Fractional Ca\(^{2+}\) Currents through TRP and TRPL Channels in \textit{Drosophila} Photoreceptors

Brian Chu, † Marten Postma, ‡* and Roger C. Hardie†*

†Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, UK; and ‡Section of Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands

ABSTRACT Light responses in \textit{Drosophila} photoreceptors are mediated by two Ca\(^{2+}\)-permeable cation channels, transient receptor potential (TRP) and TRP-like (TRPL). Although Ca\(^{2+}\) influx via these channels is critical for amplification, inactivation, and light adaptation, the fractional contribution of Ca\(^{2+}\) to the currents (\(P_t\)) has not been measured. We describe a slow (\(\tau \approx 350\) ms) tail current in voltage-clamped light responses and show that it is mediated by electrogenic Na\(^{+}/Ca^{2+}\) exchange. Assuming a 3Na:1Ca stoichiometry, we derive empirical estimates of \(P_t\) by comparing the charge integrals of the exchanger and light-induced currents. For TRPL channels, \(P_t\) was \(~17\%\) as predicted by Goldman-Hodgkin-Katz (GHK) theory. \(P_t\) for TRP (29\%) and wild-type flies (26\%) was higher, but lower than the GHK prediction (45\% and 42\%). As predicted by GHK theory, \(P_t\) for both channels increased with extracellular [Ca\(^{2+}\)], and was largely independent of voltage between \(–100\) and \(–30\) mV. A model incorporating intra- and extracellular geometry, ion permeation, diffusion, extrusion, and buffering suggested that the deviation from GHK predictions was largely accounted for by extracellular ionic depletion during the light-induced currents, and the time course of the Na\(^{+}/Ca^{2+}\) exchange current could be used to obtain estimates of cellular Ca\(^{2+}\) buffering capacities.

INTRODUCTION

Light activation of fly photoreceptors leads to the opening of two classes of Ca\(^{2+}\)-permeable cation channels, transient receptor potential (TRP) and transient receptor potential-like (TRPL), via a G-protein-coupled PLC signaling cascade (1,2–4). Both the channels and upstream signaling elements are localized within the rhabdomere, a rod-like stack of \(~35,000\) tightly packed microvilli, 1–2 \(\mu\)m in length and 60 nm in diameter. The Ca\(^{2+}\) influx associated with the light response accounts for virtually all of the light-induced Ca\(^{2+}\) rise in the photoreceptor (5–7) and is proposed to transiently reach near-millimolar levels within individual microvilli in response to single-photon absorptions (8,9). The Ca\(^{2+}\) influx is critical for response amplification, inactivation, and light adaptation, and mediates sequential positive and negative feedback via multiple molecular targets (10–12). These include the light-sensitive channels, which are both positively and negatively regulated by Ca\(^{2+}\) (12–14), and PLC (12,15) and metarhodopsin (16), which are both inhibited by Ca\(^{2+}\) influx. The resulting light response in flies represents the fastest known G-protein-coupled signaling cascade and has a huge dynamic range, from single photon responses (quantum bumps) to full daylight (17,18). This performance, which outstrips that of any vertebrate photoreceptor, has inspired a number of computational models that attempt to account for the light response in terms of the underlying molecular mechanisms (4,19–21).

A key parameter in such models is the amount of Ca\(^{2+}\) that enters into individual microvilli via the light-sensitive channels. This requires knowledge of the fraction of light-induced current (LIC) that is carried by Ca\(^{2+}\), i.e., the fractional Ca\(^{2+}\) current, \(P_t\) (22). \(P_t\) has never been directly measured, and previous estimates have relied upon theoretical values calculated from relative ionic permeabilities using the Goldman-Hodgkin-Katz (GHK) current equation (Eq. 1). However, it is questionable whether the independent mobility of ions, a central assumption of GHK theory (23), holds true for the light-sensitive channels, which show complex permeation and divalent ion block (24–26). In addition, the LIC can be so large that there may be significant changes in ionic gradients during the response.

For technical reasons, standard approaches for measuring \(P_t\) (22) are impractical for fly photoreceptors. In this study, we developed a novel (to our knowledge) approach that exploits the native electrogenic Na\(^{+}/Ca^{2+}\) exchanger (CalX), which extrudes 1 Ca\(^{2+}\) ion for the entry of 3 Na\(^{+}\) ions (27–29). Using whole-cell recordings, we observed a distinct slow aftercurrent in response to bright flashes, which we attribute to electrogenic Na\(^{+}/Ca^{2+}\) exchange. Under the assumption that this tail current represents the extrusion of Ca\(^{2+}\) that entered through the TRP and/or TRPL channels, we estimated empirical \(P_t\) values for TRP and or TRPL channels from the ratio between the charge carried by the LIC and the exchanger current. Empirical \(P_t\) values for TRPL channels closely matched the simple GHK prediction (\(P_t \approx 17\%\)) but were somewhat below the prediction for TRP channels (empirical \(P_t \approx 29\%\), compared with \(\approx 45\%\) for GHK-\(P_t\)). A detailed model incorporating intra- and extracellular geometry, ion permeation, diffusion, extrusion, and buffering suggested that the deviation from the GHK prediction could be largely accounted for by extracellular ionic depletion during the large LIC, and the time course of the Na\(^{+}/Ca^{2+}\) exchange tail current could...
be used to obtain estimates of cellular Ca$^{2+}$ buffering capacities.

MATERIALS AND METHODS

Flies

Flies (Drosophila melanogaster) were reared at 25°C in the dark. The wild-type (WT) strain was Oregon. The mutants used included trpza4 and trptd2, null alleles of TRP and TRPL channels, respectively (30,31); calxc, a loss-of-function mutation of the Na$^+$/Ca$^{2+}$ exchanger (29); and dSK, a deletion of the dSK gene encoding a small-conductance, Ca$^{2+}$-activated K channel (32).

Whole-cell electrophysiology

Dissociated ommatidia were prepared from newly eclosed flies as described previously (33) and transferred to a recording chamber on an inverted Nikon Diaphot microscope (Nikon, Kingston-upon-Thames, U.K.). The standard bath contained (in mM) 120 NaCl, 5 KCl, 10 N-Tris-(hydroxymethyl)-methyl-2-amino-ethanesulfonic acid, 4 MgCl$_2$, 1.5 CaCl$_2$, 25 proline and 5 alanine, pH 7.15. The intracellular pipette solution was 110 Cs gluconate, 15 TEACl, 10 N-Tris-(hydroxymethyl)-methyl-2-amino-ethanesulfonic acid 4 Mg-ATP, 2 MgCl$_2$, 1 NAD, and 0.4 Na-GTP; pH 7.15 (adjusted with CsOH). Chemicals were obtained from Sigma-Aldrich (Gillingham, U.K.). Whole-cell voltage-clamp recordings were made at room temperature (20°C ± 1°C) at −70 mV unless otherwise stated (including correction for a −10 mV junction potential) using electrodes of resistance ~10–15 MΩ. Series resistance values were generally <30 MΩ and were compensated to >80%. Data were collected and analyzed using an Axopatch 2D amplifier and pCLAMP9 software (Molecular Devices, Union City, CA). Photoreceptors were stimulated via green-light-emitting diodes, and intensities were calibrated in terms of effectively absorbed photons by counting quantum bumps at low intensities.

Measurement of P_f

Assuming that Ca$^{2+}$ ions that enter through light-activated channels are all extruded by the CaX exchanger, the fractional Ca$^{2+}$ current (P_f) can be calculated from the charge ratio of the total LIC and the extruded Ca$^{2+}$. The onset of the Na$^+$/Ca$^{2+}$ exchange current is masked by the much larger LIC, and we estimated this hidden component by extrapolating an exponential fit back to the time of the peak response (Fig. 1 B). This would have introduced an error of <5% compared with more sophisticated modeling of the CaX current based on the overall response waveform (Fig. S2 in the Supporting Material). The charge integral of the LIC was calculated by subtracting the estimated CaX charge integral from the charge integral of the entire response. Assuming a stoichiometry of 3 Na$^+$ to 1 Ca$^{2+}$, the charge integral of the tail current was multiplied by two to correct for the divalency of the extruded Ca$^{2+}$ ions and divided by the LIC charge integral to obtain an empirical estimate of P_f.

Theoretical fractional currents

In the first instance, we compared the experimentally measured fractional Ca$^{2+}$ current (P_f) values with theoretical predictions based on ionic permeability ratios using the GHK current equation (Eq. 1), which specifies the current (I_s) across the membrane carried by ion species S with charge z_s:

$$I_S = P_S z_S E_m F R T [S] - [S]_o \exp\left(-z_S E_m F / RT\right)$$

$$1 - \exp\left(-z_S E_m F / RT\right) \quad (1)$$

where E_m denotes membrane voltage, R is the gas constant, T is temperature (K), and F is the Faraday constant. $[S]$ and $[S]_o$, respectively denote the intra- and extracellular concentrations of ion S, and P_s is its permeability. [Ca$^{2+}$] was taken as 160 nM in dark-adapted photoreceptors (7), other values from the experimental solutions. Under physiological conditions, the total LIC is carried by four main cations (Na$^+$, K$^+$, Ca$^{2+}$, and Mg$^{2+}$) (14):

$$I_{total} = I_{Na} + I_{K} + I_{Ca} + I_{Mg} \quad (2)$$

FIGURE 1 Light-induced tail currents in Drosophila photoreceptors. (A) Whole-cell voltage-clamped recording from WT photoreceptor at −70 mV to bright flashes (5 ms, ~17,500 effective photons; arrow) in the presence (gray trace) and absence (black trace) of 100 µM ouabain in normal bath (1.5 mM Ca$^{2+}$). A small, slow, outward aftercurrent (maximally ~30 pA) due to electrogenic Na$^+$/K$^+$ ATPase, was eliminated by ouabain. Inset: scaled to show entire response. (B) Measurement of the Na$^+$/Ca$^{2+}$ exchange tail current in presence of ouabain (recording from the trpl mutant). The onset of the tail current is masked by the much larger LIC; this hidden component was estimated by extrapolating an exponential back to the time of the peak response and the charge integral measured (shaded area). (C) Responses to flashes containing ~17,500 photons in WT and calx mutants in the presence of ouabain. The conspicuous tail current was absent in calx mutants.
Table 1 shows theoretical P_f values for the WT and trp and trpl mutants in a standard bath based on Eq. 1 using published ionic permeability ratios (14,26).

RESULTS

Na\(^+\)/Ca\(^2+\) exchange tail current

In whole-cell, voltage-clamped recordings from Drosophila photoreceptors, the responses to brief, intense flashes exhibit a distinct slow, inward tail current of ~100 pA (Fig. 1 A). Because the photoreceptors express high densities of an NCX electrogenic Na\(^+\)/Ca\(^2+\) exchanger, encoded by calx (28,29,34,35), we suspected that this tail current was an electrogenic Na\(^+\)/Ca\(^2+\) exchange current. A slowly inactivating depolarizing afterpotential with similar kinetics was previously reported in intracellular recordings from larger flies and also attributed to electrogenic Na\(^+\)/Ca\(^2+\) exchange (36,37).

In principle, the charge integral of such an exchange current can be used to estimate the amount of Ca\(^2+\) that is extruded from the cell; however, this assumes that there are no other ionic fluxes that might otherwise overlap the putative Na\(^+\)/Ca\(^2+\) exchange current. In fact, the tail current of the photoreponse is normally also associated with a small outward component that develops slowly and decays over several seconds. This current is attributable to a Na\(^+\)/K\(^+\) ATPase (4,37,38) and was completely abolished by 100 μM ouabain (Fig. 1), which we therefore used in all quantitative experiments.

To test more rigorously whether the tail current represents CalX exchanger activity, we examined light responses in calx\(^{A}\) loss-of-function mutants. As previously reported (29), photoreceptors from calx\(^{A}\) mutants have reduced sensitivity to light and rapid response kinetics resulting from elevated resting cytosolic Ca\(^2+\) due to the failure of Ca\(^2+\) extrusion via CalX. Importantly, the slow inward tail current was absent in calx\(^{A}\) mutants, strongly supporting its identification as the exchanger current (Fig. 1 C).

An alternative explanation for the tail current could be persistent residual activation of the light-sensitive channels. If this were the case, it should show the characteristic pronounced outward rectification and reversal potential (E_{rev}) of the LIC (E_{rev} = +12 mV for TRP and −4 mV for TRPL). By contrast, Na\(^+\)/Ca\(^2+\) exchange currents should show exponential inward rectification (39) and would not be expected to reverse in response to an imposed Ca\(^2+\) load (11,40). To measure the current voltage (I-V) relationship of the tail currents, we applied voltage steps at the onset of tail current and subtracted a template recorded in the dark (Fig. 2). For comparison, the I-V relationship of the LIC was also measured in response to continuous dim red light illumination. Consistent with the properties of an exchanger, the tail current was inwardly rectifying (Fig. 2 E) and clearly

<table>
<thead>
<tr>
<th>TABLE 1 Permeability ratios and theoretical P_f values of channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channels</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>TRP (in trpl)</td>
</tr>
<tr>
<td>TRPL (in trp)</td>
</tr>
<tr>
<td>TRP⁺TRPL (in WT)</td>
</tr>
</tbody>
</table>

Permeability ratios (P_C/P_Cs) derived from reversal potential data (14,26). TRP channels were measured in trpl mutants, and TRPL channels were measured in trp mutants. The final column gives the fractional Ca\(^2+\) current (P_f) predicted by the GHK current equation (Eq. 1) at −70 mV expressed as the percentage of total LIC. P_C/P_K was assumed to be 1.0.

*Under the experimental conditions, intracellular K\(^+\) was substituted with Cs\(^+\); P_K was not directly measured due to the large voltage-sensitive K\(^+\) currents in Drosophila photoreceptors. However, increasing or decreasing the permeability ratio of K\(^+\) by 2-fold had a negligible effect on predicted P_f in otherwise physiological solutions.

FIGURE 2 I-V relationships of tail currents. (A) Currents evoked by voltage steps from −100 mV to +100 mV (+40 mV steps) from a holding potential of −70 mV applied during tail currents of responses to flashes (5 ms, ~17,500 photons) in a trpl mutant. (B) Tail currents from the region indicated on an expanded scale. (C) Dark control currents to the same voltage steps. (D) Under continuous red light illumination, the strongly outwardly rectifying characteristics of the LIC are apparent. (E) I-V relationship of the tail currents obtained after subtracting dark control traces (as in C). The predominantly inward I-V curves of the tail currents are distinct from the strongly outwardly rectifying LIC shown in panel F (including the same tail current data on a different scale). No significant difference was seen among WT ($n = 8$), dSK\(^−\) ($n = 5$), and trpl ($n = 2$); smaller currents with otherwise similar properties were observed in trp ($n = 5$).
distinct from the strongly outwardly rectifying LIC (Fig. 2, E and F). Nevertheless, a small residual outward component was detected at depolarized voltages beyond +40 mV, possibly reflecting a residual, late inactivating light-induced component. However, this should not contribute significantly to the inward tail current at −70 mV, primarily because of the outward rectification and also because the kinetics of inactivation of the LIC are much faster at negative potentials due to the increased Ca$^{2+}$ influx. Another potential contaminant of this current is the SK channel (small-conductance Ca$^{2+}$-activated K channel), which was recently reported in photoreceptors (32). However, a significant SK contribution can be effectively excluded because the I-V curve of the tail current in sk null mutants ($dSK^−$) was indistinguishable from that in the WT, whereas P_f values determined in $dSK^−$ flies were similar to those obtained in the WT (see Figs. 4 and 5).

The peak amplitude and charge integral of the inward tail current increased with flashes of increasing intensity (Fig. 3). The peak amplitudes (~100 pA) activated in WT and trpl were in line with previous measurements of the Na$^+$/Ca$^{2+}$ exchange current (11). The peak amplitude of the tail current observed in trp was less than half of those (~40 pA), as would be expected if TRPL channels had a lower P_f. In all cases, the current decayed with a similar time course, which presumably represents the rate of Ca$^{2+}$ extrusion via the exchanger (Fig. 3 D). In all cases, the time course was well fitted by a single- or double-exponential time course with a dominant time constant ($τ_1$) of ~300–400 ms and a minor slower component ($τ_2$ ~2 s).

Fractional Ca$^{2+}$ current, P_f

Our method for measuring P_f assumes that all Ca$^{2+}$ entering the cell through light-sensitive channels is extruded by the CalX exchanger. Having identified the slow inward tail current as a Na$^+$/Ca$^{2+}$ exchange current, and assuming a stoichiometry of 3 Na$^+$:1 Ca$^{2+}$, which is generally accepted for NCX exchangers (27,41), we estimated P_f from the ratio between the total charge integral of the LIC and that of the CalX tail current (see Fig. 1 B).

Fig. 4 shows experimentally obtained values of P_f for TRP and/or TRPL channels from the WT and respective channel mutants compared with GHK predictions over a range of intensities. In principle, assuming the amount of

![Figure 3](image3.png)

Figure 3 Intensity dependence of Na$^+$/Ca$^{2+}$ exchange tail currents. (A) Responses recorded in WT photoreceptor to flashes (arrow) of increasing intensity (350, 1750, 3500, 17,500 and 35,000 effective photons). The inward tail component and main LIC (see inset) both increased with light intensity. (B and C) Mean peak amplitude (B) and charge integral (C) of the tail currents plotted as a function of intensity in WT, trpl, and trp mutants. (D) The single exponential decay time constant ($τ$) of the inward tail current was similar at all intensities and in different genetic backgrounds (WT, trpl, and trp). Mean values (mean ± SE) for WT ($n = 20$ cells), trpl ($n = 6$ cells), and trp ($n = 8$ cells).

![Figure 4](image4.png)

Figure 4 Measurement of fractional Ca$^{2+}$ currents (P_f) through TRP and TRPL channels. (A) Mean P_f values (mean ± SE) are plotted as a function of intensity for TRP channels (isolated in trpl, $n = 6$), TRPL channels (isolated in trp, $n = 8$), native TRP+TRPL channels (in WT, $n = 20$), and TRP+TRPL channels (in $dSK^−$, $n = 12$). Empirical P_f data were obtained from the charge integral ratio between the total LIC and the exchanger tail current (see Materials and Methods), and compared with P_f predictions using the GHK equation (horizontal lines). (B) Responses to 5 ms flashes containing 17,500 photons (arrow) in the trpl photoreceptor were unaffected in the presence of 10 μM thapsigargin for >2–3 min (gray trace) compared with control exposed to vehicle (0.1% DMSO; black trace). The bar graph shows that P_f values in the presence of thapsigargin were indistinguishable from controls ($n = 3$).
Ca\(^{2+}\) extruded by Na\(^+\)/Ca\(^{2+}\) exchange equals the amount light-induced Ca\(^{2+}\) influx (42), \(P_f\) might be expected to remain constant with different intensities. However, we found that the empirical \(P_f\) values increased slightly with intensity. One factor that might contribute to this is that the exchanger is a low-affinity, high-capacity transporter that is expected to dominate Ca\(^{2+}\) homeostasis when Ca\(^{2+}\) levels are high: with lower Ca\(^{2+}\) levels associated with dimmer flashes, alternative higher-affinity transport and/or Ca\(^{2+}\) buffering mechanisms may prevent some Ca\(^{2+}\) ions from being immediately extruded by CalX exchange, leading to an underestimation of \(P_f\). One such mechanism is sequestration of Ca\(^{2+}\) into smooth endoplasmic reticular (SER) stores by a SER Ca\(^{2+}\)-ATPase (43). To exclude this possibility, we measured \(P_f\) in \(trp\) flies after applying the SERCA pump inhibitor thapsigargin (10 \(\mu\)M) by puffer pipette. No significant differences were found in the properties of either the light response or the CalX-dependent tail current (Fig. 4 B). Nevertheless, we cannot exclude minor contributions of nonelectrogenic Ca\(^{2+}\) mechanisms (e.g., plasma membrane Ca-ATPase), mitochondrial Ca\(^{2+}\) buffering, or high-affinity buffers that do not release Ca\(^{2+}\) on the timescale of the experiments (although we suggest that these may be less significant at higher intensities, where they are likely to be saturated by the higher Ca\(^{2+}\) concentrations).

The larger light-induced responses at higher intensities are increasingly subject to series resistance error and deteriorating space clamp, which may result in poor voltage-clamp control (see Discussion). As a compromise, therefore, we used \(P_f\) values derived from flashes of submaximal intensity (~17,500 photons, generating responses of <7 nA) from photoreceptors with optimal series compensation (>80%, \(R_s < 25\) M\(\Omega\)). On this basis, \(P_f\) for TRP channels, isolated in \(trpl\) mutants, was 29.3 ± 1.9% (mean ± SE, \(n = 6\)), which is substantial but still less than the simple GHK prediction of 45.2%. \(P_f\) for TRP channels isolated in \(trp\) (16.6 ± 1.9% \(n = 8\)) was close to the theoretical prediction (GHK-\(P_f = 17.0\%\)). The WT current, which is mediated by both TRP and TRPL channels, yielded \(P_f\) values (26.1 ± 1.0%, \(n = 20\)) that were again below prediction (GHK-\(P_f = 41.6\%\)). \(P_f\) in \(dsK\) null mutants (23.3 ± 1.5%, \(n = 12\)) was not significantly different from that in WT (\(p > 0.05\)). The results clearly confirm the higher fractional Ca\(^{2+}\) current mediated by TRP channels and support previous studies indicating that the WT LIC is largely carried by TRP under physiological conditions (14,31).

Below, we consider the disparity between the empirical measurements and simple GHK predictions for TRP and WT currents by using a detailed modeling approach.

Voltage dependence of \(P_f\)

Thus far, \(P_f\) values were measured at resting potential (~70 mV); however, in vivo, photoreceptors depolarize in response to light. GHK theory predicts that \(P_f\) should vary with the membrane potential because each ion has its own unique reversal potential (\(E_{rev}\)). In addition, factors such as voltage-dependent divalent ion block (24) might influence \(P_f\) in a less predictable manner. We therefore measured \(P_f\) at different holding potentials. GHK theory predicts that \(P_f\) values should be almost constant at negative membrane potentials (~110 to ~30 mV), but should tend to 100% near 0 mV as \(E_{rev}\) for monovalent ions is approached, while \(E_{rev}\) for Ca\(^{2+}\) remains positive. Unfortunately, we could not obtain accurate measurements at such positive potentials because the tail current was too small; however, within the range that could be tested, \(P_f\) was broadly independent of voltage in all genetic backgrounds, consistent with GHK theory (Fig. 5). This also implies that the high fractional Ca\(^{2+}\) current through the light-sensitive channels is maintained over most of the physiologically significant voltage operating range.
Ca\(^{2+}\) dependence of \(P_f\)

\(P_f\) is clearly predicted to increase with increasing extracellular Ca\(^{2+}\) concentration. To test this, we varied \([\text{Ca}^{2+}]_o\) without altering other cation concentrations by perfusing cells for 1–3 min using a puffer pipette before delivering test flashes. As previously reported, light responses in high \([\text{Ca}^{2+}]_o\) had faster time-to-peak and decay times (Fig. 6 inset) due to enhanced positive and negative feedback by \(\text{Ca}^{2+}\) (10). The peak amplitude of the exchanger current also significantly increased when \([\text{Ca}^{2+}]_o\) was raised, saturating above 3 mM at ~200 pA in WT and TRPL while continuing to increase up to at least 10 mM in \(\text{trp}\) mutants (Fig. 6 B). We also noted a change in the kinetics of the tail current, which no longer decayed exponentially at higher \([\text{Ca}^{2+}]_o\) but was initially ramp-like, probably indicating saturation of the exchanger rate (Fig. 6 A).

The simple GHK model predicts a sigmoidal increase in \(P_f\) for both TRP and TRPL channels approaching 100% at high \([\text{Ca}^{2+}]_o\). Our \(P_f\) measurements also increased in a \(\text{Ca}^{2+}\)-dependent fashion broadly in line with the GHK model (Fig. 6 C). As before, empirical \(P_f\) values closely approximated the GHK predictions for TRPL channels (in \(\text{trp}\)) across the tested \([\text{Ca}^{2+}]_o\) range, but were generally below them for TRP channel (in \(\text{trpl}\)) and the native TRP and TRPL channels (WT).

Modeling of Ca\(^{2+}\) dynamics

Although we confirmed the high fractional Ca\(^{2+}\) contribution to the LIC and the greater Ca\(^{2+}\) influx via TRP channels, we observed significant discrepancies between the empirical \(P_f\) values and simple GHK predictions, assuming static ionic concentrations. To explore the basis for this, we extended an earlier model of Ca\(^{2+}\) dynamics (9) that considers the diffusion, influx, and efflux of the ions involved in the light response (\(\text{Ca}^{2+}, \text{Na}^{+}, \text{K}^{+}, \) and \(\text{Mg}^{2+}\)) and takes into account the large local and global changes in extra- and intracellular ionic concentrations. Although the model is detailed, it only aims to reproduce the ionic fluxes in and out of a patch-clamped fly photoreceptor, under the conditions of our experiments, for a bright flash, which effectively produces a quantum bump in each microvillus in the rhabdomere (~35,000 effective photons). Using the model, we directly calculated estimates of fractional currents and tail currents caused by the \(\text{Na}^{+}/\text{Ca}^{2+}\) exchanger, taking into account dynamic changes in ionic concentration (see Supporting Material for details).

To model the concentration changes during the light response, we reduced the photoreceptor cell and extracellular space to a one-dimensional (1D) geometry consisting of a single microvillus connected to a representative section of the cell body, and an extramicrovillar space connected to a representative section of the intraommatidial cavity (Fig. 7). By further compartmentalizing this geometry, we were able to model diffusion, local ionic fluxes, and local Ca\(^{2+}\) buffering. We estimated the currents associated with the TRP and TRPL channels from three representative measurements for WT, \(\text{trp}\), and \(\text{trpl}\) flies by subtracting an estimated exchanger current from the total LIC (Fig. S2). Based on these estimated channel currents, the modeled local ionic concentrations, the measured relative ionic permeabilities, and the GHK equation, we calculated the ionic fluxes through TRP and TRPL channels in and out of the microvillus (Figs. S3 and S4). We subsequently modeled
intra- and extracellular diffusion of ions, the extrusion of Ca$^{2+}$ ions by the Na$^+$/Ca$^{2+}$ exchanger (Fig. S3A), and buffering of Ca$^{2+}$ ions (Figs. S9 and S10). Because we used ouabain in all experiments, the model ignored any re-equilibration of Na$^+$ due to Na/K ATPase activity. We also ignored the dynamic reequilibration of Mg$^{2+}$, about which nothing is known in terms of photoreceptors. The absence of any tail current in calx mutants (Fig. 3) indicates at least that there is no significant electrogenic component.

The ionic fluxes, diffusion, and buffering led to concentration changes in the four compartments (Figs. S5–S8). When the TRP and TRPL channels opened, Ca$^{2+}$, Mg$^{2+}$, and Na$^+$ flowed into the cell, leading to a significant increase in the microvillus lumen and a delayed increase in the cell body after diffusion from the microvillus. Because Ca$^{2+}$ ions are strongly buffered and have a lower diffusion coefficient than the other ions, Ca$^{2+}$ showed a stronger peak in the microvillus, especially in WT and trpl flies, where influx was particularly high. Conversely, the concentration of Ca$^{2+}$ ions decreased in the extracellular space, most notably in the extramicrovillar space and more moderately in the intramembranial cavity. K$^+$ concentrations changed in the opposite direction, but by smaller amounts because K$^+$ has a high diffusion coefficient and its contribution to the LIC is small at \sim70 mV.

The Ca$^{2+}$ concentration that is reached in the cell body depends strongly on the buffering power; therefore, we tuned the buffering power so that cell-body Ca$^{2+}$ levels would peak around 50 μM in WT flies, as was previously measured using Ca$^{2+}$ indicators (7). After Ca$^{2+}$ influx, the exchanger extrudes the ions from the microvillus lumen into the extramicrovillar space in a concentration-dependent manner. The exchanger is assumed to saturate at high intracellular Ca$^{2+}$ concentrations, with the concentration of half-maximal exchanger current tuned to a value of $K_X = 30 \mu$M. The maximal exchanger rate constant was adjusted to a value that is in agreement with the observed maximal exchanger current of \sim200 pA. Apart from these exchanger parameters, the apparent rate of extrusion is predicted to depend strongly on Ca$^{2+}$ diffusion from the cell body to

Biophysical Journal 104(9) 1905–1916
the microvillus/rhabdomere, which in turn is strongly influenced by the buffering power. Significantly, the same buffering parameters, which were tuned to reproduce the peak Ca$^{2+}$ concentration in the cell body, also successfully modeled the time courses of the measured exchanger tail current, as well as Ca$^{2+}$ concentration time courses previously measured using Ca$^{2+}$ indicators (44,45).

The measured tail current exhibited a dominant fast component (τ ~300–400 ms) and a minor slow component (τ ~2 s). We explored several mechanisms to explain the second slow component, including diffusion from the pipette, mitochondria, and inhibition of the exchanger by intracellular Ca$^{2+}$. None of these mechanisms seemed to robustly reproduce the slow component in a way that was consistent with other aspects of the measurements. However, adding a low-capacity, moderately high-affinity Ca$^{2+}$ buffer also gave a slow component and seemed to be in better agreement with other aspects of the measurements.

Tuning of parameters was based on a representative WT measurement obtained in a bath solution containing 1.5 mM Ca$^{2+}$. We subsequently used the same parameter set for the other simulations, in which we only varied the LIC (which was an input for the simulation); the relative permeabilities corresponding to WT, trp, and trpl flies; and the extracellular Ca$^{2+}$ concentration. Because the measured integral of the LIC varies with extracellular Ca$^{2+}$, we scaled the representative LICs for WT, trp, and trpl flies measured in a bath solution containing 1.5 mM Ca$^{2+}$, with values of 0.6, 0.9, and 0.65 for simulations in which the Ca$^{2+}$ bath concentration was 0.75, 3, and 10 mM, respectively.

Using the dynamic model, we calculated P_f values for WT, trp, and trpl flies for different extracellular Ca$^{2+}$ concentrations and compared them with the measured values (Fig. 8.A). In similarity to the measured P_f values, we found that modeled P_f values in trp flies were hardly affected by dynamic changes in ion concentrations; however, for WT and trpl responses, we found that P_f was reduced close to measured values. During the peak of LIC, we predicted shifts in extra- and intracellular ion concentrations (Figs. S6 and S7), which reduce the ionic gradients across the membrane and hence the driving force for ionic currents. The shifts were most notable in the confined extramicrovillar space and microvillus lumen. Although the gradients for Ca$^{2+}$, Mg$^{2+}$, and Na$^+$ all became smaller, the effect on the more slowly diffusing Ca$^{2+}$ combined with its large flux in WT and trpl flies was much more pronounced than that observed for Na$^+$ and Mg$^{2+}$, and this reduced P_f by increasing the relative contribution of Na$^+$ and to some extent Mg$^{2+}$ compared with Ca$^{2+}$ (Fig. S4).

Using the same dynamic model, we also calculated the exchanger tail currents for WT, trp, and trpl flies for the
different extracellular Ca\(^{2+}\) concentrations (Fig. 8, B–D). The peak exchanger current just after LIC was comparable to measured values. We also found that the time course of the measured tail current qualitatively agreed with the modeled tail current for all genetic backgrounds and Ca\(^{2+}\) concentrations, including the ramp-like decay at high extracellular Ca\(^{2+}\) concentrations indicative of exchanger saturation (Figs. 6 A and 8, B and D).

DISCUSSION

In this study, we characterize a light-induced tail current in Drosophila photoreceptors. We show that it is mediated by the CalX electrogenic Na\(^{+}/Ca^{2+}\) exchanger and exploit its properties to provide quantitative estimates of the fractional contribution of Ca\(^{2+}\) to the LIC \(P_f\) through TRP and TRPL channels. Our data confirm that Ca\(^{2+}\) influx represents a major component (~30%) of the LIC and is predominantly mediated by TRP channels, whereas TRPL channels mediate a more modest Ca\(^{2+}\) influx. The voltage and Ca\(^{2+}\) dependence of \(P_f\) are broadly in line with predictions of GHK theory, and the \(P_f\) for the TRP channel closely matches that predicted by GHK theory. However, although the \(P_f\) of TRP channels (~30%) was ~2 times greater than that of TRPL, it was substantially lower than the simple GHK prediction (45%). A detailed model incorporating intra- and extracellular geometry, ion permeation, diffusion, extrusion, and buffering suggested that this deviation from the GHK prediction could be largely accounted for by extracellular ionic depletion during the large LICs.

Methodological considerations

The standard approach for measuring \(P_f\) involves loading cells with saturating levels of Ca\(^{2+}\) indicator dyes, which then must be calibrated, ideally using a pure Ca\(^{2+}\) current (22). This approach is impractical for Drosophila photoreceptors because of the huge Ca\(^{2+}\) fluxes, the extreme compartmentalization, and the lack of a pure Ca\(^{2+}\) current control for calibration. We therefore developed an alternative method based on the endogenous Na\(^{+}/Ca^{2+}\) exchanger. This method assumes that all Ca\(^{2+}\) entering the cell is removed by the CalX exchanger during the time course of the tail current. In a strict sense, this is unlikely to be completely true (see below); however, there is a substantial body of evidence implicating the CalX exchanger as the principal mechanism of Ca\(^{2+}\) extrusion in Drosophila photoreceptors (29,42). The rapidity and high efficiency of Na\(^{+}/Ca^{2+}\) exchange has also been demonstrated in Drosophila photoreceptors by a near-instantaneous inward exchange current that can be evoked by photolytic release of caged Ca\(^{2+}\) (11).

The method also assumes that the light-induced rise in Ca\(^{2+}\) is entirely due to Ca\(^{2+}\) influx through TRP and/or TRPL channels, and that other modes of raising cytosolic Ca\(^{2+}\) levels are negligible. This is strongly supported by studies using Ca\(^{2+}\) indicator dyes, in which it was concluded that Ca\(^{2+}\) influx vastly outweighs any release from intracellular stores (5–7,46). We also found that our estimate of \(P_f\) was unaffected by first depleting intracellular stores with thapsigargin. This result also excludes significant long-term Ca\(^{2+}\) sequestration by the SERCA pump as a source of error in our measurements.

Intensity dependence of \(P_f\)

In our experiments, we observed a slight intensity-dependent rise in \(P_f\) values (Fig. 4) that was not necessarily predicted, although a similar intensity-dependent difference between light-induced Ca\(^{2+}\) influx and Na\(^{+}/Ca^{2+}\) exchange-dependent efflux has also been reported in blowfly photoreceptors (37). One possible explanation for the variation of \(P_f\) with intensity is a significant contribution of alternative, higher-affinity Ca\(^{2+}\) homeostatic mechanisms (e.g., buffers, stores, mitochondria, transporters) at lower intensities. It is possible that certain Ca\(^{2+}\)-buffering/sequestering components have a slower release time constant and that some Ca\(^{2+}\) is not rapidly extruded by Na\(^{+}/Ca^{2+}\) exchange, but rather is released on a slower timescale and/or extruded by nonelectrogenic transporters such as the high-affinity plasma membrane Ca-ATPase. A significant contribution from any of these components would lead to an underestimation of \(P_f\). With higher-intensity flashes, the empirical \(P_f\) estimate may approach its true value due to a greater proportion of high-affinity sites being occupied or saturated, leading to increased reliance on the low-affinity, high-capacity exchanger.

Another possibility is that the large currents elicited by brighter flashes were inadequately voltage-clamped, owing to series resistance (\(R_s\)) errors (maximally 40–50 mV) and/or poor space-clamp conditions. Both GHK theory and direct measurements suggest that the effect of voltage on \(P_f\) is minimal at hyperpolarized potentials below ~20 mV (Fig. 5); however, \(P_f\) is predicted to increase sharply above ~20 mV, and we cannot entirely exclude the possibility that voltage-clamp control of some of the largest responses may have deteriorated sufficiently to increase the \(P_f\).

Finally, although the total LIC is smaller at low intensities, the local current density (number of channels activated per photon per microvillus) actually increases. Hence, in principle, local ionic depletion could be higher at low intensities, leading to greater deviation from the GHK prediction (i.e., the \(P_f\) value decreases at low intensity). However, this effect would be offset by less global depletion of the overall extracellular space, and the situation cannot be directly modeled by our assumption of a repeating 1D element (which strictly holds only for the case in which each microvillus is activated once).

Biophysical Journal 104(9) 1905–1916
Modeling Ca$^{2+}$ influx and extrusion

Our experimentally obtained P_f values closely matched simple GHK predictions for TRPL channels but not for TRP channels. Although this might indicate that the GHK assumptions had been violated for TRP, a detailed model suggested that the discrepancy could be largely explained by extracellular ion depletion. Thus, a computational model that still uses GHK theory but calculates dynamic ionic concentrations by taking into account photoreceptor cell geometry was able to robustly reproduce the observed P_f values and Na$^+$/Ca$^{2+}$ exchanger tail currents over a range of extracellular Ca$^{2+}$ concentrations and different genetic backgrounds. Because Ca$^{2+}$ is a major charge carrier in WT and trpl flies, and also has the lowest diffusion coefficient, it is more strongly depleted in the extracellular space during the peak response than Na$^+$ and Mg$^{2+}$, resulting in a lower P_f in WT and trpl flies. In trp flies, the contribution of Ca$^{2+}$ to the total current is lower and hence Ca$^{2+}$ is less depleted, resulting in only a slightly smaller P_f value.

An essential feature of our model is the inclusion of Ca$^{2+}$ buffering in the cell body. To obtain a realistic peak Ca$^{2+}$ (50 μM) in the cell body, Ca$^{2+}$ must be strongly (90–98%) buffered (without buffering, Ca$^{2+}$ is expected to reach ~0.5 mM in the cell body). Apart from controlling cell-body concentrations, buffering also slows down extrusion of Ca$^{2+}$ and diffusion from the cell body to the rhabdomere. The time constant for free diffusion from the cell body to the rhabdomere is estimated to be approximately $\tau = 4/\pi^2 \times d_{cb}^2/D_{Ca^{2+}} = 4/\pi^2 \times 3.2^2/220 = 19$ ms, but for buffered Ca$^{2+}$ this can be ~200–400 ms and even slower, suggesting that extrusion is partly diffusion limited. Significantly, the latter time constant matches the dominant time constant observed in the Na$^+$/Ca$^{2+}$ exchanger tail current. In other words, the introduction of a Ca$^{2+}$ buffer with properties needed to account for measured cell-body Ca$^{2+}$ concentrations also yields the observed extrusion time constant without further tuning. This interpretation of the effect of buffering on time constants is also consistent with a recent study that reported a similar time constant (~350 ms) for the increase in cell-body Ca$^{2+}$ after illumination, which was accelerated to ~20 ms after genetic knockdown of the major cell-body Ca$^{2+}$-binding protein calphotin (45).

To account for the maximal exchanger current of ~200 pA, we modeled the exchanger using a Hill coefficient of one and a concentration of half-maximal exchanger current of $K_X = 30$ μM. Qualitatively, this yielded the correct time course and shape of the exchanger tail current for all extracellular Ca$^{2+}$ concentrations and genetic backgrounds, including similar saturation characteristics (ramp-like decay) just after the peak currents recorded in high [Ca$^{2+}$]$_i$, (3 and 10 mM; cf. Figs. 6 and 8). The value for K_X is higher than the values reported for regulatory and transport binding sites for other organisms (41). However, it is likely that the apparent IC$_{50}$ values are different from specific binding sites, and, moreover, other ions or regulatory mechanisms may also affect the apparent affinity in vivo. From a physiological viewpoint, a relatively low apparent affinity of the exchanger for intracellular Ca$^{2+}$ would be beneficial for cells that have to handle large Ca$^{2+}$ influxes leading to concentration changes in the order of tens of micromolars. In some organisms at least, NCX exchangers can be modulated by [Na$^+$]$_o$, [Na$^+$]$_i$, or [Ca$^{2+}$]$_o$ (41,47). For simplicity, we ignored such regulatory sites because Drosophila CalX has not been fully characterized in this respect, and because these concentrations only undergo only relatively small changes during the light response compared with the massive changes in [Ca$_i$].

CONCLUSIONS

To our knowledge, our results represent the first empirical measurements of the fractional Ca$^{2+}$ current (P_f) of the light-sensitive channels in Drosophila. Because the TRP channel in particular shows complex permeation properties and divalent ion block, it is unlikely to strictly obey the assumptions (e.g., independent mobility of ions) of GHK theory. Despite this, our results indicate that to a good approximation, the fractional Ca$^{2+}$ current follows the GHK prediction for both TRP and TRPL. It is only reduced from the simple GHK prediction for the case of TRP channels because of the depletion of Ca$^{2+}$ ions that occurs during responses to bright flashes. Despite this reduction in P_f, Ca$^{2+}$ influx is still massive. For example, assuming a single-channel conductance of 8 pS (48), a P_f of 30% represents a flux of ~600 Ca$^{2+}$ ions/ms per TRP channel at resting potential. Within the volume of a microvillus (~3 × 10$^{-18}$ liter), this represents an unbuffered flux of 350 μM/ms per channel. During the peak responses to the bright flashes used in this study, our model predicts that microvillar Ca$^{2+}$ will transiently reach ~0.5 mM in WT and trpl photoreceptors, and ~0.15 mM in trp (Fig. S6). In response to these bright flashes, each effectively absorbed photon generates an average response of <1 pA. This is much smaller than the normal single-photon response (quantum bump), because the global rise in Ca$^{2+}$ initiated by bumps with the shortest latencies already attenuates (light adapts) the majority of bumps that arise with longer latencies. Under dim illumination, single quantum bumps have an amplitude of ~10 pA representing the opening of ~15 channels in a single microvillus, and we predict that free Ca$^{2+}$ transiently reaches levels of several millimolars within individual microvilli, as previously proposed (9). Under light-adapted conditions, each effectively absorbed photon may now only activate a single channel for a few milliseconds, but even this would be expected to raise microvillar free Ca$^{2+}$ transiently well above 10 μM.

Although the model was specifically implemented to provide insight into the Ca$^{2+}$ fluxes and exchanger currents associated with our bright-flash experiments, successful
modeling of the exchanger tail current also provided insight into the cytosolic Ca\(^{2+}\) buffering of the cell body and microvilli. Particularly important are immobile cytosolic buffers, the most significant of which is probably the Ca\(^{2+}\)-binding protein calphotonin, which is localized in a band at the base of the microvilli (45,49,50). To account for both the measured exchanger time constant and the control of absolute cytosolic Ca\(^{2+}\) in the face of massive Ca\(^{2+}\) influx, the modeling suggests that the buffer (putatively calphotin) should have a relatively low affinity (~1 mM) and high local concentration (20 mM). Future implementation of the model should provide the framework for gaining a more detailed understanding of Ca\(^{2+}\) homeostasis in microvillar photoreceptors under more physiological conditions, i.e., by considering the interplay of Na\(^{+}\) via Na/K ATPase in the voltage domain rather than under voltage clamp, and responses to more physiologically relevant illumination.

SUPPORTING MATERIAL

Supporting analysis, figures, tables, and references (51-62) are available at http://www.biophysj.org/biophysj supplemental/S0006-3495(13)00386-X.

This research was supported by the Biotechnology and Biological Sciences Research Council (grant BB/G006865/1 to R.C.H. and a doctoral award to B.C.) and the Netherlands Research Organization (NWO-ALW VIDI 86409.015 to M.P.).

REFERENCES

Biophysical Journal 104(9) 1905–1916