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In this paper we study the behaviour of solutions of the form if(z, t) = q~(z) e-  i~wt (e << 1) of the rescaled Ginzburg-Landau 
equation, ~k, = [ 1 -  (1 + iB)l~kl2]~k + (1 + iA)~kzz, for A = ca, B = eb, w plays the role of free parameter. This leads to a 
perturbation analysis on a complex Duffing equation (similar to the analysis of Holmes [Physica D 23 (1986) 84]). We show 
that the spatial quasiperiodic solutions (of the unperturbed, e = 0, case) disappear due to the perturbation and prove the 
existence of degenerated periodic solutions which oscillate through the origin. We also establish the existence of several types 
of heteroclinic orbits connecting counterrotating periodic patterns. 

1. Introduction 

The Ginzburg-Landau equation is a modulation equation describing the nonlinear development of 
unstable waves in many physical systems (such as hydrodynamics) or chemical systems in which some kind 
of turbulence appears. The Ginzburg-Landau equation governs (at least) the first steps in the transition 
process leading to turbulence. In its most general form it reads: 

= (a  + fll~bl2) ~b + ~, ~-~ (1.1) 3t oz.- 

with ~k(z, t): R x R ~ C, a,/3, ~, ~ C constants which can be computed explicitly for a given (practical) 
problem. 

The Ginzburg-Landau equation has been studied by many authors, from many different viewpoints. 
This can be illustrated by the following (incomplete) enumeration of papers on the subject. Eq. (1.1) with 
periodic boundary conditions is studied by Doering et al. [1] and Ghidaglia and H&on [2]: in these papers 
(sharp) estimates on the dimension of the (chaotic) attractor are derived; numerical studies of this situation 
appeared in Moon et al. [3] and Keefe [4] (and other papers). The stability of periodic wave solutions 
( ~  = R e itkx+'~t)) is investigated in Stuart and DiPrima [5]; slowly varying waves are studied by Bernhoff 
[6]. Other types of solutions (bursting solutions, quasiperiodic solutions, homoclinic solutions) are 
discussed by Hocking and Stewartson [7], Holmes [8], Kramer and Zimmerman [9], Landman [10] and 
other authors. 

0167-2789/89/$03.50 © Elsevier Science Publishers B.V. 
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The equation has been derived by many authors, in various ways. The earliest papers in which the 
Ginzburg-Landau equation is derived are: Newell and Whitehead [11], Stewartson and Stuart [12], 
DiPrima, Eckhaus and Segel [13]. In these papers the authors start the analysis by investigating the linear 
stability of a basic (laminar) solution as a control parameter R is varied. The stability against spatial 
periodic disturbances (in the z direction) is determined by the sign of the real part of the (largest) 
eigenvalue ~(k ,  R) (k is wavenumber). The curve Re t~(k, R) = 0 is (locally) a parabola in the k, R plane 
with a minimum at (k c, Rc): the basic flow is unstable against disturbances with wavenumbers in a (small) 
interval centered around k c for R > Rc (supercritical bifurcation). The Ginzburg-Landau modulation 
equation governs the nonlinear evolution of the linear unstable disturbances (for R close to Rc). In the 
derivation of the modulation equation one finds that the linear coefficients a, "t (in eq. (1.1)) are 
determined by the linear analysis: in the case of supercritical bifurcation one finds Re a > 0 and Re , />  0. 
As in many physical examples and mathematical studies (see refs. [1-4, 6, 9, 11]) we consider in this paper 
Refl  < 0 (the nonlinear term "balances" the linear instability). Thus eq. (1.1) can be transformed into 

0_~_~ [ 1 _  ( 1 +  iB)lgpl2]~ + (1+  iA) 02~ 
at = az 2 

(1.2) 

with A, B ~ R. If one considers the case of real coefficients, i.e. A = B = 0 one obtains, for stationary ~, a 
complex Duffing equation 

~ + ~ - 1~12~ = o, (1 .3)  

which is integrable. This was already observed by Newell and Whitehead [11]; Kramer and Zimmerman [9] 
also analysed the case of real coefficients. There are four types of solutions of eq. (1.3): 

(a) Periodic solutions ~(z) = R e  ikz with R, k ~ R, R 2 + k 2 = 1. 
(b) Quasiperiodic solutions ~(z)  = p ( z ) e  i°(z) with p( z )  and dO ( z ) / d z  periodic (with the same period). 
(c) Periodic solutions a(z )  ~ R with a"  + a - a 3 = 0. These solutions can be considered as degenerated 

quasiperiodic solutions of type (b) (see section 2.2). 
(d) Homoclinic solutions ~(z) = p(z)e  i°(z) with 0 -~ P0 as z ~ _+ oo. 

For a more detailed discussion of these solutions see section 2.2. Remark that every solution belongs to a 
one-parameter family of solutions, due to the invariance of eqs. (1.3) and (1.1) under multiphcation of 
solutions ~ by a factor e i~, ¢p ~ R. 

In this paper we examine the Ginzburg-Landau equation with coefficients with small imaginary parts 

_  gPat = [ 1 - ( l  + ieb )leol2]ep+ (l + iea) az2 (1.4) 

with a, b ~ R, 0 < e << 1. In the sequel we name (1.4) the Ginzburg-Landau equation with small complex 
coefficients. The main questions are: 

(1) What happens to the special solutions of the stationary Ginzburg-Landau equation with real 
coefficients (i.e. the unperturbed situation)? 

(2) Are there other types of special solutions of (1.4)? 



15 8 A. Doelman / Special solutions of the G- L equation 

If one searches for periodic solutions ~(z ,  t) = R e i ( k z -wt )  of (1.4) one obtains 

0 = 1 - R 2 - k 2, w = e(bR 2 + ak2) .  

Thus for e -- 0 this type of periodic solutions is stationary, for e ~ 0 there is a slow oscillation in time: 
w = O(e). In this paper we study slow time periodic solutions of the Ginzburg-Landau equation with small 
complex coefficients, i.e. q~(z, t) is a solution of (1.4) of the form 

dp(z, t) = p (z )e  i[0{~)-~w,l, (1.5) 

w plays the role of a free parameter. 

Remark.  Holmes studied in ref. [8] eq. (1.1) for small values of the real parts of constants a, r ,  7, i.e. (1.1) 
is close to the nonlinear SchrSdinger equation. This yields equations very similar to the ones we study in 
this paper (see also remark 4, section 3). 

We tackle the problem (stated in the questions above) by performing a perturbation analysis on the 
integrable (Hamiltonian) system (1.3). We apply similar approximation techniques as were used by Holmes 
in ref. [8]: we define a Poincar6 map P and approximate P using the unperturbed system. However, one 
has to be very careful in using this approximation: it degenerates in important situations. The study of 
these degenerations leads to solutions ¢ of (1.4) which cross through the origin of the complex plane (i.e. 
p ( z )  in (1.5) switches from positive to negative). The nature of the perturbation is of significant 
importance: the perturbation preserves symmetries of the unperturbed system, which are essential in the 
study of (the degenerations of) Poincar6 map P. 

The main results of the perturbation analysis are 
(1) None of the quasiperiodic solutions (of type (b)) "survives" the perturbation, i.e. (1.4) has no 

solutions of the form p ( z ) e  itO(z)-~wO with periodic p ( z )  and dO ( z ) / d z .  

(2) The Ginzburg-Landau equation with small complex coefficients has periodic solutions which are 
perturbations of the (degenerated) periodic solutions of type (c). 

It should be remarked that these periodic solutions are very different from the other type of periodic 
solutions, R ei(kz-'wt): solutions of type (c) oscillate through the origin of the complex plane (see fig. 4). 

We also show that there are values of the free parameter w (see (1.5)) such that there exist heteroclinic 
solutions which "start" (i.e. for z---, -oo)  at a periodic solution R ( w ) e  ilk(w)z-~wtl and spiral towards the 
counterrotating periodic solution R ( w ) e  i[-k(w)z-ewt] for z ~ + oo. There are two types of these hetero- 
clinic solutions, one which never crosses the origin of the complex plane, the other crosses the origin once. 
The set of values of w for which heteroclinic orbits exist consists of a continuous part (an interval) and a 
collection of discrete points. The continuous part corresponds to heteroclinic orbits connecting unstable 
periodic solutions of (1.4), the discrete points correspond to heteroelinic connections between stable 
periodic patterns. 

In section 2 we formulate the basic results and construct the basic tools necessary for the perturbation 
analysis. Section 3 is dedicated to the study of the (quasi) periodic solutions. In section 4 we deal with the 
heteroclinic solutions, in section 5 we show pictures of numerical simulations. 
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2. Perturbation analysis: the setting of the problem 

159 

2.1. Derivation of the equations 

We substitute ~(z, t) = p( z )e  i[O(z)-ewt] into the Ginzburg-Landau equation with small complex coefli 
cients (1.4). This leads to 

1 -t- w p3 1 + e2ab 
P:: - 002 + P 1 + e2a 2 1 + e2a 2 O, 

a - w  a - b (2.1) 
20:0: + pOz: - ep 1 + e2a 2 + e03 1 + e2a 2 = O. 

Setting e - 0 in (2.1) yields an integrable system 

p:z  - -  pO 2 -t- p - -  p 3 = O, 

2p, O: + 00:: = 0 (2.2) 

with integrals 

20 (2.3) 12=P z, 

K = 02 + p2 _ ½p4 + p2" (2.4) 

It is natural to consider 12 = 12(z) as a slow variable of the perturbed system. With V=  p: we derive from 
(2.1) the perturbed equations 

0z -~ V ,  

122 ae2 
V:= - p  + p3 + --~ + 1 + eEa - - - - - - T p [ (  a -  w) - p E ( a -  b) ] '  

2 12:= 1 +e2a ---'----~p [ ( a - w ) - p 2 ( a - b ) ] "  
(2.5) 

2.2. The unperturbed system 

It is useful to investigate more thoroughly the unperturbed, integrable system before one begms with the 
study of perturbed system (2.5), 

pz--V, 

l /z= --P+P3-1- p3 , 

12: = 0. (2.6) 

System (2.6) has periodic solutions in a 12 = 12o plane for 11201 < vc4--/27. All solutions are unbounded for 
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lO" 2~ J l  m 

Fig. 1. The phase portrait of (2.6) in a $2 = 120 plane, 0 < 112o I < V/4-/27 

12o > 7r4-/27" For 12 =~ 0 the phase portrait in the O, V plane is sketched in fig 1: for p > 0 there are two 
critical points: P1(12o), a center, inside the homoclinic saddle connection of saddle point P2(12o). 

We define Ki(f20) as the value of the second integral K in the critical point Pi(12o), i = 1, 2. The periodic 
orbits in the 12o plane correspond to values of K between K~($2o) and K2(120) (K1 < K2 for all 120), these 
periodic solutions correspond to (families of) solutions ep(z, t) of (1.4), quasiperiodic in z, slowly periodic 
in t. Solutions with values of K ~  [K 1, K 2] are unbounded. One easily obtains 

o _< o (eo) -< -< p:(12o) -< 1 

and 

lim p i ( I2 )=  2 7 ~ ,  i - - 1 , 2 ,  
1121 ~ ~ ' / 2 7  

lim Pi(12) = 0, i = 1, 
~2--*0 

= 1  i = 2 .  

Fig. 1 degenerates as flo becomes equal to zero (see fig. 2): O(z) changes sign in the I2 o = 0 plane. To 
compare between the degenerated and nondegenerated case we have sketched the phase portraits of (2.6) 
in the 12 = 0 plane and in a 124= 0, 1121 << 1 plane in figs. 2a, 2b. 

Solutions in the 12 = 0 plane correspond to periodic solutions of (1.4) (with e - -0 )  of the form a (z )e  i~ 
with a: R -o R, solution of a" + a - a 3 = 0 and a a constant (E R). These solutions oscillate through the 

origin on a line segment in the complex plane (see fig. 4 below). 
The integral values (K, 12) of periodic orbits of (2.6) form a bounded region E in (K, 12) space 

(symmetrical with respect to the K axis). The boundaries of E, OE~, consist of points corresponding to the 

critical points Pi(12), i = 1, 2: 

~E=((K,12):122= y2-  y3, K=2Y-~Y2, Y=p2i), i =  1,2. 
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Fig, 2. The phase portraits of (2.6) in (a) the 12 = 0 and in (b) a 12 ~ 0, 112 [ << i plane. 
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f 
I 

• 6 0  

Fig. 3. Region E. 

The left boundary of E, aE 1, consists of center points, the right boundary, aE2, consists of the homoclinic 
loops, see fig. 3. 

Region E, in (K, 12) space, corresponds to a volume S in (p, V, ~2) space, which boundary aS is given by 
the family of homoclinic loops. Inside S all solutions are periodic. 

2.3. Basic properties of the perturbed system 

Due to the special character of the perturbation, system (2.5) has some important, basic features in 
common with the unperturbed system: 

(I) The flow induced by (2.5) is volume preserving. 
(II) The flow is invariant under symmetry transform~itions: 

z - - ~ - z ,  V ~ - V ,  ~ - 1 2  

and 

# ~  - p ,  V-'-> - V .  

(III) Critical points of (2.5), if they exist, are also critical points of the unperturbed equations. The 
position of a critical point does not depend on e. 
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The existence of critical points depends on the values of the parameters in the problem: let (+  O,, 0, 
+ 12,), to,, 12, > 0 be a critical point, then 

02 = a - w 122 = 04 _ 06. (2.7) 
a - b '  

Thus, for a, b and w such that a < w < b or b < w < a system (2.5) has critical points. 
12~ does not change sign inside the region S of unperturbed periodic solutions for w not between a and 

b, hence all solutions are unbounded. The situation b < a can be transformed to the situation a < b such 
that only the 0(e 2) part of V~ changes sign, this does not influence the analysis. Thus we focus our 
attention to the case a < w < b. (Remark that the perturbation disappears for a = w = b.) 

Critical point (p, ,0,  12,) is also a critical point of the unperturbed system, hence it is either a perturbed 
center of a perturbed saddle: 

½(a + 2b)~< w < b: perturbed saddle: a one-dimensional unstable manifold F +, 
a two-dimensional stable manifold E + 

a < w < {(a + 2b): perturbed center: a (slow) one-dimensional unstable manifold F +, 
a two-dimensional stable manifold F +. 

Our main tool to handle the flow of (2.5) will be the Poincar6 map P, a return map which is only defined 
close to periodic solutions of the unperturbed system. Due to the fact that system (2.5) is a perturbation of 
an integrable system we are able to compute this map P accurate up to 0(e). 

Integrals K and 12 of the unperturbed system (see (2.3), (2.4)) are slow variables of the perturbed 
system: K~, 12~ = O(e). Solutions of (2.5) with initial data K 0, 120 not close (=  0(e)) to E will become 
unbounded: all (possible) bounded solutions of (2.5) have to remain near the periodic solutions of the 
unperturbed system. Hence we can describe the dynamics of possible bounded solutions of (2.5) by a 
Poincar~ map P defined on a 0(e) neighbourhood of E, E~. Let (K 0, 12o) ~ E~, consider F~(z) the solution 
of (2.5) with initial values V(0) -- 0, 12(0) = 120 and p(0) such that K(0) = K o. Let (~,0, 12) be the next 
intersection point of F, with the V = 0 plane with dV/dz  < 0 (if such a point exists). Then 

V(Ko, 12o) = = + 0 ) .  

Define A K ( K  o, 12o) and A12(K o, 12o) by 

P(Ko ,  12o) = (K,  ~)  = (Ko + AK(Ko, 12o), 12o + A12(Ko, 12o)). 

The expressions AK and A12 can be calculated up to O(e), , 

AK(Ko,  12o) = foZ''°' (2.8) 

with Z , (K o, 12o) the return time of /'~ ("time = z"). Using (2.4) we derive 

K Z= - 2 e ( b -  a)(p 2 -  02)12+ 0(e  2) (2.9) 

with p2 as in (2.7). Let F0(z ) = (po(Z), Vo(z ), 120) be the periodic solution of the unperturbed system (2.6) 
with the same initial data as F,(z) and period Zo(K o, 120) (the initial data have to be adapted a little 
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( =  d~(e)) for (K  o, 12o) E E, - E). Since IF o - / ' ,1  = d~(e) on 0(1) timescale, we obtain from (2.8) and (2.9) 

AK(  Ko, 12o) = - 2 e ( b  - a) ,Qo/Z°(K°"%)[  02, _ 0o2(Z)] d z  + ~ ( 0 ) .  
" 0  

(2.1o) 

The orbit (po(Z), Vo(z)) in the 12o plane is described by the K integral (2.4), it intersects the p axis 
( V =  Pz = 0) in two points 0 < I$(K o, Do) < ~(Ko, 12o), see fig. 1. Hence we find, setting p2 = R (and #2 __ R, 

AK(Ko,  12o) = - 4 e ( b  - a)  12o~(Ko,S~o),~ p._~_2, _ R_ dR + 0(e2).  
~;, "IR(Ko,f2 o) f f l R  3 -- R 2 + KoR - 12~ 

(2.11) 

(Remark that AK = d~(e 2) for D 0 = t0(e).) Analogously we derive 

A12(Ko, 12o) = _ 2 e ( b _ a )  f?(xo,t~o) R(p__2, - R )  dR + O(e2). 
"R(Ko,ao)  ~/½R 3 - R 2 + K o R  - 12~ 

(2.12) 

3. Per iod ic  orbits  

First we state an important observation. Due to symmetry we only consider 12 > 0. 

Property 3.1. (12 > 0) if AK(Ko, 12o) = 0 then A12(K o, 120) > 0, 
if A12(K o, 12o) = 0 then AK(K o, 12o) < 0. 

This result can be obtained by combining the expressions of 12, and K s (see (2.9)): 

~_~(122_ o2,K) = 2e(b_a) (o2 ,_  02)212 + O(e2). (3.1) 

Hence: 212A12 - p2, A K >  0 for 12 > 0, 12 ~ d)(e). Close to 12 = 0, 82 = d)(e), one needs to be more careful: 
rescaling 12 leads to an expression which also satisfies property 3.1 for 12 ~ 0. 

Property 3.1 expresses that for 120 ~ 0 AK = A12 = 0 is impossible. Hence Poincar~ map P has no fixed 
points for D * 0, and thus, since fixed points would have corresponded to quasiperiodic solutions ¢ of 
(1.4), for 12 ~ 0, all quasiperiodic solutions break open due to the perturbation. 

It should be remarked that it is easy to show that for every value of 120, 112o1 < 12, (see (2.7)) there exist 
values Ka and K K such that 

AO(Ka,  12o) = 0, AK(KK, ~o) = O. 

(Consider K close to K1(120), i.e. t3, # close to the centerpoint 01(120), then AK, AD < 0 (01(12o) < P.); for 
K in the neighbourhood of K2(12o) one deduces that AK, A12 > 0.) 

Thus, also for 82 = 0, there is a Ku such that expressions (2.11) and (2.12) are equal to d)(e 2) in (Ka,0). 
One has to be careful in concluding that this is a fixed point of P. The point (Ka,  0) cannot correspond to 
a perturbation of a nondegenerated periodic solution of the unperturbed system (as sketched in fig. 2b): 
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this type of periodic orbits has to intersect the positive p axis (in the /2 = 0 plane) twice, due to the 
symmetry z ~ - z, V ---, - V,/2 --* - ~2. One can see from fig. 2a that a solution of (2.5) can only cross the 
positive p axis (in the/2 = 0 plane) with V~ < 0. Hence a periodic solution which intersects the positive p 
axis twice is impossible. Remark that this type of periodic solutions corresponds to the quasiperiodic 
solutions of the Ginzburg-Landau equation. The point (Ku, 0) corresponds to a solution which crosses the 
V axis (i.e. p = 0 n ~2 -- 0): expressions (2.11) and (2.12) describe the evolution of a solution of (2.5) close 
to a degenerated periodic solution of the unperturbed system for half a period (see again fig. 2a). A 
solution which starts at the p axis and intersects the V axis is, due to the symmetries of the system, 
periodic. 

Theorem 3.2. The perturbation causes the disappearance of periodic solutions of (2.6), corresponding to 
quasiperiodic solutions of the Ginzburg-Landau equation. 

For every value of w ~ (a, b), one of the degenerated periodic solutions of the unperturbed system 
survives the perturbation. Thus there exist solutions of the Ginzburg-Landau equation with small complex 
coefficients, which are slowly periodic in time and space periodic, not of the type R e i(kx-wt) (see fig. 4). 

Remark 1. It is clear that the flow induced by (2.5) can only skip from the p > 0 halfspace to the p < 0 
halfspace through the V axis, the intersection of the p = 0 and /2 = 0 planes. One can write down the 
beginning of a power series development of the solution FA(z ) with initial data (0, A,0), parametrized by 
/2(z) = - e s ( z )  (for z > 0: /2(z) < 0): 

O ( z )  = 

p ( Z )  ~- (W3-~Ao)I/3s1/3-q-~)(S2/3 E2), 

(3.2) 

Remark that O~ =/2/p2 is well defined as s passes through 0. Using shooting arguments one can (also) 
show that there has to be a degenerated solution of the unperturbed system which does not break open 
under the perturbation: for A small F A intersects the V = 0 plane in a point with negative /2 coordinate 
(since ~2~ < 0 for p < p,), for A close to ½v~-, i.e. close to the homoclinic loop (fig. 2a) F A crosses the V= 0 
plane in a point with positive/2 coordinate. There has to be a value A,  in between such that FA, crosses 
the p axis in the V = 0 plane. 

Remark 2. The perturbed periodic orbit corresponds to a (family of) solution(s) $ = p ( z ) e  i[O(z)-ewt](+ia) 
with p(z )  periodic and 0~ =/2(z)/p2(z) .  The average of 0 z over one period is equal to zero, hence O(z) is 
also periodic with the same period as p. So, the solution $ of the Ginzburg-Landau equation with small 
complex coefficients is also space periodic. As the degenerated periodic solution of the Ginzburg-Landau 
equation with real coefficients: $ oscillates through the origin of the complex plane (see figs. 4a, 4b). 

Remark 3. w may not be chosen d~(e) close to a or b (then approximations (2.11) and (2.12) may become 
invalid, see section 4). 
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Fig. 4. (a) The line segment on which a degenerated periodic solution oscillates (unperturbed). (b) The space-dependent part (i.e. 
p (z) e i0(z) of a perturbed periodic solution. 

R e m a r k  4. Holmes studied in ref. [8] a system similar to (2.5): only the signs in front of the p and p3 terms 
in the Vz expression of the unperturbed problem (2.6) are reversed (then for all 12 # 0 all solutions of the 
unperturbed problem are periodic in the 12 is fixed plane). Holmes studied this system by means of the 
variables R = p2, v = V / p  and m = 12. Due to the denominator p in v the v coordinate of a solution will 
tend to oo as p decreases towards zero. Thus, due to the choice of variables (and the subtilities of the flow 
close to the m - 12 = 0 plane), Holmes did not find solutions which cross the p = 0 plane. One can show, 
using variables p, V and 12, that solutions which cross the # = 0 plane exist in the (perturbed) system 
studied in ref. [8]. Holmes did find quasiperiodic solutions of the perturbed nonlinear Schr~Sdinger 
equation, these solutions correspond to degenerated points of "his" Poincar6 map: the map is not defined 
close to these points (using variables R, v, m). Hence the quasiperiodic solutions do not exist (for all 
values of the parameters), the "fixed points" correspond to degenerated periodic solutions which oscillate 
through the origin. Professor Holmes agrees with this amendment of his analysis. 

R e m a r k  5. In the analysis we focused on periodic orbits which are fixed points of map P. Of course it is 
still possible that (2.6) has periodic orbits which are periodic points of P. Numerical similations show these 
periodic points, see section 5, fig. 6. 

4.  H e t e r o c l i n i c  o r b i t s  

4.1. Prefiminaries 

Eq. (2.5) has many features in common with the perturbed central-force problem studied by Kopell and 
Howard in ref. [14]. This system exhibits heteroclinic orbits for special (discrete) values of a free 
parameter. In this section we search for heteroclinic orbits connecting two critical points of system (2.5). 
Since the critical points correspond to the periodic orbits, 

= , .  e x p  :. 
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the heteroclinic orbits of (2.5) connecting two critical points correspond to solutions of the 
Ginzburg-Landau equation which connect wave solutions with reversed (spatial) wave number. 

Again the analysis relies heavily on the Poincar6 map P (defined inside S, the region of unperturbed 
periodic solutions). The critical point (p,, 0, + 12,) on ~S corresponds with a degenerated point (K,,  + 12,) 
of P on 0E. One easily checks that 

Property 4.1. For ~(a + 2b) < w < b: the two-dimensional stable manifold F~ + of (p,,0, 12,) does not enter 
S. 

Hence for w in this range we fix our attention to the one-dimensional unstable manifold 12~+ which can 
be controlled by the following properties (these properties also hold for w E (a, ~(a + 2b)). 

Define in (p, V, 12) space (p >0)  the volume S,: S, c S, S, consists of all periodic orbits of the 
unperturbed equation, I'o(Z ) = (p0(z), Vo(z ), 120), which satisfy p0(z) < p, for all z. Region E,  c E 
corresponds with S, c S. One easily deduces 

Property 4.2. The linear approximation of F + around (p,,0, 12,) points into S,. 

And, using expressions (2.11) and (2,12): 

Property 4.3. For (Ko, 12o) ~ E,: A12(K o, 12) < 0, AK(K o, 12o) < 0. 

Analysing the flow of the perturbed system near the boundary of S, one finds that the part of E, with 
positive 12 coordinates can only be left through the 12 = 0 plane: 

Property 4.4. If (K0,120) ~ {E, N 12 > 0} then either P(K0,120) ~ {E, N 12 > 0} or P(Ko, 120) ~ (12 < 0}. 

Thus, F~ remains inside S, as long as the ~2 coordinate remains positive; inside S, 12z < 0: 17~ can be 
handled by Poincar6 map P. However, one needs to be very careful in using approximations (2.11) and 
(2.12) of AK and A12: pz and V~ are O(e) in a 0(e) neighbourhood of a critical point of the unperturbed 
system. Hence 12z is not small compared to Pz and V~: one cannot approximate the solutions of (2.5) by 
solutions of the unperturbed system. This degeneration of the approximation can be illustrated by a special 
solution which was first noted by Hocking and Stewartson [7]. Hocking and Stewartson searched for 
solutions of the Ginzburg-Landau equation of the form 

q~(z, t) = XL e ivt [sech(~kz)] l+iM (4.1) 

for some values of ~,, L, z, and M. In our variables (4.1) transforms to 

p (z )  = P sech(hz) (V ( z )  = Pz), ~2(z) = Qsinh(hz)sech3(Xz)  (4.2) 

for some values of P, Q, ~ and w (corresponding to p). Substituting (4.2) into eq. (2.5) one observes that a 
solution of this type exists for 

P = _ _ _ l + O ( e 2 ) ,  Q =  + l + t p ( e 2 ) ,  h =  +__½(b-a)e+d~(e3), w = { ( a + 2 b ) + ~ ( e 2 ) .  

Thus, for the critical value of w (i.e. 12,(w) = ~/~-/27 + $(e2)) there exist homoclinic solutions connecting 
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one-dimensional stable and unstable manifolds of the degenerated critical point (0, 0, 0) of (2.5). In (K, 52) 
space this solution is precisely the boundary of E (accurate up to 0(ez)): thus for all z the homoclinic 
loop remains 0(e)  close (V(z)= 0(e)) to the curve of critical points of the unperturbed system. This 
homoclinic orbit does not oscillate in (p, V, 12) space: V changes sign only ones. Thus, Poincar$ map P is 
not (always) defined 0(e) close to bE. 

The following property enables us to control map P inside E,.  

Property 4.5. For (K0, 520) ~ E,, 120 > 0 

P](12o) A12(Ko, 12o) p2. 
212o < AK(Ko,~o)  < 212o" 

Proof. The inequality on the right is a direct consequence of (3.1). The inequality on the left follows from 
a similar observation: 

21212 s - p](12) Ks=  2e(b-a)(p2.  - p2) [p2(12) .  p2] (4.3) 

(Px(12) is the position of the centerpoint of the unperturbed equation in the 12 plane). Hence property 4.5 
is proven if, for all (K0, 120) ~ E,:  

f k(K°'s~°) -R -- P~(12°----) d R > O .  
ak(Ko,ao) ~½R 3 - R 2 + KoR - 12~ 

(4.4) 

This inequality can be deduced from (4.3) by the approximation technique of section 2.3, using the fact 
that 12s < 0, K s < 0 and 02, _ p2 > 0 in S,. Remark that R 1 = 02(12o) is the minimum of F(R) = 
(~½R 3 _ R 2 + Ko R _ 12~ )-x. Inequality (4.4) follows from 

k R  
fk ~-~IF(R)dR> ~ F ( R ) d R ,  (4.5) 

which, again, is a consequence of 

f ; x F ( R )  dR < fRkF(R) dR.  (4.6) 

One easily deduces: 

F ( [ ~ - S ) >  F(R + S) f o r S ~ [ 0 , ½ ( / ~ - / ~ ) ) ,  

which yields (4.6), and thus (4.4) (via (4.5)). 
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The boundaries aE i of E are described by d 1 2 / d K =  p2(12)/212, i = 1,2. Hence, due to property 4.5: 

Corollary 4.6. Let (K 0, 120)~ E, ,  120 > 0, (K  o, 12o) not 0(e)  close to aE 1, then: the image of (K  o, 120) 
under map P, P ( K  o, 12o), can be approximated using (2.11) and (2.12); P ( K  o, 120) is not closer to aE 1 

than ( K  o, 120). 

For  ~(a + 2b) < w < b, unstable manifold F f  is a perturbation of the unstable manifold of unperturbed 
saddle in the 12, plane ((K, ,  12,) ~ aE2). Hence Fu + can be studied using the approximations of P for all 
12, not d~(e) close to vf4/27 (i.e. w tg(e) close to ½(a + 2b)). For a < w < ~(a + 2b) (K, ,  12,)~ aEl: 
averaging of system (2.5) in the neighbourhood of (O,, 0, 12,) shows that the solutions of (2.5) tend towards 
a nonoscillating orbit (~(e)  close to the orbit of unperturbed centerpoints): map P cannot be used, F~ has 
a behaviour similar to the special orbit (4.2) found by Hocking and Stewartson (or remains ¢(e)  close to 
such an orbit). Remark also that A12/AK tends to 02/212 as (K  0, 120) tends towards OE 1. 

Thus: 

~(a+ 2 b ) < w < b :  
The one-dimensional unstable manifold F~ + can be studied using map P. In section 4.2 we prove that for e 
small enough there exist discrete values of w such that there is a heteroclinic orbit in system (2.5). 

a < w < ~(a + 2b): 
We study the two-dimensional stable manifold F~ +. In section 4.3 we show that there is an interval such 
that for all w inside the interval system (2.5) has a heteroclinic orbit. 

4.2. ~(a + 2b) < w < b: two types of heteroclinic orbits 

Define 

"y+= ( ( g+ ,127 ) } i~ l  , 1 = 1 , 2  . . . .  (4.7) 

with (K~-, 12~) ~ E ,  the first intersection point of F~ + with the V =  0 plane (and V z < 0), (K~-+I, 12/++t) = 
P(K~-, 12~-). Remark that K~-, 12i+ depend on e and w. Likewise one defines ~,~-, the set of points in E 
symmetric (in the K axis) to ~,~+; ,/~- corresponds to the one-dimensional stable manifold F~-of (0 , ,  0, - 12,). 
We search for values of w such that F~ + = F~-; the symmetry z ~ - z, V ~ - V, 12 ~ - 12 is essential in the 

analysis: 

Fu + = F~- ,~ F~ (z)  intersects the 12 = 0 plane in a point on the 0 axis. (4.8) 

And, since F~ + can only cross the 0 axis with V~ < 0, (4.8) yields 

+ m  ru - ru+n ( a  = 0) * * .  (4.9) 

D e f i n e N  ÷ N + ( e , w ) b y : f o r i < N  + 12i+>0, + N ÷ = - - ON+ + 1 < 0. This exists due to the properties in section 

4.1. Now (4.9) can be reformulated more precisely: 

F~ + = Fs-¢~ 12;÷= 0. (4.10) 

First we consider w fixed, w not close to the boundaries of the interval (-~(a + 2b), b). We observe, using 
the properties of section 4.1 and approximation (2.12) of AI2: 
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Property 4.7. N+(e ,  w) = 0 ( 1 / e )  

N o w  fix an e o small enough, define No + =  N+(eo). Due to p roper ty  4.7 here exists an e I > e 0 such that  

' ( ~ + ( e l ) N ~ <  0 " "  + Y, needs less steps to arrive at 12 = 0"). Hence  there is an e*, e 1 > e* > e 0 such that  
9 + ( e * ) N g =  0 (and thus N + ( e  *) = No+). This e* is isolated since d A12/de ~ 0. 

Proposition 4.8. There  is a discrete set (ej}j=l, Ej> ej+l, e 0 small enough, ej~O as j ~  oo, such that  
12+(ej)N+(~j)=0. Thus for all ej there exists a heteroclinic orbit  in (2.5), connect ing (p , ,0 ,12 , )  and 

(p , ,O,  - 12,). 

R e m a r k  that  these heteroclinic orbits remain in the p > 0 halfspace for all z. A priori  one would expect 
(see sect ion 3) that  there are also values of  e such that  F~+(e) crosses the p = 0 plane and enters the p < 0 
ha l f  space. 

Cons ider  the heteroclinic orbit  F~+(cj) for some j :  12~+(ej) = 0, 12~-v+ +t(ej) < 0. There is an ej, < ej such 
tha t  N+(ej.) > N+(ej) + 1. Let e decrease f rom ej. There  has to be  an ~ ~ (ej,, ej) such that  

l i m 1 2 + ( e )  N+(~ = -- l i m 1 2 + ( e )  N÷(~)+l < 0.  

Define for e ~ (~, ej) 12ca(e): the 12 coordinate  of  the first intersection of F+(e )  with the V = 0 p lane  (with 
+ 

V z > 0) af ter  the intersection corresponding to 12N÷(~). The  symmetr ies  of  system (2.5) yield 

l im 12ca (e)  = 0. 
eJ,~ 

Since V z > 0 in the point  corresponding to 12ca(e) we conclude (see figs. 2a, 2b and section 3): F~(~)  
crosses the p = 0 plane. Due  to symmet ry  p ~ - p ,  12 ~ -12,  z ~ - z  we immedia te ly  observe: F~+(~) 
connec ts  ( p , ,  0, 12,) and ( - #, ,  0, - 12,). 

Proposition 4.9. There  is a discrete set {~j)j%l, ~j+x < ~j, ~j $0 as j ~ oo such that  F~+(~j) is a heteroclinic 
orbi t  (of  sys tem (2.5)) connecting (p , ,  0, 12,) and ( -  p , ,  0, - 12,). A solution of G i n z b u r g - L a n d a u  equat ion 
(1.4) cor responding  to F~+(~j) crosses once through the origin of  the complex  plane. 

Us ing  the following basic observat ion we are able to apply  the techniques above to the more  impor tan t  
case e fixed, w (free) parameter .  

Property 4.10. For  w = b - tg(er), 0 < 7 < 1, and e small enough: N+(e ,  w) = 0(E7-1). 

Thus  we can  handle the variat ion of  N + as a funct ion of w, for e fixed, and thus we can apply  the 
reasoning  above.  

Theorem 4.11. For  every e small enough there are (at least) two values of  the free parameter ,  w o and w 1, 
such that  for  w = w o system (2.5) has a heteroclinic orbit  connect ing (p , , 0 ,  12,) and ( p , , 0 ,  - 12,) and for 
w = w 1 there is a heteroclinic orbit  connect ing (p , ,  0, 12,) and ( - p , ,  0, - 12,). 
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Remark 1. Define N(e) as the number of w's for which, for given e, heteroclinic orbits exist. Property 4.10 
yields: N(e) --, o¢ as e J,0. 

Remark 2. As was already remarked in section 1: the heteroclinic orbits correspond to one-parameter 
families of solutions of Ginzburg-Landau equation (1.4). For every ~+(z ,  t) of such a family holds: 

lim ~ + =  p,  e x p [ i ( k , z - e w t  + % ) ] ,  

lim ~ + = o . e x p [ i ( - k . z - e w t  + % ) ] ,  ~- .+~  

for some %,  with k .  = I~./O 2. These periodic solutions are stable solutions of (1.4), stable against 
arbitrary spatial periodic perturbations, for w not 0(e)  close to ~(a + 2b) or b (see refs. [5, 9]). 

Thus solutions ~+ are solutions connecting two stable periodic, spatially counterrotating, patterns. One 
type of solutions ~+ crosses through the origin of the complex plane. 

4.3. a < w < ~( 2b + a): heteroclinic orbits for a range of w 

We now fix our attention on the two-dimensional stable manifold F + of (p . ,  0, g2.). Since (O., 0, I2.) is a 
centerpoint we have F + n  S 4: ~ (S c (p, V, $2) space defined in section 2.1). It is clear that if F + intersects 
the I2 = 0 plane then, due to symmetry, there exists a heteroclinic orbit: the intersection of F + and F~-, F~- 
is the two-dimensional unstable manifold of (0 . ,0 ,  - ~ . ) .  Reasoning as in section 4.2 one concludes that, 
in this case, there exists also a heteroclinic orbit which crosses the O = 0 plane. 

In order to obtain a more transparent view of the behaviour of the flow induced by (2.5) we examine the 
special case w - a = O(ev), 0 < - /< 1, i.e. we set 0 2 = P2eV, P .  plays the role of free parameter. We scale 
p = ev/2P, V = ev/2o, ~2 = evW, K = eVk. Expressions (2.11) and (2.12) become, with s = p2 

A k ( k , W ) = 4 e l + V ( b _ a ) W f ~ /  s - p 2  
sk - s : -  w--S+ ~ ' s  3 ds + O(~ 2+~) 

A W ( k , W ) = 2 e l + V ( b _ a ) f ~  ~ s ( s - P 2 * )  
{ s k -  s--S--'W2-----+ ½eVs 3 ds + O(e2+v). 

(4.11) 

(4.12) 

Approximations (4.11) and (4.12) can be computed, up to a certain accuracy, explicitly: 

A k ( k ,  W )  = ~r(b - a)eX+vW(k - 2P 2) +a ( e l+v ) ,  

A W (  k ,  W )  = "~( b - a )el +v( ~sk2 - l k e  2 - ½W 2) + o(ex+v). 

Remark that, as a consequence of the scaling, we have 

ae,= ((k, w): W2=e~,k-e',+~(~)}, 
aEl= ((k,  W): W= ~k+ 0 ( ~ ) } ,  

(k, ,  W,) = (2P 2 + O(e*), /),2 + O(ev)). 

Now we can sketch a direction field for Poincar6 map P, see fig. 5. 
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Fig. 5. The direction field induced by P (after scaling). 

Reversing z, z ~ - z ,  shows (see fig. 5): the image of F~ + in k, W space, "is+, intersects the W = 0 axis (it 
coincides, up to a certain accuracy with the line k = 2/.2). For larger w a picture similar to fig. 5 can be 
produced. However, one needs to be careful: ~,~+ may leave E through OE 2 for w close enough to 
~(a + 2b). 

Theorem 4.12. There is an interval (w o, wl) c (a, 3t-(a + 2b)) such that for every w ~ (w o, wx) two hetero- 
clinic orbits exist: one connecting (p. ,0 ,  f l . )  with ( p , , 0 , -  12.), the other connecting (p. ,0 ,  I2.) with 
( -  p , ,  O, - 12,). 

Remark. These heteroclinic orbits correspond to (families of) solutions of (1.4) which connect spatially 
counterrotating periodic solutions, which are unstable (see again refs. [5, 9]). 

5. Some further remarks 

If one wants to study the flow induced by (2.5) more thoroughly one will have to investigate expressions 
as d A~2/dk, d Ak/dK etc. These expressions are very hard to handle. Numerical simulations of (2.5) 
exhibit an interesting behaviour of map P, see figs. 6a, 6b. 
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Fig. 6. Poincar6 map P inside E for some choices of the initial data and a ffi - 5 ,  b ffi - 1 ,  w = - 3 ,  e ffi 0 . 1 .  ( b )  i s  a magnification of 
a certain part of (a). 
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These figures show periodic points of P (with period tP(1/e)), invariant toil, and a thin strip of irregular 
behaviour: the Poincar6 section of a perturbed integrable Hamiltonian system. However, the fact that 
solutions may cross through the p = 0 plane and the special kind of the (non-Hamiltonian) perturbation 
make it hard to analyse the flow induced by (2.5) more deeply. 
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