with

S = IN ⊗ ιT an NT ×N matrix and η = (η1, ..., ηN)
0. Using (2.6) and (2.12) the relevant

random parts of y and x can be written explicitly as

�y = αSη + Γ(INT + βφL)ε+ (ωγ + φβ)Γ(IN ⊗ eT,1)ε0, (2.14)

�x = πSη + φ[Lε+ (IN ⊗ eT,1)ε0], (2.15)

where Γ = IN ⊗ ΓT , L = IN ⊗ LT and ε0 = (ε10, ..., εN0)0.
The expressions (2.14) and (2.15) will be used for obtaining analytical results on the

properties of the various estimators of δ introduced in the next section. To express some
of these estimators particular transformations of the data have to be considered, for which
we will use the (T − 1)× T transformation matrices

JT =


0 1 0 · · 0
0 0 1 · ·
· · · · · ·
· · 1 0
0 · · · 0 1

 , KT =


1 0 · · · 0
0 1 0 · ·
· · · · · ·
· · 1 0 ·
0 · · 0 1 0

 (2.16)

and also DT = JT − KT . Note that DT transforms a T element vector for individual i
into T − 1 Þrst differences, because JT skips the Þrst observation and KT skips the Þnal
observation. We deÞne also D = IN ⊗DT , J = IN ⊗ JT and K = IN ⊗KT .

3. Estimators for dynamic panel data models

3.1. Least Squares

Treating the random individual speciÞc effects as Þxed, estimation of δ and η in (2.13)
by OLS yields estimates which are called Least Squares Dummy Variables (LSDV), Þxed
effect or within group estimates. For δ this estimator can be expressed as

�δLSDV = (W
0AW )−1W 0Ay, (3.1)

where the NT × NT matrix A = IN ⊗ AT with AT = IT − 1
T
ιT ι

0
T is the within trans-

formation which wipes out the individual effects. This estimator can also be obtained
by premultiplying model (2.13) by any matrix R = IN ⊗ RT , where RT is (T − 1) × T
with rank T − 1 and RT ιT = 0. While removing the individual effects such a transforma-
tion reduces the number of observations and produces disturbances with V(Rε) = σ2εRR

0,
which is full rank. Applying GLS yields [W 0R0(RR0)−1RW ]−1W 0R0(RR0)−1Ry = �δLSDV,
because R0(RR0)−1R = A follows from the orthonormality of [T−1/2ιT , R0T (RTR

0
T )
−1/2].

Valid matrices RT are DT (Þrst differences) and PT (forward orthogonal deviations), see
Arellano and Bover (1995). The latter transformation will prove to be useful below when
constructing and analyzing MM estimators. The (T − 1)×T upper-triangular matrix PT
transforms as

y∗it = ct[yit − (T − t)−1(yi,t+1 + ...+ yiT )], (3.2)

with c2t = (T − t)/(T − t+1). Since PTP 0T = IT−1, independence of εit is preserved in the
transformed model.
Treating the individual effects as random, the covariance matrix of the combined

disturbance term u = Sη + ε is V = σ2ηSS
0 + σ2εINT and the Generalized Least Squares
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(GLS) estimator of δ is

�δGLS = (W 0V −1W )−1W 0V −1y, where (3.3)

V −1 = IN ⊗ (IT − θ 1T ιT ι0T ), θ = 1−
µ
1 + T

σ2η
σ2ε

¶−1
.

Note that 0 ≤ θ ≤ 1, and θ → 1 as T → ∞ for σ2η > 0, which shows the equivalence of
GLS and LSDV for T large. However, for Þnite T these estimators differ and V −1 will
only partially wipe out the individual effects, which explains that the GLS Þnite sample
bias is not invariant with respect to σ2η/σ

2
ε, whereas LSDV�s is under effect-stationarity.

Note, moreover, that GLS is not feasible unless σ2η/σ
2
ε is known. In our simulations we

will also consider the feasible FGLS estimator

�δFGLS = (W �V −1W )−1W 0 �V −1y, (3.4)

where �V −1 is estimated by obtaining �θ from estimates �σ2ε and �σ
2
η based on within and

between residuals as in Doornik et al. (2002).

3.2. Method of Moments

The assumptions made on the stochastic structure of the model imply for each individual
i a set of linear and non-linear moment conditions, see Ahn and Schmidt (1995). In this
study we will focus on MM implementations using linear moment conditions only and
we will not exploit any moment conditions associated with the homoskedasticity of εit.
Arellano and Bond (1991) used all linear moment conditions for the model in Þrst differ-
ences associated with the predeterminedness of the regressors and the absence of serial
correlation in the (original) disturbances. Blundell and Bond (1998) suggest to exploit in
addition moment conditions associated with the effect-stationarity of the variables. The
various sets of linear moment conditions emerge straightforwardly, depending on whether
or how the individual effects are removed from the model or from the instruments.

3.2.1. Removing the effects from the model

Like Anderson and Hsiao (1982), Arellano and Bond (1991) suggest to take Þrst differ-
ences, i.e.

Dy = DW δ +Dε. (3.5)

Since E[(Dy(−1))0Dε] = −E(y0(−1)ε(−1)) = −E(ε0(−1)ε(−1)) = −σ2εN(T − 1), the correlation
of one of the regressors with the errors of (3.5) is such that here LS is inconsistent,
irrespective of how the sample size is extended. However, there are many valid moment
conditions for individual i in the differenced model (3.5), viz.

E(yi,t−s∆εit) = 0, t = 2, ..., T ; s = 2, ..., t,
E(xi,t−s∆εit) = 0, t = 2, ..., T ; s = 1, ..., t− 1.

)
(3.6)

Even more valid instruments than these T (T − 1) are available under our particular form
of weak exogeneity (2.6), or when x is strongly exogenous, but we will not use these
here. Not just D, but any transformation matrix R as deÞned above, for example P , will
eliminate the effects from the model, see Arellano and Honoré (2001, p.3255). For model

Ry = RW δ +Rε, (3.7)
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we shall consider GMM estimation exploiting m ≤ T (T − 1) moment conditions for each
individual i. These can be expressed as E(Z 0liRT εi) = 0, where Zli is a (T − 1) × m
matrix with variables in levels. We will consider three particular instrument matrices
Zli, viz. the block-diagonal matrix (with increasing block size) Z

(2)
li , which includes all

m(2) = T (T − 1) = O(T 2) instruments given in (3.6), i.e.

Z
(2)
li =



yi0 xi1 0 0 0 0 00 · · · 0 · · · 0 0 · · · 0
0 0 yi0 yi1 xi1 xi2 00 · · · 0 0

0 0 0 0 0 0 · · · ...
...

...
... · · · 0 · · · 0 0 · · · 0

0 0 0 0 0 0 · · · · · · yi0 · · · yi,T−2 xi1 · · · xi,T−1

 ;

the block-diagonal matrix (with constant block size) Z
(1)
li , which includes only a subset of

m(1) = 2(T − 1) = O(T ) of the Z(2)li instruments, viz.

Z
(1)
li =



yi0 xi1 0 0 00 · · · 0 0
0 0 yi1 xi2 00 0
...

... · · · ...
0 0 0 0 · · · 0 0
0 0 0 0 · · · 00 yi,T−2 xi,T−1

 ;

and the matrix Z
(0)
li , which includes a linear transformation of the instruments in Z

(2)
li ,

reducing their number further to m(0) = 4 = O(T 0), viz.

Z
(0)
li =


yi0 xi1
yi1 xi2
...

...
yi,T−2 xi,T−1

0 0
yi0 xi1
...

...
yi,T−3 xi,T−2

 .

Stacking over individuals one has for any m-columns instruments-in-levels matrix Zl the
conditions E(Z 0lRε) = 0, where Zl = (Z

0
l1, ..., Z

0
lN)

0 is N(T − 1) ×m. Provided R0Zl has
full column rank, the optimal one-step GMM estimator is then

�δGMM = [W
0R0Zl(Z 0lRR

0Zl)−1Z 0lRW ]
−1W 0R0Zl(Z 0lRR

0Zl)−1Z 0lRy, (3.8)

where (Z 0lRR
0Zl)−1 provides a consistent (up to a scalar) estimator of the inverse of

E(Z 0lRεε
0R0Zl) for εit ∼ i.i.d. Hence, when all available moment conditions (3.6) are

exploited, i.e. Zl = Z
(2)
l , estimator (3.8) is asymptotically efficient. For R = P and

writing y∗ = Py and W ∗ = PW, estimator (3.8) specializes in

�δGMMß = [W
∗0Zl(Z 0lZl)

−1Z 0lW
∗]−1W ∗0Zl(Z 0lZl)

−1Z 0ly
∗, (3.9)

where the acronym GMMß makes clear that the model underwent the forward orthogonal
deviations transformation (f) and uses level instruments (l). For Zl = Z

(2)
l this estimator is

equivalent to the estimator of Arellano and Bond (1991) which uses R = D, see Arellano
(2003, p.153). Since form (3.9) has proved to be more suitable for further analytical

examination, see Alvarez and Arellano (2003) who analyzed it for Zl = Z
(2)
l in the panel

AR(1) model, we will focus here on transformation P too. We will investigate it for
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Zl = Z
(h)
l (h = 0, 1, 2), indicating the resulting estimators by �δGMMß(h), thus clarifying

which instrument matrix Z
(h)
l (h conforms to the power of T in the order of magnitude of

the number of instruments) has been used. From the special structure of Z
(2)
li it follows

that a necessary condition for the existence of �δGMMß(2) is that N ≥ K(T − 1), where K
is the number of columns of W, i.e. in our special case T ≤ 1 +N/2.

3.2.2. Removing the effects from the instruments

For the equation in levels (2.13) Þrst differences of current and lagged explanatory vari-
ables are valid instruments, provided that the variables are effect-stationary, see Arellano
and Bover (1995), Kiviet (1995) and Blundell and Bond (1998). For individual i we then
have the moment conditions

E(uit∆yi,t−s) = 0, t = 2, ..., T ; s = 1, ..., t− 1,
E(uit∆xi,t−s) = 0, t = 2, ..., T ; s = 0, ..., t− 2.

)
(3.10)

These, or linear transformations or reductions of them, can be expressed as E(Z 0diJTui) =
0, where the matrix Zdi is (T − 1)×m. We will examine the three cases

Z(2)di =



∆yi1 ∆xi2 00 · · · 0 · · · 0 0 · · · 0
0 0 · · · · · · 0 0

0 0 · · · ...
...

... · · · 0 · · · 0 0 · · · 0
0 0 · · · · · · ∆yi1 · · · ∆yi,T−1 ∆xi2 · · · ∆xi,T

 ,

which includes all m(2) = T (T − 1) = O(T 2) instruments-in-differences; its subset

Z
(1)
di =



∆yi1 ∆xi2 00 · · · 0 0
0 0 · · · 0
...

...
...

0 0 · · · 0 0
0 0 · · · 00 ∆yi,T−1 ∆xi,T

 ,

where m(1) = 2(T − 1) = O(T ); and the instrument matrix with m(0) = 4 = O(1)

Z
(0)
di =


∆yi1 ∆xi2 0 0
∆yi2 ∆xi3 ∆yi1 ∆xi2
...

...
...

...
∆yi,T−1 ∆xi,T ∆yi,T−2 ∆xi,T−1

 .

Stacking over individuals one has E(Z 0dJu) = 0, where Zd = (Z
0
d1, ..., Z

0
dN)

0 is either Z(2)d ,
Z
(1)
d or Z

(0)
d . Here an optimal one-step GMM estimator would require a weight matrix

involving the unobservable ratio σ2η/σ
2
ε. We will analyze here the particular operational

one-step GMM estimator

�δGMMld = [W
0J 0Zd(Z 0dZd)

−1Z 0dJW ]
−1W 0J 0Zd(Z 0dZd)

−1Z 0dJy, (3.11)

which has been considered too by Blundell, Bond and Windmeijer (2000). It is optimal
only when σ2η = 0. For �δGMMld(h) (h = 0, 1, 2), where �ld� clariÞes that the equation in
levels has been instrumented by differenced variables, it is required that (Z 0dZd)

−1 exists.
For �δGMMld(2) this implicates N ≥ K(T − 1).
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3.2.3. System GMM estimator

Combining in a system all the above moment conditions while omitting the redundant
conditions, see Blundell and Bond (1998), yields

E(Z 0siqi) = 0, where Zsi =

Ã
Z
(2)
li O

O Z
(1)
di

!
, qi =

Ã
PTεi
JTui

!
, (3.12)

with Zsi a 2(T − 1)×m matrix and m = (T + 2)(T − 1) = O(T 2). DeÞning

Zs =

Ã
Z
(2)
l O

O Z
(1)
d

!
, Ws =

Ã
PW
JW

!
, ys =

Ã
Py
Jy

!
, qs =

Ã
P ε
Ju

!
, (3.13)

and using, like Blundell and Bond (1998), Z 0sZs for weighting, we obtain

�δGMMs = [W
0
sZs(Z

0
sZs)

−1Z 0sWs]
−1W 0

sZs(Z
0
sZs)

−1Z 0sys. (3.14)

This system GMM estimator requires N ≥ K(T − 1).

4. Finite sample bias

We will now examine the location2 of the various LS and MM estimators of δ by ap-
proximating their Þnite sample bias using asymptotic expansion techniques. For all these
estimators the estimation error can be written as

�δ − δ = Q−1F 0v, (4.1)

where Q is a 2×2 matrix, F is n×2, v is n×1, and n is either NT, N(T−1) or 2N(T−1).
Assuming that either or both N and T can get large and that all variables are stationary
through time3, we have Q = Op(n), Q̄ = E(Q) = O(n) and Q − Q̄ = Op(n

1/2), which
yields (Q− Q̄)Q̄−1 = Op(n−1/2). Expanding Q−1 = Q̄−1[I + (Q− Q̄)Q̄−1]−1, we obtain

Q−1 = Q̄−1 − Q̄−1(Q− Q̄)Q̄−1 +Op(n−2) (4.2)

= Q̄−1 +Op(n−3/2),

and, assuming E(F 0v) = O(n∗), we Þnd the Þrst-order bias approximation

E(�δ − δ) = Q̄−1E(F 0v) +O(n∗n−3/2), (4.3)

where B = [E(Q)]−1E(F 0v) = O(n∗n−1) is the leading term of the bias of �δ. Whether
n = NT, N(T − 1) or 2N(T − 1) has no practical consequences here, so any differences
in the order of the leading term of the bias result from E(F 0v), i.e. from n∗.
In Appendix A we show for LSDV that E(F 0v) = E(W 0Aε) = O(NT 0), hence the

bias is O(N0T−1), indicating that LSDV is inconsistent for large N and Þnite T. More
precisely, see also Bun and Kiviet (2003), E(�δLSDV − δ) = BLSDV +O(N−1T−1), with

BLSDV = σ2εQ̄
−1
LSDV {[tr(Π) + βφ tr(ΠL)]e2,1 + φ tr(AL)e2,2}

= −σ2εNQ̄−1LSDV
Ã
1 + βφ

1− γ e2,1 + φe2,2
!
+O(T−2) = O(T−1), (4.4)

2Since we employ always at least two more instruments than regressors, we may assume that the Þrst
two moments exist of all MM estimators considered here.

3The analysis to follow can be generalized for non-stationary variables as in Kiviet (1995), but this
would yield no new insights, provided that all variables remain effect-stationary with respect to the
individual effects.
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where Q̄LSDV = E(W
0AW ), Π = ALΓ, and in the Þnal expression we substituted

tr(Π) = − N
1−γ

³
1− 1

T
1−γT
1−γ

´
,

tr(ΠL) = − N
1−γ

h
1− 1

T

³
1 + 1−γT−1

1−γ
´i
,

tr(AL) = −N(1− 1
T
).

 (4.5)

Note that BLSDV can be obtained without assuming normality of the disturbances, because
for evaluating E(W 0Aε) and E(W 0AW ) the Þrst two moments of ε suffice. Result (4.4)
highlights that the O(T−1) bias of LSDV is directly affected by both feedback parameters
γ and φ, which affect Q̄LSDV too, whereas the LSDV bias is invariant with respect to
σ2η/σ

2
ε and π under effect-stationarity.

Along similar lines we Þnd E(�δGLS − δ) = BGLS +O(n−1), where

BGLS = σ2εθQ̄
−1
GLS

("
tr(Π) + βφ tr(ΠL) +N

1 + βπ

1− γ
#
e2,1 −N

·
φ
µ
1− 1

T

¶
− π

¸
e2,2

)

= −σ2εθ (φ− π)NQ̄−1GLS
Ã

β

1− γ e2,1 + e2,2
!
+O(T−2) = O(T−1), (4.6)

with Q̄GLS = E(W
0V −1W ). Hence, the bias of GLS depends not only on γ, β, φ and σ2ε,

but, unlike LSDV, also on π and θ. The leading bias term disappears for θ → 0, which
is not the case for LSDV. Otherwise (σ2η > 0) the bias of GLS is affected by the relative
magnitude of the error components σ2η/σ

2
ε and by π, and therefore LSDV seems more

robust than GLS. When φ = π the bias is O(N0T−2); we conjecture that this does not
hold in general, but results from the speciÞc form of feedback (2.6).
Using instruments in levels we Þnd E(�δGMMß(2) − δ) = BGMMß(2) +O(n−1), with

BGMMß(2) = 2σ2εQ̄
−1
GMMß(2)

TX
s=2

{tr[AsLsΓs + βφAsLsΓsLs)]e2,1 + φ tr(AsLs)e2,2}

= −2Tσ2εQ̄−1GMMß(2)
Ã
1 + βφ

1− γ e2,1 + φe2,2
!
+O(N−1T−1) = O(N−1). (4.7)

Here As, Ls and Γs are s × s matrices of similar structure as AT , LT and ΓT . That
BGMMß(2) = O(N

−1) in the panel AR(1) model was already found by Alvarez and Arellano
(2003). From (4.7) we see that both sources of feedback in our more general model entail
bias of order O(N−1), also when β = 0. Reducing now the number of moment conditions
to O(T ) we Þnd E(�δGMMß(1) − δ) = BGMMß(1) +O(N−1T−2), with

BGMMß(1) = 2σ2εQ̄
−1
GMMß(1)

N−1 {[tr(Π) + βφ tr(ΠL)]e2,1 + φ tr(AL)e2,2} (4.8)

= −2σ2εQ̄−1GMMß(1)
Ã
1 + βφ

1− γ e2,1 + φe2,2
!
+ O(N−1T−2) = O(N−1T−1).

Hence, reducing the number of instruments by a factor T has reduced the leading term
of the bias by a factor T too. This could make the actual bias considerably smaller if
Q̄−1
GMMß(2)

and Q̄−1
GMMß(1)

do not differ very much. Also note that the factors in parenthesis
in the simpliÞed expressions of (4.4), (4.7) and (4.8) are equivalent and, apart from the
difference in Q̄−1 matrices, these leading terms differ by factors N, 2T and 2 respectively.
Hence, for both N and T substantial GMMß(1) seems less vulnerable regarding bias.

11



Deriving the leading term of the bias of GMMß(0) is very complex, but in Appendix A we
prove that E(�δGMMß(0) − δ) = BGMMß(0) +O(N−1T−2), with

BGMMß(0) = O(N
−1T−1). (4.9)

Hence, reducing the number of instruments further (and inhibit the block-diagonal struc-
ture of the Zli matrices) no longer reduces the order of the GMMß bias. From the proofs
it is apparent that the determining factor for the order of bias is not the actual choice
we made with respect to the reduction in number of instruments (we did remove the in-
struments with the longest lags), but that it is just the order of magnitude of their total
number which determines the order of the bias.
Regarding GMMld we obtain E(�δGMMld(2) − δ) = BGMMld(2) +O(N−1), with

BGMMld(2) = σ
2
η(T

2 + T − 2)Q̄−1
GMMld(2)

Ã
1 + βπ

1− γ e2,1 + πe2,2
!
= O(TN−1), (4.10)

which, surprisingly4, suggests a bias that increases with T. For E(�δGMMld(1)−δ) = BGMMld(1)+
O(N−1T−1) we Þnd

BGMMld(1) = 2σ
2
η(T − 1)Q̄−1GMMld(1)

Ã
1 + βπ

1− γ e2,1 + πe2,2
!
= O(N−1), (4.11)

hence, again the bias has reduced by a factor T through reducing the number of instru-
ments by a factor T.Note that the π in the factor in parenthesis for the GMMld expressions
is a φ in the GMMß expressions. Using just a constant number of instruments we Þnd
E(�δGMMld(0) − δ) = BGMMld(0) +O(N−1T−2) with

BGMMld(0) = O(N
−1T−1). (4.12)

Hence, here an even further bias reduction does prove possible by limiting the number of
differenced instruments to a Þxed number.
Finally, for GMMs we Þnd E(�δGMMs − δ) = BGMMs +O(N−1T−1), with

BGMMs = Q̄−1GMMs(Q̄GMMß(2)BGMMß(2) + Q̄GMMld(1)BGMMld(1)) (4.13)

= −2σ2εTQ̄−1GMMs

1− σ2η
σ2ε

1− γ e2,1 +
Ã
φ− πσ

2
η

σ2ε

!Ã
β

1− γ e2,1 + e2,2
! = O(N−1).

Hence, GMMs, which is a matrix weighted average of GMMß(2) and GMMld(1), has a bias
of similar order as these two estimators. However, in the panel AR(1) model, where the
second term between the square brackets in (4.13) is void, the leading term of the bias of
GMMs is in fact just of order O(N−1T−1), provided σ2η = σ

2
ε. As it happens, this is the

case in simulation designs in both Blundell and Bond (1998) and Doornik et al. (2002),
which gave rise to the conclusion that the performance of GMMs is superior to GMMß(2) .
In the simulations below we will examine their relative performance when σ2η 6= σ2ε and
when the model contains extra regressors which may be correlated in some way with the
error components.

4The difference in order of magnitude of Þnite sample bias of the GMMß and GMMld estimators
could be the result of the fact that the latter estimator does not exploit an optimal weight matrix. From
the study of the panel AR(1) model in Alvarez and Arellano (2003) it follows that using a non-optimal

weight matrix in the Arrelano-Bond estimator GMMß(2) increases the order of its bias to O(TN−1) too.
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The results on the order of Þnite sample bias in models with weakly exogenous regres-
sors obtained here have been summarized in Table 15. Note that the LSDV estimator can
be obtained from all three model transformations distinguished. Despite their equivalence
in order of bias, GLS is found to be less robust than LSDV as its estimation error depends
on both σ2η/σ

2
ε and π. The same has been established for the GMMld estimators and for

GMMs . Note that for h = 1, 2 the order of bias of GMMß(h) is a factor T smaller than for
GMMld(h), whereas it is equivalent for GMMß(1), GMMß(0) and GMMld(0) . The latter
three have all smaller order of bias than GMMs . Hence, since σ2η/σ

2
ε and π are generally

unknown, we conclude from these higher-order asymptotic results that in samples with
both T and N moderate or large the GMMld(0), GMMß(1) and GMMß(0) estimators seem
preferable over all others considered as far as bias is concerned. When T is large rela-
tive to N the GMMß(2), GMMld(2) and GMMs estimators do not exist and LSDV, GLS
and GMMß(h) (h ≤ 1) seem preferable, and when T is small relative to N the GMMß
methods seem preferable to LSDV and GLS. Especially GMMld(2) does not seem to be
recommendable in samples where T is large or σ2η/σ

2
ε substantial, but note that in sam-

ples with small T its bias may be comparable with that of GMMs, the other GMMld and
all GMMß variants, because these have all a bias of the same order in N. The leading
terms of the bias seem to indicate that the bias increases with γ for all estimators. Note,
however, that the bias approximations have been obtained assuming |γ| < 1, implying,
for instance, γT = o(T 0) and hence they do not allow to infer what happens for γ → 1.
The effects of γ on the size of the bias seem of smaller order for GLS when β = 0 or φ = 0
and π = 0, and also for GMMs when σ2η = σ

2
ε and φ = 0, π = 0. Finally note that GMMß

is not fully invariant regarding σ2η/σ
2
ε and π, as LSDV is, since these parameters affect

Zl(Z
0
lZl)

−1Z 0l .

5. Simulation results

Data for y have been generated according to equation (2.1) with two different models
for the weakly exogenous explanatory variable x. In scheme 1 its generating equation is
designed as in (2.6) with x̄it a stationary AR(1) process, i.e.

x
(1)
it = x̄it + φ1εi,t−1 + π1ηi
x̄it = ρ1x̄i,t−1 + ξit

)
i = 1, ..., N ; t = 1, ...T, (5.1)

where ξit ∼ i.i.d.(0, σ2ξ) is independent from εit ∼ i.i.d.(0, σ2ε), and these are again inde-
pendent from ηi ∼ i.i.d.(0, σ2η). Hence, the explanatory variable x is a linear combination
of three stochastically independent components, viz. the AR(1) process x̄it, the one-period
lagged disturbance term εi,t−1 and the individual effects ηi. It can be rewritten as

x
(1)
it =

1

1− ρ1L
ξit + φ1εi,t−1 + π1ηi, (5.2)

where L is the lag operator. For |ρ1| < 1 this process is stationary. When φ1 = 0 regressor
x(1) is in fact strongly exogenous.
In the earlier sections scheme 1 proved to be relatively easy to handle from an analytical

point of view. However, from an empirical point of view a more interesting alternative

5We have not omitted the factors N0 and T 0 in the order expressions to stress that we examined
asymptotic behavior for both N →∞ and T →∞. Note that O(N−1) is in agreement with O(N−1Tα)
for any real α when keeping T Þxed.
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weakly exogenous process, indicated as scheme 2, is

x
(2)
it = ρ2x

(2)
i,t−1 + φ2y

(2)
i,t−1 + π2ηi + ξit, (5.3)

which is again strongly exogenous when φ2 = 0. When φ2 6= 0, x(2)it depends via y(2)i,t−1 on
all past disturbances and not just on εi,t−1. Scheme 2 implies

x
(2)
it =

(1− γL)ξit + φ2εi,t−1
1− (γ + βφ2 + ρ2)L+ γρ2L2

+
(1− γ)π2 + φ2

(1− γ)(1− ρ2)− βφ2
ηi, (5.4)

which, like (5.2), is a linear combination of three stochastically independent components,
but now an ARMA(2,1) process based on ξit, an AR(2) process based on εi,t−1 and the
individual effects. However, in scheme 2 these three components are each determined
by all parameters, which is not the case for scheme 1. In (5.4) not just the value of φ2
itself, but also the values of γ, β and ρ2 affect the extent of the feedback mechanism
in x when φ2 6= 0. Therefore, when γ is varied in the simulation, not only the speed of
adjustment, but also the characteristics of xit (its variance, correlogram, feedback pattern
and magnitude of individual effect) will vary, which complicates the interpretation of the

simulation results. For stationarity of x
(2)
it it is required that the three restrictions

γρ2 < 1
γ + ρ2(1− γ) + βφ2 < 1
γ + ρ2(1 + γ) + βφ2 > −1

 (5.5)

hold jointly, which they do as is shown below.
We chose γ = {0.25, 0.75} and the long-run effect β/(1−γ) of x on y has been set equal

to unity in all experiments, implying β = 1 − γ. Further, we chose ρ1, ρ2 = {0.5, 0.95},
which yield stationary regressors. To analyze the impact of lagged feedback under scheme
1 we selected φ1 = {−1, 0,+1}. To maintain some comparability between the results
for schemes 1 and 2 (by making the dependence of xit on εi,t−1 equivalent), we took
φ1 = φ2/(1− γ − βφ2 − ρ2 + γρ2) implying

φ2 =
φ1(1− γ)(1− ρ2)

1 + βφ1
. (5.6)

Substituting β = 1−γ and (5.6) in the second restriction of (5.5) yields γ+(ρ2+φ2)(1−
γ) < 1, which implies that the parameters should obey ρ2 + φ2 < 1, which means

ρ2 +
φ1(1− γ)(1− ρ2)
1 + (1− γ)φ1

< 1 or
φ1(1− γ)

1 + φ1(1− γ)
< 1

and this is true. Hence, x
(2)
t is stationary, because our parameter choices also obey the

other two restrictions of (5.5). We also took π1 = {−1, 0,+1} and to advance compara-
bility we therefore took π1 = [(1− γ)π2 + φ2]/[(1− γ)(1− ρ2)− βφ2] implying

π2 = π1(1− ρ2 − φ2)−
φ2
1− γ . (5.7)

We shall normalize with respect to the variance of the disturbance term σ2ε. Hence, the
design parameters that remain to be Þxed now are σ2η and σ

2
ξ. Appendix B gives further

details on how we attributed values to these two variances. We chose a relationship
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between σ2η and σ
2
ε such that the impact on V(yit) of the two variance components ηi and

εit has a ratio µ
2. This implies for scheme 1

σ2η = µ
2 (1− γ)(1 + 2γβφ1 + β2φ21)

(1 + γ)(1 + βπ1)2
(5.8)

and for scheme 2

σ2η = µ2
Ã
1 + ρ22 − 2ρ2

γ + βφ2 + ρ2
1 + γρ2

!"
1− ρ2 + βπ2

(1− γ)(1− ρ2)− βφ2

#−2
×"

1− γ2ρ22 −
1− γρ2
1 + γρ2

(γ + βφ2 + ρ2)
2

#−1
. (5.9)

In the simulations we examined µ = {0, 1, 5}. The parameter σ2ξ has been determined by
controlling the signal-to-noise ratio (ζ) of the model. In Kiviet (1995) it has been shown
that a proper comparison of simulation results over different parameter values requires to
exercise control over this basic model characteristic. For our panel model we deÞne for
schemes s = {1, 2}

ζ(s) =
V(y

(s)
it − εit | ηi)
V(εit)

=
V(y

(s)
it | ηi)
V(εit)

− 1. (5.10)

Normalizing with respect to σ2ε this ratio is simply equal to ζ
(s) = V(y

(s)
it | ηi) − 1. For

both schemes 1 and 2 we choose ζ(s) = {3, 9} in the simulations. In Appendix B we show
that to achieve this, scheme 1 requires

σ2ξ =
1

β2

"
ζ(1) − (γ + βφ1)

2

1− γ2
#
(1− γ2)(1− ρ21)(1− γρ1)

1 + γρ1
(5.11)

and scheme 2

σ2ξ =
1

β2
³
ζ(2) + 1

´ "
1− γ2ρ22 −

1− γρ2
1 + γρ2

(γ + βφ2 + ρ2)
2

#
(5.12)

− 1

β2

Ã
1 + ρ22 − 2ρ2

γ + βφ2 + ρ2
1 + γρ2

!
.

Selfevidently, not every combination of values of the parameters is feasible.
In all experiments the individual effects ηi and the (other) stochastic source for the

xit variables ξit were drawn from the normal distribution. For the noise εit ∼ i.i.d.(0, 1),
however, besides the standard normal distribution, we also chose one with fatter tails, viz.
t3/
√
3 (standardized Student with 3 degrees of freedom) and a skew one, viz. (χ21−1)/

√
2.

Regarding sample size we will focus on rather small values, viz. T = {5, 10, 20, 50} and
N = {20, 50} . The range of values assigned above to the design parameters, i.e. to γ, β,
ρs, φs, πs, σ

2
η (through µ), σ

2
ξ (through ζ) with σ

2
ε = 1, deÞne 216 different experiments.

These have not all been examined for both scheme s = {1, 2}, different distributions of εit,
and sample sizes N, T. For some selected parametrizations the Tables 2 through 6 present
Monte Carlo estimates (each based on 10, 000 replications) for the true bias, standard
error (ster) and root mean squared error (rmse) of the various estimators of γ and β. In
the tables for scheme 1 B̄γ and B̄β give assessments of the bias obtained from the leading
terms of our expansions, where the matrices Q̄ have been obtained as an average over the
simulations of the relevant moment matrices, whereas true parameter values have been
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substituted in our approximations for E(F 0v). Comparison of B̄γ and B̄β with the actual
(estimated) bias reveals the accuracy of the higher-order approximations.
Tables 2 and 3 both concern the model according to scheme 1 with normal disturbances

at sample size T = 10, N = 20 for γ = 0.75. In Table 2 the xit variable is strongly
exogenous and not correlated with the individual effects. In designs 1 through 4 it has
variance such that the signal-to-noise ratio ζ is 3 and in designs 1 and 2 the relative
magnitude of the individual effects is such that µ = 1, which here implies σ2η =

1
7
σ2ε, see

(5.8). The only difference between designs 1 and 2 is the value of ρ. We see that biases
and rmse�s are larger when xit is smoother. Both designs show that the bias of LSDV
and of GMMß(2) is substantial and comparable in sign and magnitude, while GMMß(1)

is less biased, which is in agreement with our theoretical Þndings. The larger variance
of GMMß(1) in comparison to GMMß(2) is in agreement with the latter�s asymptotic
efficiency. However, applying a rmse criterion and focussing on γ the GMMß(1) estimator
is more efficient than LSDV and GMMß(2), and LSDV is more efficient than GMMß(2),
especially in design 2. We note that GMMß(0) has a much smaller bias than the other
estimators that use the forward orthogonal deviation transformation but at the expense
of larger variance. The GLS and GMMld estimators, which all start off from the levels
equation, tend to show a bias of opposite sign, and the non-operational GLS estimator
performs very well here, though FGLS is worse than GMMld(2) . The latter shows its
efficiency superiority with respect to the variants exploiting fewer instruments, though
it is more severely biased, which is again in agreement with our higher-order asymptotic
Þndings. As expected, the GMMs estimator is not showing an exceptionally small bias
(although it seems to beneÞt from the opposite sign in bias of its building blocks GMMß(2)

and GMMld(1)), but regarding rmse it comes close to GMMld(2) . In all further results
reported we stick to the ρ = 0.95 case. In designs 3 and 4 we just examine the effects
of changing µ. In design 3 there are no individual effects and then the estimators that
use the levels equation perform very well with respect to bias, which is in agreement with
their derived leading bias term being zero. The other estimators, including GMMs, do
not beneÞt from σ2η = 0 and they show a large bias, especially regarding γ, and a poor
rmse, especially for β. In design 4 we have µ = 5, i.e. σ2η = 34

7
σ2ε. GLS can cope with

that, whereas all other estimators, apart from those using a Þxed number of instruments,
are heavily biased. Of the operational methods GMMld(2) has smallest rmse for µ = 1,
but at µ = 5 even LSDV performs better. In designs 5 and 6 we examine the effects of
increasing the signal-to-noise ratio. We Þnd that the biases are smaller now, but they are
still substantial for most estimators. From Table 2 we also see (as well as from all other
tables below on scheme 1) that the leading term of the bias (which we did not derive
for FGLS, GMMß(0) and GMMld(0)) is usually reasonably accurate for the actual bias,
especially for the LS estimators, despite the fact that the sample size is not very large.
Note that we calculated these B̄ values from the initial crude expressions for the leading
term of the bias, and not from the simpliÞed form. Otherwise, the bias approximations
for GLS would have been zero when φ = π, which would have made them less precise, as
we see.
In Table 3 we have γ = 0.75, ζ = 3, ρ = 0.95 and we examine the effects of varying the

exogeneity status of the regressor xit. In designs 7 and 8 the regressor is not correlated
with the effects, but it is no longer strongly exogenous. Upon comparing with design 2 we
Þnd that the bias and efficiency of estimating β has improved through the changes in the
correlogram of xit; the bias of γ does not change very much as a rule. In designs 9 and
10 the regressor is again strongly exogenous but now we introduce correlation between

16



regressor and individual effects. Selfevidently we establish that LSDV is invariant with
respect to π. The other estimators are affected by π but not all in the same way. That
especially the bias of GMMld(2) and GMMld(1) varies with π is again in agreement with
the characteristics of their leading bias term. In designs 11 and 12 both π and φ are non-
zero. We see that the numerical effects of both π and φ on bias are very moderate. Hence,
we Þnd that despite the equivalence in the order of bias due to the presence of either a
lagged dependent variable or to indirect feedbacks via a weakly exogenous regressor, the
actual magnitude of the bias seems to stem primarily from the direct feedbacks when
γ = 0.75. Note that, like in Table 2, GMMs is performing relatively well, although it has
a substantial bias, especially for µ away from one.
In Table 4 we look at γ = 0.25. Comparing designs 13 with 2, and 14 with 4, we

see that especially FGLS and GMMld(2) are much worse now. Although GMMs seems
the best choice for practitioners in design 13, in design 14 we see that for µ = 5 and γ
small GMMs is much worse than the Arellano-Bond estimator. Especially the GMMld
estimators are affected by φ and π. Note that over these designs GMMß(0) has always a
small bias, whereas this is not the case for the β estimator of GMMld(0) when π = −1.
Next we did rerun the designs 2, 4 and 11 upon varying respectively the distribution

of the disturbances and the sample sizes T and N. For fat tailed and skew disturbances
almost similar results as those for the normal were found, so to save space we do not
report them. Increasing N we found that the bias of LSDV and GLS remains more or less
the same, while the bias in the GMM estimators decreases. This reßects the theoretical
Þndings in the previous section, i.e. only the order of the leading bias term for LSDV
and GLS does not depend on N while all other estimators are semi-consistent for Þnite
T and N large. For N = 50 we examined various values of T and report the results for
design 11 in Table 5. We Þnd indeed that increasing T aggravates the bias of GMMld(2),
has little effect on GMMld(1) and reduces the bias for all other techniques, as predicted
by the leading term of the bias. Note that the estimators using O(T 2) instruments do not
exist for N = T = 50. Although in Tables 2 through 5 the bias approximations are not
always very accurate, especially not for some MM estimators, there seem to be options
for improving the estimators by performing some form of bias correction.
Finally in Table 6 we present some results for the more realistic scheme 2, which only

differs from scheme 1 when φ 6= 0. We note that for particular techniques the standard
error and bias of the estimator for β changes substantially, which must be due to the
change in correlogram of xit. However, it seems that the simple scheme 1 is capable of
representing the major phenomena that are also at stake when more general forms of
feedbacks are present as incorporated in scheme 2.

6. Concluding remarks

By asymptotic expansion techniques we have produced important new analytical insights
into the bias of the major least squares and method of moments estimators for panel data
models with both lagged dependent variable regressors and additional strongly or weakly
exogenous (predetermined) explanatory variables in the presence of unobserved individual
effects and white-noise disturbances. In addition to establishing that LSDV and GLS are
biased to order O(T−1), irrespective of the value of N , whereas all the MM estimators are
biased to order O(N−1), assuming T Þxed, we revealed more subtle differences between
the various MM implementations. We examined two variants of MM estimators using
either the levels equation or the model in forward orthogonal deviations, denoted by
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GMMld and GMMß respectively, and also the hybrid system estimator GMMs. GMMld
and GMMß have both been examined for the situation where all linear moment conditions
associated with the predeterminedness of the regressors are being used (which amounts
to a number of instruments of order T 2) and when fewer instruments are being exploited,
viz. a number of order T, or just a Þxed number. We found: (i) that both GMMld and
GMMß when employing all available linear moment conditions are biased to an order
larger in magnitude by a factor T than when using a set of instruments which contain
a number of instruments reduced to order T ; however, (ii) the aggravation of bias when
the number of instruments is increased from order T to order T 2 is not affecting GMMld
and GMMß in the same way, because the bias in GMMß is overall of smaller order in
T than for GMMld; (iii) when a Þxed number of instruments is used both GMMß and
GMMld have the same order of bias as GMMß with T instruments; and (iv) this bias is
of lower order than for the GMM system estimator GMMs, although we established that
the latter can have smaller order of bias too under very speciÞc parametric restrictions;
(v) for all estimators we found that the bias due to feedbacks in the explanatory variable
(weak instead of strong exogeneity) is in principle of similar order as the bias due to the
presence of a lagged dependent variable regressor; (vi) our theoretical derivations also
indicate that for (F)GLS, GMMld and GMMs the leading term of the bias is strongly
affected by the magnitude of the individual effects and (vii) as well by any correlation of
the regressor and the effects, which seems a serious drawback in practice.
We designed appropriate Monte Carlo experiments to assess whether all these quali-

tative differences are of practical numerical relevance in actual Þnite samples. In general,
the simulations corroborate the theoretical Þndings. We examined two different schemes
for the feedback mechanism in the explanatory variable. One scheme is very simple and is
the one used in the analytical derivations, while the other seems much more relevant from
a practitioners point of view. The latter one, although easily programmed in a Monte
Carlo study, would be very difficult to analyze analytically, and for the same reasons it
leads to interpretation difficulties in a simulation. However, from a few experiments we
infer that there seems no reason to suspect that there are principle differences between
the results for these two schemes. The major results from the Monte Carlo study are as
follows: (i) all Þndings seem little affected by deviations of the error distribution form
the normal; (ii) they show for all MM estimators a reduction in bias and standard error
when N is increased from 20 to 50, while the bias for LSDV and (F)GLS remains virtually
unchanged; (iii) increasing T decreases the bias of LSDV, GLS, GMMß and GMMld(0),
it has little effect on GMMld(1), GMMs and FGLS and indeed it aggravates the bias of
GMMld(2); (iv) increasing the number of moment conditions used in estimation increases
the bias in Þnite samples considerably; (v) when γ is substantial, the magnitude of the
bias changes moderately when the other regressor is weakly instead of strongly exogenous;
(vi) apart from LSDV all estimators are found to have a bias determined by correlation of
observed and unobserved heterogeneity; (vii) the performance of the FGLS and GMMld
estimators depends heavily on the magnitude of the individual effects, occasionally leading
to dramatic biases. The latter nuisance also affects the hybrid GMMs estimator.
Since for particular parameter values all techniques show substantial bias and poor

rmse in samples where both T and N are moderate or small, standard Þrst-order asymp-
totic theory is of little use indeed to establish and rank the qualities of estimators. The
higher-order asymptotic Þndings of this study prove to be much more informative about
the actual Þnite sample behaviour of the various methods. Especially FGLS and GMMld
are not invariant with respect to µ and π, which are unknown in practice. A straightfor-
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ward advise for practitioners regarding which method to prefer in small samples does not
emerge, but under effect-stationarity GMMs seems a relatively safe choice, except when
γ is small while the effects are prominent. In future research we will examine for this
class of models for which parameter values and sample sizes our bias approximations � or
approximations obtained via alternative asymptotic sequences � can be used effectively
for bias correction and ultimately lead to more accurate inference.
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A. Derivation of the bias approximations

From (2.14) it follows that

�y(−1) = L�y + (IN ⊗ eT,1)�y0 (A.1)

= ω(IN ⊗ eT,1)ε0 + LΓ(INT + βφL)ε+ (ωγ + φβ)LΓ(IN ⊗ eT,1)ε0 + αSη,
where �y0 = (�y10, ..., �yN0)

0 has been deÞned in (2.9). With (2.15) this gives

�W = (�y(−1), �x)

= Sη
³
αe02,1 + πe

0
2,2

´
+ LΓ(INT + βφL)εe

0
2,1 + φLεe

0
2,2 + ω(IN ⊗ eT,1)ε0e02,1

+(ωγ + φβ)LΓ(IN ⊗ eT,1)ε0e02,1 + φ(IN ⊗ eT,1)ε0e02,2 (A.2)

and also the relevant stochastic elements of any instrument matrices.
Using these, we Þnd regarding LSDV

E(W 0Aε) = E( �W 0Aε) + E(W̄ 0Aε) = E( �W 0Aε),

because E(W̄ 0Aε) = 0. Using Π = ALΓ, we Þnd

E(W 0Aε) = E[ε0Π(INT + βφL)ε]e2,1 + φE(ε0ALε)e2,2
= σ2ε tr(Π)e2,1 + σ

2
εβφ tr(ΠL)e2,1 + σ

2
εφ tr(AL)e2,2 = O(N), (A.3)

because ε0 and ε are independent by assumption. This gives (4.4).
Regarding GLS we obtain

E(W 0V −1u) = E( �W 0V −1u) + E(W̄ 0V −1u) = E( �W 0V −1Sη) + E( �W 0V −1ε).

Employing (A.2) we Þnd

E( �W 0V −1Sη) = E(η0S 0V −1Sη)(αe2,1 + πe2,2) = σ2η tr
³
S 0V −1S

´
(αe2,1 + πe2,2)

= σ2εNθ(αe2,1 + πe2,2),

and in a similar way as in (A.3) and substituting V −1 = IN ⊗ (IT − θ 1T ιT ι0T ) we obtain

E( �W 0V −1ε) = σ2ε tr(V
−1LΓ)e2,1 + σ2εβφ tr(V

−1LΓL)e2,1 + σ2εφ tr(V
−1L)e2,2

= σ2εθ [tr(Π) + βφ tr(ΠL)] e2,1 − σ2εφθN
µ
1− 1

T

¶
e2,2 = O(N),

and these lead to (4.6).
Next, we examine the bias of �δGMMß(h). For h = {1, 2} it is possible to rewrite (3.9) in

an alternative convenient form. Let G be an N(T − 1)×N(T − 1) permutation matrix,
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which changes the order of the rows of Zl, W
∗ and y∗ such that no longer T − 1 rows

for the separate individuals are put together in N sub-matrices, but T − 1 sub-matrices
of N rows (the initial observation of all individuals on top, etc.). Then, because the

Z
(1)
li and Z

(2)
li are, GZl is a block-diagonal matrix, with blocks Z

0
l1, ..., Z

0
l,T−1, where Zlt is

N ×m(h)
lt with m

(2)
lt = 2t and m

(1)
lt = 2. Of course, G is orthonormal, i.e. G

0G = IN(T−1)
and G−1 = G0, hence

(Z 0lZl)
−1 = (Z 0lG

0GZl)−1 = diag[(Z 0l1Zl1)
−1, ..., (Z 0l,T−1Zl,T−1)

−1],

so that one can write, see also Arellano and Bover (1995), for h = 1, 2

�δGMMß(h) =

"
T−1X
t=1

W ∗0
t Zlt(Z

0
ltZlt)

−1Z 0ltW
∗
t

#−1 T−1X
t=1

W ∗0
t Zlt(Z

0
ltZlt)

−1Z 0lty
∗
t ,

where y∗t = (y
∗
1t, ..., y

∗
Nt)

0 and W ∗
t = (w

∗
1t, ..., w

∗
Nt)

0. Now we derive for h > 0

E(W 0P 0MZlPε) =
T−1X
t=1

E(W ∗0
t MZltε

∗
t ),

where MZlt = Zlt(Z
0
ltZlt)

−1Z 0lt with tr(MZlt) = m
(h)
lt . We proceed as follows, see also

Alvarez and Arellano (2003). We have

E(W ∗0
t MZltε

∗
t ) = E

Ã
y∗0t−1MZltε

∗
t

x∗0t MZltε
∗
t

!
= E

Ã
tr(y∗0t−1MZltε

∗
t )

tr(x∗0t MZltε
∗
t )

!

= EEt−1

Ã
tr(MZltε

∗
ty
∗0
t−1)

tr(MZltε
∗
tx
∗0
t )

!
,

where Et−1 indicates the expectation conditional on information up to t − 1. Note that
Zlt contains only relevant stochastic elements that have been observed prior to t, hence

EEt−1

Ã
tr(MZltε

∗
ty
∗0
t−1)

tr(MZltε
∗
tx
∗0
t )

!
=

Ã
E{tr[MZltEt−1(ε

∗
ty
∗0
t−1)]}

E{tr[MZltEt−1(ε
∗
tx
∗0
t )]}

!
.

Since ε∗t depends exclusively on disturbances drawn since t and has expectation zero it
has zero covariance with all components of W ∗

t that were observed prior to t. That means
that conditioning is inconsequential here, i.e. for any i

Et−1(ε∗ty
∗0
t−1) = E(ε

∗
t y
∗0
t−1) = INE(ε

∗
ity

∗
i,t−1)

Et−1(ε∗tx
∗0
t ) = E(ε

∗
tx
∗0
t ) = INE(ε

∗
itx

∗
it),

where use has been made of the independence of the N individuals. The above implies

E(W ∗0
t MZltε

∗
t ) = m

(r)
lt

Ã
E(ε∗ity

∗
i,t−1)

E(ε∗itx
∗
it)

!
= m

(r)
lt

Ã
E(p0tεip

0
tyi(−1))

E(p0tεip
0
txi)

!

= m(r)
lt

Ã
tr[E(εiy

0
i(−1))ptp

0
t]

tr[E(εix
0
i)ptp

0
t]

!
,

where p0t is the t
th row of the matrix PT . Hence,

T−1X
t=1

E(W ∗0
t MZltε

∗
t ) =

 tr[E(εiy
0
i(−1))

PT−1
t=1 m

(r)
lt ptp

0
t]

tr[E(εix
0
i)
PT−1
t=1 m

(r)
lt ptp

0
t]

 . (A.4)
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Using (2.12) and (2.11) we obtain

E(εiy
0
i(−1)) = E(εi�y

0
i(−1)) = E[εiε

0
i(IT + βφL

0
T )Γ

0
TL

0
T ] = σ

2
ε(IT + βφL

0
T )Γ

0
TL

0
T

E(εix
0
i) = E(εi�x

0
i) = φE(εiε

0
iL
0
T ) = φσ

2
εL

0
T ,

and for h = 2 we have
PT−1
t=1 m

(2)
lt ptp

0
t = 2

PT−1
t=1 tptp

0
t = 2

PT
s=2HsAsH

0
s,where Hs = (O :

Is)
0 is a T ×s selection matrix and As = Is− 1

s
ιsι

0
s (see again Alvarez and Arellano, 2003),

whereas for h = 1 we have
PT−1
t=1 m

(1)
lt ptp

0
t = 2

PT−1
t=1 ptp

0
t = 2AT . For the Þrst element of

(A.4) we now Þnd for h = 2

tr[E(εiy
0
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(2)
lt ptp

0
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0
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= − 2
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s
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"
1− 1

s

Ã
1 +

1− γs−1
1− γ

!#)

= −2T (1 + βφ)
1− γ σ2ε + o(1) = O(T ),

and for the second element

tr[E(εix
0
i)
T−1X
t=1

m
(2)
lt ptp

0
t] = 2φσ2ε

TX
s=2

tr(L0THsAsH
0
s) = 2φσ

2
ε

TX
s=2

tr(AsLs)

= −2φσ2ε
Ã
T −

TX
s=1

1

s

!
= −2φTσ2ε + o(1) = O(T ).

Hence, we obtain E(W 0P 0M
Z
(2)
l

P ε) = O(T ) and the leading bias term (4.7).

For Zl = Z
(1)
l , where m

(1)
lt = tr(MZ

(1)
lt

) = 2, the above results in

tr[E(εiy
0
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(1)
lt ptp

0
t] = 2σ2ε tr[(IT + βφL

0
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0
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0
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ε[tr(ΠT ) + βφ tr(ΠTLT )]

tr[E(εix
0
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(1)
lt ptp

0
t] = 2φσ2ε tr(L

0
TAT ),

giving E(W 0P 0M
Z
(1)
l

P ε) = O(1), and for the leading bias term we then Þnd (4.8).

Next we investigate GMMß(0), and we directly examine

E(F 0v) = E[W ∗0Z(0)l (Z
(0)0
l Z

(0)
l )

−1Z(0)0l ε∗] (A.5)
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! .
We shall not try to derive the leading term of this expectation, but only its order.
Note that according to arguments already used above we have E(Z

(0)0
l Z

(0)
l ) = O(n) and
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l Z
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−1). Therefore, the order of the expectation (A.5) will be equivalent to the order of
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where the latter equality follows from E(Z
(0)0
li ε

∗
i ) = 0 and the independence of the N

individuals. The two elements of the vector E[(W ∗0
i Z

(0)
li )(Z

(0)0
li ε

∗
i )] consist each of the sum

of m(0) = 4 contributions. Each of these contributions is at most O(T ).We shall illustrate
that for one such term. We consider the one for the regressor y∗i(−1) and the instrument
xi(−1), which both have T − 1 elements. We Þnd (upon omitting the subscripts i, and the
subscript T from the matrices L, Γ and P, and T or T − 1 from ι)
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= ȳ∗0(−1)E(�x(−1)ε
∗0)x̄(−1) + x̄0(−1)E(�y

∗
(−1)ε

∗0)x̄(−1) + E(�x0(−1)�y
∗
(−1)�x

0
(−1)ε

∗)
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It is obvious that the Þrst two terms are O(T ). Note that P is such that ι0PLΓP 0ι and
ι0PLΓLP 0ι are bothO(T ). The remaining expectation is E[ε0L02J 0PLΓ(I+βφL)εε0P 0JL2ε].
To evaluate this consider Þrst E(ε0Aεε0Bε), where A = (aij) and B = (bij) are general
T × T matrices, but B is lower-diagonal with zeros on its main diagonal. Then, making
use of εi ∼ i.i.d.(0,σ2ε), we Þnd

E(ε0Aεε0Bε) = E

 TX
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aijεiεj

Ã TX
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bklεkεl
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= E
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j

 = σ4ε TX
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4
ε tr(AB),

hence E[ε0L02J 0PLΓ(I+βφL)εε0P 0JL2ε] = σ4ε tr[L
02J 0PLΓ(I+βφL)P 0JL2] = O(T ). Sim-

ilar results hold for the other terms, and hence for GMMß(0) we Þnd that E(F 0v) =
O(n−1NT ) = O(1) and thus here the order of the leading term of the bias is O(n−1).
Next, we consider the GMMld estimators. Employing the permutation matrix G again

for h = 1, 2 we have here
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(h)
dt (Z

(h)0
dt Z

(h)
dt )

−1Z(h)0dt ut],

where Z
(h)
dt is a N ×m(h)

dt matrix. Writing MZd = Zdt(Z
0
dtZdt)

−1Z 0dt where tr(MZdt) = m
(h)
dt

with m
(2)
dt = 2t and m

(1)
dt = 2 we Þnd

E(W 0
tMZdtut) = E

Ã
y0t−1MZdtut
x0tMZdtut

!
= E

Ã
y0t−1MZdtη
x0tMZdtη

!
+ E

Ã
y0t−1MZdtεt
x0tMZdtεt

!
,

where the last term equals zero, because all stochastic elements of yt−1, xt and Zdt are
independent of εt. For the initial term we have

E

Ã
y0t−1MZdtη
x0tMZdtη

!
= E

Ã
�y0t−1MZdtη
�x0tMZdtη

!
+ E

Ã
ȳ0t−1MZdtη
x̄0tMZdtη

!
,
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where the last term is again zero, now because ȳt−1, x̄t and Zdt are independent of η. For
the initial term we Þnd, by removing all random elements from �yt−1 and �xt that are also
independent of η and therefore cannot contribute to the expectation,

E

Ã
�y0t−1MZdtη
�x0tMZdtη

!
= E

Ã
αη0MZdtη
πη0MZdtη

!
= E tr(η0MZdtη)

Ã
α
π

!
.

Because E tr(η0MZdtη) = E tr(MZdtηη
0) = E tr[MZdtE(ηη

0)] = σ2η tr(MZdt) = σ
2
ηm

(r)
dt ,

E(W 0J 0M
Z
(h)
d

Ju) = σ2η

Ã
α
π

!
TX
t=2

m
(h)
dt . (A.6)

Note that
PT
t=2m

(2)
dt = 2

PT
t=2 t = O(T

2) and
PT
t=2m

(1)
dt = 2

PT
t=2 1 = O(T ), leading to the

results (4.10) and (4.11). Regarding GMMld(0) we Þnd

E(F 0v) = E[W 0Z(0)d (Z
(0)0
d Z

(0)
d )

−1Z(0)0d u]

= E

Ã NX
i=1

W 0
iZ

(0)
di

!Ã
NX
i=1

Z
(0)0
di Z

(0)
di

!−1 Ã NX
i=1

Z
(0)0
di (ηiιT−1 + εi)

! ,
and its order will be equivalent to the order of

n−1E

"Ã
NX
i=1

W 0
iZ

(0)
di

!Ã
NX
i=1

Z
(0)0
di (ηiιT−1 + εi)

!#
= n−1

NX
i=1

E{W 0
iZ

(0)
di [Z

(0)0
di (ηiιT−1 + εi)]}.

Using similar arguments as above, now also using that the third moment of the distur-
bances is Þnite, it can be shown that this is also O(1), giving (4.12).
Finally we consider GMMs and rewrite (3.14) using (3.13) as

�δGMMs − δ = (W ∗0M
Z
(2)
l

W ∗ +W 0J 0M
Z
(1)
d

JW )−1(W ∗0M
Z
(2)
l

ε∗ +W 0J 0M
Z
(1)
d

Ju),

where E(W 0
sMZsWs) = Q̄GMMs = O(NT ). Results derived above directly yield

E(F 0v) = E(W ∗0M
Z
(2)
l

ε∗) + E(W 0J 0M
Z
(1)
d

Ju) = O(T ),

from which (4.13) follows.

B. Details on the simulation design

For a stationary AR(2) processes zt =
1

1−α1L−α2L2εt, with εt ∼ i.i.d.(0,σ2ε), we have

V(zt) =
µ
1− α22 −

1 + α2
1− α2α

2
1

¶−1
σ2ε; C(ztzt−1) =

α1
1− α2V(zt). (B.1)

Hence, for the ARMA(2,1) process wt = (1 + θL)zt we have

V(wt) = (1 + θ
2)V(zt) + 2θC(zt, zt−1) =

µ
1 + θ2 + 2θ

α1
1− α2

¶
V(zt). (B.2)
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Now note that in model (2.1)

yit =
β

1− γLxit +
1

1− γ ηi +
1

1− γLεit. (B.3)

Substitution of (5.2) gives for scheme 1

y
(1)
it =

β

(1− γL)(1− ρ1L)
ξit +

1 + βπ1
1− γ ηi +

1 + βφ1L
1− γL εit. (B.4)

Hence, using (B.1) and (B.2), we Þnd

V(y
(1)
it ) = σ

2
ξ

β2(1 + γρ1)

(1− ρ21)(1− γ2)(1− γρ1)
+ σ2ε

1 + 2γβφ1 + β
2φ21

1− γ2 + σ2η

Ã
1 + βπ1
1− γ

!2
. (B.5)

This yields for the signal-to-noise ratio

ζ(1) = σ2ξβ
2 1 + γρ1
(1− ρ21)(1− γ2)(1− γρ1)

+
(γ + βφ1)

2

1− γ2 (B.6)

from which (5.11) easily follows. From (B.5) it is also found that, in order to achieve

contributions to V(y
(1)
it ) from the variance components ηi and εit in a proportion with

ratio µ2, one has to choose

σ2η

Ã
1 + βπ1
1− γ

!2
= µ2σ2ε

Ã
1 + 2γβφ1 + β

2φ21
1− γ2

!
, (B.7)

from which (5.8) follows. According to (5.4) scheme 2 implies (1− ρ2L)x(2)it = φ2Ly(2)it +
π2ηi + ξit, and substitution in model (2.1) yields (1− α1L− α2L2)y(2)it = βξit + (1− ρ2 +
βπ2)ηi + (1− ρ2L)εit, with α1 = γ + βφ2 + ρ2 and α2 = −γρ2. Hence, we now have

y
(2)
it =

1

1− α1L− α2L2 [βξit + (1− ρ2 + βπ2)ηi + (1− ρ2L)εit], (B.8)

from which we obtain the results

V[y
(2)
it ] =

"
σ2ξβ

2 + σ2ε

Ã
1 + ρ22 − 2ρ2

γ + βφ2 + ρ2
1 + γρ2

!#
× (B.9)"

1− γ2ρ22 −
1− γρ2
1 + γρ2

(γ + βφ2 + ρ2)
2

#−1
+ σ2η

"
1− ρ2 + βπ2

(1− γ)(1− ρ2)− βφ2

#2
,

ζ(2) =

"
σ2ξβ

2 + σ2ε

Ã
1 + ρ22 − 2ρ2

γ + βφ2 + ρ2
1 + γρ2

!#
×"

1− γ2ρ22 −
1− γρ2
1 + γρ2

(γ + βφ2 + ρ2)
2

#−1
− 1, (B.10)

and (5.12) follows. A similar derivation for a model in a non-panel data context with an
integrated weakly exogenous explanatory variable can be found in van Giersbergen and
Kiviet (1996). To control the ratio of the variance components in scheme 2 we set

σ2η

"
1− ρ2 + βπ2

(1− γ)(1− ρ2)− βφ2

#2
= µ2σ2ε

Ã
1 + ρ22 − 2ρ2

γ + βφ2 + ρ2
1 + γρ2

!
× (B.11)"

1− γ2ρ22 −
1− γρ2
1 + γρ2

(γ + βφ2 + ρ2)
2

#−1
,
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which yields (5.9).
The data have been generated by setting xi,−49 = yi,−49 = 0, generating T + 50

observations and discarding the Þrst 49 observations to minimize the effects of the initial
zero values.

Table 1: Characteristics and order of magnitude of Þnite sample bias of LS and MM

further equation formulated in: bias
restrictions affected
on N ≥ 2 levels forward Þrst by σ2η/σ

2
ε

and T ≥ 2 orth. dev. differences and by π

LSDV none O(N0T−1) O(N0T−1) O(N0T−1) no

GLS none O(N0T−1) − − heavily

GMMfl(2) N ≥ K(T − 1) − O(N−1T 0) O(N−1T0) yes

GMMfl(1) none − O(N−1T−1) − yes

GMMfl(0) none − O(N−1T−1) − yes

GMMld(2) N ≥ K(T − 1) O(N−1T ) − − heavily

GMMld(1) none O(N−1T 0) − − heavily

GMMld(0) none O(N−1T−1) − − heavily

combining all in a hybrid system| {z }
GMMs N ≥ K(T − 1) O(N−1T 0) heavily

�− � means: is not deÞned or not relevant; K is number of regressors in model
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Table 2: Simulation results for T = 10, N = 20, scheme 1, disturbances normal

design estimator B̄γ B̄β bias γ bias β ster γ ster β rmse γ rmse β
1 LSDV -0.13 0.00 -0.14 0.00 0.06 0.04 0.15 0.04

GLS 0.02 -0.00 0.02 -0.00 0.04 0.03 0.04 0.03
γ = 0.75 FGLS 0.12 -0.03 0.04 0.04 0.13 0.05

ζ = 3 GMMfl(2) -0.11 -0.01 -0.14 -0.01 0.08 0.04 0.16 0.04

π = 0 GMMfl(1) -0.04 -0.01 -0.05 -0.01 0.10 0.05 0.11 0.05

φ = 0 GMMfl(0) -0.01 -0.00 0.11 0.05 0.11 0.05

µ = 1 GMMld(2) 0.09 -0.01 0.07 -0.01 0.05 0.04 0.08 0.04

ρ = 0.5 GMMld(1) 0.03 0.00 0.05 -0.00 0.08 0.05 0.09 0.05

GMMld(0) -0.01 -0.00 0.10 0.05 0.10 0.05
GMMs -0.05 -0.00 -0.05 -0.00 0.06 0.04 0.08 0.04

2 LSDV -0.19 0.06 -0.20 0.06 0.07 0.15 0.21 0.16
GLS 0.03 -0.02 0.02 -0.02 0.04 0.08 0.05 0.08

γ = 0.75 FGLS 0.15 -0.13 0.04 0.06 0.16 0.15

ζ = 3 GMMfl(2) -0.17 0.03 -0.22 0.03 0.09 0.23 0.24 0.23

π = 0 GMMfl(1) -0.06 0.00 -0.10 -0.01 0.14 0.40 0.18 0.40

φ = 0 GMMfl(0) -0.02 -0.00 0.16 0.58 0.16 0.58

µ = 1 GMMld(2) 0.12 -0.09 0.09 -0.07 0.05 0.09 0.10 0.11

ρ = 0.95 GMMld(1) 0.03 -0.02 0.06 -0.04 0.09 0.18 0.11 0.18

GMMld(0) -0.02 -0.01 0.14 0.43 0.14 0.43
GMMs -0.07 0.03 -0.08 0.03 0.07 0.15 0.10 0.15

3 LSDV -0.19 0.06 -0.20 0.06 0.07 0.15 0.21 0.16
GLS 0.00 0.00 -0.01 0.01 0.05 0.07 0.05 0.07

γ = 0.75 FGLS 0.05 -0.05 0.05 0.06 0.07 0.08

ζ = 3 GMMfl(2) -0.14 0.02 -0.18 0.02 0.09 0.22 0.20 0.23

π = 0 GMMfl(1) -0.04 0.00 -0.06 -0.01 0.10 0.38 0.12 0.38

φ = 0 GMMfl(0) -0.02 -0.00 0.12 0.60 0.12 0.60

µ = 0 GMMld(2) 0.00 0.00 -0.01 0.01 0.06 0.09 0.06 0.09

ρ = 0.95 GMMld(1) 0.00 0.00 -0.01 0.00 0.10 0.17 0.10 0.17

GMMld(0) -0.02 -0.01 0.12 0.38 0.12 0.38
GMMs -0.09 0.04 -0.11 0.05 0.07 0.14 0.13 0.15

4 LSDV -0.19 0.06 -0.20 0.06 0.07 0.15 0.21 0.16
GLS 0.05 -0.02 0.04 -0.02 0.04 0.12 0.06 0.12

γ = 0.75 FGLS 0.24 -0.21 0.01 0.04 0.24 0.21

ζ = 3 GMMfl(2) -0.20 0.03 -0.26 0.04 0.10 0.23 0.28 0.23

π = 0 GMMfl(1) -0.16 0.00 -0.27 -0.01 0.23 0.44 0.35 0.44

φ = 0 GMMfl(0) -0.02 0.01 0.38 0.64 0.38 0.64

µ = 5 GMMld(2) 0.28 -0.22 0.23 -0.18 0.02 0.08 0.23 0.19

ρ = 0.95 GMMld(1) 0.11 -0.07 0.22 -0.14 0.04 0.18 0.23 0.23

GMMld(0) 0.05 0.02 0.29 0.91 0.30 0.91
GMMs 0.08 -0.04 0.17 -0.08 0.04 0.15 0.17 0.17

5 LSDV -0.15 0.04 -0.16 0.05 0.06 0.07 0.17 0.08
GLS 0.02 -0.02 0.02 -0.01 0.04 0.04 0.04 0.05

γ = 0.75 FGLS 0.11 -0.09 0.04 0.04 0.11 0.10

ζ = 9 GMMfl(2) -0.12 0.02 -0.16 0.02 0.08 0.10 0.18 0.11

π = 0 GMMfl(1) -0.04 0.00 -0.06 -0.01 0.11 0.18 0.13 0.18

φ = 0 GMMfl(0) -0.02 -0.00 0.15 0.34 0.15 0.34

µ = 1 GMMld(2) 0.09 -0.07 0.06 -0.05 0.05 0.05 0.08 0.07

ρ = 0.95 GMMld(1) 0.02 -0.01 0.04 -0.03 0.08 0.09 0.09 0.09

GMMld(0) -0.02 -0.00 0.11 0.18 0.11 0.18
GMMs -0.05 0.02 -0.05 0.02 0.06 0.07 0.08 0.08

6 LSDV -0.15 0.04 -0.16 0.05 0.06 0.07 0.17 0.08
GLS 0.04 -0.02 0.04 -0.01 0.04 0.06 0.06 0.06

γ = 0.75 FGLS 0.23 -0.19 0.01 0.03 0.23 0.20

ζ = 9 GMMfl(2) -0.15 0.02 -0.20 0.03 0.09 0.11 0.22 0.11

π = 0 GMMfl(1) -0.11 0.00 -0.20 -0.01 0.20 0.20 0.29 0.20

φ = 0 GMMfl(0) -0.01 0.01 0.25 0.30 0.25 0.30

µ = 5 GMMld(2) 0.27 -0.21 0.23 -0.17 0.02 0.05 0.23 0.18

ρ = 0.95 GMMld(1) 0.11 -0.06 0.21 -0.12 0.04 0.09 0.21 0.15

GMMld(0) 0.02 0.02 0.26 0.43 0.26 0.43
GMMs 0.07 -0.03 0.15 -0.07 0.05 0.08 0.16 0.10
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Table 3: Simulation results for T = 10, N = 20, scheme 1, disturbances normal

design estimator B̄γ B̄β bias γ bias β ster γ ster β rmse γ rmse β
7 LSDV -0.20 0.05 -0.21 0.05 0.07 0.08 0.22 0.09

GLS 0.04 -0.08 0.04 -0.08 0.05 0.07 0.06 0.11
γ = 0.75 FGLS 0.16 -0.14 0.04 0.06 0.17 0.16

ζ = 3 GMMfl(2) -0.17 0.01 -0.23 0.02 0.10 0.08 0.25 0.09

π = 0 GMMfl(1) -0.08 0.01 -0.11 0.01 0.15 0.11 0.18 0.11

φ = 1 GMMfl(0) -0.02 0.01 0.15 0.10 0.15 0.10

µ = 1 GMMld(2) 0.15 -0.12 0.12 -0.10 0.05 0.08 0.13 0.12

ρ = 0.95 GMMld(1) 0.05 -0.03 0.08 -0.05 0.09 0.09 0.12 0.10

GMMld(0) -0.01 -0.00 0.12 0.10 0.12 0.10
GMMs -0.05 -0.01 -0.05 -0.01 0.08 0.08 0.09 0.09

8 LSDV -0.19 -0.03 -0.20 -0.03 0.09 0.08 0.22 0.09
GLS 0.03 0.01 0.02 0.02 0.04 0.04 0.05 0.05

γ = 0.75 FGLS 0.13 -0.09 0.04 0.05 0.13 0.10

ζ = 3 GMMfl(2) -0.17 -0.04 -0.23 -0.06 0.14 0.11 0.27 0.13

π = 0 GMMfl(1) -0.09 -0.05 -0.14 -0.08 0.25 0.21 0.29 0.22

φ = −1 GMMfl(0) -0.03 -0.02 0.28 0.20 0.28 0.20

µ = 1 GMMld(2) 0.08 -0.01 0.06 -0.00 0.05 0.05 0.08 0.06

ρ = 0.95 GMMld(1) 0.02 0.01 0.04 0.01 0.10 0.09 0.11 0.09

GMMld(0) -0.01 -0.00 0.22 0.16 0.22 0.16
GMMs -0.05 0.01 -0.06 0.01 0.08 0.07 0.10 0.08

9 LSDV -0.19 0.06 -0.20 0.06 0.07 0.15 0.21 0.16
GLS 0.03 0.01 0.02 0.02 0.04 0.07 0.05 0.08

γ = 0.75 FGLS 0.13 -0.09 0.04 0.06 0.14 0.11

ζ = 3 GMMfl(2) -0.16 0.02 -0.21 0.02 0.09 0.23 0.23 0.23

π = 1 GMMfl(1) -0.05 -0.01 -0.09 -0.03 0.13 0.40 0.16 0.40

φ = 0 GMMfl(0) -0.02 -0.01 0.15 0.64 0.16 0.64

µ = 1 GMMld(2) 0.09 -0.03 0.06 -0.02 0.05 0.09 0.08 0.10

ρ = 0.95 GMMld(1) 0.03 -0.00 0.04 -0.00 0.09 0.18 0.10 0.18

GMMld(0) -0.02 -0.01 0.14 0.43 0.14 0.43
GMMs -0.07 0.05 -0.08 0.06 0.07 0.15 0.11 0.16

10 LSDV -0.19 0.06 -0.20 0.06 0.07 0.15 0.21 0.16
GLS 0.02 -0.09 0.01 -0.09 0.05 0.08 0.05 0.12

γ = 0.75 FGLS 0.18 -0.19 0.03 0.05 0.18 0.20

ζ = 3 GMMfl(2) -0.17 0.04 -0.23 0.05 0.10 0.23 0.25 0.23

π = −1 GMMfl(1) -0.07 0.03 -0.13 0.04 0.16 0.41 0.21 0.42

φ = 0 GMMfl(0) -0.02 0.00 0.17 0.59 0.17 0.59

µ = 1 GMMld(2) 0.15 -0.18 0.11 -0.15 0.05 0.08 0.12 0.17

ρ = 0.95 GMMld(1) 0.05 -0.06 0.08 -0.12 0.09 0.17 0.12 0.21

GMMld(0) -0.02 0.01 0.14 0.55 0.15 0.55
GMMs -0.06 -0.01 -0.06 -0.04 0.07 0.15 0.09 0.15

11 LSDV -0.20 0.05 -0.21 0.05 0.07 0.08 0.22 0.09
GLS 0.04 -0.03 0.03 -0.03 0.04 0.07 0.06 0.08

γ = 0.75 FGLS 0.14 -0.08 0.04 0.07 0.14 0.10

ζ = 3 GMMfl(2) -0.17 0.01 -0.22 0.02 0.10 0.08 0.24 0.09

π = 1 GMMfl(1) -0.07 0.00 -0.09 -0.00 0.13 0.11 0.16 0.11

φ = 1 GMMfl(0) -0.02 0.01 0.14 0.10 0.14 0.10

µ = 1 GMMld(2) 0.11 -0.06 0.09 -0.05 0.05 0.08 0.10 0.09

ρ = 0.95 GMMld(1) 0.04 -0.02 0.06 -0.03 0.09 0.09 0.11 0.10

GMMld(0) -0.01 -0.00 0.12 0.10 0.12 0.10
GMMs -0.06 0.00 -0.07 0.00 0.08 0.08 0.10 0.08

12 LSDV -0.20 0.05 -0.21 0.05 0.07 0.08 0.22 0.09
GLS 0.06 -0.06 0.06 -0.06 0.04 0.08 0.07 0.10

γ = 0.75 FGLS 0.22 -0.13 0.01 0.06 0.22 0.15

ζ = 3 GMMfl(2) -0.20 0.01 -0.26 0.02 0.10 0.08 0.28 0.09

π = 1 GMMfl(1) -0.16 0.01 -0.22 0.01 0.20 0.11 0.29 0.11

φ = 1 GMMfl(0) -0.02 0.01 0.31 0.12 0.31 0.12

µ = 5 GMMld(2) 0.25 -0.13 0.21 -0.11 0.02 0.07 0.21 0.13

ρ = 0.95 GMMld(1) 0.10 -0.04 0.20 -0.09 0.04 0.09 0.20 0.12

GMMld(0) 0.11 -0.04 0.18 0.11 0.21 0.12
GMMs 0.08 -0.05 0.16 -0.08 0.05 0.08 0.16 0.12
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Table 4: Simulation results for T = 10, N = 20, scheme 1, disturbances normal

design estimator B̄γ B̄β bias γ bias β ster γ ster β rmse γ rmse β
13 LSDV -0.10 0.06 -0.11 0.07 0.07 0.12 0.13 0.14

GLS 0.01 -0.01 0.01 -0.01 0.06 0.09 0.06 0.09
γ = 0.25 FGLS 0.47 -0.46 0.09 0.10 0.48 0.47

ζ = 3 GMMfl(2) -0.09 0.04 -0.11 0.05 0.08 0.17 0.13 0.18

π = 0 GMMfl(1) -0.02 0.01 -0.04 0.01 0.11 0.30 0.11 0.30

φ = 0 GMMfl(0) -0.00 0.00 0.10 0.44 0.10 0.44

µ = 1 GMMld(2) 0.29 -0.26 0.22 -0.19 0.09 0.13 0.23 0.23

ρ = 0.95 GMMld(1) 0.05 -0.04 0.09 -0.07 0.10 0.18 0.14 0.20

GMMld(0) -0.01 0.00 0.11 0.43 0.11 0.43
GMMs -0.02 0.02 -0.01 0.01 0.08 0.14 0.08 0.14

14 LSDV -0.10 0.06 -0.11 0.07 0.07 0.12 0.13 0.14
GLS 0.01 -0.01 0.01 -0.01 0.06 0.11 0.06 0.11

γ = 0.25 FGLS 0.73 -0.70 0.01 0.04 0.73 0.70

ζ = 3 GMMfl(2) -0.10 0.05 -0.12 0.06 0.08 0.18 0.15 0.18

π = 0 GMMfl(1) -0.08 0.03 -0.14 0.05 0.20 0.33 0.24 0.33

φ = 0 GMMfl(0) 0.01 0.00 0.17 0.42 0.17 0.42

µ = 5 GMMld(2) 0.83 -0.74 0.68 -0.60 0.04 0.10 0.68 0.61

ρ = 0.95 GMMld(1) 0.30 -0.22 0.58 -0.41 0.09 0.23 0.58 0.47

GMMld(0) 0.01 0.03 0.25 1.38 0.25 1.38
GMMs 0.22 -0.14 0.42 -0.27 0.10 0.20 0.44 0.34

15 LSDV -0.12 0.02 -0.12 0.02 0.07 0.09 0.14 0.09
GLS 0.01 -0.07 0.01 -0.07 0.07 0.08 0.07 0.11

γ = 0.25 FGLS 0.54 -0.52 0.07 0.09 0.55 0.53

ζ = 3 GMMfl(2) -0.09 -0.01 -0.12 -0.00 0.08 0.09 0.14 0.09

π = 0 GMMfl(1) -0.03 0.00 -0.05 0.00 0.12 0.13 0.13 0.13

φ = 1 GMMfl(0) -0.00 0.00 0.10 0.10 0.10 0.10

µ = 1 GMMld(2) 0.44 -0.39 0.35 -0.31 0.09 0.10 0.36 0.33

ρ = 0.95 GMMld(1) 0.09 -0.06 0.17 -0.10 0.12 0.11 0.21 0.15

GMMld(0) 0.00 -0.01 0.11 0.11 0.11 0.11
GMMs -0.00 -0.03 0.03 -0.06 0.09 0.09 0.09 0.11

16 LSDV 0.01 0.07 0.01 0.08 0.07 0.07 0.07 0.11
GLS 0.05 0.06 0.05 0.06 0.05 0.06 0.07 0.09

γ = 0.25 FGLS 0.33 -0.23 0.09 0.11 0.34 0.25

ζ = 3 GMMfl(2) 0.02 0.08 0.03 0.10 0.09 0.11 0.09 0.15

π = 0 GMMfl(1) 0.02 0.03 0.03 0.06 0.15 0.19 0.15 0.20

φ = −1 GMMfl(0) 0.01 0.02 0.16 0.23 0.16 0.23

µ = 1 GMMld(2) 0.17 -0.03 0.14 -0.02 0.07 0.09 0.16 0.09

ρ = 0.95 GMMld(1) 0.04 0.02 0.07 0.05 0.10 0.13 0.12 0.14

GMMld(0) 0.01 0.01 0.16 0.24 0.16 0.24
GMMs 0.03 0.05 0.05 0.07 0.07 0.09 0.09 0.11

17 LSDV -0.10 0.06 -0.11 0.07 0.07 0.12 0.13 0.14
GLS 0.01 0.04 0.01 0.04 0.06 0.08 0.06 0.09

γ = 0.25 FGLS 0.30 -0.25 0.10 0.11 0.32 0.28

ζ = 3 GMMfl(2) -0.08 0.04 -0.10 0.04 0.07 0.17 0.13 0.18

π = 1 GMMfl(1) -0.02 0.00 -0.03 0.00 0.09 0.30 0.09 0.30

φ = 0 GMMfl(0) -0.01 0.00 0.10 0.48 0.10 0.48

µ = 1 GMMld(2) 0.12 -0.05 0.09 -0.03 0.08 0.11 0.12 0.11

ρ = 0.95 GMMld(1) 0.02 0.01 0.04 0.02 0.09 0.16 0.10 0.16

GMMld(0) -0.01 -0.00 0.10 0.36 0.10 0.36
GMMs -0.04 0.04 -0.04 0.06 0.07 0.13 0.08 0.14

18 LSDV -0.10 0.06 -0.11 0.07 0.07 0.12 0.13 0.14
GLS -0.03 -0.16 -0.04 -0.16 0.06 0.10 0.07 0.19

γ = 0.25 FGLS 0.65 -0.75 0.05 0.02 0.65 0.75

ζ = 3 GMMfl(2) -0.09 0.06 -0.12 0.07 0.08 0.18 0.14 0.19

π = −1 GMMfl(1) -0.05 0.07 -0.09 0.11 0.17 0.38 0.19 0.40

φ = 0 GMMfl(0) 0.01 -0.03 0.16 0.59 0.16 0.59

µ = 1 GMMld(2) 0.60 -0.88 0.47 -0.73 0.08 0.06 0.48 0.74

ρ = 0.95 GMMld(1) 0.15 -0.35 0.27 -0.70 0.12 0.12 0.30 0.71

GMMld(0) 0.01 -0.25 0.22 1.11 0.22 1.14
GMMs 0.06 -0.31 0.13 -0.60 0.09 0.13 0.16 0.62
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Table 5: Simulation results for design 11, N = 50, scheme 1, disturbances normal

T estimator B̄γ B̄β bias γ bias β ster γ ster β rmse γ rmse β
5 LSDV -0.41 0.05 -0.41 0.05 0.08 0.08 0.42 0.09

GLS 0.08 -0.07 0.07 -0.07 0.04 0.06 0.08 0.09
FGLS 0.11 -0.07 0.03 0.06 0.11 0.09

GMMfl(2) -0.12 -0.01 -0.20 -0.02 0.16 0.09 0.26 0.09

GMMfl(1) -0.09 -0.01 -0.10 -0.01 0.20 0.11 0.22 0.11

GMMfl(0) -0.03 0.00 0.21 0.11 0.21 0.11

GMMld(2) 0.07 -0.03 0.04 -0.02 0.08 0.09 0.09 0.09

GMMld(1) 0.02 -0.01 0.03 -0.02 0.12 0.09 0.12 0.10

GMMld(0) -0.01 -0.00 0.12 0.09 0.12 0.09
GMMs -0.01 -0.01 -0.03 -0.01 0.10 0.09 0.10 0.09

10 LSDV -0.20 0.05 -0.21 0.05 0.04 0.05 0.21 0.07
GLS 0.04 -0.03 0.04 -0.03 0.03 0.05 0.05 0.06
FGLS 0.14 -0.08 0.02 0.04 0.14 0.09

GMMfl(2) -0.10 0.00 -0.13 0.01 0.07 0.06 0.15 0.06

GMMfl(1) -0.03 0.00 -0.04 -0.00 0.09 0.07 0.10 0.07

GMMfl(0) -0.01 0.00 0.09 0.06 0.09 0.06

GMMld(2) 0.08 -0.04 0.06 -0.03 0.04 0.05 0.07 0.06

GMMld(1) 0.02 -0.01 0.04 -0.02 0.07 0.06 0.08 0.06

GMMld(0) -0.00 0.00 0.07 0.06 0.07 0.06
GMMs -0.04 0.00 -0.04 0.00 0.06 0.06 0.07 0.06

20 LSDV -0.10 0.03 -0.10 0.03 0.03 0.03 0.10 0.05
GLS 0.01 -0.01 0.01 -0.01 0.02 0.03 0.02 0.03
FGLS 0.17 -0.12 0.02 0.03 0.17 0.12

GMMfl(2) -0.08 0.01 -0.09 0.02 0.03 0.04 0.10 0.04

GMMfl(1) -0.01 0.00 -0.02 0.00 0.04 0.04 0.05 0.04

GMMfl(0) -0.00 0.00 0.04 0.04 0.04 0.04

GMMld(2) 0.09 -0.05 0.08 -0.04 0.02 0.04 0.08 0.05

GMMld(1) 0.02 -0.01 0.04 -0.02 0.05 0.04 0.06 0.05

GMMld(0) -0.00 0.00 0.05 0.04 0.05 0.04
GMMs -0.05 0.01 -0.05 0.01 0.03 0.04 0.06 0.04

50 LSDV -0.04 0.02 -0.04 0.02 0.01 0.02 0.04 0.03
GLS 0.00 -0.00 0.00 -0.00 0.01 0.02 0.01 0.02
FGLS 0.20 -0.16 0.01 0.02 0.20 0.16

GMMfl(1) -0.00 0.00 -0.01 0.00 0.02 0.02 0.02 0.02

GMMfl(0) -0.00 0.00 0.02 0.02 0.02 0.02

GMMld(1) 0.02 -0.01 0.04 -0.02 0.03 0.03 0.05 0.03

GMMld(0) -0.00 0.00 0.03 0.03 0.03 0.03

Table 6: Simulation results for T = 10, N = 20, scheme 2, disturbances normal

design estimator bias γ bias β ster γ ster β rmse γ rmse β
11 LSDV -0.21 0.03 0.07 0.17 0.22 0.18

GLS 0.02 0.01 0.04 0.08 0.05 0.08
γ = 0.75 FGLS 0.14 -0.11 0.04 0.07 0.15 0.13

ζ = 3 GMMfl(2) -0.22 -0.02 0.09 0.26 0.24 0.27

π = 1 GMMfl(1) -0.10 -0.07 0.14 0.48 0.17 0.49

φ = 1 GMMfl(0) -0.02 -0.02 0.17 0.83 0.17 0.83

µ = 1 GMMld(2) 0.06 -0.03 0.06 0.10 0.08 0.10

ρ = 0.95 GMMld(1) 0.04 -0.00 0.10 0.20 0.11 0.20

GMMld(0) -0.02 0.01 0.14 0.52 0.14 0.52
GMMs -0.09 0.06 0.07 0.16 0.11 0.18

12 LSDV -0.21 0.03 0.07 0.17 0.22 0.18
GLS 0.03 0.15 0.04 0.13 0.05 0.20

γ = 0.75 FGLS 0.23 -0.17 0.01 0.06 0.23 0.18

ζ = 3 GMMfl(2) -0.27 -0.02 0.10 0.27 0.29 0.27

π = 1 GMMfl(1) -0.26 -0.15 0.22 0.52 0.34 0.54

φ = 1 GMMfl(0) -0.02 -0.01 0.75 0.98 0.75 0.98

µ = 5 GMMld(2) 0.21 -0.09 0.02 0.10 0.21 0.13

ρ = 0.95 GMMld(1) 0.18 -0.02 0.05 0.20 0.19 0.21

GMMld(0) 0.02 0.22 0.23 0.78 0.24 0.81
GMMs 0.11 0.13 0.05 0.17 0.12 0.21
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