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Solution of a supersymmetric model of correlated electrons
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We consider the exact solution of a model of correlated electrons based on the superalgebra Osp~2u2!. The
corresponding Bethe ansatz equations have an interesting form. We derive an expression for the ground-state
energy at half filling. We also present the eigenvalue of the transfer matrix commuting with the Hamiltonian.
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Recently, supersymmetric generalizations of the Hubb
model have attracted considerable interest for their poss
relevance in describing correlated electron systems. A s
cessful example is the Essler, Korepin, and Schoutens1 ex-
tended Hubbard model due to its superconductive proper
This model is based on the Sl~2u2! superalgebra and is ex
actly solvable in one dimension by the Bethe ansatz.1,2 An-
other interesting system is a supersymmetric free-param
model based on the continuous representation of the gl~2u1!
superalgebra discussed by Brackenet al.3 We recall that, for
a special value of the coupling constant, this model was a
considered by Karnaukhov.4 Shortly afterwards, an aniso
tropic deformation of this model was found5,6 as well as its
solution by the coordinate Bethe ansatz approach.5,7

The main feature of these models is that in one dimens
they are integrable and therefore they provide us with n
perturbative information concerning physical properties.
fact, they can be derived from supersymmetric solutions
the Yang-Baxter equation invariant either by the Sl~2u2! or
by the Osp~2u2! superalgebras.3,8,9,12However, at least from
the Bethe ansatz point of view, there exists a supersymm
solution that has not yet been discussed in the literature
far. This solution was found some time ago by Deguc
Fujii, and Ito12 in the context of aq-deformed Osp~2u2! su-
peralgebra and very recently has been interpreted as b
invariant by the twistedUq@Sl(2u2)(2)# superalgebra.13 It
seems that this model exhausts the cases that can be de
by exploiting the Osp~2u2! superalgebra.9,13 This then pro-
vides us with an extra motivation for studying this supersy
metric system. The purpose of this paper is to discuss
solution in the context of an exactly solvable model of c
related electrons by presenting its Bethe ansatz solution

The one-dimensional lattice Hamiltonian is derived fro
the logarithmic derivative of theR matrix solving the super-
symmetric Yang-Baxter equation. For explicit expressio
we refer to Refs. 12, 9, and 13. Its turns out that the co
sponding Hamiltonian can be written in terms of fermion
operatorsci ,s

† and ci ,s acting on the sitesi of a chain of
lengthL and carrying spin indexs56. We found that the
Hamiltonian reads as
560163-1829/97/56~11!/6376~4!/$10.00
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i 51

L

(
s56

@ci ,s
† ci 11,s1H.c.#@12ni ,2s~11sV1!

2ni 11,2s~12sV1!#1V2(
i 51

L

@ci ,1
† ci ,2

† ci 11,2ci 11,1

2ci ,1
† ci 11,2

† ci 11,1ci ,21H.c.#

1V2(
i 51

L

@ni ,1ni ,21ni 11,1ni 11,21ni ,1ni 11,2

1ni ,2ni 11,12ni2ni 1111#, ~1!

where ni ,s5ci ,s
† ci ,s is the number operator for electron

with spin s on site i and we writeni5ni ,11ni ,2 . This
Hamiltonian conserves the numberN1 andN2 of electrons
with spin up and down, respectively. Later on we will use t
total number of electronsNe5N11N2 and the numberN1

as the good ‘‘quantum’’ numbers for characterizing the sp
trum of the Hamiltonian. We observe that in the derivation
expression~1! we have used theR matrix of Deguchi, Fujii,
and Ito and afterwards performed a convenient canon
transformation. For example, an off-diagonal Hamiltoni
element such as (i /2)(e12^ e432e21^ e34) has been trans
formed into 1

2(e12^ e431e21^ e34), whereeab stands for the
elementary matrix (eab) i , j5d i ,ad j ,b . This has the advantag
of simplifying the form of the hopping terms as well a
bringing their coefficients to assume real values. Furth
more, we also have removed from consideration terms~such
as the one proportional toni2ni 11! that are automatically
canceled out when periodic boundary conditions are
posed.

The Hamiltonian~1! presents extra-fine-tuned hoppin
terms, on-site and off-site Coulomb interactions. We rec
that such interactions much resemble those appearing in
model of hole superconductivity proposed by Hirsch,14 and
they can be derived from first principles. This model b
comes integrable when the couplingsV1 and V2 are con-
strained on the unitary circle, i.e.,V1

21V2
251. The param-
6376 © 1997 The American Physical Society
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56 6377BRIEF REPORTS
etrization of these couplings in terms of theq-deformed
parameterq5exp(ig) (0<g<p) of the Osp~2u2! superalge-
bra can be read as

V15sin~g!, V25cos~g!. ~2!

From Eq. ~1! we see that wheng→0, this Hamiltonian
reduces to the model proposed by Essler, Korepin,
Shoutens.1 This has been noted previously in Ref. 13. It
still possible to reduce the interval for the anisotropyg if we
perform particle-hole transformations. Indeed, the combi
set of canonical transformations~I! ci ,s

† ↔ci ,s and ~II !
ci ,s

† ↔(21)ici ,s leads us to conclude that the spectra at c
tain values ofg and p2g are related to each other. Mor
precisely, we have the following identity:

H~g!52H~p2g!, ~3!

and consequently we can restrict our analysis only for
regime 0<g<p/2. This identity indicates that the symme
ric point g5p/2 is somewhat special. In fact, atg5p/2 we
are left with ‘‘almost’’ a free-fermion theory. In this case th
spectrum splits in two sectors, depending on the parity of
total number of electrons in the lattice. We have two dec
pledXY models, with antiperiodic or periodic boundary co
ditions for Ne even or odd, respectively. We note th
H(p/2) corresponds also to the limitU→` in the Bariev
chain,15 which is a special case of a generalizedXY model
proposed long ago by Suzuki.16 This means that theR matrix
of Deguchi, Fujii, and Ito provides also embedding~‘‘cover-
ing’’ vertex model! for this peculiar limit of the Bariev
chain.17

We now turn to the diagonalization of Hamiltonian~1! by
the coordinate Bethe ansatz formalism. In other words,
would like to solve the eigenvalue problem,HC5E(L)C,
provided the wave function in the sector ofNe electrons
distributed on the positions 1<xQ1

<xQ2
<•••<xQNe

<L has

the following form:

Cs1 ,...,sNe
~xQ1

,...,xQNe
!

5(
P

sgn~P!)
j 51

Ne

exp@ ipPj
xQj

#A~PuQ!s1 ,...,sNe
, ~4!

where theP summation extends over all the permutatio
of the momenta (P1 ,...,PNe

) and sgn is the sign o
the permutation. When electrons are far enough a
(uxQi

2xQj
u>2) it is direct to derive that the eigenvalues a

given by

E~L !5(
j 51

Ne

2 cos~pj !1V2~L22Ne!. ~5!

The next step is to consider the matching condition for
Bethe ansatz wave function. Since the Hamiltonian~1! has
been derived from a factorizableR matrix, we can restrict
ourselves to the discussion of the two-body problem~two
electrons in the chain!. This is given in terms of the two
bodyS matrix, which connects the scattering amplitudes
d

d

r-

e

e
-

e

rt

e

-

tween states$(p1 ,s1);(p2 ,s2)% and $(p2 ,s28);(p1 ,s18)%.
We found that the non-null two-bodyS-matrix elements are
given by

S11
11~l!5S22

22~l!51,

S12
12~l!5S21

21~l!5
sinh~l!

sinh~l12ig!
,

S12
21~l!5S21

12~l!5
sinh~2ig!

sinh~l12ig!
, ~6!

wherel5l12l2 andl j are the ‘‘dressed’’ momenta rapidi
ties that are related to the momentapj by the following re-
lation:

exp@ ip j #5
sinh~l j /22 ig/2!

sinh~l j /21 ig/2!
. ~7!

Now we have the basic ingredients to derive the Be
ansatz equations. The next step is to face the problem
diagonalizing the spin degrees of freedom that are enco
in the S matrix ~6!. However, since thisS matrix is of the
six-vertex type, this later problem can be solved by stand
algebraic methods.18 In the course of the solution we have
introduce new spin rapiditiesm j , j 51,...,N1 . It turns out
that the dressed momenta and the spin variables satisfy
following nested Bethe ansatz equations:

Fsinh~l j /22 ig/2!

sinh~l j /21 ig/2!G
L

5)
k51

N1 sinh~l j2mk2 ig!

sinh~l j2mk1 ig!
,

j 51,...,Ne , ~8!

)
k51

Ne sinh~m j2lk2 ig!

sinh~m j2lk1 ig!
52)

k51

N1 sinh~m j2mk22ig!

sinh~m j2mk12ig!
,

j 51,...,N1 , ~9!

and, in terms of the rapiditiesl j , the eigenvaluesE(L) are
given by

E~L !5(
i 51

Ne 2 sin2~g!

cos~g!2cosh~l i !
1cos~g!L. ~10!

The Bethe ansatz equations~8! and ~9! have the unusua
peculiarity that the ‘‘dressed’’ momenta variablel j enters in
different ways in the momenta~as l j /2! and in the bare
phase shift@right-hand side of Eq.~8!#. This is a special
feature that distinguishes this model from the free-param
supersymmetric correlated electron system.3,5,7 Furthermore,
near half-filling we have determined that whilel j are real
roots, the spin variablesm j form strings of the following
type:

m j5m j1 i
p

2
. ~11!
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By substituting this ansatz in Eqs.~8! and~9!, taking their
logarithms, and afterwards performing the thermodynam
limit L→`, we are able to obtain the integral equations
the densitiess~l! and r~m! for the variablesl j and m j ,
respectively. They are given by

s~l!5
c18~l/2,g/2!

2p
1E

2`

1`

dmc28~l2m,g!r~m!, ~12!

2pr~m!5E
2`

1`

dlc18~m2l,2g!r~l!

1E
2`

1`

dlc28~m2l,g!s~l!, ~13!

where c1(x,g)52 arctan@cot(g)tanh(x)# and c2(x,g)
52 arctan@tan(g)tanh(x)# and the prime stands for the deriv
tive c1,28 (x/a,g)5@dc1,2(x/a,g)#/dx. These coupled inte
gral equations can be solved by standard Fourier transfo
Considering the thermodynamic limit ofE(L)/L and taking
into account the expression ofs~l!, we find that the ground-
state energy per particle at half-filling is given by the expr
sion
do
f
e

f

s
fo
fo
ic
r

s.

-

e`524 sin~g!E
0

`

dv
cosh@v~p/22g!#sinh@v~p2g!#

cosh@vp/2#sinh@vp#

1cos~g!. ~14!

We would like to conclude with the following remarks
The experience we have gained solving the Hamiltonian~1!
by the Bethe ansatz is also helpful if one wants to determ
the eigenvalues of the transfer matrix of the underlying cl
sical statistical model. Exact information about these eig
values is of considerable interest, because the transfer m
is the generator of the many conserved currents commu
with the Hamiltonian~1!. Considering that the eigenvalue
L(l,$l j ,m j%) of the transfer matrix are analytical function
of the variables$l j ,m j%, it is not difficult to start with an
ansatz fulfilling this requirement. This is a phenomenologi
approach that goes by the name of analytical Bethe ans
Taking into account the Bethe ansatz equations~8! and ~9!
~analyticity conditions!, as well as the unitary and the cros
ing properties of the transfer matrix, we can find the follo
ing expression for the eigenvalues:
L~l,$l i ,m j%!5@a~l!#L)
i 51

Ne sinh~l i /22l/22 ig/2!

sinh~l i /22l/21 ig/2!
1@b~l!#L)

i 51

Ne cosh~l/22l i /22 ig/2!

cosh~l/22l i /21 ig/2!

2@c~l!#LH)
i 51

Ne sinh~l/22l i /21 ig/2!

sinh~l/22l i /22 ig/2! )
j 51

N1 sinh~m j2l12ig!

sinh~m j2l!

1)
i 51

Ne cosh~l/22l i /22 ig/2!

cosh~l/22l i /21 ig/2! )
j 51

N1 sinh~l2m j12ig!

sinh~l2m j !
J , ~15!
l of
The
nd-
ed.

the
he
d

rs

-

na-
where the functionsa(l), b(l), andc(l) govern the behav-
ior of the transfer matrix on the pure ferromagnetic pseu
vacuum~this is equivalent to the totally empty or full band o
electrons!. For instance, if we take into account th
R-matrix elements of Ref. 12 we find that

a~l!5
sinh~ ig2l/2!

sinh~ ig1l/2!
, b~l!52

tanh~l/2!

tanh~ ig1l/2!
,

c~l!52
sinh~l/2!

sinh~ ig1l/2!
. ~16!

and from Eqs.~15! and~16! it is clear that all the residues o
L(l,$l j ,m j%) vanish, provided the variables$l j ,m j% satisfy
the Bethe ansatz equations. We believe that this expres
can also be derived more rigorously by using our recent
mulation of the quantum inverse scattering method
Hubbard-like models.19
-

ion
r-
r

In summary, we have solved a supersymmetric mode
correlated electrons by the Bethe ansatz approach.
ground-state energy at half-filling as well as the correspo
ing transfer matrix eigenvalues have been also determin
Preliminary analysis indicates that the excitations in
model are gapless near half-filling. Finally, from the Bet
ansatz point of view, the limitg→0 needs to be performe
taking extra care. Due to the peculiar topology of rootsm j
@see Eq.~11!#, the situation is analogous to the Su~3! isotro-
pic limit of the Izergin-Korepin model.20 We also remark
that when bothl j andm j are real roots, one easily recove
the t-J sector present in the Sl~2u2! model.1,2

This work was supported by FOM~Fundamental Onder
zoek der Materie! and Fapesp~Fundac¸ão de Amparo a` Pes-
quisa do Estado de Sa˜o Paulo!, and was partially done in the
frame of Associate Membership programme of the Inter
tional Centre for Theoretical Physics, Trieste, Italy.
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