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Solution of a supersymmetric model of correlated electrons

M. J. Martins
Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valcknierstraat 65, 1018 XE Amsterdam, The Netherlands
and Departamento de Eica, Universidade Federal dé 8&Carlos, Caixa Postal 676, 13565-905,d5&arlos, Brazil

P. B. Ramos
Departamento de Bica, Universidade Federal dé 8&arlos, Caixa Postal 676, 13565-905,d5&arlos, Brazil
(Received 11 April 1997

We consider the exact solution of a model of correlated electrons based on the superalgéiy. O
corresponding Bethe ansatz equations have an interesting form. We derive an expression for the ground-state
energy at half filling. We also present the eigenvalue of the transfer matrix commuting with the Hamiltonian.
[S0163-182697)07435-3

Recently, supersymmetric generalizations of the Hubbard L
model have attracted considerable interest for their possible H =2 E [cif(,cHl,,,ﬂL Hclll-n; _(1+oV,)
relevance in describing correlated electron systems. A suc- 1=1o==
cessful example is the Essler, Korepin, and Schotiters L
tended Hubbard model due to its superconductive properties. —niﬂy,g(l—avl)]%—vzz [CLCI,CHL,CHH
This model is based on the (32) superalgebra and is ex- =1
actly solvable in one dimension by the Bethe and&tAn- ot ot _ _
i i ; ; Ci+Cit1-Ci+1+Ci - tH.C]
other interesting system is a supersymmetric free-parameter
model based on the continuous representation of tt@1yl L
superalgebra discussed by Bracletral3 We recall that, for +Vo 2 [N M+ Ny Mg N N
a special value of the coupling constant, this model was also =t
considered by KarnaukhdvShortly afterwards, an aniso- AN Ny — NN+ 1], )

tropic deformation of this model was foutfias well as its
solution by the coordinate Bethe ansatz approdch.

The main feature of these models is that in one dimensiomwhere ni,,,:c{(,ci,(, is the number operator for electrons
they are integrable and therefore they provide us with nonwith spin o on sitei and we writen;=n; ,+n; _. This
perturbative information concerning physical properties. InHamiltonian conserves the numbier, andN_ of electrons
fact, they can be derived from supersymmetric solutions ofvith spin up and down, respectively. Later on we will use the
the Yang-Baxter equation invariant either by thé2®) or  total number of electronsl,=N_+N_ and the numbeN
by the Osy2|2) superalgebra$®°*?However, at least from as the good “quantum’” numbers for characterizing the spec-
the Bethe ansatz point of view, there exists a supersymmetricum of the Hamiltonian. We observe that in the derivation of
solution that has not yet been discussed in the literature sexpression1) we have used thB matrix of Deguchi, Fuijii,
far. This solution was found some time ago by Deguchi,and Ito and afterwards performed a convenient canonical
Fujii, and Itd*? in the context of aj-deformed Os(?|2) su-  transformation. For example, an off-diagonal Hamiltonian
peralgebra and very recently has been interpreted as beimdement such asif)(e;,®e,3—e,1®€e3,) has been trans-
invariant by the twistedJ,[SI(2|2)®)] superalgebrd® It formed into3(e;,® €43+ €x1®€34), Wheree,, stands for the
seems that this model exhausts the cases that can be deriveémentary matrix€,); j= d; 2Jj . This has the advantage
by exploiting the Os{2|2) superalgebra?!® This then pro- of simplifying the form of the hopping terms as well as
vides us with an extra motivation for studying this supersym-bringing their coefficients to assume real values. Further-
metric system. The purpose of this paper is to discuss thimore, we also have removed from consideration teisush
solution in the context of an exactly solvable model of cor-as the one proportional to,—n;, ;) that are automatically
related electrons by presenting its Bethe ansatz solution. canceled out when periodic boundary conditions are im-

The one-dimensional lattice Hamiltonian is derived fromposed.
the logarithmic derivative of th& matrix solving the super- The Hamiltonian(1) presents extra-fine-tuned hopping
symmetric Yang-Baxter equation. For explicit expressiongerms, on-site and off-site Coulomb interactions. We recall
we refer to Refs. 12, 9, and 13. Its turns out that the correthat such interactions much resemble those appearing in the
sponding Hamiltonian can be written in terms of fermionic model of hole superconductivity proposed by Hirdétand
operatorsc;r’,r and c; , acting on the sites of a chain of they can be derived from first principles. This model be-
lengthL and carrying spin indexr= +. We found that the comes integrable when the couplings and V, are con-
Hamiltonian reads as strained on the unitary circle, i.eV3+V3=1. The param-
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etrization of these couplings in terms of thedeformed tween states{(pi,01);(P2,02)} and {(p2,03);(P1,07)}-
parameteq=exp(y) (0<y=<m) of the Os2|2) superalge- We found that the non-null two-bod$-matrix elements are

bra can be read as given by
Vi=sin(y), Vp=cogy). 2 SIi(M)=S_Z(\)=1,
From Eg.(1) we see that whery— 0, this Hamiltonian L . sinh(\)
reduces to the model proposed by Essler, Korepin, and S+*()\):S*+()\):—sinr()\+2iy)’
Shouteng. This has been noted previously in Ref. 13. It is
still possible to reduce the interval for the anisotropif we sinh(2i y)
perform particle-hole transformations. Indeed, the combined S;f(v=sfi(n)= (6)

set of canonical transformationd) ci’f0<—>ci,(, and (I sinh(A +2i y)

ciT,U<—>(— 1)‘ci'(, leads us to conclude that the spectra at cerwhereh =\;—X\, and\; are the “dressed” momenta rapidi-
tain values ofy and w— y are related to each other. More ties that are related to the momemgaby the following re-
precisely, we have the following identity: lation:

H(y)=—H(7—7), €) exli _ Sinf(j/2—i/2) 7
Pil= s o : )
. . sinh(\/2+iy/2)
and consequently we can restrict our analysis only for the
regime O<y= /2. This identity indicates that the symmet-  Now we have the basic ingredients to derive the Bethe
fic point y=/2 is somewhat special. In fact, gt=m/2 we  ansatz equations. The next step is to face the problem of
are left with “almost” a free-fermion theory. In this case the giagonalizing the spin degrees of freedom that are encoded
spectrum splits in two sec’;ors, depe_ndmg on the parity of the, the S matrix (6). However, since thi$ matrix is of the
total number of electrons in the lattice. We have two decousiy.vertex type, this later problem can be solved by standard
pled X'y models, with antiperiodic or periodic boundary con- gigebraic method¥ In the course of the solution we have to
ditions for N, even or odd, respectively. We note that jntroduce new spin rapiditieg;, j=1,...N. . It turns out

H(w/2) corresponds also to the limid — in the Bariev  that the dressed momenta and the spin variables satisfy the
chain;> which is a special case of a generali2€d model  fo|lowing nested Bethe ansatz equations:

proposed long ago by SuzuliThis means that thB matrix
of Deguchi, Fujii, and Ito provides also embeddifigover-
ing” vertex mode) for this peculiar limit of the Bariev
chain?’

We now turn to the diagonalization of Hamiltoniéh) by
the coordinate Bethe ansatz formalism. In other words, we _
would like to solve the eigenvalue probletd ¥ =E(L)V, J=1,...Ne, ®
provided the wave function in the sector bf, electrons
distributed on the positionsﬂlestzs---stNesL has

sinh\j/2—iy/2)]" = sinh(\j— uy—iy)
SN\ /241 7/2)] 21 SinhN — syt iy)!

Ne . : Ny .
rosinh(pj—=Ne—iy) o osinh(py—pe—2iy)

the following form: - — = — - —,
k=1 Sinh(uj—Ne+iy) k=1 sinh(uj—ut+2iy)

i=1,...N_, 9
Ne
:2 sgr(P)H eX|[{iijij]A(P|Q)Ul ..... o (4) and, in terms of the rapidities; , the eigenvalue&(L) are
P j=1 e

given by
where theP summation extends over all the permutations Ne 2 sirf(y)
of the momenta IPl,...,PNe) and sgn is the sign of E<L)=E — 4 - +cog y)L. (10)
the permutation. When electrons are far enough apart =1 cogy)—CostA))
(|in—ij|22) it is direct to derive that the eigenvalues are

The Bethe ansatz equatiof® and (9) have the unusual
peculiarity that the “dressed” momenta variablgenters in
Ne different wa[tys in the momentéas )\j/]2) and in the bare
_ . phase shiftffright-hand side of Eq(8)]. This is a special
E(L)‘; 2 cogp;) +Va(L=2Ne). ®) feature that distinguishes this model from the free-parameter
supersymmetric correlated electron systeti Furthermore,
The next step is to consider the matching condition for thehear half-filling we have determined that whilg are real
Bethe ansatz wave function. Since the Hamiltonianhas  roots, the spin variableg; form strings of the following
been derived from a factorizabR matrix, we can restrict type:
ourselves to the discussion of the two-body problémo
electrons in the chajn This is given in terms of the two- i m (11)
body S matrix, which connects the scattering amplitudes be- HimHimh g

given by
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By substituting this ansatz in Eq®) and(9), taking their _ o
logarithms, and afterwards performing the thermodynamic €.=—4 sin( 7)f dw
limit L—o0, we are able to obtain the integral equations for 0

the densitiesa(\) and p(u) for the variables\; and u;,

coshhw(m/2— y)]sinH w(7— y)]
cosh wm/2]sinf w ]

respectively. They are given by +cogy). (14
Ui (N2,y12) +oo ,
o(M)= 2 * f,x dpiho(N = 7)), (12 We would like to conclude with the following remarks.
The experience we have gained solving the Hamiltoriian
+oo , by the Bethe ansatz is also helpful if one wants to determine
2mp(p)= . dA g1 (n—=N.2y)p(N) the eigenvalues of the transfer matrix of the underlying clas-
sical statistical model. Exact information about these eigen-
e , values is of considerable interest, because the transfer matrix
+ f_x dAgo(n=N,y)o (M), 19 s the generator of the many conserved currents commuting

with the Hamiltonian(1). Considering that the eigenvalues
A(N AN}, 1)) of the transfer matrix are analytical functions

v ! __of the variables{\;,x;}, it is not difficult to start with an

=2 arctajtan(y)tanhg)] and the prime stands for the deriva- ,nqa¢; ffilling this requirement. This is a phenomenological
tive i1 [(x/a,y)=[dy; Ax/a,y)]/dx. These coupled inte- approach that goes by the name of analytical Bethe ansatz.

gral equations can be solved by standard Fourier transform%aking into account the Bethe ansatz equatit8)sand (9)
Q?n5|derlnggt :P}e thermodynar?)l\c; I'm'tf@‘((jl‘t)h“‘t &nd takln% (analyticity conditiong as well as the unitary and the cross-
Into account the expression oth), we find that the ground- ing properties of the transfer matrix, we can find the follow-

zcg;e energy per particle at half-filling is given by the expres-ing expression for the eigenvalues:

where ¢(X,y) =2 arctaficot(y)tanh§&)] and (X, )

Ng Ne

B sinh(\ /2= N 12— /2) CoSHA/2— \/2— i y/2)
AN D=l M Gy TP ez

Mo sinh(A/2—\i/2+iy/2) = sinh(u;—\+2iy)

—[e)T* L[l Sin(\/2—\;/2—1y12) j=4 ~ sinh(z;—\)

e COSHA/2—\/2—iy/2) & sinh(\— p;+2i7)

"L Costaz—N2+iyi2) i sint—p;) |

N
- (15

where the functiona(\), b(\), andc(\) govern the behav- In summary, we have solved a supersymmetric model of
ior of the transfer matrix on the pure ferromagnetic pseudocorrelated electrons by the Bethe ansatz approach. The
vacuum(this is equivalent to the totally empty or full band of ground-state energy at half-filling as well as the correspond-
electrons. For instance, if we take into account the ing transfer matrix eigenvalues have been also determined.

R-matrix elements of Ref. 12 we find that Preliminary analysis indicates that the excitations in the
o model are gapless near half-filling. Finally, from the Bethe
()= sinh(iy—A\/2) b(\) = — tanh(A/2) ansatz point of view, the limiy—0 needs to be performed
sinh(i y+\/2)’ tanhiy+\/2)’ taking extra care. Due to the peculiar topology of rogts
[see Eq(11)], the situation is analogous to the(Suisotro-
sinh(\/2) pic limit of the Izergin-Korepin model’ We also remark
c(h)=— sinh(i y+\/2) (16 that when both\; and ; are real roots, one easily recovers

o _ thet-J sector present in the @2) model’?

and from Eqgs(15) and(16) it is clear that all the residues of
A(N AN}, 1)) vanish, provided the variablgs , u;} satisfy This work was supported by FOMFundamental Onder-
the Bethe ansatz equations. We believe that this expressi@oek der Materieand FapespFundaeo de Amparo &Pes-
can also be derived more rigorously by using our recent forquisa do Estado de 8&aulg, and was partially done in the
mulation of the quantum inverse scattering method forframe of Associate Membership programme of the Interna-

Hubbard-like modeld? tional Centre for Theoretical Physics, Trieste, Italy.
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