

Stellingen

behorende b¼ het proefschrift

On the realizability
of hardware microthreading

1. General-purpose computers are, like stem cells for living organisms, key to the
perpetuation of computer engineering.(Chapter 1)

2. Het samenstellen van verwerkingseenheden eerder ontworpen voor alleenstaand
gebruik leidt tot een minder e�ciënt multi-processor ontwerp. (Deel I & III)

3. Ingenuity and expediency are e�ective complements to analysis and synthesis.
(Chapter 6)

4. De menselijke acceptatie van w¼zigingen in de softwareinterface van verwer-
kingseenheden vereist een voorzichtige deconstructie van voormalige aannames
en modellen; de b¼behorende aanpassingen in besturingssoftware z¼n in ver-
gel¼king triviaal. (Deel II)

5. Amdahl's suggestion for a balanced design, i.e. a chip should provision a bit
per second of external bandwidth for every instruction per second, should also
apply to the bandwidth between any two individual hardware threads in multi-
processors.(Chapters 9 & 13)

6. Creativiteit en ¼ver z¼n zelden samen aanwezig in één individu; het succes-
volle uitbrengen van innovatie in informatica vereist dus een symbiose tussen
verschillende persoonl¼kheden.(Dit proefschrift en het hele gebied van computerarchi-

tectuur)

7. The advent of general-purpose computers has altered the limitations of the
human condition in ways both unforeseen and still poorly understood.

8. Het theoretische bestuderen van programmeertalen en computermodellen le-
vert alleen kennis op over hoe mensen nadenken, niet over het gedrag van
programma's.

9. Free and unencumbered information duplication is currently our sole means to
avoid a digital dark age and leave a trace in history.

10. Videospelletjes en hun beleving door spelers zullen worden erkend door toekom-
stige historici als een baanbrekende nieuwe kunstvorm en een van de grootste
prestaties van de mensheid.

On the realizability
of hardware microthreading

Revisiting the general-purpose processor interface:
consequences and challenges

This research was supported by the European Union
under grant numbers FP7-215216 (Apple-CORE) and FP7-248828 (ADVANCE).

Copyright © 2012 by Raphael `kena' Poss, Amsterdam, The Netherlands.
This work is licensed under the Creative Commons Attribution-Non-Commercial
3.0 Netherlands License. To view a copy of this license, visit the web page at
http://creativecommons.org/licenses/by-nc/3.0/nl/
or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain
View, California, 94041, USA.

Cover photograph by Éole Wind � http://eole.me

Typeset by LATEX.
Printed and bound by Gildeprint Drukkerijen.

ISBN: 978-94-6108-320-3

On the realizability
of hardware microthreading

Revisiting the general-purpose processor interface:
consequences and challenges

Academisch Proefschrift

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magni�cus

prof. dr. D.C. van den Boom

ten overstaan van een door het college voor promoties ingestelde

commissie, in het openbaar te verdedigen in de Agnietenkapel

op woensdag 5 september 2012, te 10:00 uur

door

Raphael `kena' Poss

geboren te Aix-en-Provence, Frankrijk.

Even if there needs to be a shift
at some point from the user's
perspective�your goal is to make
that shift as smooth as possible.

Daniel Prokesch

Contents

Contents i

List of Figures iii

List of Tables vii

List of Side Notes ix

Listings xi

Summary 1

Samenvatting in het Nederlands 5

Acknowledgements 9

Preface 11

1 Introduction 15

I Hardware microthreading: exploring the designer's mind 31

2 Trade-o�s in microprocessor design 33

3 Architecture overview 43

4 Machine model & hardware interface 59

II Foreground contribution: programmability 81

5 System perspective 83

6 Programming environment 97

7 Disentangling memory and synchronization 115

8 Visible synchronizer windows 137

9 Thread-local storage 147

10 Concurrency virtualization 163

11 Placement and platform partitioning 175

12 Issues of generality 187

i

ii CONTENTS

III Applications and experiences 201

13 Core evaluation 203

14 System-level issues 223

15 Conclusions and future work 235

16 Epilogue on the outer question 243

IV Appendices 247

A Information sources for the hardware interface 249

B Optimal control word size analysis 251

C Running example with machine code 253

D Machine instructions 259

E On-chip placement and distribution 263

F Semantics of C objects 269

G Original language interface 277

H Approach to code generation 293

I SL Language speci�cation 317

J QuickSort example 333

K Mandelbrot set approximation 339

Acronyms 341

Related publications by the author 343

Bibliography related to hardware microthreading 345

General bibliography 349

Index 367

List of Figures

1.1 Activities related to science. 17
1.2 Composition of parts to entire computing systems. 18
1.3 Scope of the answers to the outer question. 30

2.1 Choice between smaller or larger cores at equal logic and energy budget. 35
2.2 Room for sequential performance at equal area and energy budget. 36
2.3 Choice between specialized functions or general-purpose cores at equal logic and

energy budget. 37

3.1 Microthreaded extensions on a typical in-order, single-issue 6-stage RISC pipeline. 45
3.2 Example suspended thread list. 46
3.3 Using asynchronous FUs for latency tolerance. 46
3.4 Thread states in the Niagara architecture. 49
3.5 Thread states in the microthreaded architecture (simpli�ed). 49
3.6 Thread states in the microthreaded architecture. 50
3.7 Support for incoming external asynchronous events. 50
3.8 Example proposed distributed cache topology. 54
3.9 32-core tile of microthreaded processors. 57

4.1 Example window mapping for two sibling threads with global and local synchro-
nizers. 68

4.2 Example window mapping for three sibling threads with local and shared syn-
chronizers. 69

4.3 Alternatives for mapping global synchronizers. 70
4.4 Alternatives for mapping shared synchronizers. 70
4.5 History of the hardware platform implementations. 78

5.1 User-provider relationship in a computing ecosystem. 86
5.2 Idealized, non-realistic vision of the �abstraction stack.� 86
5.3 Subset of actual ecosystem interactions in the IT service industry. 86
5.4 The Apple-CORE ecosystem and its technology. 90
5.5 Extension of an FPGA prototype into a complete system. 93
5.6 Extension of an emulation platform into a complete system. 93

6.1 Translation of SL primitives for bulk creation (simpli�ed). 103
6.2 Overview of the placeholders in the SL tool driver. 104
6.3 Combinations of the SL tool chain with various underlying C compilers. 105

iii

iv LIST OF FIGURES

6.4 Example uses ofsl_create ...sl_sync . 107
6.5 Translation of SL primitives for detached creation (simpli�ed). 108

8.1 Register allocation as a function of the number of available register names. . . . 140
8.2 E�ect of various numbers of available register names on the outcome of register

allocation with a simple function updating a variable in memory. 140
8.3 Maximum allowable values ofG, S, L for various values ofX , with M � 31. . . 143
8.4 Maximum allowable values ofG, S, L for various values ofX , with M � 31. . . 144

9.1 Potential bank and line con�icts with 64-bit addresses, 1024 cores, 256 contexts
per core. 154

9.2 E�ect of TLS address con�icts with direct mapping. 155
9.3 Reduced TLS address con�icts with XOR-based randomization. 155
9.4 Address bit shu�ing for non-TLS pages. 156
9.5 Address bit shu�ing to aggregate distinct small TLS spaces into shared physical

pages. 156
9.6 Address bit shu�ing for non-TLS pages (virtual processes). 158

10.1 Execution of QuickSort on 1 core. 171
10.2 Execution of QuickSort on 1 core (threshold: 16 elements). 172

11.1 Parallel reduction using explicit placement, for problem sizen � 16 and a virtual
core cluster containing 4 cores. 179

11.2 Performance of the Livermore loop 3. 181

13.1 Implementing the Livermore loop benchmarks using our proposed framework. . 206
13.2 Time to result (performance) for the Livermore loop 7. 208
13.3 Instructions per cycle (utilization) for the Livermore loop 7. 208
13.4 Floating-point performance for the Livermore loop 7. 209
13.5 Actual thread sizes in the example heterogeneous workload. 211
13.6 Performance of the example heterogeneous workload. 211
13.7 Per-core activity for the example heterogeneous workload running on 32 cores. . 212
13.8 QuickSort performance on the proposed platform. 214
13.9 Di�erent logical thread distributions for QuickSort. 214
13.10QuickSort performance using automatic load balancing. 215
13.11Per-core activity for the example heterogeneous workload with a 1ms deadline. 216
13.12Throughput for one stream on one core. 217
13.13Combined throughput for 1-8,16 streams per core on 1-16 cores. 217
13.14Pipeline under-utilization for �g. 13.13. 217

14.1 Possible locations for the address translation logic on chip. 227
14.2 Forced synchronization through sequential APIs. 230

15.1 Features of the machine interface across CMP designs. 237

C.1 Observed synchronizer sharing between a creating thread and a family of 3 threads.258
C.2 Observed register sharing between a creating thread and a family of 3 threads. . 258

G.1 Control �ow graph of the function �bar� in listing G.8 291

LIST OF FIGURES v

H.1 Position of the assembly post-processor in the tool chain. 295
H.2 Position of the code transformer in the tool chain. 299
H.3 The � slc � compilation pipeline and driver. 315

I.1 Channel topology in a parallel thread family. 331
I.2 Channel topology in a thread family with irregular schedule. 331

J.1 Baseline: purely sequental algorithm as one thread. 333
J.2 Execution on 1 core with 1 family context. 336
J.3 Execution on 1 core with 3 family contexts. 336
J.4 Execution on 1 core with 31 family contexts. 337
J.5 Execution on 1 core with 31 family contexts, using Algorithm J.1 and a threshold

on concurrency creation. 337

List of Tables

1.1 Symbols used to mark technical contributions throughout our dissertation. . . . 29
1.2 Overview of technical contributions per chapter. 30

3.1 Control events to the TMU. 57
3.2 Private state maintained by the TMU. 58
3.3 Logical sub-units in the TMU. 58

4.1 Features of existing general-purpose RISC ISAs. 74
4.2 Characteristics of various implementations. 78

5.1 Possible target ecosystems for the proposed architecture. 89

6.1 Main constructs of the resulting SL language. 104
6.2 Requirements satis�ed by existing C library implementations. 112

8.1 Calling conventions on existing general-purpose processors. 144

9.1 Trade-o�s of context-based TLS partitioning . 152
9.2 TLS size per thread with the static/computed scheme. 153
9.3 Maximum possible TLS sizes with the deferred/computed scheme. 154
9.4 Amount of TLS storage provided for each thread per virtual page. 157
9.5 Protocols to provision TLS for one bulk creation. 161

11.1 Core addressing operators in the SL library. 178

13.1 System characteristics. 209

14.1 Implicitly carried dependencies in C/POSIX APIs. 229

A.1 Example programs from the architecture test suite, December 2008 250
A.2 Academic publications explaining the architecture, December 2008 250

B.1 Impact of control bits on I-cache line utilization. 251
B.2 Number of instructions per control word that maximize I-line utilization. 251

C.1 Memory image for the program �fibo �, late 2008 253
C.2 Continuation of table C.1 . 256

D.1 Description of the family control instructions. 259

vii

viii LIST OF TABLES

D.2 Description of the register-to-register communication instructions. 260
D.3 Description of the bulk context management instructions. 260
D.4 Description of miscellaneous instructions. 260
D.5 MT instruction set extensions implemented in UTLEON3. 260
D.6 General MT extensions for a SPARC v8 instruction set. 261
D.7 MT extensions for the DEC/Alpha AXP 24264 instruction set. 262

E.1 Address transformation for allocation messages on chip. 265
E.2 Execution cost of the placement primitives. 267

G.1 Example programs using the proposed C extensions, December 2008 278
G.2 Academic publications related to the C language extensions, December 2008 . . 278

H.1 Substitution table for register names. 297
H.2 Substitution table for FP register names. 311
H.3 Supported compilation targets at the time of publication of this book. 316

x LIST OF SIDE NOTES

F.5 About array item properties. 271
F.6 About multiple accesses between sequence points. 271
F.7 About the initial char representation of objects. 271
F.8 About valid addresses one past the last char. 271
F.9 Objects without primary designators. 273
F.10 Primary designator aliases for immutable objects. 273
F.11 About array designators in function parameter lists. 274

G.1 Attempt to constrain the well-formedness of programs. 283
G.2 About the input availability of �shareds� after writes. 286

H.1 About the avoidance of a C syntax parser. 300
H.2 Preservation of line number markers in M4. 300

I.1 About the compatibility of our implementation. 319
I.2 About the syntax of � sl_create � and � sl_sync �. 328
I.3 About pointers to thread functions. 328
I.4 De�ning the index sequence in the abstract semantics. 330

Listings

7.1 Two unrelated threads. 127
7.2 Two unrelated threads with a race condition. 128
7.3 Independent ordering of loads/stores to di�erent addresses. 128
7.4 Implementation of twoprint , insu�ciently synchronized. 129
7.5 Proper synchronization for twoprint . 129
7.6 Invalid busy waiting for a value. 129
7.7 Invalid busy waiting on a pointer. 130

8.1 Code fragment using multiple virtual �global� channels. 145
8.2 Translation of listing 8.1 to use only one �global� channel. 145

9.1 Code sequence to access TLS on UTLEON3. 160

10.1 Automatic serialization code for listing H.21 (simpli�ed). 168
10.2 Generated assembly code for listing 10.1. 169

11.1 Concurrent SL code for the Livermore loop 3 (inner product). 179
11.2 Concurrent SL code for the Livermore loop 3, optimized. 180

13.1 FORTRAN code for the Livermore loop 7. 205
13.2 Sequential C code for the Livermore loop 7. 206
13.3 SAC code for the Livermore loop 7. 206
13.4 Concurrent SL code for the Livermore loop 7. 207

E.1 Placement computation that extracts the size from a virtual cluster address. 266
E.2 Placement computation that extracts the absolute address of the �rst core in

a virtual cluster. 267
E.3 Placement computation that divides the current cluster in two and addresses

either the upper or lower half. 267
E.4 Placement computation to place all the created thread at a core o�setP

within the local cluster. 267
E.5 Placement computation that divides the current cluster in two and addresses

the other half relative to the current core. 268
E.6 Placement computation to place all the created thread at the next or previous

core within the local cluster. 268

F.1 Const designator to a mutable object. 276

xi

xii LISTINGS

G.1 Example code using the �create� construct and separate thread function to
scale a vector. 279

G.2 Example thread program using a channel interface speci�cation. 280
G.3 Example use of the �innerprod� thread program. 282
G.4 Using the �address of� operator on a channel endpoint. 284
G.5 Pointer aliasing a channel endpoint. 287
G.6 Implicit endpoint type conversion. 288
G.7 Multiple orderings of the same endpoint names. 288
G.8 Example program fragment using �create � . 290
G.9 Example program fragment using the �create � construct. 292

H.1 Hand-crafted thread program. 294
H.2 Hand-crafted C code. 294
H.3 Alpha assembly generated using GNU CC. 295
H.4 C code with strategically placed macro uses. 296
H.5 Macro de�nitions for thread programs. 296
H.6 Externally instrumented Alpha assembly. 297
H.7 Automatically edited Alpha assembly. 298
H.8 Edited Alpha assembly with fewer used local registers. 298
H.9 Macro de�nitions necessary for di�erent interface arities. 299
H.10 Code using multiple channel endpoints. 300
H.11 Generated assembly source for the �scal� thread program. 300
H.12 Source code for the �innerprod� thread program. 303
H.13 Generated assembly for the �innerprod� thread program. 303
H.14 Prototype �create� construct. 304
H.15 Example use of �createsync.� . 304
H.16 Generated asembly from listing H.15. 305
H.17 Example use of �createsync� with omitted parameters. 305
H.18 Generated assembly for listing H.17. 305
H.19 Support for �global� channel endpoints in �createsync.� 306
H.20 Extension of listing H.19 for �shared� channels. 306
H.21 Example vector-vector product kernel. 307
H.22 Generated code for listing H.21, using the �fused� creation interface. 308
H.23 Generated code for listing H.21, using the �detached� creation interface. . . . 310
H.24 Syntax expansions for a sequential schedule. 311
H.25 Substitution for SPARC's save. 314
H.26 Substitution for SPARC's restore . 314

J.1 QuickSort benchmark in SL, classic algorithm. 334
J.2 QuickSort benchmark in SL, families of two threads. 335

K.1 Computation kernel executed by each logical thread. 339
K.2 Workload implementation using an even distribution. 339
K.3 Workload implementation using a round-robin distribution. 340

Summary

Ever since the turn of the century, fundamental energy and scalability issues have pre-
cluded further performance improvements in general-purpose uniprocessor chips. To �cut
the Gordian knot,� [RML � 01] the industry has since shifted towards multiplying the num-
ber of processors on chip, creating increasing larger Chip Multi-Processors (CMPs) by
processor counts, to take advantage of e�ciency gains made possible by frequency scal-
ing [RML � 01, SA05]. Yet so far most general-purpose multi-core chips have been designed
by grouping together processor cores that had been originally designed for single core, mostly
single-threaded processor chips. After a decade of renewed interest in CMPs, the architec-
ture community is barely coming to terms with the realization that traditional cores do not
compose to create easily programmable general-purpose multi-core platforms.

Instead, the Computer Systems Architecture group at the University of Amsterdam
proposes a general machine model and concurrency control protocol, relying on a novel in-
dividual core design with dedicated hardware support for concurrency management across
multiple cores [PLY � 12]. The key features of the design, described as �hardware microthread-
ing,� are asynchrony, i.e. the ability to tolerate operations with irregular and long latencies,
�ne-grained hardware multithreading, a scale-invariant programming model that captures
clusters on chip of arbitrary sizes as single programming resources, and the transparent
performance scaling of a single binary code across multiple cluster sizes. Its machine in-
terface does not only provide native support for data�ow synchronisation and imperative
parallel programming; it also departs from the traditional RISC vision by allowing programs
to con�gure the number of hardware registers available by thread, replacing interrupts by
thread creation as a means to signal asynchronous events, relying on a single virtual address
space, and discouraging the use of main memory as an all-purpose synchronization device,
preferring instead a specialized inter-core synchronization protocol.

The adoption of a di�erent machine interface comes at the cost of a challenge: most
operating software in use today to drive general-purpose hardware, namely operating sys-
tems, programming language run-time systems and code generators in compilers have been
developed with the assumption that the underlying platform can be modelled by traditional
RISC cores with individual MMUs grouped around a shared memory that can be used for
synchronization. A port of existing operating software towards the proposed architecture is
therefore non-trivial, because the machine interfaceconceptually diverges from established
standards. In this dissertation, we investigate the impact of these conceptual changes on
operating software.

1

2 SUMMARY

We propose namely answers to the following questions:

1. Is it possible to program a chip with the proposed machine interface using an already
accepted general-purpose programming language such as C?

2. What are the abstract features of the proposed machine interface that make it qual-
itatively di�erent from contemporary general-purpose processor chips from the per-
spective of operating software?

The �rst question is relevant because the availability of existing programming languages
is a prerequisite for adoption of a new general-purpose architecture. Moreover, support
for C must be available before most higher-level software environments can be reused. For
this question our answer is generally positive. By constructing a C compiler and parts of
the accompanying language library, we demonstrate that programs following the platform
independence guidelines set forth by the designers of C can be reused successfully on multiple
instances of the proposed architecture. We also demonstrate how to extend the C language
with new primitives that can drive the proposed hardware-based concurrency management
protocol. However, we acknowledge that most programs also use system services and make
assumptions about the topology and components of the underlying platform. We discuss
why some of these assumptions cannot yet be adapted fully transparently to the proposed
architecture and suggest a strategy for future work to do so.

The second question is relevant because its answer de�nes how to advertise the platform
to system programmers, who constitute the early technology adopters with the strongest
in�uence. For this question our answer considers separately the various peculiarities of the
machine interface.

The proposed ISA provides native hardware support for thread management and schedul-
ing and thus seems to con�ict with the traditional role of operating software. Yet as we argue
this support does not change existing machine abstractions qualitatively, because concur-
rency management was already captured in operating software behind APIs with semantics
similar to those of the proposed hardware protocol. The machine interface provides con�g-
urable numbers of registers per hardware thread, which is a feature yet unheard of in other
general-purpose processors. Yet as we show this feature can be hidden completely behind
a C code generator, and can thus become invisible to operating system code or higher-level
programming languages. The proposed chip topology promotes a single address space shared
between processes, relying on capabilities [CLFL94] instead of address space virtualization
for isolation, which diverges from the process model of general-purpose operating systems
commonly in use today. Yet as we suggest the technology necessary to manage a single vir-
tual address space is already available and widely used (for shared libraries and application
�plug-ins�) and this feature thus does not pose any new conceptual di�culty.

We found that the �rst conceptual innovation that warrants further theoretical investiga-
tion is the surrender of shared memory as the universal synchronization device for software.
In traditional multi-core programming, implicit communication via coherent shared mem-
ory locations is routinely abused to provide locking, semaphores, barriers and all manners
of time synchronization between concurrent activities. In the proposed architecture, such
implicit communication is restricted and new basic programming constructs with fundamen-
tally di�erent semantics must be used instead. We formalize a subset of these semantics,
then suggest how they can be used at a higher level in existing concurent programming
languages. To summarize, despite their strong conceptual divergence, we found that these

Samenvatting

Sinds het begin van de eenentwintigste eeuw hebben energie- en schaalbaarheidsproblemen
prestatieverbeteringen van individuele verwerkingseenheden zeer gehinderd [RML� 01]. Om
de spreekwoordel¼ke Gordiaanse knoop door te hakken heeft de industrie zich sedertdien
gericht op het laten toenemen van het aantal verwerkingseenheden per geïntegreerd circuit.
Dit heeft tot steeds grotere zgn. multi-processors geleid, waarmee aan (energie)e�ciëntie ge-
wonnen kan worden, door middel van het schalen van klokfrequenties [RML� 01, SA05]. In
het ontwerp van zulke multi-processors is het echter nog steeds gebruikel¼k algemene verwer-
kingseenheden, ontworpen voor alleenstaand gebruik, samen te voegen tot een systeem. Een
decennium na de herintrede van multi-processors is de computerarchitectuurgemeenschap
nog alt¼d niet tot het inzicht gekomen dat multi-processors ontworpen door het samenstel-
len van traditionele verwerkingseenheden onvoldoende niet goed programmeerbar zijn voor
algemeen gebruik.

De CSA-leerstoel aan de Universiteit van Amsterdam legt zich toe op het ontwikkelen
van algemene machinemodellen en beheermodellen voor multiprogrammering, uitgaande van
een nieuwe verwerkingseenheid naar eigen ontwerp, die hardwareondersteuning biedt voor de
coördinatie van multiprogrammering over meerdere eenheden [PLY� 12]. Een kernbegrip van
deze nieuwe architectuur is �hardwaremicrodeeltaken.� Dit begrip omvat asynchronie, d.i.
om kunnen gaan met operaties met zeer uiteenlopende verwerkingst¼den, f¼nmazige hardwa-
rematige deeltaken, een schaalonafhankel¼k programmeermodel�welk clusters-op-een-chip
van willekeurige omvang als enkelvoudige verwerkingsbronnen behandelt�en een in hoge
mate transparante schaalbaarheid van de prestaties van binaire code over variërende clus-
tergroottes. Buiten ingebouwde ondersteuning voor data�owsynchronisatie en imperatieve
parallelle programmeering w¼kt deze verwerkingseenheid ook af van het RISC-paradigma op
vier gebieden. Het laat programma's zelf bepalen hoeveel hardwarematige registers aan ieder
deelproces worden toegewezen. Onderbrekingssignalen worden als primaire asynchrone sig-
nalering vervangen door primitieven voor het afsplitsen en samenvoegen van deelprocessen.
De programmeur wordt een omvattende virtuele adresruimte aangeboden. Tevens wordt
het gebruik van het werkgeheugen als primair synchronisatiemiddel sterk ontmoedigd�ter
vervanging is een hiertoe toegespitst synchronisatieprotocol tussen verwerkingseenheden be-
schikbaar.

De introductie van een dergel¼ke nieuwe machineinterface heeft behoorl¼k wat voeten in
de aarde. Gangbare besturingssoftware (besturingssystemen, vertalers, loopt¼domgevingen,
enz.) veronderstelt veelal, dat de hardware waarop ze wordt uitgevoerd uitwisselbaar is met
traditionele RISC eenheden met ieder een individuele MMUs, die allemaal toegang hebben
tot hetzelfde werkgeheugen waarmee synchronisatie kan worden gerealiseerd. Dientengevolge
kunnen bestaande besturingssystemen niet triviaal worden vertaald naar voornoemde nieuwe
architectuur. Het probleem is dat de machineinterface opconceptueelniveau afw¼kt van

5

6 SAMENVATTING

gangbare standaarden. Dit proefschrift behandeld de implicaties van deze koersw¼ziging
voor besturingssoftware.

W¼ richten ons in dit proefschrift hoofdzakel¼k op de volgende vragen:

1. Kunnen gangbare programmeertalen, zoals C, worden aangewend om dergel¼ke ver-
werkingseenheden te programmeren?

2. Wat z¼n de kwalitatieve verschillen tussen de voorgestelde machineinterface enerz¼ds
en dat van gangbare algemeen toepasbare processors anderz¼ds en wat z¼n hiervan de
implicaties voor besturingssoftware?

De eerste vraag vindt haar relevantie in het gegeven dat de aanvaarding van nieuwe archi-
tecturen voor algemeen gebruik veelal sterk afhangt van de overdraagbaarheid van bestaande
programmeertalen. In het b¼zonder moet C vertaalbaar z¼n naar de nieuwe omgeving om
menige softwareomgeving te kunnen hergebruiken. In grote l¼nen kan deze vraag positief
worden beantwoord. Met behulp van een hiertoe ontwikkelde C-vertaler en gedeeltelijk stan-
daard C-bibliotheek kunnen we aantonen dat programma's uitvoerbaar z¼n op verschillende
instanties van de voorgestelde architectuur, mits deze z¼n geschreven volgens de door de
C-ontwerpers aangegeven richtl¼nen voor platformafhankel¼kheid. Tevens breiden we C
uit met primitieven die de voorgestelde hardwarematige multiprogrammering aan kunnen
sturen. Het behoeft echter vermelding, dat menig concreet programma verdergaande aan-
names doet over het systeem waarop het wordt uitgevoerd. We behandelen de p¼npunten
van de overdraagbaarheid van deze aannames en doen suggesties voor toekomstig onderzoek
te dezer zake.

De tweede vraag is relevant, aangezien het antwoord goeddeels bepalend is voor hoe de
nieuwe omgeving ten beste aangeboden kan worden aan systeemprogrammeurs. Deze ge-
meenschap is in hoge mate bepalend voor de verdere aanvaarding van een nieuwe architec-
tuur. De beantwoording van deze vraag gaat dieper in op de verschillende eigenaardigheden
van de machineinterface.

De voorgestelde ISA biedt hardwareondersteuning voor het beheer en de planning van
deelprocessen, wat ogensch¼nl¼k botst met de traditionele rol van besturingssoftware. W¼
beweren echter, dat het niet (kwalitatief) str¼dig is met bestaande machineabstracties, daar
het beheer van multi-programmering in besturingssoftware zich normaliter achter APIs ver-
schuilt met een vergel¼kbare semantiek. Het machinemodel biedt controle over de toew¼zing
van het aantal registers aan deelprocessen, wat tot op heden ongehoord is gebleken in alge-
mene verwerkingseenheden. Desalniettemin tonen w¼ aan dat deze eigenschap kan worden
verhult door toepassing van een C-codegenerator, waardoor noch besturingssysteem, noch
enige programmeertaal op een hoger abstractieniveau hier enige hinder van ondervindt. De
voorgestelde chiptopologie biedt processen allemaal dezelfde adresruimte. Hier vindt toe-
gangscontrole plaats op basis van geschiktheid [CLFL94], in plaats van virtualisatie van de
adresruimte. Deze aanpak w¼kt af van de procesmodellen van moderne, gangbare, algemene
besturingssystemen. Evenwel w¼zen we op de beschikbaarheid van gebruikel¼ke technologie
voor het beheer van dergel¼ke onverdeelde adresruimten (zoals, b¼voorbeeld, voor gedeelde
bibliotheken en dynamische programmauitbreidingen) die op vergel¼kbare w¼ze kunnen
worden toegepast, waardoor er geen conceptuele obstakels worden geboden.

De eerste conceptuele innovatie, waaruit verdere theoretische onderzoeksvragen voortko-
men, is het loslaten van het idee om het gedeelde werkgeheugen als synchronisatiemechaniek

SAMENVATTING 7

aan te wenden voor software. Traditionele multiprogrammeringsmethoden implementeren
doorgaans abusievel¼k met gedeelde variabelen wederz¼dse uitsluiting, semaforen, synchro-
nisatiebarrières en velerlei andere synchronisatiemechanismen tussen verschillende taken. De
voorgestelde architectuur stelt paal en perk aan dit soort communicatie en biedt ter vervan-
ging basis programmeerconcepten met fundamenteel andere semantiek. Een deel van deze
semantiek wordt in dit proefschrift geformaliseerd en de toepassing van deze concepten in
bestaande programmeertalen op hoger niveau wordt toegelicht. Samenvattend beweren w¼
dat, ondanks conceptuele afw¼kingen, deze nieuwe synchronisatiemechanieken niets inboe-
ten aan algemeenheid en theoretisch geïntegreerd kunnen worden met bestaande software,
alhoewel voor dit laatste meer werk noodzakel¼k is.

De tweede conceptuele innovatie die we presenteren is de eindigheid van de ondersteu-
nende middelen voor multiprogrammering. Verreweg de meeste implementaties van alge-
mene, multiprogrammeerbare systemen zien deeltaken en synchronisatiemechanieken (b.v.
semaforen) als logische concepten die door software worden geïnstantieerd. Hierb¼ wordt
aangenomen dat ze onbeperkt kunnen worden gevirtualiseerd in het werkgeheugen. In de
voorgestelde architectuur z¼n deze middelen eindig, waardoor programma's vastlopen wan-
neer ze zich meer dan in de hardware beschikbare middelen proberen toe te kennen. W¼
bepleiten echter, dat met de opmars van declaratieve multiprogrammering in programmeer-
talen deze virtualisatiebehoefte teniet doet. Helaas kunnen we niet inschatten of de eindig-
heid van synchronisatiemechanieken de aanvaarding van deze architectuur in de vakgemeen-
schap in de weg zal staan. Samenvattend kunnen we stellen dat deze innovatie verder zal
moeten worden onderzocht en dat de voorgestelde architectuur mogel¼k zal moeten worden
b¼gestuurd.

Buiten de wetenschappel¼ke b¼dragen omtrent de bovengenoemde vragen omvat dit
proefschrift ook een relaas over het ontwerp en de implementatie van nieuwe verwerkings-
eenheden, te midden van hedendaagse technologische uitdagingen. We benadrukken in het
b¼zonder, dat recente onderzoeken naar architecturen van verwerkingseenheden meestal nei-
gen naar het loslaten van het bieden van ondersteuning voor gevestigde programmeerst¼len
en softwareabstracties om conceptuele problemen �op te lossen.� Deze neiging w¼zen w¼
af, als z¼nde schadel¼k voor algemeen computergebruik. Als rode draad door dit proef-
schrift loopt ons pleidooi voor het behoud van algemeenheid in verwerkingseenheden en de
consequenties hiervan voor ontwikkeling, van architectuur, via besturingssysteem, tot aan
toepassingen.

Dankwoord / Acknowledgements

In memoriam: Bertrand Russell, Dennis Ritchie & de kat

Zo'n onderneming van meerdere jaren, met zo weinig zekerheid op voorhand over de
uiteindel¼ke resultaten, kan worden vergeleken met het opvoeden van een kind of met een
zelf-ontdekkingsreis. Zo heb ik het wel gedeeltel¼k ervaren; al was m¼n project een zoektocht
naar het onderliggende netwerk van kennissen, culturen, vaardigheden en methoden die aan
het bouwen van een computersysteem ten grondslag ligt. Op zoek naar een waarheid die
ik kon erkennen, heb ik dankbaar hulp aanvaard t¼dens m¼n oorlog tegen foute aannames,
onvolledige argumenten, drogredenen en andere vormen van onwetendheid.

Deze ervaring durf ik te vergel¼ken met de cursus st¼ldansen waarvan ik vele zondagen
gedurende m¼n onderzoek genoot. M¼n meest betrouwbare danspartner is zonder tw¼fel
Mike Lankamp geweest. Vier jaar lang hebben w¼ samen een genadeloze tango gedanst,
alt¼d in str¼d met elkaar, waarb¼ de rollen van leider en volger regelmatig wisselden, maar
waarb¼ we alt¼d samen toe werkten naar een esthetisch elegant resultaat. Our training was
faithfully guided by Chris Jesshope, who, beyond playing the background scienti�c tune to
which we danced, also subtly gave the measure, provided us with �rst steps to follow, and
trusted us to �make things happen� on our own. I will be forever grateful to both for this
lasting learning experience.

While exercising, I have also learned much from working with my fellow dancers and el-
ders: Irfan, Jian, Joe, Jony, Kostas, Michael and Qiang, you have been inspiring examples.
Vooral Thomas en Michiel hebben m¼ vaak geholpen met de knepen van het vak en per-
soonl¼ke coaching; ik ben jullie hiervoor b¼zonder dankbaar. W¼ deelden ook de vloer met
collega's die een andere st¼l dansten. Al leek hun muziek op de onze, toch waren de pasjes
net iets anders; door naar hen te k¼ken heb ik m¼n eigen kunnen verbeteren. Daarom wil
ik m¼n respect uitspreken voor Andy, Clemens, Fangyong, Mark, Mer¼n, Peter, Roberta,
Roeland, Roy, Toktam en Wei alsmede hen bedanken. Similarly, I cherished our joint learn-
ing with partners from other schools: Bodo, Carl, Dan, Dimitris, Frank, George, Jara, Leo²,
Lukas, Martin, Raimund and Stephan, although you exercised a di�erent swing on the same
music, the experience would have been largely incomplete without you.

Naturally, I would like to also thank respectfully the members of the evaluation commit-
tee, namely professor Jesshope, dr. Chamberlain, professor Scholz, dr. Grelck, professor de
Laat, professor Brorsson, and professor Klint, for their extensive comments and suggestions
toward improving the earlier versions of this book.

Ondanks m¼n liefde voor het dansen en m¼n interesse voor de muziek van Chris, had
ik het niet zo lang vol kunnen houden zonder de betrokkenheid en ondersteuning van een
paar waardevolle en b¼zondere personen. In de eerste plaats Rob Jelier, wie m¼ de weg
van een promotie wees. Van Rob kreeg ik een vernieuwd geloof in de wetenschap, en ook

9

10 ACKNOWLEDGEMENTS

in m¼zelf. Door z¼n voorbeeld te volgen, heb ik m¼n grondgedachten onderzocht, m¼n
dieptepunt van onzekerheid bereikt en ontdaan van alle externe motivaties. Toch ging
ik door, gedreven door pure nieuwsgierigheid. Naast Rob z¼n Mark Thompson en Simon
Polstra trouwe vrienden geworden die me voortdurend aan herinnerden dat ik niet slechts een
wetenschappel¼k instrument ben, en dat m¼n irrationele behoeften als mens ook aandacht
verdienen. Want ondersteuning op het mensel¼ke vlak had ik natuurl¼k ook nodig: die heb
ik niet alleen gekregen van Rob, Mark en Simon, maar ook van Marseda Duma, Sabien Jesse,
Roberta Piscitelli, Arnold Pols and Sylvain Viollon, die er alt¼d voor me waren wanneer
motivatie ontbrak. En toen de t¼d kwam om na te deken over wat ik �erna� ging doen, heeft
Mer¼n Verstraaten m¼ geholpen om een nieuwe betekenis aan m¼n rol te geven; dankz¼ hem
heb ik het afronden van het werk kunnen ervaren meer als een overgang dan een eindstreep.
Zonder jullie was het werk en daarmee ook dit boek nooit afgekomen.

Verder is m¼n werk ontzettend verr¼kt door een paar onwaarsch¼nl¼ke ontmoetingen.
Dankz¼ Marjolein op den Brouw heb ik begrepen dat wetenschappel¼ke onderzoek een
zeer persoonl¼ke onderneming is, onafhankel¼k van de voorkeuren van collega's en promo-
tor(e)(s). Both Marjolein and Daniel Prokesch have taught me how inspiration and curiosity
come from within and must often be carefully balanced with other life priorities. Het begrip
dat onderzoek en onderw¼s niet veel meer dan een sociaal spel z¼n, met eigen politieke
regels, leerde ik ten eerste van Philip Hölzenspies; van hem, en ook van Jan Kuper, leerde ik
tegel¼kert¼d dat �het spel� leuk kan bl¼ven, zolang de deelnemers ervan weten te genieten.
Ik dank jullie beide voor de w¼ze les om vaker te focussen op wat voor m¼ leuk is.

Last but not least, I wholeheartedly dedicate a kind word to Stephan Herhut, Andrei
Matei, Frank Penczek and Mer¼n Verstraaten. Despite, or perhaps thanks to, our contrast-
ing personalities and quite distinct perspectives, you have provided a true meaning to the
words �community of peers.� With you I have simultaneously enjoyed the feeling of mutual
interest, admiration, pride and respect, the excitement of working and learning together,
and a healthy dosis of mutual evaluation and competition. I am looking forward to building
our friendships further.

kena
Amsterdam, July 2012

Preface

Zonder verhaal zijn feiten
sprakeloos.

Karel van der Toorn

When I joined the CSA group in September 2008, my supervisor Chris Jesshope tasked
me thus: �We made this novel chip called a Microgrid, and we want a C compiler to program
it. Do it.�

This is most of what this book is about. You are now holding a report on four years
worth of work towards compiling and running C programs on Microgrids, which are multi-
core, multithreaded processor chips. I am proud and content to report that a C compiler
now exists for this architecture. The following pages will hopefully convince you that the
corresponding software technology and example uses constitute an adequate answer to my
supervisor's request.

Meanwhile, these four years have been intellectually instructive.
The �rst and most prominent discovery was that these Microgrid chips, that needed a

compiler, lacked a speci�cation when my work started. As I learned quickly, there are two
meanings for the word �exist� in computer architecture. One de�nition, commonly used by
the layman, suggests a working physical artifact. This de�nition, however, is quite uncom-
mon in the research �eld: most chip architectures �exist� instead asmodels(blueprints) that
can be studied analytically or via software simulations. The Microgrid architecture obvi-
ously did not exist in this �rst sense, as it was not expected anyway. My surprise, instead,
was to realize that Microgrids only �existed� in the other sense in themind of my colleagues.
Their existence was vernacular, shapeshifting, and lacked committed documents that I could
study and refer to. The second, most exciting discovery was that my colleagues had not
invented one chip design but instead aclass of chip designs, which could be instantiated
over a range of design parameters. Therefore, to make a compiler, I �rst had to capture
my colleague's minds on paper, then understand the architecture class so that a C compiler
could target all its possible instances.

On this quest to gather such ageneric platform speci�cation, a prerequisite to implement
a compiler, I made two further discoveries:

ˆ previously written information about the new architecture was inconsistent, i.e. it
expressed con�icting ideas;

ˆ the unwritten intellectual model manipulated by my peers, while relatively consistent,
was largely insu�cient to implement a C compiler and accompanying software. For
example, it missed the concept of external input and output.

11

12 PREFACE

In other words, the task initially assigned to me required that I �rst document the
meta-architecture and then an instance thereof in su�cient detail. It also required that
I complement the model with additional features required by the new software. While
doing this, I had to accommodate the fact that some system features required to compile
the C language are not technically part of a compiler nor the hardware architecture, but
rather the �environment� provided by a software operating system. Therefore I had to also
contribute some additional technology in that direction. All this happened, although as you
would probably agree these steps are somewhat di�cult to capture behind a simple �problem
statement� such as found in most doctoral theses.

When I wrote the �rst version of this book, its narrative was similar to the steps outlined
above and amounted to a straightforward technical report. When I initially submitted this
report, my supervisor rejected it. He argued that the scienti�c community would not be
interested in an engineering story; that they would rather like to understand which new
knowledgeI had created on my way. So I sat and mulled over the report. What did I learn
during this work? What new knowledge did I create that was worth sharing?

At the foreground, surely there was some knowledge to share about the creation and
exploitation of a C compiler for a new architecture. So I left that in, to be found in chapters 6,
8 to 11 and 13. Yet I found that sharing only this knowledge was oddly unsatisfying,
because it depended on knowledge about said new architecture that was either unpublished
or inconsistent, and somewhat incomplete. Therefore, I decided toalso share the detailed
knowledge I gathered from my colleagues about their Microgrid meta-model, complemented
by details about the di�erent concrete instances that I used in my work. And so I added
that knowledge to the text, to be found in chapters 3 to 5. As a welcome side e�ect of
this excercise, I was also able to argue towards arenewed motivation (chapter 2) for the
architecture design, to complement the 15 years old argument [BJM96] that had so far served
unchanged as justi�cation for the line of work.

When this was done, I mulled again: although I had formulated new knowledge and
made a scienti�c contribution to my �eld, I had not yet done justice to what I had found
most important and fundamental in those four years. For there were two other aspects,
which I dare call �knowledge� although my supervisor calls them �experience,� that I had
also isolated. The �rst is my understanding of the thrust of practitioners in my �eld:
what innovation really means in computer architecture and why it is so crucially important
to the future of computing. I share my views on this topic in chapters 1 and 16; this
explains why you should care about my story, even though you may not be interested in
Microgrids speci�cally. The second is my understanding of an obstacle shared between
computer architects working on multi-core chip designs, that is the necessary disruption of
unspoken knowledge.

Beyond the immediate need for more performance per watt, the role of a processor
chip designer is to provide components to other humans to use in larger systems; as such,
there is an iterated step of human-to-human communication required between component
architects, system architects and software practitioners. Due to the largely technical nature
of the devices considered, this communication is necessarily dense; to reduce verbosity, the
people involved rely on unspoken, tacit knowledge constituted by their cultural background
in computer science.Innovation is di�cult because of this reliance on tacit knowledge. Any
novel component will break some unspoken assumptions and invalidate some commonly
accepted �truths.� Innovation thus requires formulating a new cultural background about

PREFACE 13

hardware platforms, a step which most audiences�especially in the software world�are
ill-trained to perform. In the case of Microgrids, my colleagues had already discovered
that the mere prospect of additional performance is not enticing enough when its cost is a
necessarily more complex mental model of the machine. What I have understood however,
is that software audiences are willing to pay the price of more complex models ifthey believe
that they gain in �exibility , i.e. future increases in productivity. There are two requirements
to support this belief. The �rst is that the chip designer does not gratuitously remove features
previously relied upon; the second is that the chip designer argues for thegenerality of any
new features, to convince software audiences they can be used in ways not yet foreseen. As
I found out, these two requirements were previously not very well addressed in the work
around Microgrids. To my colleagues' defense, neither are they in other research projects in
computer architecture. Nevertheless I believe they are still essential to the eventual fruition
of innovative research in the �eld.

To advertise this experience, I thus decided to spend extra care to:

ˆ detail the proposed architecture from the perspective of system software (chapters 3
and 4), highlight some of the most a�ected assumptions about the underlying machine
model (chapter 7), and suggest how features commonly found in other platforms are
also found in the proposed design (chapters 5 and 14);

ˆ argue for generality throughout, starting with a renewed defense of general-purpose
computing (chapter 1) and placing emphasis on the potential use of the platform by
contemporary concurrent programming models (chapters 7, 9 and 12).

With this extra e�ort I want to communicate that the concepts around the advent of
Microgrids are not merely the bread and butter of a small research group; that this research
answers general requirements that deserve attention regardless of which speci�c architecture
they are considered from. This is why chapters 3, 4 and 9 are longer than strictly required
by a platform speci�cation towards a C compiler, and why chapters 5, 7, 12 and 14 do not
�t the purely technical line of thought of the other chapters. As I explain in section 1.7,
this �meta-thesis� provides a second reading level, distinct from the technical contribution
at the �rst level.

To keep a long story short, if you wish to restrict your reading to the joys of compiling
C towards Microgrids, you can narrow down your focus to chapters 6, 8 to 11 and 13. The
rest is �simply� philosophy.

Chapter 1

Introduction

Ingenuity and imagination,
rather than accurate thought, are
the ordinary weapons of science.

G.H. Hardy [Har11].

Contents
1.1 Birdview epistemology . 16
1.2 Computer science . 18
1.3 Stem cells of computing . 20
1.4 Losing sight of generality . 24
1.5 Achilles' heel of designers . 26
1.6 Case study: hardware microthreading . 28
1.7 Overview . 28

15

16 CHAPTER 1. INTRODUCTION

1.1 Epistemology: science is team work, so is innovation

The traditional purpose of the fundamental sciences is the acquisition of new knowledge
pertaining to observed phenomena, in an attempt to describe �what is.� In parallel to the
discovery of new knowledge through scienti�c inquiry, philosophers, or theoreticians, derive
ideas of �what could be.� Via formalisms, they construct structures of thought to validate
these ideas and derive iteratively new ideas from them.

We can focus for a moment on the human dynamics around these activities. On the
one hand, the intellectual pleasure that internally motivates the human scientists is mostly
to be found in the acquisition of knowledge and ideas. For natural scientists, the focus
is on accuracy relative to the observed phenomena, whereas for philosophers the focus is
on consistency. On the other hand, the external motivation for all �elds of science, which
materially sustains their activities, is the need of humans for either discovery or material
bene�ts to their physical existence. From this position, the outcome of scienti�c inquiry and
philosophical thought, namely knowledge and ideas, is not directly what human audiences
are interested in. The �missing link� between scienti�c insight and its practical bene�ts is
innovation, an engineering process in two steps.

The �rst step of innovation is foundational engineering: the creative, nearly artistic
process where humans �nd a new way to assemble parts into a more complex artifact,
following the inspiration and foreshadowing of their past study of knowledge and ideas, and
guided by human-centered concerns. Foundational engineering, as an activity, consumes
re�ned matter from the physical world and produces new more complex things, usually
tools and machines, whose function and behavior are intricate, emergent composition of
their parts. The novelty factor is key: the outcome must have characteristics yet unseen to
qualify as foundational; merely reproducing the object would just qualify as manufacturing.
The characteristic human factor in this foundational step is creativity , which corresponds
to the serendipitously successful, mostly irrationally motivated selection of ideas, knowledge
and material components in a way that only reveals itself as useful, and thus can only be
justi�ed, a posteriori.

The other step is applicative engineering, where humans assemble artifacts previously
engineerd into complex systems that satisfy the needs of fellow humans. In contrast to
foundational engineering, the characteristic human factor here is meticulousness in the real-
ization and scrupulousness in recognizing and following an audience's expectations�if not
fabricating them on the spot.

The entire system of activities around science is driven by ademand for applications:
the need of mankind to improve its condition creates demand for man-made systems that
solve its problems, which in turn creates demand for new sorts of devices and artifacts to
construct these systems, which in turn creates demand for basic materials as input, on the
one hand, and intellectual diversity and background in the form of knowledge and ideas.
We illustrate this general view in �g. 1.1, and argue it is also valid for fundamental sciences
in side note 1.1. The role of education, in turn, is to act as a glue, ensuring that the output
of the various activities are duly and faithfully communicated to the interested parties.

Our �rst observation, which is perhaps the key motivation for the work presented in
this dissertation, is that di�erent humans who partake in these activities have di�erent
preferences. We do not expect any one person to participate in and be successful at all
steps to improving the condition of mankind. The corollary is that for all processes to
be successful, humans mustacknowledge their separate interestsand coordinate their work
towards the common goals.

1.1. BIRDVIEW EPISTEMOLOGY 17

Figure 1.1: Activities related to science.

18 CHAPTER 1. INTRODUCTION

Side note 1.1: Fundamental sciences are also application-driven.

One may argue that the search for knowledge and understanding can be an end in itself, and deserve support
(e.g. via funding) regardless of its applicability. However, we argue that all scienti�c activities are motivated
by human needs for either discovery or comfort, and that it is human demand for their utilitarian value that
fuels continued inquiry.
The need for discovery concerns the expansion of mankind, both over time, space and intellectually. Dis-
covery has been historically more valued; it has fueled e.g. investigation into navigation and astronomy
to conquer space, history and medicine to conquer time, mathematics, logic and linguistics to conquer the
mind, theology, politicology and sociology to conquer the human group. Even astrophysics, quantum physics
and cosmology can be seen as discovery means towards conquering the universe. All other �elds of science
exist to either improve the scienti�c process towards discovery, e.g. arti�cial intelligence or computational
sciences, or to optimize the use of the already-conquered area by humans, i.e. increase comfort.
In either case, the outcome of the scienti�c activity must be engineered into useful objects before it becomes
visible, even when the objects are just knowledge vehicles like books or lectures. Creating a book, for
example, involves a foundational step in expressing the text by the author, then assembly of the text into
a concrete print by the publisher. Even with �fundamental sciences� which claim to produce only abstract
knowledge, the value of the scienti�c activity can only be ascertained once the acquired knowledge is actually
communicated. We can thus say that it is the demand for knowledge vehicles, expected as physical artifacts,
that fuels the fundamental sciences.

Figure 1.2: Composition of parts to entire computing systems.

1.2 Computer science, engineering, and its architecture sub-�eld

The term �computer science� broadly encompasses all activities around the design, manu-
facturing, application and analysis of computing systems. Computer systems engineering is
its subset of activities related to the design of the computing artifacts, i.e. the design of tools
that can be subsequently applied by the IT industry to mankind's interests. We illustrate
the further sub-�elds of computer engineering in �g. 1.2, namely: electrical engineering, soft-
ware engineering, computer architecture and systems architecture. As highlighted above,
the foundational part of computer systems engineering is inspired by, and based on knowl-
edge and ideas from natural sciences, such as biology and physics, and philosophy, such as
the theoretical work of George Boole, Alan Turing, Alonzo Church and Claude Shannon;
its outcome, i.e. computing systems, is then instantiated in computing applications, such as
home appliances, cars or medical equipment.

1.2. COMPUTER SCIENCE 19

In contrast to some �elds of technology that can distribute the various activities to
separate groups of people, creating a divide of social roles between �scientists,� assumed to
be out of touch with the needs of daily life, and �engineers,� assumed to be out of touch with
fundamental theory, computer science is peculiar in that it requires all its practitioners to
be both skilled engineers and competent fundamental and experimental scientists. This is
a characteristic shared by all �elds where the produced systems are complex assemblies of
parts themselves complex, deployed in complex situations; avionics, high-speed trains and
spatial equipment are other such �elds. The reason is that for the composition of complex
pieces into a complex system to be tractable by human practitioners, �rst a model of the
parts' behavior must be devised, to simplify the mental image manipulated in the creative
process in the next step. For example, when computer architects assemble caches and
processors into a multi-core microprocessor chip, they do not keep track of the individual
composition of the components in terms of p-type and n-type transistors; instead they
manipulate an idealized model of their behavior derived from previous implementations
by the experimental and analytic scienti�c inquiry. This abstraction process happens at
all levels of composition, from the grouping of silicon crystals into semiconductors to the
grouping of individual processing units into networks of computing clusters.

Historically, computer science was �rst an isolated �eld whose end applications were
restricted to defense and high-pro�le business administration. States (for defense) and
large companies (for business) could fund single organizations with large research facilities
to design their systems. When computers became useful to other applications with more
democratic audiences, the audiences could no longer directly fund single, large organizations.
The design of computing tools became distributed across distinct organizations carrying
the innovation process at di�erent levels, and interacting together to combine systems. A
key enabling factor for this division of concerns was the invention of the general-purpose
computer, which allowed to separate the designers of hardware from the designers of software
into distinct communities.

1.2.1 The wonder and promise of general-purpose computers

In the middle of the 20th century, something exceptional in the history of mankind happened:
a universal tool was invented: the general-purpose computer. For the �rst time, any human
could potentially become an inventor and solve arbitrarily complex problems using pictures
of their thought processes projected as information patterns, i.e. programs, without the cost
of manufacturing new physical artifacts.

Although Charles Babbage can be acknowledged as the forefather of this artifact [Hal70],
the full scope of its generality was only understood by Turing at the start of the 20th century.
Indeed, our current general-purpose computers approximating Turing's abstract machine are
one of only two ways that we currently know to make a computer that can compute most
of what a human may want to compute; the other way being queue machines, invented
later [FE81]. Furthermore, when the computer is connected to input/output interfaces, it
becomesinteractive and can convert to and from phenomena of the physical world. Con-
versely, there is no known other way to assemble artifacts, other than those that can be
described by interactive Turing and queue machines, which can compute most of what hu-
mans can think of in a way that can in�uence, or can be in�uenced by, physical phenomena.

Obviously one does not need to invoke Alan Turing nor his thoughts when building a
device that accomplishes a speci�c task. Census count machines reading punched cards
were built and used successfully long before Turing was born [Hol89, Ran82]. The reason

20 CHAPTER 1. INTRODUCTION

why Turing's contribution was remarkable is that it created theoretical con�dence that a
general-purpose hardware platform could be successfully reused, after it is fabricated, to
solve problems not de�ned yet, and thus guaranteeing perpetual employment for software
creators.

This con�dence stems from the formal thesis of Alonzo Church and Alan Turing on
computability�although it really comes from collective work with Post, Kleene and Gödel,
cf. [Dav65] for the full story�which establishes that all expressible formulas of arithmetic,
which by de�nition are all possible computations that humans can phrase intelligibly ever1,
can be computed by either an abstract Turing machine, Church's� -calculus or partial re-
cursive mathematical functions2. Moreover, when the machine isuniversal, the function it
computes can become a run-time input, i.e.software, while preserving the full generality of
the model. Because of this, a hardware platform that resembles a universal Turing machine
gives us con�dence that it can be reused in the future by new software to solve problems
that have not been formulated yet. Since the only conceptual di�erence between a uni-
versal Turing machine and a concrete implementation is the �niteness of storage capacity
(vs. the in�nite length of Turing's tape), it is possible to approximate the abstract machine
increasingly accurately by simply adding more addresses to the storage, which seems to be
technically tractable for the foreseeable future.

This is the crux of what general-purposecomputing is about: design and build a hardware
platform now, with reasonable con�dence founded in logic that they can be used to solve
future problems in software.

Since then, other formalisms distinct from Turing machines and� -calculus have been
developed and subsequently proven to beTuring complete, that is, at least as powerful
as Turing machines. The models that have received most attention are queue machines
(mentioned above), graph reduction machines able to reduce terms of� -calculus [CGMN80,
PJCSH87], register-based variations on the Turing machine [vEB90], the� -calculus [Mil90],
and speci�c initial states of cellular automata [Cha02, Coo04]. Any of these models can
be made universal, i.e. programmable via software, by modeling a single-function machine
whose behavior is to read a program from an input device and then evaluate it. They
can furthermore be made interactive, i.e. connected to the physical world, by introducing
basic actions in their evaluation rules that e�ect external interactions. However, the only
computing artifacts built so far have been either Turing-like (register machines) or queue-
like (stack machines). All implementations of other formally as powerful models have only
existed as simulations of their semantics in programs running on hardware devices that can
be primarily described as register or stack machines. It is the Turing-completeness of these
speci�c two models that guarantees thefuture utility of the constructed artifacts.

1.3 General-purpose computers are the stem cells of computing

Sometime between 1992 and 1996, CALC was written. CALC was a graphing program:
the user would interactively enter on the keyboard the de�nition of a function and the
coordinates of a view window, and the program would plot the function, one point per

1NB: computations (computable functions) are a subset of all functions that can be phrased by hu-
mans. In particular there exist intelligibly phraseable non-computable functions, such as the busy beaver
function [Rad62].

2 It further establishes that neither of these formalisms can compute anything more, that is, everything
we can compute using either can be described by an intelligible, valid formula of arithmetic; but this point
is irrelevant here. See [Hof99] for an accessible review of the theoretical and practical consequences.

1.3. STEM CELLS OF COMPUTING 21

column of the graphical display. As the story goes, CALC was written in BASIC over the
course of several months; a few months afterwards, the only extant copy of CALC was lost.

We resurrect the memory of CALC here to highlight the role of general-purpose com-
puting. Indeed, CALC would allow the user to enter any function de�nition that was valid
in BASIC. The syntax allowed integer and �oating point arithmetic, grouping parentheses,
operator precedence, and uses of any built-in functions. It would then plot that function
interactively, i.e. without having to stop and re-run the program. In other words, the pro-
gram would understand a phrase expressed in a human language, that of mathematics, and
act upon it automatically. Yet, implementing that feature was trivial: CALC would simply
write the text of the user-supplied expression into a �le, and load back the �le into the
BASIC interpreter as an additional program fragment3.

To understand how this is relevant here, one needs to consider this anecdote as a para-
ble. What happened really is that an uneducated person was empowered tocreate by a
programming environment which was, through its naive simplicity and despite its �aws, in-
tendedly devoid of any speci�c purpose. A simple general feature, namely the ability to read
a user-de�ned program text from input and evaluate it, was key to overcoming the most
complex theoretical aspect of the task at hand. This parable illustrates that general-purpose
computing platforms are, like the stem cells of living organisms, key to the perpetuation of
computer engineering. They empower practitioners, both amateur and seasoned, to express
their creativity past the bounds suggested by current applications and uses, and solve new
problems in revolutionary ways.

There are two reasons why this generality is strongly desirable. The �rst reason is that
innovation and major advances in the �eld are a creative process by humans for humans,
as highlighted above. Creativity in humans usually occurs only in unbounded conceptual
frameworks and playgrounds. Therefore, computing science, as a �eld, will need �exible
and generic platforms for new developments and innovation. These platforms might be
isolated, conceptually or physically, from the products available to the general public, but
even when so pressured they will continue to exist as an essential and durable niche market
for computer science practitioners themselves.

The second reason is that all current trends converge towards the second era of separated
computing4, with visible and much-awaited bene�ts in terms of energy and cost management.

The visible tip of this iceberg, on the network side, is perhaps the ongoing rise of social
networks and online sharing platforms. But even in corporate environments, more and more
responsibility, in particular regarding the safeguarding and consolidation of data, is pushed
away from workstations to networked locations and accessed remotely. This setup principally
enables sharing the infrastructure costs (security, cooling, storage, failure management)
for the compute-intensive parts of networked applications. It reduces synchronization and
communication latencies in large applications by literally increasing locality, namely by
grouping the communication-intensive parts into a close geographical location. Through
careful over-subscription of shared computers, it also distributes the energy investment more
equally across heterogeneous applications. This setup is technically usable nowadays, as
opposed to the last part of the previous century when the client-server model somewhat
waned, essentially because of lower latencies in networks (cf. side note 1.2).

Meanwhile, and perhaps paradoxically, the devices at the human-computer interface be-
come increasingly powerful. Current low-end gaming devices already o�er full virtual immer-

3Using the CHAIN MERGEstatement.
4The words �separated computing� include both the asymmetric client-server model and distributed

applications where the overall behavior emerges from equal contributors.

22 CHAPTER 1. INTRODUCTION

sion through rich auto-stereoscopic images [JMW� 03, Tab10, Lea10]. Reality-augmenting
glasses with on-demand, real-time streaming of contextual data are on the verge of becom-
ing mainstream [HBT07, Ber09]. All futuristic visions of human-centric computing include
pervasive and seamless human-computer interaction with incredible (by today's standards)
amounts of signal processing.

To maintain control on power usage and locality, most of the signal processing will need to
be physically performed at the site of perception. What we currently call high-performance
computing equipment will �nd its way to the wearable miniature sensors of our future selves.
However, for no less obvious reasons, the processed data will �ow between the individual
and the collective self, through distributed networked applications, because only there can
the sense-data receive the meaning necessary to its processing5.

Without speculating further on the nature of these dual computing systems made of
intelligent sensors and networked applications, it seems reasonable to assume they will be
based on hardware components responsible for transforming information. These future
systems may bear little resemblance to our current technology; yet, regardless of their exact
nature, one of their characteristics seems inevitable:adaptability.

Adaptability is the feature that will support technological evolution under the selective
pressure of market e�ects. Indeed, unless disaster strikes and totalitarian regimes become
the norm, free exchange of ideas and objects will force a dynamic, fast-paced adaptation of
technology to evolving human interests. Even assuming a stabilization of human demograph-
ics, the increasing access to technology and networks will cause the market for computing
systems to become even more segmented than today, with entire verticals6 rising and falling
faster than education systems. Combined with the fact that the knowledge required to com-
prehend and maintain systems will be increasingly dense, and thus decreasingly accessible,
there will not be enough manpower to design and implement entire new systems to cater
for new verticals. Since there is not yet any con�dence that new designs can be reached
via autonomous arti�cial intelligence, we should assume instead that guided adaptation of
existing concepts to new uses and new requirementsby humanswill be the norm.

Evolutionary theory suggests that adaptation works best if the system keeps a healthy
reserve of repurposable stem cells. It seems conceptually di�cult to re-purpose the pro-
grammable controller for a washing machine into a car navigation system; whereas the
computer scientist today clearly sees a specialization path from a general-purpose computer
to both devices. Actually, specialization of computing elements, like cell di�erentiation in
organisms, is an unavoidable phenomenon required to support the increased complexity of
their applications. However e�cient specialization is a repeating phenomenon, with each
generation stemming from non-specialized components instead of previous generations of
specialized systems. This applies to both hardware design and software design.

In the light of this perspective, one could possibly accept the doom of commodity, one-
size-�ts-all �all-purpose� computer designs. Individual devices that would truly satisfy any
computing need in a practical or economical way have never really existed. Besides, the im-
mediate human-computer interface is best served by specialized devices. However, general-
purpose specializablecomputing systems must continue to exist, at least for those humans
who, through their creativity and inventiveness, will be responsible for future innovation.

5 This vision of networked computing was inspired by professor Zhiwei Xu, from the Chinese Academy
of Science.

6vertical : an entire computing market addressing a speci�c segment, from hardware manufacturing to
online services including system and software development. Two archetypal verticals are mobile phones and
car navigation systems.

1.3. STEM CELLS OF COMPUTING 23

Side note 1.2: The second rise of separated computing.

Historians of our �eld have highlighted that client-server computing has been prevalent before, but then
disappeared. This warrants an aside.
The key observation is that the client-server model �makes sense� economically and practically for the reasons
mentioned in section 1.3. These merits have never disappeared; they have been merely shadowed by the
ever-increasing computing speed of autonomous, commodity general-purpose computers (�desktops�) in the
last period of the 20th century relative to the network latencies.
Indeed, the centralized structure of the �rst networks, combined with the characteristics of network links
at that time, was a serious obstacle to their increased prevalence. To match the increasing expectations
of computer users, applications had to become more interactive and more responsive. More than the load
on computational performance on servers, the subjectively unacceptable response time and jitter of com-
munication links was the �rst motivation towards increasingly powerful terminals and locally interactive
applications. Previous work on human-computer interaction [Mil68, CMN83, CRM91] suggests that 100ms
is the maximum acceptable delay between a keystroke and the screen response, and [Shn84] suggests that
higher variability of response times incur lowered user performance. These �ndings have served as references
for user interface design ever since [Nie94, Chap. 5]. In contrast, the high latency and contention of terminal
channels to shared computing facilities in the period 1970-1990 was failing users on both counts.
The market for personal computing grew initially faster than communication networks, further strengthening
the trend toward autonomous computation devices, incarnated in personal computers. The low-latency, high
throughput, globally available distributed network that was needed to support the growth of a computing
market based on the client-server model only appeared much later�and unfortunately long after audiences
had gotten used to the merits and �aws of their autonomous, power-hungry, ine�cient commodity general-
purpose computers. In contrast, the reason why the Internet became what it is today was a combination of
economic and social factors outside of the realm of computer science: the global need for more connectivity,
more trade, information exchange, etc. The epic con�ation of telephone and data networks is fueling, to this
day, a �erce competition that produces as a side e�ect an increasingly large, robust and wider network.
Now that the global network is available, we should �nd it remarkable that all online actors, from individual
news broadcasters to scienti�c computing centers, know acutely the huge potential of such a strong connec-
tivity. It is just natural that we use this opportunity to again tap into the merits of separated computing,
which we had left aside for a few decades.

Side note 1.3: Embedded/specialized vs. general-purpose computers.

A defense of general-purpose computing would be incomplete without a reference to embedded systems.
The increasing pervasiveness of embedded systems is often cited as a tendency towards the disappearance
of general-purpose computing. However, this is likely a fallacy.
The characteristic of embedded systems that is relevant here is their invisibility: while they are necessary to
technological evolution, and their function is expected by the users of the devices where they are embedded,
these systems are not shown. In fact, embedded systems do not have an existence as computers in the eye of
their users, which therefore do not expect from them �abstract� features such as re-programmability and re-
con�gurability. The large and growing embedded market is one of specialized function, reliability, sometime
performance, and foremost dedication to well-de�ned tasks that allow economies of scale in manufacturing.
Embedded devices are essentially engineered for speci�c purposes at the expense of programmability and
con�gurability, which typically matter less to their audience.
When considering their manufacturing and sales �gures, and the massive body of knowledge developed to
support their �eld, embedded systems dominate the �eld of computer science by sheer numeric superiority.
It is this pervasiveness that seems to shadow general-purpose computing and suggests its doom from the
perspective of practitioners in the �eld.
However using the growth of embedded systems as an argument against general-purpose computers amounts
to ignoring the �elephant in the room�: the creation of embedded devices would not be possible without
development computers, those very computers used by embedded system engineers: developers, testers,
quality controllers, etc. By the initial argument above, most of the advances in embedded system design
would not be possible without stem computers that let the designer imagine radically new devices without
preconceptions: either their own development machines, or non-specialized, freely composable template
components with no predetermined function.

24 CHAPTER 1. INTRODUCTION

Side note 1.4: Example functions that can be made primitive recursive.

Multiplying two matrices; �ltering noise out of audio; compiling assembly code to machine code; computing
a minimum �ow in an acyclic graph; recognizing object boundaries in an image; plotting a graph for a �xed
arithmetic function; printing a JPEG image; looking up a value in a dictionary; simulating another computer
which can compute only primitive recursive functions.

Side note 1.5: Example functions that are not primitive recursive.

Sorting; recognizing a tune from an audio sample; compiling a C ++ program to machine code; computing
a shortest path in a cyclic graph; recognizing objects in an image; plotting a graph for an arithmetic
function entered interactively; typesetting a T EX document; running an SQL query on a relational database;
simulating another computer which can compute partial recursive functions.

1.4 Losing sight of generality: the risk of throwing out the baby
with the bathwater

Half a century after having found a true wonder, we run the risk of losing it: under the
pressure of capitalism, optimization and e�ciency, the generality of computers has been
endangered since the turn of the 21st century.

The prevailing thought in the personal computing industry at the time of this writing
is that there are no uses of computing systems by the general public that arefreely pro-
grammable by the user7. A common argument in favor of such an iWorld, where form is
actualized by branded functions, and where each �xed-function iApplication is blessed in-
dividually by arbitrary and opaque corporate review processes�or euthanized before birth
if its market value is not ascertained upon inception�is the growing enthusiasm for iThis
and iThat devices initiated with the new millennium.

The forces driving this evolution are further discussed in [Zit08]: the free market and
deregulation of large companies has created incentives to innovate behind closed doors and
create instead devices that capture their users into consumption cycles. Capital gains dis-
courage reuse and extension of existing products in favor of the forced acquisition of new
products for every new application. The associated risk is anopportunity loss: individuals
with the skills to innovate in software become increasingly limited in their ability to carry
out innovation until they are trained privately by corporate technology providers.

Even in technical circles, where generality is traditionally respected, the need for in-
creased computing power and e�ciency creates pressure to reduce generality. This e�ect
has existed throughout the history of computing; for example, the author of [Day11] reminds
us how Dijkstra's suggestion to introduce recursion in programming languages was met with
resistance from audiences focused on the short-term performance gains from non-recursive
language semantics. Yet, for reasons we will revisit below in section 1.4.1, the computer en-
gineering �eld has come lately under tremendous pressure to answer requests for additional
performance, and the temptation is great to specialize devices to match this demand.

We can recognize this situation in the recent enthusiasm for �accelerator� boards, which
re-purpose graphics-oriented co-processors (usually texture shaders) towards other types
of computations. The marketing message is that these processors are �general-purpose�:
they seem to address application needs of both scienti�c and consumer audiences alike.
However this message is misleading: full generality requires interaction, arbitrarily large

7 Including, but not limited to, the ability to share freely the outcome of a programming activity with
peers.

1.4. LOSING SIGHT OF GENERALITY 25

random-access storage and either arbitrary numbers of conditional branches or arbitrarily
deep data-dependent recursions,per individual thread, which these devices usually do not
support8. Instead, they are just su�cient to compute any primitive recursive function of
arithmetic 9. Since most of what humans need to compute can be described by primitive
recursive functions (cf. side notes 1.4 and 1.5), this type of computer seems already quite
useful; however, by the argument of section 1.2.1, these devices fundamentally limit our
ability to solve future problems.

1.4.1 The current pressure to innovate

Processors and memories are two unavoidable sub-parts of any computing system, as they are
at the heart of the ability of the system to compute (cf. section 1.2.1). Until the turn of the
21st century, system engineers using these components as building blocks could assume ever-
increasing performance gains, by just substituting any of these components by the next gen-
eration of the same. Then they ran into two obstacles. One was thememory wall [WM95],
i.e. the increasing divergence between the access time to memory and the execution time
of single instructions. The second is thesequential performance wall[AHKB00, RML � 01],
i.e. the increasing divergence in single processors between performance gains by architec-
tural optimizations and the power-area cost of these optimizations. A third potential wall
is now visible on the horizon: the end of Moore's law [Kis02, ZCHB03, TP06], or more
precisely a potential limit on the maximum number of silicon CMOS-based transistors per
unit of area on chip. These obstacles are the stretch marks of a speculation bubble ready
to burst. Unless solutions are devised within a decade, the economy of the IT industry of
applications, currently based on an expectation of future cheap performance increases in
computing systems, may need a serious, globally disruptive reform.

1.4.2 Where and how to innovate

The discussion so far opens space for innovation in di�erent directions. A �rst possible
direction is to invent a new implementable universal computing model that o�ers at least as
much expressivity as Turing's model, with more computing power and scaling opportunities
than what all current devices o�er. Quantum or biological computers may be candidates,
although their realizability at the scale of current human needs, and their universality, are
not yet ascertained. Another direction is to �nd new smaller and faster building blocks to
make universal and interactive Turing-complete computers, for example using light-based
logic instead of electronics [SLJ� 04], however these new technologies may not be available
before the limits of silicon scaling are reached. In the medium term (a decade), innovation
seems tractable at two levels. Software ecosystems could embark on an intensive quest for
simpli�cation towards �ghting Wirth's law 10 and gaining e�ciency. However, the odds that
this will happen are at best unclear [Ken08, MSS10, XMA� 10]. Or, computer architects
could �nd new ways to arrange CMOS logic into di�erent, more e�cient combinations of
processors and memories, possibly exploiting parallelism and scalable throughput. This
direction, initially suggested in [RML � 01], seems especially tractable given the growing
availability of concurrency in software, a topic we revisit in chapter 2.

8We support this argument for an example state-of-the-art accelerator chip in chapter 12.
9To simplify, a primitive recursive function is a computation where the number of steps in any repetition

is known before the repetition starts; for details see [Pét34].
10 � Software is getting slower more rapidly than hardware becomes faster. � [Wir95]

26 CHAPTER 1. INTRODUCTION

1.4.3 Politics and openness in innovation

Assuming computer architects will be responsible for principal innovations in computer en-
gineering in the next decade, and assuming generality in the produced systems is a desirable
feature for software audiences, there exist two principal questions:

ˆ the inner question, from the individual architect's perspective, is one of substance:
what will be the good ideas and new component assemblies? What will they look like?

ˆ the outer question, from the perspective of the computing science community, is one of
logistics: how to ensure that any innovation, if it occurs, will be brought to realization
and support the continued growth of computing ecosystems?

Answering the inner question is fully under the responsibility of the architects, and
bounded only by their creativity. The outer question, however, is not under their control.
As we identi�ed in section 1.4, market e�ects combine the overall need for new technology
with an incentive for corporations to keep their solutions specialized and opaque. Levers
to market dominance and corporate power struggles, in particular increasing uses of the
vendor lock in and planned obsolescence e�ects, create the risk that any coming innovation
in computer architecture will be realized behind closed doors, and will only be featured in
products lacking the desired generality.

The computer architecture community is responsible for safeguarding against this appro-
priation of upcoming innovations by corporate interests. The methodology to guarantee the
generality of solutions and their accessibility to large audiences is obviouslytransparency,
that is documenting publicly not only the outcome of the innovative processes but alsowhich
creative steps were undertakenand their background knowledge and experiences. This is
necessary so that other parties, in particular younger generations of computer engineers,
can steadily join the innovation enterprise via imitation, reproduction and extension of past
discoveries.

1.5 The Achilles' heel of designers: HIMCYFIO

On the road to innovation, computer architects face a pitfall which we call �Here Is My
Component, You Figure It Out (HIMCYFIO) .�

The circumstance for HIMCYFIO concerns visionary computer architects who address
a known or future technology obstacle while avoiding complexity, i.e. who deviate from
established routes while preserving conceptual simplicity. The pitfall occurs when the in-
ventor proposes a new component design, in isolation, with the unfounded con�dence that
its purpose and utility are both self-explanatory and desirable, and thus that it will be
�necessarily� successful upon completion. The assumption is that industry will �eventually
catch up� and integrate the component in larger computer systems, because the need seems
self-explanatory (cf. section 1.4.1) and the integration self-evident (seems simple to the de-
signer himself). This assumption is fallacious because peer inventors and potential users,
especially the software community, will both �nd the invention foreign, i.e. di�cult to un-
derstand simply because it di�ers from the common ground, and non-trivially applicable,
because its proper use in larger computer systems is not yet determined.

To summarize, HIMCYFIO occurs because hardware architects mistakenly consider that
the novelty and simplicity of a new approach is su�cient to relieve them of the burden of
holding their audience's hand in appreciating their work. In even shorter words, HIMCYFIO
occurs when architects answer their inner question while avoiding or answering incorrectly

1.5. ACHILLES' HEEL OF DESIGNERS 27

the outer question (cf. section 1.4.3). When HIMCYFIO occurs, potentially interesting
component designs run the risk of never being integrated in a working computer. Large
research investments, including potential great ideas, may be lost; personal ambitions may
be crushed. We could �nd several example victims of HIMCYFIO:

ˆ the Manchester data�ow machine [GWG80] proposed a relatively simple processor
design using data�ow principles, with the early vision that the latency of all exter-
nal communication, even �ne-grained memory accesses, should be tolerated by se-
lecting independent instructions in hardware. However its exclusive dedication to
SISAL [MSA � 83] forced its designers into a niche community where they stayed until
the termination of the project in 1995;

ˆ the designers of the Monsoon architecture [PC90] had a similar combination of fresh
applications of data�ow scheduling and practical implementation plans for a processor.
However they restricted the use of their design to the Id language [ADNP88], while
suggesting that I/O and program control would be handled on a separate type of
processor running the (by-then-already-standard) Unix operating system. This forced
users to work with two programming models, and the resulting conceptual conceptual
complexity proved fatal to the project;

ˆ a more recent and high-pro�le example can be found with Transmeta's Crusoe archi-
tecture [Kla00]. On the one hand, the combination of a relatively simple Very Large
Instruction Word (VLIW) design with Code Morphing [DGB � 03] was a revolutionary
way to expose a high-ILP, low-power pipeline to an audience locked into Intel cores.
On the other hand, the �nal product's packaging was ill-designed: despite the presence
of an on-die DDR memory controller (for the instruction cache), external memory was
supported only via a slower SDRAM interface; and I/O was restricted to the legacy
�southbridge� system interface. These integration choices rendered the overall chip un-
competitive for data-intensive or graphics-intensive applications. While Transmeta's
goal was to guarantee thermal budget envelopes, and the chip was retrospectively
competitive in this regard, this priority was not appropriately communicated to the
company's audience.

These examples illustrate that to avoid this pitfall, architects should design new compo-
nents in the context of entire systems and their applications:

ˆ when designing for new applications, they must work together with system and com-
piler programmers so that this �rst level community obtains an early understanding
of the architecture's bene�ts;

ˆ when designing for existing applications, they must acknowledge the assumptions made
in the existing programs and provide designs that integrate existing usages transpar-
ently; in particular, they must acknowledge common expectations about performance
without requiring radically new machine models.

The reason why recognizing and averting HIMCYFIO systematically is important is
that this is the only way to make generative architecture research an attractive �eld for
newcomers.

28 CHAPTER 1. INTRODUCTION

1.6 Case study: hardware microthreading

In an e�ort to innovate in computer architecture while preserving generality, as identi�ed in
section 1.4, a research project coordinated from the University of Amsterdam is exploring
new ways to assemble microprocessors from logic. After observing that a large amount of un-
tapped concurrency is already present in software applications, the researchers in this group
propose to design processor chips that cater primarily to throughput scalability and execu-
tion e�ciency, possibly at the expense of the performance of single instruction streams. The
proposed chip design combines short Reduced Instruction Set Computer (RISC) pipelines
with dynamic data�ow scheduling [NA89] and Hardware Multi-Threading (HMT) on indi-
vidual cores for latency tolerance and energy e�ciency, and implement �exible hardware
support for thread and task management across di�erent cores for throughput scalability.
We shall call this approach �hardware microthreading,� as opposed to simply �microthread-
ing� used in prior work from this research team, to distinguish it from the microthreads
managed in software in IBM's Cell Broadband Engine [AAR08].

The abstract de�nition of hardware microthreading, together with guidelines on how to
design architectures around it, establishesprinciples of architecture design. These should
in turn be applicable to a diversity of application domains, from embedded systems to
high-performance supercomputers. However, before this happens the principles must be
illustrated at a small scale, into an artifact suitable to convince external observers, as high-
lighted in section 1.5.

To achieve this, the research group also attempts to de�ne an entire general-purpose
chip architecture which embodies hardware microthreading with simple RISC cores and a
custom Network-on-Chip (NoC). In the preliminary phase, given the complexity of modern
silicon, this research was carried out via detailed simulations of individual components based
on their potential behavior on silicon, using arti�cial microbenchmarks. The initial results
were encouraging [BHJ06a, BHJ06b, BGJL08], and motivated the enterprise of a larger
project to carry out a more extensive realization:

ˆ at the hardware level, design and implement a prototype single-core implementation
of the new architecture on an Field-Programmable Gate Array (FPGA); and simul-
taneously implement a software emulation of a full multi-core system using the new
processor design;

ˆ at the software level, design and implement new operating systems, language tool
chains, and a representative set of benchmarks to evaluate the new hardware archi-
tecture, both on single core (FPGA prototype) and multi-core systems (emulation
environment).

This is the project where this book originated.

1.7 Overview

Our dissertation re�ects on the interaction between foundational engineering activities around
hardware microthreading. It provides two reading levels.

At the �rst level, a technical report provides possible concrete answers to the outer ques-
tion around hardware microthreading. This report recollects the substance of the invention
in part I, then describes in part II how we extended the base architecture concepts into a

1.7. OVERVIEW 29

Symbol Description
Z Exposition of previous answers to the inner question.
j Argument or contribution towards answering the outer question.
Ì Contribution towards answering the inner question, required while an-

swering the outer question.
P Acknowledged opportunity for further work on the outer question.
È Required further work on the inner question, identi�ed while answering

the outer question.

Table 1.1: Symbols used to mark technical contributions throughout our dissertation.

general-purpose platform, and �nally summarizes key evaluation activities around this plat-
form in part III. During this research, we also made related minor contributions to the sub-
stance of the invention. We classify our �ndings about the inner and outer questions around
hardware microthreading throughout the text using the symbols from table 1.1; a summary
is given in table 1.2. This technical contribution touches multiple system-wide issues, from
code generation to applications through the operating system stack; as such, itconnects
architecture and system research[MBRS11]. The scope of the work at this reading level is
illustrated as the light gray area in �g. 1.3: this dissertation complements [Lan07, Lan1x],
which mostly describe the answers to the inner question (dark gray in the �gure); it also
does not consider how the innovation will eventually be used in speci�c applications.

The main contributions are to be found at the second reading level. Our choice of
hardware microthreading is really a case study for the dialogue between the innovator and
their community of peers. At this level, we make two contributions. The �rst contribution
is a methodology that a chip processor designer can use to avoid the HIMCYFIO pitfall:

1. exposing publicly the design concepts and their trade-o�s (part I),
2. recognizing and choosing audiences, and using their current expectations as a starting

point to de�ne a context (chapter 5);
3. explaining the innovation to the chosen audience(s) in the way that the audience was

previously used to (chapters 6 and 7);
4. exposing and detailing how the innovation di�ers from past experience of the audience,

within the context determined in step 2 (chapters 8 to 11);
5. providing a test and experimentation environment to third parties, and letting the cho-

sen audience observe that third parties can use the innovation on their own (part III).

This methodology is presented throughout the dissertation, and applied to the topic of
hardware microthreading as an example.

The second contribution is a discussion, spread over the entire dissertation, about what
�generality� means and what features are required in computing components so that they
can be advertised as general. As we argued previously in section 1.3, the future of auto-
mated computing will require humans to specialize �stem cell� computers towards speci�c
applications. Within the context of computer architecture, the properties required from
these �stem cells� have been outlined abstractly in section 1.2.1; the discussion in part II
shows how to �nd or construct these properties in concrete implementations.

30 CHAPTER 1. INTRODUCTION

(a) Innovation process perspective (b) System stack perspective

Figure 1.3: Scope of the answers to the outer question.

The dark gray area highlights the scope of [Lan07, Lan1x].
The light gray area highlights the scope of this dissertation.

Chapter Contributions
2. Trade-o�s in microprocessor design jjjjj
3. Architecture overview ZZZZZZZZZZZZ
4. Machine model & hardware interface ZZZZZZZZZZZjZZZZZZZZZZZZZZjZ
5. System perspective jj
6. Programming environment ZjjjjPPjjjPjPP
7. Disentangling memory and synchronization jjjjjPP
8. Visible synchronizer windows jjjjjjjP
9. Thread-local storage jjÈjjP
10. Concurrency virtualization jÌjPPPP
11. Placement and platform partitioning ZÌjjjP
12. Issues of generality jZjjjjjP
13. Core evaluation jPÌPPPjjÈ
14. System-level issues ÈjÈPjPPÈP

Table 1.2: Overview of technical contributions per chapter.

Part I

Characterization of hardware
microthreading

�Exploring the designer's mind

Chapter 2

Trade-o�s in microprocessor design

Abstract

Innovation by hardware architects takes place in a cultural context, the zeitgeist
of the current technical age. To help audiences recognize the innovation as such, this
background knowledge must be identi�ed and communicated explicitly in a way that
highlights current shortcomings. In this chapter, we propose such a perspective to mo-
tivate the innovation described in chapter 3 onward. By analyzing current trends and
general trade-o�s in CMP design, we identify the innovation space for microproces-
sors with more numerous, smaller general-purpose cores featuring HMT and hardware-
supported concurrency management.

Contents
2.1 Introduction . 34
2.2 Size matters . 35
2.3 Sequential performance . 36
2.4 Limits of specialization . 37
2.5 Dynamic heterogeneity . 38
2.6 Fine-grained multi-threading . 39
2.7 Hardware concurrency management . 40
Summary . 41

33

34 CHAPTER 2. TRADE-OFFS IN MICROPROCESSOR DESIGN

2.1 Introduction

A condensed summary of the pre-2000 history of general-purpose microprocessor design is
best quoted from [RML� 01]:

In the past several decades, the world of computers and especially that of mi-
croprocessors has witnessed phenomenal advances. Computers have exhibited
ever-increasing performance and decreasing costs, making them more a�ordable
and, in turn, accelerating additional software and hardware development that fu-
eled this process even more. The technology that enabled this exponential growth
is a combination of advancements in process technology, micro-architecture, ar-
chitecture, and design and development tools. While the pace of this progress has
been quite impressive over the last two decades, it has become harder and harder
to keep up this pace. New process technology requires more expensive megafabs
and new performance levels require larger die, higher power consumption, and
enormous design and validation e�ort. Furthermore, as CMOS technology con-
tinues to advance, microprocessor design is exposed to a new set of challenges.
In the near future, micro-architecture has to consider and explicitly manage the
limits of semiconductor technology, such as wire delays, power dissipation, and
soft errors.

The authors of this paper detail the obstacles faced by architects on the way to faster
and more e�cient processors. A summary can be found in [BHJ06a]: fundamental energy
and logic costs hinder further performance improvements forsingle instruction streams. To
�cut the Gordian knot,� in the words of [RML � 01], the industry has since (post-2000) shifted
towards multiplying the number of processors on chip, creating increasingly larger CMPs
by processor counts, now calledcores. The underlying motivation is to exploit higher-level
parallelism in applications and distribute workloads across multiple processors to increase
the overall throughput of computations1.

This shift to multi-core chips has caused a commotion in those software communities that
had gotten used to transparent frequency increases and implicit Instruction-Level Parallelism
(ILP) without ever questioning the basic machine model targeted by programming languages
and complexity theory. �The free lunch is over� [Sut05], and software ecosystems now have
to acknowledge and understand explicit on-chip parallelism and energy constraints to fully
utilize current and future hardware.

This may seem disruptive when most textbooks still describe computers as a machine
where the processor fetches instructions one after another following the control �ow ofone
program. Yet this commotion is essentially speci�c to those traditional audiences of general-
purpose processors. In most application niches, application-speci�c knowledge about avail-
able parallelism has long mandated dedicated support from the hardware and software
towards increased performance: scienti�c and high-performance computing have long ex-
ploited dedicated Single Instruction, Multiple Data (SIMD), Multiple Instruction, Multiple
Data (MIMD) and Single Program, Multiple Data (SPMD) units, embedded applications
routinely specialize components to program features to reduce logic feature size and power
requirements, and server applications in datacenters have been optimized towards servicing

1While parallelism can also be used to reduce the latency of individual programs, Amdahl's law gets in
the way and Gustafson's law [Gus88] suggests that the problem sizes of the parallel sections instead expand
to the parallelism available at constant latency.

2.2. SIZE MATTERS 35

Figure 2.1: Choice between smaller or larger cores at equal logic and energy budget.

independent network streams, exploiting dedicated I/O channels and HMT for throughput
scalability.

Moreover, we would like to propose that while general-purpose programmers have been
struggling to identify, extract and/or expose concurrency in programs during the last decade,
a large amount of untapped higher-level parallelism has appeared in applications, ready
to be exploited. This is a consequence of the increasing number of features, orservices
integrated into user-facing applications in the age of the Internet and ever-increasing support
of computers for human activities. For example, while a user's focus may be geared towards
the decoding of a �lm, another activity in the system may be dedicated to downloading the
next stream, while yet another may be monitoring the user's blood nutrient levels to predict
when to order food online, while yet another may be responsible for backing up the day's
collection of photographs on an online social platform, etc.

Even programs that are fundamentally sequential are now used in applications with high-
level parallelism at scales that were unexpected. For example, the compilation of program
source code to machine code is inherently mostly sequential as each pass is dependent on
the previous pass' output. However, meanwhile entire applications have become increasingly
large in terms of their number of program source �les, so even though one individual compi-
lation cannot be accelerated via parallelism it becomes possible to massively parallelize an
entire application build.

In other words, while Amdahl's law2 stays valid for individual programs, we should
recognize that Amdahl did not predict that single users would nowadays be routinely running
so many loosely coupled programs simultaneously. Hence the necessary question:assuming
that multi-scale concurrency in software has become the norm, what properties should we
expect to �nd in general-purpose processor chips?

We explore this question in the rest of this chapter.

2.2 Size matters

Once the architect considers a CMP design, an opportunity exists to choose how much logic
to invest per core vs. how much logic to invest towards alarger number of cores.

Once concurrency is available in software, it becomes advantageous to scale back the
number of transistors per core and increase the number of cores. There are two reasons
for this. The �rst reason is that the logic and energy costs invested in individual cores
towards improving sequential performance, namely larger branch predictors, larger issue

2Amdahl explained in [Amd67] that that the performance of one program will stay fundamentally limited
by its longest chain of dependent computations, i.e. its critical path , regardless of how much platform
parallelism is available.

36 CHAPTER 2. TRADE-OFFS IN MICROPROCESSOR DESIGN

Figure 2.2: Room for sequential performance at equal area and energy budget.

width, duplicated functional units, deeper pipelines, larger reorder logic, etc., scale disfa-
vorably with the Instructions Per Cycle (IPC) gains (e.g. two times more transistors does
not increase IPC by two). Pollack summarized this situation in [Pol99] by stating that the
performance of a sequential processor improves with the square root of the number of tran-
sistors. The other reason is that power consumption grows as a super-quadratic function
of frequency [RML� 01, SA05]: if a design enables throughput scalable with the number of
cores, energy e�ciency gains can be expected by running more cores at a reduced frequency
(e.g. 10 cores at 200MHz each instead of 1 core running at 2GHz will consume less power,
for the same maximum IPC). We illustrate this design spectrum in �g. 2.1.

2.3 Sequential performance and the cost of asymmetry

We suggest above that �smaller is better� and that many small cores will fare better over-
all than few larger cores in our emerging era of ubiquitous concurrency in software. Yet
we should acknowledge that some inherently sequential workloads will still matter in the
foreseeable future, both from legacy software and those applications where no parallel or
distributed algorithms are yet known. To support these while still taking advantage of the
available software concurrency, the processor architect has two recourses. The conservative
approach is to favor homogeneity and slide the design cursor more to the left in �g. 2.1.
This is the approach taken e.g. with the Niagara T4 [SGJ� 12]. This simpli�es the machine
model exposed to programmers, but comes at the cost of less e�ciency for more concurrent
workloads.

The other approach is to introduce static heterogeneity and allocate some areas of the
chip towards throughput and others towards sequential IPC. This is the approach taken
e.g. with the AMD Fusion architecture [Adv], where �accelerator� cores are placed next to
general-purpose cores on the same die. Our illustration of the corresponding spectrum of
possible heterogeneous designs in �g. 2.2 reveals a possible pitfall: the appearance ofmodel
asymmetry as an historical artifact.

Indeed, the shift towards more on-chip parallelism has emerged from a background cul-
ture where a chip was a single processor. The availability of on-chip parallelism may thus
appear as anextension of the well-known single processor. However, if a CMP is considered
as a mostly-sequential processor with optional �parallel accelerators,� this will encourage

2.4. LIMITS OF SPECIALIZATION 37

Figure 2.3: Choice between specialized functions or general-purpose cores at equal logic and
energy budget.

software ecosystems to keep their focus on the overall sequential scheduling of workloads.
An opportunity loss ensues: the design of trulydistributed applications on chip, which would
consider both throughput-oriented and sequential IPC-oriented cores as variousservices in
the system that must be shared between applications, is thereby discouraged.

A road to avoid this pitfall is perhaps to place the focus on theprotocols that distributej
and coordinate workloads between cores on chip, and research how to build protocols that
erase the performance asymmetry from the conceptual models o�ered through programming
interfaces.

2.4 Specialization is an orthogonal, limited process

Another form of static heterogeneity already in use is one offunction : when speci�c compu-
tations are provided by dedicated hardware logic. For example, a hashing unit to support
cryptography and a Floating-Point Unit (FPU) for arithmetic are �xed-function compo-
nents. The motivation for such specialization is the increased throughput per unit of area
and per watt for the functions specializedand the algorithms that use them.

This opens a spectrum of designs which we illustrate in �g. 2.3. When a chip is dedicated
to a given application scenario3, and the scenario has been pro�led, it becomes meaningful
to provision the main computational components of the scenario using specialized hardware.
Conversely, a given selection of specialized features isspeci�c to the scenario considered, and
may not match another scenario which uses di�erent computational components.

In general, feature specialization in a hardware design is an orthogonal way to increase
e�ciency, i.e. increase overall application throughput at constant cost or reduce cost at
constant throughput, for given application scenarios.

In contrast, a general-purpose chip is by de�nition not specialized towards speci�c sce-
narios. While one may be tempted to suggest mandatory specialized circuits for those few
features that have become prevalent across most �elds of computing, for example �oating-
point arithmetic, cryptography kernels and signal processing SIMD units for audio/video
stream conversion, the question would still exist ofhow much logic to invest into these spe-
cialized units as opposed to e.g. more general-purpose cores, larger on-chip memories or a
faster interconnect. Again, the proper methodology to strike the right balance is to consider
the pro�le of contemporary applications at the time the overall chip design is decided and
specialize for that.

Here we are able to recognize a limit on specialization.

3application scenario: a set of applications used in a speci�c pattern, for example a multimedia decoder
for a television.

38 CHAPTER 2. TRADE-OFFS IN MICROPROCESSOR DESIGN

In general-purpose applications, workloads enter and leave the system at unpredictable
times. The sharing of hardware components between workloads thus requireson-line, dy-
namic chip resource management. To satisfy the need for allocation times within the scale of
operation latencies, resource management must be supported in hardware [KJS� 02]. Since
the amount of state that can be maintained locally on chip is limited, the component mod-
els used by on-line resource managers must be kept simple, which in turn implies that the
diversity of component properties is kept low. An example of this can be found in the
the replacement of multiple bus hierarchies in larger CMPs and Systems-on-Chip (SoCs) by
standardized low-latency protocols on a common packet-switched NoC [HWC04]. Moreover,
once application requirements increase in complexity, for example when starting to account
for time/energy budget allowances [MMB07], the pressure to reduce component diversity to
keep on-line resource managers fast increases further.

These observations push chip designers in two directions. One calls for the full integrationj
of re-con�gurable logic, e.g. FPGAs, in general-purpose chips, so that functions can be
specialized on demand. Unfortunately, practitioners have not yet come up with update
protocols that can perform recon�guration at a fast rate. The other direction pushes for
adaptive general-purpose coresconnected by a general-purpose NoC, which simpli�es on-line
resource management by making pools of resourcesfungible4. For example, a group of many
in-order RISC cores on a mesh interconnect with con�gurable frequency and voltage may
be an advantageous replacement for a �xed-frequency specialized SIMD unit with dedicated
data paths, because it is reusable for other purposes without the overhead of hardware
recon�guration.

In short, while the throughput/cost ratio may be higher for isolated workloads running
on specialized, monolithic units, fungibility of function is more desirable for dynamic, dis-
tributed and unpredictable workloads: it increases predictability of cost and responsiveness
by reducing contention, either on the specialized components themselves or on resource
managers. A recent acknowledgement of this view can be found in [SCS� 08].

Note that favoring general-purpose units does not imply mandating homogeneity in chip
designs: each unit can be con�gurable dynamically based on load and application require-
ments, at a �ne-grain, with di�erent throughput and cost parameters; frequency and voltage
are examples. Besides constraints on on-chip resource management, outlined above, there
are other simpler reasons to invest logic towards larger numbers of general-purpose cores
instead of specialized functions. For one, it simpli�es code generators by reducing the di-
versity of operation interfaces in the Instruction Set Architectures (ISAs). It also increases
opportunities for fault tolerance by allowing more replacement candidates for faulty units.
Finally, it reduces hardware design costs by allowing tiling.

2.5 Dynamic heterogeneity and unpredictable latencies

Another trend that supports re-con�gurable or fungible computing resources on chip is the
increasing number of faults as the density of circuits and the number of transistors increases.

Both transient and permanent faults can be considered. Transient faults are caused
mostly by unexpected charged particles traversing the silicon fabric, either emitted by atomic
decay in the fabric itself or its surrounding packages, or by cosmic rays, or by impact from at-
mospheric neutrons; as the density of circuits increases, a single charged particle will impact

4Fungibility is the property of a good or a commodity whose individual units are capable of mutual
substitution. Examples of highly fungible commodities are crude oil, wheat, precious metals, and currencies.

2.6. FINE-GRAINED MULTI-THREADING 39

more circuits. Permanent faults are caused by physical damage to the fabric, for example via
heat-induced stress on the metal interconnect or atomic migration. While further research
on energy e�ciency will limit heat-induced stress, atomic migration unavoidably entails loss
of function of some components over time. This e�ect increases as the technology density
increases because the feature size, i.e. the number of atoms per transistor/gate, decreases.

To mitigate the impact of faults, various mechanisms have been used to hide faults from
software: redundancy, error correction, etc. However, a fundamental consequence of faults
remains: as fault tolerance kicks in, either thelatency changes(e.g. longer path through the
duplicated circuit or error correction logic) or the throughput changes(e.g. one circuit used
instead of two).

To summarize, the increasing number of faults is a source of unavoidabledynamic het-
erogeneity in larger chips. Either components will appear to software to enter or leave the
system dynamically, for example when a core must stop due to temporary heat excess, or
their characteristics will appear to evolve over time beyond the controlof applications.

This in turn suggests a distributed model of the chip (independently of the suggestionj
from section 2.2) which can account for the transient unavailability or dynamic evolution of
parts of the chip's structure.

2.6 Fine-grained multi-threading to tolerate on-chip latencies

The increasing disparity between the chip size and the gate size causes the latency between
on-chip components (cores, caches and scratchpads) to increase relative to the pipeline cycle
time5. This divergence is the on-chip equivalent of the �memory wall� [WM95]. This causes
increasing mandatory waiting times in individual threads. Moreover, these latencies will
be unpredictable, due to overall usage unpredictability in general-purpose workloads, due
to faults as explained above in section 2.5, and due to feature size variability as the gate
density increases [BFG� 06]. These latencies must be tolerated by overlapping computations
and communications within cores before the expected throughput scalability of multiple
cores can be achieved.

These latencies cannot be easily tolerated using superscalar issue or VLIW, for the rea-
sons outlined in section 2.2 and [BHJ06a]. To summarize, increasing the amount of concur-
rency in single-threaded cores via superscalar execution mandates non-scalable complexity
in coordination structures like register �les. In turn, VLIW is sensitive to mispredicted
branches and variable memory latencies, and thus requires energy-ine�cient speculation to
maximize throughput.

An alternative to exploit mandatory waiting times of individual threads is Hardware
Multi-Threading (HMT), i.e. the interleaving of �ne-grained threads in the cores' pipelines
via a hardware scheduler. Note that hardware multithreading does not increase the sequen-
tial performance of individual threads; instead, it makes a system generally more e�cient
(less wasted time/energy), andincreases overall throughputswhen algorithms can success-
fully �ll waiting times of some threads by useful work from other threads without increasing
the length of the overall critical path.

The general principle of interleaving multiple threads through a single processor with
smaller time slices than the communication latency they should tolerate is not new [Bem57,

5At constant wire length, the sections above suggest more smaller cores at lower frequency, which would
imply less communication delay relative to the cycle time. However, the wire delay increases relative to the
transit time across a gate; the latter in turn constrains frequency and puts a lower bound on pipeline cycle
time.

40 CHAPTER 2. TRADE-OFFS IN MICROPROCESSOR DESIGN

Sal65, RT74]. However, as the ratio between average on-chip latencies between compo-
nents and pipeline cycle time grows, all inter-component events become candidate for la-
tency tolerance, including memory operations, �oating-point operations and inter-thread
synchronization events. In this setting, the latency overhead of software-directed preemp-
tive interleaving of threads over a single physical execution context, i.e. the cost of saving
and restoring PC and per-thread registers, could be too large compared to the latencies to
be tolerated; therefore, hardware-directed scheduling over multiple physical thread contexts
must be used if all latencies must be tolerated.

There have been previous successful approaches to implement HMT in general-purpose
designs. On barrel processors (e.g. on the CDC 6600 [Tho65] where it was �rst imple-
mented, and later with Denelcor's HEP [Smi81]), the hardware scheduler assigns equal
time slots to all threads. The MTA [BCS � 98, SCB� 98] follows up on the barrel pro-
cessor concept and makes scheduling dynamic: only instructions from threads ready to
execute enter the pipeline. On Simultaneous Multi-Threading (SMT) superscalar pro-
cessors [TEL95, MBH� 02], unused issue slots are �lled by instructions from a secondary
Program Counter (PC).

There are two issues with previous approaches to HMT however. One is throughput
�exibility: the overall throughput should be divided more or less equally between active
threads. This is an issue with pure barrel processors: withN contexts, the performance of
each threads is1~N even if there are less thanN threads active. This has been addressed
in the MTA's dynamic schedule queue, and is naturally not an issue in processors primar-
ily designed for sequential performance. The other is robustness to branches: with long
pipelines, the cost of mispredictions (or branches taken if there is no prediction) is high, as
the pipeline must be �ushed. This is an issue with the 21-stage MTA pipeline and most
contemporary SMT superscalar designs.

These observations suggest that the bene�ts of HMT are anticiped to be apparent withj
shorter pipelines and dynamic schedule queues.

2.7 Pressure for hardware-assisted concurrency management

Assuming CMPs with an increasing number of cores and per-core HMT,space scheduling
must be implemented to spread concurrent software workloads to the chip's parallel execu-
tion resources. Space scheduling can be done either in software or in hardware.

With a software scheduler, each hardware thread is controlled by a program that assigns
tasks using state taken from main memory. Speci�cally, each hardware thread is controlled
by an instance of a software scheduler in an operating system, which is noti�ed, via inter-
rupt signalling and memory-based communication, upon task creation and begins execution
until a termination or suspension event. This can occur even when thread interleaving is
performed at a �ne grain in hardware. It is also relevant even when there is no need for time
sharing of multiple tasks onto a single hardware thread, for example when the number of
tasks is smaller or equal to the number of hardware threads, or when cooperative scheduling
is su�cient. However, the choice of a software scheduler assumes that the workload per task
is always su�cient to compensate the non-local latencies incurred by memory accesses to
task state during schedule decision making and task assignment.

This assumption traditionally holds for coarse-grained concurrency, for example exter-
nal I/O. It can also hold for regular, wide-breadth concurrency patterns extracted from
sequential tight loops, via blocking aggregation (e.g. OpenMP). However the situation is

2.7. HARDWARE CONCURRENCY MANAGEMENT 41

not so clear with �ne-grain heterogeneous task concurrency. For example, graph transfor-
mation and data�ow algorithms typically expose a large amount of irregularly structured,
�ne-grained concurrency. In these cases, a strain is put on compilers and run-time systems:
they must determine the suitable aggregate units of concurrency from programs that both
optimize load balancing and compensate concurrency management costs.

This motivates the acceleration of space scheduling, considered as asystem function,j
using dedicated hardware logic. This idea to introducehardware support for concurrency
managementis not new; it was pushed by researchers until twenty years ago [Smi81, HF88,
NA89, MS90, CSS� 91]. Back then, it met with resistance against the introduction of explicit
concurrency in applications. Now that on-chip software concurrency is the norm, hardware
support deserves renewed attention for two reason.

One is the potential gain in resource fungibility obtained by the replacement of special-
ized SPMD/SIMD units by multiple general-purpose cores (cf. section 2.4). For this to be
tractable, the overhead to dispatch an SPMD task over all participating pipelines must be
comparable to or smaller than the latency of the operation, e.g. a couple dozen pipeline
cycles for most SPMD workloads. To make general-purpose cores an attractive substitute
to specialized SPMD/SIMD units, extra hardware support must exist with low-latency bulk
work distribution and synchronization.

The second argument is cost predictability: when a software scheduler is involved, it
competes with algorithm code for access to the memory components. The overhead of com-
munication and synchronization between software schedulers for task management increases
with the number of hardware threads and interferes with communication for computations,
introducing jitter [ALL89]. This can be avoided by a dedicated task control network separate
from the memory network.

We should acknowledge here that hardware task and thread management somewhat
reduces �exibility in the de�nition of a task from the perspective of software. As noted
in [LH94], �thread de�nitions vary according to language characteristics and context-switching
criteria.� We should not consider this argument to be a ban on hardware support for con-
currency management, however. In fact, it seems to us desirable to provide some form
of general hardware/software interface for the de�nition of concurrent workloads, so that
hardware components with di�erent designs can implement them in a heterogeneous CMP
without creating asymmetry in the machine model exposed to software.

Summary

In this chapter, we have identi�ed the design trade-o�s available to a CMP designer inj
the age of ubiquitous software concurrency. Our analysis suggests chip designs towards
smaller, simpler general-purpose cores where larger cores optimized towards sequential per-
formance serve as aservice to the rest of the system. We have also identi�ed the applicability
and limitations of hardware specialization of speci�c application features. We recognized
Hardware Multi-Threading (HMT) as a means to tolerate unpredictable on-chip latencies
and identi�ed the renewed relevance of hardware-supported concurrency management for
on-chip parallelism. This argument updates and extends previously published justi�ca-
tions [BJM96, BHJ06a] for architecture research towards hardware microthreading.

Chapter 3

Architecture overview

Abstract

Here we provide an overview of the architectural concepts that characterize hard-
ware microthreading, and outline the architecture design principles which guide its
implementation in hardware. We also present the implementation choices that have
been made prior to our work.

Contents
3.1 Introduction . 44
3.2 Core micro-architecture . 44
3.3 Concurrency management within cores . 48
3.4 Multi-core architecture . 53
Summary . 57

43

44 CHAPTER 3. ARCHITECTURE OVERVIEW

3.1 Introduction

In the previous chapter we have outlined an innovation space for CMPs with smaller, more
numerous general-purpose cores, a distributed structure, focus on inter-core protocols, and
HMT to tolerate diverse on-chip latencies. The work on hardware microthreading at the
University of Amsterdam, performed mostly prior and outside of the scope of our own work,
can be describe as a design activity towards new CMP structures in this innovation space.

The outcome of these activities is an overall CMP architecture model with custom on-
chip components. Yet previous reports on this activity (in [BHJ06a, Has06, BHJ06b, Lan07,
BGJL08, JLZ09a, JLZ09b, Lan1x] and other academic publications from the same authors)
have focused mainly on general motivations and the eventual applicability of the proposed
architecture, without providing comprehensive descriptions of the architecture itself in a way
amenable to study by outsiders to the �eld, in particular software communities. The reason
for this is that the academic communities around computer architecture are traditionally
competing via performance results, leaving little publication space for describing components
and design trade-o�s.

To increase the visibility of the proposed innovation to external audiences, and provide
a technical context to the remainder of our dissertation, the present chapter describes the
general principles of hardware microthreading and its possible implementations. Together
with chapter 4 and the accompanying Appendices A to E, thiscontemplative description
constitutes our �rst contribution. This chapter is intended to complement [Lan07, Lan1x],
which detail the design of the hardware implementation which we used as our main reference
platform.

3.2 Core micro-architecture

The micro-architecture of individual cores favors simplicity, i.e. fewer gates per core to
increase the core count on chip and the performance per watt, over sequential performance
per core as suggested in section 2.2. It also combines dynamically scheduled HMT for latency
tolerance with a short pipeline to tolerate branches, as suggested in section 2.6.

3.2.1 Multithreading and data�ow scheduling

The design proposes to extend an in-order, single-issue RISC pipeline as depicted in �g. 3.1:Z

ˆ the fetch stageis extended to use PCs from a thread active queue(FIFO), provided
by a thread scheduler in a Thread Management Unit (TMU). Control bits in the
instruction stream read from the L1 I-Cache (�L1I� in the diagram) indicate when to
switch to the next PC in the queue. A switch occurs also whenever the fetch unit
starts to read from a di�erent line in the I-Cache in order to ensure that no executing
PC misses. If no PC is available, the fetch stage becomes idle;

ˆ the decode stageis extended to translate the register names listed in the instruction
codes by aregister window o�set provided by the TMU for the current thread. This
provides dynamic addressing in the Integer Register File (IRF) for di�erent threads,
as well as dynamic sizing of the register window in each thread;

ˆ the Register File (RF) is extended with data�ow state bits on each register, which
indicate whether a register is full (has a value), empty (no value) or waiting/suspended
(a value is expected, a thread is waiting on a value). Bypasses from the Arithmetic

3.2. CORE MICRO-ARCHITECTURE 45

(a) Original RISC pipeline. (b) Pipeline equipped with a Thread
Management Unit (TMU) and data�ow
scheduling.

Figure 3.1: Microthreaded extensions on a typical in-order, single-issue 6-stage RISC
pipeline.

Logic Unit (ALU) and Load-Store Unit (LSU) back to the read stage are also extended
to carry the data�ow state of updated registers;

ˆ the read stageis extended to check the data�ow state bits, and suspend the thread
when a register operand is not full;

ˆ the Memory Control Unit (MCU) , actually part of the LSU but separated in the dia-
gram for clarity, is extended to set the target register to the waiting state upon L1 read
misses, butwithout stalling the pipeline nor suspending the threadas the next instruc-
tions may be independent1; meanwhile, load completions are written asynchronously
to the register �le and wake up threads, as discussed below and in section 3.2.2;

ˆ the writeback stage is extended to also propagate control signals from the thread
management instructions (discussed further in chapter 4) to the TMU, and reschedule
the PC of the current thread on the active queue if it was descheduled at the fetch
stage but has not suspended in the pipeline;

ˆ the newly introduced Thread Management Unitmaintains state information for threads
(PC, register window o�sets, etc.) in dedicated structures on the core.

The notion of �data�ow scheduling� comes from the fact that threads are suspended
upon reading from empty operands, and resume execution only once the operand becomes
available. This asynchrony is implemented by storing the head and tail of a list of suspended
threads in the input register when it is not full. When an asynchronous operation completes
(e.g. a memory load), the register is updated by the corresponding unit and simultaneously
the list of suspended thread(s) is appended to the active queue. Each thread context is de-
scribed by an entry in a dedicated memory, called thethread table, which contains its PC and
next �eld for schedule and suspend queues. An example is given in �g. 3.2, which illustrates
the thread table after threads 5, 2, 3, 1 have tried to read from a waiting synchronizer.

1That is, the thread does not suspend on the load itself and independent subsequent instructions are
allowed to execute. If some subsequent instruction is data dependent on the missed load, that instruction
will suspend the thread if its operands are not ready yet.

46 CHAPTER 3. ARCHITECTURE OVERVIEW

Figure 3.2: Example suspended thread list.

Side note 3.1: Active, ready and waiting queues.

For the purpose of a high-level overview it is su�cient to consider a single queue for schedulable threads.
However a naive implementation based on a single queue would be ill-equipped to deal with I-cache misses.
Instead, the detailed design proposes to place schedulable threads on a ready queue, and only move threads
from the ready queue to the active queue (connected to the fetch unit) once their instruction data is in the
I-cache. Upon I-cache read misses, ready threads are placed in a waiting queue instead, and moved to the
active queue upon completion of the I-cache read. See also side note 3.3, [Lan07, Sect. 4.3] and [Lan1x, Sect.
Thread Scheduler].

(a) Microthreaded pipeline with an asyn-
chronous ALU.

(b) Microthreaded pipeline with an asyn-
chronous FPU.

Figure 3.3: Using asynchronous FUs for latency tolerance.

The scheduling strategy is not purely data�ow oriented however. To avoid pipeline
bubbles, the code is statically instrumented by control bits, visible at the fetch stage, which
indicate whether an incoming instruction may suspend. If so, and there are more threads in
the active queue, the current thread is popped from the active queue (descheduled) after the
current instruction is fetched, and the fetch unit switches preemptively to the next thread's
PC for the next cycle. This e�ectively achieves zero-cycle thread switching.

This overall core structure requires only two read ports to the IRF for the read stage, one
read/write port for the writeback stage and one arbitrated read/write port for asynchronous
completions.

3.2.2 Long latency operations and completions

As mentioned previously, upon L1 read misses the MCU writes back memory load comple-Z
tions asynchronously to the register �le via a dedicated port. To determine which registers

3.2. CORE MICRO-ARCHITECTURE 47

to update upon completion, the LSU stores the address of the register to update in the L1
cache line2.

Data�ow scheduling can also be used for multi-cycle local operations. For example,
integer multiply and divide can be implemented as asynchronous integer Functional Units
(FUs) which write back their result asynchronously to the register �le (�g. 3.3a), waking up
any suspended thread(s) during the write if any. The same principle can be used again for
an FPU, as depicted in �g. 3.3b. The Floating-point Register File (FRF) is equipped with
data�ow state bits as well, and Floating Point (FP) registers are used in the same way as
integer registers for the purpose of scheduling. Since the FUs are thereby fully asynchronous,
it becomes possible to share an FU between multiple cores; this opportunity is exploited in
the con�guration studied in chapter 13. Note that despite the scalar structure, there is little
contention on the asynchronous R/W port of the register �le because at most one instruction
is issued per cycle, and thus there is at most one completion per cycle on average [HBJ07].

In all these scenarios, thecontinuation of the long-latency operation, represented by
a list of threads waiting on the value, is stored in the target register until the operation
completes. To avoid losing this continuation and causing deadlock, any further instruction
with the same register as its output operand will suspend as well or stall the pipeline until
the �rst long latency operation completes3.

3.2.3 Threading to handle pipeline hazards

A perhaps striking feature of the proposed design is the absence of several components foundZ
in other processors to handle pipeline hazards.

As seen above, the design self-synchronizes true dependencies. Out-of-order completions
from asynchronous FUs do not need reorder bu�ers, because further dependent instructions
(both true dependent and output dependent) will self-synchronize in instruction stream
order. A branch predictor becomes unnecessary once tight loops are replaced by dependent
threads, one per loop iteration, interleaved in the pipeline. Branches are also marked to
cause a switch upon fetch, so that instructions from other threads can �ll the pipeline slots
immediately following a branch while it is resolved.

There are possible structural hazards, each with candidate solutions. A store to an L1
line waiting on a load may stall to preserve the ordering of memory updates. This can be
solved by storing the continuation of the load in a separate structure than the line itself and
merging stores with the incoming line upon completion. An instruction issued to a busy
non-pipelined long-latency FU, such as FP divide, may stall if there is no space left in its
input bu�er(s). The alternative is to increase the number of FUs. A memory operation
reaching the MCU from the pipeline at the same time as a memory completion may stall
until the completion is e�ected. The solution is to dual port the cache and arbitrate updates
at the granularity of single lines. In any case, solutions exist to avoid wasting the pipeline
slot and rescheduling the thread. While these design choices fall outside the scope of our
work, we mention them here for clarity and completeness.

2Speci�cally, the L1 line contains the address of the head of a linked list of registers to update, since
multiple loads can be waiting on the same line.

3Whether this situation causes a stall or a suspension is still a topic for research, but is outside the
scope of our work. In either case the architecture should ensure that continuations are not lost. In the early
implementations, this guarantee was not provided, but this was later �xed, cf. section 4.6.1.3.

48 CHAPTER 3. ARCHITECTURE OVERVIEW

3.2.4 Critical latencies, IPC and throughput

The proposed design issues at most one instruction per cycle; the throughput is determinedZ
by frequency, pipeline utilization and the number of data�ow misses, i.e. reads from empty
operands.

The two structures with non-trivial access latencies in the critical path of the pipeline
cycle time are the register �le and the L1 D-cache. While the number of ports on the register
�le is low, the number of registers increases with the desired number of simultaneously
allocated threads. The size of the L1 D-cache, and thus its access latency, increases as the
desired heterogeneity of workloads increases.

To quantify the impact of these structures and predict the maximum allowable core
frequency, CACTI [WJ96] estimates using conservative parameters have been computed.
For example, given a 64-bit core implementation con�gured with 1024 registers per RF,
a 4-way associative 4KB L1 D-cache, and support for up to 256 threads, the maximum
allowable pipeline frequency at 65nm CMOS lies in the range 800MHz to 1.5GHz; we used
these parameters during our evaluation activities, with a 1GHz pipeline frequency. At 45nm
CMOS, the pipeline frequency can be increased to 2GHz.

3.3 Concurrency management within cores

The design provides dedicated hardware circuits to accelerate the organization of software
concurrency during execution, as suggested in section 2.7. We explain this below.

3.3.1 Thread management

In most processors, the program counter is initialized at hardware start-up to a prede�nedZ
value, and from then on updated either by branches, traps or interrupts. The traditional
vision is characterized by the assumption that the processor is dedicated to an instruction
stream as long as it is powered. The logical activation and de-activation are indistinguishable
from the physical events �start of world� and �end of world,� which cannot be controlled in
software. This abstraction has been carried over to recent multithreaded architectures,
for example Niagara and HyperThreaded processors, where each thread of execution is
activated upon core initialization and subject to traps and interrupts in the same fashion as
a sequential processor.

In contrast to this, microthreading rei�es �thread creation� (processor start up) and
�thread termination� (processor shut down) as hardware events that can be programmed.
The initial con�guration of the PC, which in a traditional architecture is �xed statically at
design, is also con�gurable dynamically during creation. However, the choice of which hard-
ware resources (registers, PC slot) to use is not directly programmable; they are allocated
dynamically by the TMU upon receiving a thread creation event. As we describe below, the
arguments of the event determine the initial PC, as well as how many registers to allocate.

This allows us to compare a conventional approach to hardware multithreading (�g. 3.4)
with the microthreaded approach (�g. 3.5). In the conventional case, the thread is ready to
execute instructions from a pre-con�gured PC as soon as the chip is powered. The thread
may suspend upon blocking operations, or upon executing the HALT instruction which stops
processing entirely. When halted, only an interrupt can wake the thread up and make it
usable again. With microthreading, thread contexts are initially �empty,� meaning unused
and not mapped to any workload. Upon receiving athread creation eventthe TMU allocates

3.3. CONCURRENCY MANAGEMENT WITHIN CORES 49

Figure 3.4: Thread states in the Niagara architecture.

Figure 3.5: Thread states in the microthreaded architecture (simpli�ed).

See also the detailed diagram in �g. 3.6.

Side note 3.2: New instruction vs. control bits for thread termination.
In an alternative implementation, a dedicated �terminate thread� instruction could be added to the ISA.
However, since the architecture already uses out-of-band control bits for scheduling (section 4.4), these can
be extended to provide control over thread termination without the need for a new instruction. This choice
can also increase pipeline utilization for small threads with only a few instructions each: control bits do not
require occupation of a pipeline slot, and threads can terminate and be cleaned up as a side-e�ect of their
last useful instruction.

a thread context from a thread table, populates the context with a PC and makes it �active.�
From that point forward the thread behaves like a sequential processor. The additional
extension is that program-speci�ed, out-of-band control bits in the instruction stream can
trigger the thread termination event, which stops processing instructions from that thread
and releases the context for another thread creation (cf. side note 3.2).

This basic thread management scheme implements the dynamic creation oflogical threads
over physical thread contexts, analogous respectively to tasks and worker threads in software
concurrency managers. The resulting support for adynamically variable number of hardware
threads is a distinguishing feature of the design.

3.3.2 Preemption and asynchronous events

Traps and interrupts have been designed in sequential processorsessentially as a means toZ
multiplex access to the single-threaded processor between a program and an asynchronous
event handler. When the processor has as many thread contexts as there are event channels,
each event handler can run in its dedicated context, and support for control �ow interrupts
is not required in principle.

The microthreaded core exploits this opportunity by replacing support for external in-
terrupts with support for a large number of thread contexts. For example, the reference
implementation we use in our work supports 256 thread contexts. The reception of external
events can then be implemented on a control NoC either byactive messages[vECGS92],

50 CHAPTER 3. ARCHITECTURE OVERVIEW

Figure 3.6: Thread states in the microthreaded architecture.

(a) Interface for active messages on a control
Network-on-Chip (NoC). A Network Control
Unit (NCU) disassembles incoming NoC pack-
ets to TMU control signals and vice-versa.

(b) I/O interface to translate generic I/O
events to data�ow events and thread cre-
ation requests. The mapping between
I/O channels and control signals is pro-
grammable via con�guration registers.

Figure 3.7: Support for incoming external asynchronous events.

3.3. CONCURRENCY MANAGEMENT WITHIN CORES 51

Side note 3.3: Fine-grained thread states.

The actual thread states are detailed in �g. 3.6:

ˆ the interface to memory via an I-Cache suggests a discrimination between �ready,� �active� and �wait-
ing� states, so the latter accounts for ready threads waiting to re�ll the I-cache;

ˆ the First-In, First-Out (FIFO) nature of the active queue requires the pipeline to remove active
threads from the queue upon switch, and add them back at the writeback stage if they are still
schedulable. This in turn requires a distinction between �active� (still in FIFO) and �running� (not
in FIFO, but still in pipeline);

ˆ to prevent a �waiting� thread from never becoming active, I-cache lines must be locked until the
corresponding thread gets a chance to run some instructions. To achieve this, the following conditions
are met: the I-cache is fully associative; there are more I-cache lines than pipeline stages; and each
line contains a reference counter with the number of waiting/active/running threads currently using
the line, so that it can be evicted only once all associated threads exit the pipeline.

In hardware, these states are not named as state bits in a memory; they can be distinguished by which
hardware components currently refer to the thread entry. Performance counters can be implemented that
keep track of how many threads are in each state.

which carry an entire request for thread creation (PC, optional value argument) directly to
the TMU, or by an I/O interface , which translates interrupt-style control signals to either
data�ow events in the pipeline or thread creation events in the TMU. Both schemes are
illustrated in �g. 3.7. Research is ongoing to implement scheduling priorities by placing
threads created from asynchronous events in di�erent schedule queues.

This preference for active messages and thread creations to signal asynchronous events
over control �ow preemption via interrupts is another distinguishing feature of the design.

3.3.3 Con�gurable register windows

In a traditional RISC, register operands in machine code index the register �le physically.Z
There have been three extensions to this in previous work. In the SPARC architecture,
sliding register windows are implemented by updating a Current Window Pointer (CWP)
at function call and return. The CWP in turn o�sets the instruction-speci�ed register name
to index a register �le containing multiple 16-register blocks [GAB � 88, MAG � 88]. This
structure was intended to optimize the overhead of function calls by avoiding spills, and in
turn enables an optimization of the physical layout, due to the fact that only one window is
used at a time [TJS95]. In superscalar designs,register renaming [Sim00] changes register
names in instructions to index a larger physical register �le than the logical numbering
allowed by the ISA. In hardware multithreaded processors, each thread is con�gured to use
a private thread register window in a separate region of the physical register �le.

These advances have introduced a distinction between theregister �le , which is the
physical data store, and thelogical register window, which is the virtual set of register names,
i.e. virtual register addresses, that can be used by machine instructions. The translation of
names to a physical address in the store is performed in the issue stages of the pipeline.

The microthreaded core exploits this opportunity further and introduces two innovations:
the ability to con�gure the size of the logical register windowand the ability to con�gure the
overlap between register windows of separate threads.

Variable window sizes are motivated by the need to increase utilization of the register �le,
which is typically the most expensive resource on the core. The argument is that tolerating
on-chip latencies requires concurrent workloads that are short, possibly a few instructions.
This in turn entails that some threads only require a few registers, i.e. potentially many

52 CHAPTER 3. ARCHITECTURE OVERVIEW

less than the maximum window size allowable by the ISA. By mapping only the part of the
logical register window that is e�ectively used by a short-lived thread, it becomes possible to
create more threads on the same number of physical registers and RF utilization is increased.

For example, the reference con�guration we use provisions 1024 physical registers and
256 thread contexts. This leaves room for 33 threads with a fully mapped 31-register ISA
window, or 256 threads with only 4 registers mapped in each, or heterogeneous combinations
of any intermediate con�guration. A dedicated hardware Register Allocation Unit (RAU)
in the TMU performs the dynamic allocation and de-allocation of physical registers upon
thread creation and termination. Upon exhaustion, context allocation is delayed until there
are enough registers available to satisfy a request.

Meanwhile, overlapping register windows enable fast thread-to-thread data�ow commu-
nication and synchronization. When two instructions in separate threads target the same
physical register, the data�ow scheduler (cf. section 3.2.1) ensures that the consumer instruc-
tion is scheduled only when the producer instruction completes. Moreover, if the instructions
of both threads interleave in the pipeline, the bypass bus ensures that the data �ows from
one thread to another without any waiting time. While this concept seems challenging to
exploit in a compiler or hand-crafted program, we shall explore possible uses in chapters 4,
6 and 8 and section 13.8.

This �ne-grained register window managementcombined with the exploitation of shared
registers for zero-cycle data�ow synchronizationare yet two other distinguishing features.

3.3.4 Synchronization on termination

Synchronization on termination, also called �waiting� or �joining,� is a fundamental featureZ
of concurrency management systems.

A common approach to implement this primitive is found in Unix, described for example
in [MBKQ96, Chap. 4]: when a task terminates, it is moved from the �active� state to the
�zombie� state, and its parent (if any) is noti�ed with a signal. Independently, another task
can use the �wait� primitive which suspends the waiting task until the target task terminates.
When the target task terminates, the �wait� primitive completes and returns the termination
status of the target task to the waiting task.

The proposed architecture design implements this synchronization in hardware. A con-
trol event to the TMU, called request to synchronizecan associate a thread context to the
address of a register. When the thread terminates, the TMU writes a value into this regis-
ter. Independently, another thread which has this register mapped into its logical register
window can initially set the register to the �empty� state, and then start reading from it,
which causes the thread to suspend. The waiting thread only resumes execution once the
register is written to, i.e. when the target thread terminates.

3.3.5 Bulk creation and synchronization

The features described so far are su�ciently general to support nested fork-join concurrencyZ
in programs, with threads created and synchronized one at a time. Yet the proposed design
makes another step towards reducing management overheads.

Considering SIMD/SPMD workloads of a few instructions over a large data set, the over-
head of explicit instructions to create and synchronize every instance of the parallel workload
would not provide any bene�t compared to a partially unrolled sequential loop. Instead, the
TMU provides a dedicated, autonomousThread Creation Unit (TCU) in hardware which

3.4. MULTI-CORE ARCHITECTURE 53

is able to create and start threads asynchronously, at a rate of one every pipeline cycle or
every other cycle, initialized by a singlebulk creation event. A bulk creation event speci�es
a common initial PC for all created threads and a common register window con�guration,
including a common overlap factor between all created windows. To distinguish the created
threads, the bulk creation event also speci�es a con�gurable range oflogical thread indexes
assigned sequentially by the TCU to each created thread, and pre-populated in a private
register upon thread initialization.

For synchronization, the TMU binds a single bulk synchronizer to all the threads cre-
ated from a single bulk creation event. This bulk synchronizer acts as a semaphore. This
modi�es the synchronization on termination described in section 3.3.4: the event �request to
synchronize� binds the bulk synchronizer, and not a single thread context, to a con�gurable
register. Only when all associated threads terminate, does the bulk synchronizer cause the
TMU to write a value to the target register, and let the waiting thread wake up. This allows
a thread to wait on all threads in the group in a single register read. Beyond the reduction
of thread management overheads for groups of related workloads, this facility also reduces
fragmentation in the RF by grouping allocation and de-allocation requests in the RAU.

This particular feature which binds a set of threads by a common bulk creation event
and a common bulk synchronization structureis another distinguishing trait of the proposed
design. Groups of bulk created threads are referred to as �families� in previous publications;
we discuss this term further in section 4.2.1.

3.4 Multi-core architecture

Placing multiple simple cores together is not su�cient to guarantee scalability of through-
put with the number of cores. Namely, the interconnect must cater to scalable throughput
(cf. section 2.2). Also, dedicated circuits must be present to provision low-latency distri-
bution of data-parallel workloads to multiple cores, if these cores are to become an advan-
tageous substitute to specialized SPMD/SIMD workloads (cf. section 2.4). We explain the
corresponding characteristics of the proposed CMP design below.

3.4.1 Memory architecture

The core design is optimized for tolerating latencies using asynchronous transactions withZ
multiple in-�ight operations, and is thus intended for use with memory systems that sup-
port either split-phase transactions or request pipelining. However, the concepts behind
microthreading do not mandate a speci�c memory system: a designer may choose to inte-
grate microthreaded cores with memory technology implemented independently. This was
illustrated on a FPGA, where the UTLEON3 [DKK � 12] microthreaded cores are connected
to an industry-standard memory bus.

Regardless of which memory system is used, system-level design choices will impact the
machine model signi�cantly. First, an implementation can choose between a distributed
memory architecture, where each cores sees a separate address space from all other cores.
Or it might choose to use a shared address space. Then it can choose between di�erent
caching protocols. Depending on these choices, amemory model is shaped into existence.

The proposed architecture assumes a model based on a shared address space over multiple
caches and backing stores. This in turn requires to consider a spectrum of design choices
related to cache coherency. At one end of the spectrum an implementation may guarantee
that all stores by all cores are visible to all other cores in the same order, for example by

54 CHAPTER 3. ARCHITECTURE OVERVIEW

Figure 3.8: Example proposed distributed cache topology.

Multiple cores can share a single L2 cache via a local snoopy bus. �DIR� is shorthand for �cache
directory�; �MC� is shorthand for �memory controller.�

Side note 3.4: Using a distributed cache between microthreaded cores.

To demonstrate the usability of microthreading with larger core counts, a scalable memory system is needed.
As a step in this direction, research e�orts have been invested separately from our work in a dedicated
synchronization-aware, distributed cache network.
The main property of the proposed distributed cache is that cache lines are automatically migrated where
they are used. Concurrent loads create multiple copies of a cache line, while concurrent stores may gather
a single updated copy to the location of the last store. The proposed cache architecture connects multiple
cores to a shared L2 cache, and organizes L2 caches in rings. For a small-scale system (e.g. less than 64
cores) a single ring is used; for larger con�gurations a hierarchy of rings is used (cf. �g. 3.8). An early version
of the protocol has been published [ZJ07, DZJ08] and research is ongoing on this technology concurrently
to our work. It assumes memory controller(s) to external Random-Access Memory (RAM) connected to the
top-level ring, and pipelined RAM interfaces, such as JEDEC's DDR a and Rambus' XDR b .

a JEDEC Standard JESD79 and later revisions, cf. http://www.jedec.org/ .
bhttp://www.rambus.com/xdr

broadcasting a lock on the cache line before each store is e�ected and invalidating all copies.
At the other end of the spectrum, no automatic consistency is implemented in hardware,
so software must control cache coherency explicitly. Our reference implementation uses a
memory network of distributed caches (side note 3.4) which lies somewhat in the middle: it
proposes to e�ect memory stores in local copies of cache data, and only propagate and merge
update copies prior to bulk creation of threads or bulk synchronization on termination. With
this implementation, memory can be shared consistently across bulk events, but may not
be consistent between sibling threads that are not related by bulk events.

Di�erent implementation choices thus have a dramatic impact on the memory model. In
chapter 7, we revisit this topic and further explore how to make these choices independent
from concurrency management issues from the software perspective.

3.4. MULTI-CORE ARCHITECTURE 55

3.4.2 Concurrency management across cores

3.4.2.1 In other multi-processor systems

Work distribution across multiple performance-oriented general purpose processors has tra-
ditionally been coarse-grained and ill-suited for �ne-grained, low-latency distribution of
workloads. The conventional mechanism can be described in general terms: code and data
are shipped to a memory close to the core at a �xed address; this address is con�gured in
the interrupt vector of the target processor; then an Inter-Processor Interrupt (IPI) is sent
to the remote processor to trigger execution. Synchronization on termination is expensive:
the thread requesting to wait from core A registers its identity in memory to a system-level
scheduler in software; when a target thread on coreB terminates, its local scheduler looks
up any waiting thread in memory, then sends an IPI from B to A, which signals A's soft-
ware scheduler;A's scheduler then looks up the origin of the IPI in memory and triggers
resumption of the waiting thread.

This is the protocol used in most of the Top5006 and Green5007 supercomputers at
the end of 2011, which are based on IBM's POWER, Intel's Xeon, AMD's Opteron and
Sun's/Fujitsu's SPARC6. It is used even between multiple cores on the same chip. It is
also used with most processors in embedded SoCs, including all ARM and MIPS-based
cores. This protocol is due to the processors' ISA: in most ISAs only memory-related
operations and interrupt instructions have the ability to communicate and synchronize with
other components in the system.

This protocol is coarse-grained for three reasons. First, the overhead of a full point-
to-point memory synchronization requires full cache lines to be exchanged between the
initiator and the target, even if the target workload operates on independent streams of
data. Then a scheduler in software on each processor must disambiguate each incoming
IPI by looking up the initiator and parameters in shared structures in memory. Then the
abstraction mismatch between the interrupt-based signalling mechanism and the thread-
based programming model requires indirection through a software stack to e�ect the control
events. This implies initialization and start-up overheads of hundreds if not thousands of
pipeline cycles, and similar overheads again for synchronization on termination.

Incidentally, other hardware protocols for work distribution have existed and continue
to be popular to this day. For example in IBM's Cell Broadband Engine, the Memory Flow
Controller (MFC) inside each Synergistic Processing Element (SPE) provides a hardware
request queue where the Power Processor Element (PPE), a general-purpose PowerPC core,
can write new thread requests remotely. The MFC then autonomously starts execution
of the thread on the Synergistic Processing Unit (SPU) [GEMN07]. Another example is
NVidia's Tesla architecture. On this General-purpose GPUs (GPGPUs), the host-GPU
interface streams units of work to the Texture/Processor Clusters (TPCs) via dedicated data
paths in hardware. They are then decoded on the TPC and distributed to the Streaming
Multiprocessors (SMs) via dedicated, autonomous SM controllers [LNOM08].

3.4.2.2 In the proposed architecture

Meanwhile, we have already explained in section 2.7 that further exploitation of multipleZ
cores on chip will require lower concurrency management latencies. The proposed multi-core
architecture design provides two features in this direction.

6http://www.top500.org
7http://www.green500.org

56 CHAPTER 3. ARCHITECTURE OVERVIEW

Side note 3.5: Sub-events for remote creations.
While delegation requests conceptually include all the parameters of a bulk creation, we will �nd useful to
separate the phases in sub-events, namely requests for allocation of thread contexts and registers, remote
register accesses to populate initial value in registers, bulk con�guration requests to con�gure logical index
ranges, and creation requests which trigger the actual activation of threads in the TCU.

The �rst feature is the ability of the TMU to generate active messageson the NoC, upon
local reception of adelegation requestcontrol event from the pipeline. This complements the
mechanism described in section 3.3.2 and �g. 3.7a: just as cores can receive remote thread
creation events from the NoC, they can symmetrically generate those requests as well (cf. also
side note 3.5). For synchronization on termination, the protocol from section 3.3.4 is also
extended: arequest for remote synchronizationgenerated by the pipeline is forwarded by the
TMU through the NCU and NoC, and is then received by the remote TMU which associates
both the originating core address and register address to the target thread context. When
the thread terminates, its local TMU sends aremote register write message through the NoC
to the TMU of the processor hosting the waiting thread, which writes the value to the RF
which in turn causes the thread to wake up. This feature enables fully general concurrent
work creation and synchronization with an overhead of only a few cycles between adjacent
cores on the NoC.

The other feature is an extension of bulk creation to support automatic distribution
of threads across cores. In the TMU, an optional parameter can specify to restrict the
number of logical thread indexes to create locally, and forward the remainder as a bulk
creation request to another core. The total number of cores to use this way is also a
parameter, or a feature of the NoC topology (which can be organized in static clusters).
The thread creations are then e�ected locally by the TCUs in parallel. This way, a single
bulk creation request sent to one core can trigger simultaneous thread creation on multiple
cores. Similarly, a parameter can cause the TMU to duplicate automatically a register
write request to all the cores participating in the bulk creation, implementing a broadcast
operation. For synchronization on termination, the bulk synchronizers arechained from one
core to another when the bulk creation request is forwarded, so that the bulk synchronization
on the �rst core only completes when all �next� cores have synchronized locally. In short,
this combination of features enables the automatic distribution of parallel workloads across
cores using single requests to one core, including the parallelisation of thread creation itself.
We describe cross-chip distribution further in chapter 11.

While setting up a coordinated group of threads across cores using this latter feature set
may seem complicated, as we will see in chapter 4 this complexity is hidden behind simple
abstractions.

3.4.3 Logical and physical networks

The previous sections have outlined three logical networks:Z

ˆ the memory network, used for loads and stores issued by programs;
ˆ the delegation network, used for program-generated remote concurrency management

messages across arbitrary cores;
ˆ the distribution network, used for TMU-controlled bulk distribution across neighboring

cores.

3.4. MULTI-CORE ARCHITECTURE 57

Figure 3.9: 32-core tile of microthreaded processors.

White numbered tiles represent cores. �R� tiles represent routers for the narrow delegation mesh.
The thick black link between cores represents the linear bulk distribution network.

Event name Parameters
thread creation
(subsumed by bulk creation)

PC, register window layout

request for synchronization
(subsumed by bulk sync.)

target thread context, address of register
to write to upon termination

bulk creation common PC, common register window
layout, overlap factor, logical thread in-
dex range

request for bulk synchronization target bulk synchronizer, address of reg-
ister to write to upon termination

remote register reads & writes target register address, value (for writes),
address of register to send value to (for
reads)

Table 3.1: Control events to the TMU.

These logical networks can be implemented either on top of a shared physical NoC, or
using separate physical links for maximum throughput. For example, the reference con�g-
uration we use implements a dedicated distributed cache network for memory with cache-
line-wide channels, a narrow mesh for delegations, and a linear word-wide array for bulk
distribution, as illustrated in �g. 3.9. This speci�c network design uses a space �lling curve
to establish a multi-scale a�nity between core addresses and caches, to preserve maximum
data locality in bulk creations regardless of the number of cores involved.

58 CHAPTER 3. ARCHITECTURE OVERVIEW

State Update events
Program counters Thread/bulk creation, branches
Mappings from logical register windows to
the register �le

Thread/bulk creation

Logical index ranges Bulk creation
Bulk synchronizers Bulk creation, bulk synchronization

Table 3.2: Private state maintained by the TMU.

This state is maintained in dedicated hardware structures close to the TMU.

Unit Description
Thread Creation Unit (TCU) Responsible for bulk thread creation and

logical index distribution
Register Allocation Unit (RAU) Responsible for dynamic allocation and

de-allocation of register ranges in the RF

Table 3.3: Logical sub-units in the TMU.

Summary

The overall chip design proposed by the architects at the University of Amsterdam is aZ
data�ow/von Neumann hybrid architecture with hardware multithreading, which uses a
large register �le as the synchronization name space for split-phase long-latency operations.
The core architecture has been co-designed with a dedicatedconcurrency management pro-
tocol, implemented in hardware in a coordinating Thread Management Unit (TMU), for
controlling hardware threads and composing cores into a many-core chip. We summarize its
features in tables 3.1 to 3.3. It is programmed via inputcontrol signals, also named �con-
currency management events.� These control signals are in turn generated by the pipeline
in response tonew machine instructions, or from a Network-on-Chip via active messages.
We describe its programming interface further in chapter 4.
The architecture does not constrain the memory implementation but strongly suggests a
scalable memory architecture with support for split-phase transactions and request pipelin-
ing. Research is ongoing to provide a distributed cache network to that e�ect. Remote
concurrent work creation and synchronization is supported with hardware primitives for ac-
tive messages and remote register accesses on the NoC. Bulk creation and synchronization
is further optimized by providing low-overhead automatic distribution across multiple cores
by the TMU.

Chapter 4

Machine model and hardware interface

Abstract

This chapter introduces the machine model and the machine interfaces o�ered by
various implementations of hardware microthreading. We present the general concepts
common to all implementations, then review how design choices may lead to di�erent
machines interfaces. We identify major �generations� of interfaces and introduce the
low-level assembly languages available to program the various implementations.

Contents
4.1 Overview . 60
4.2 Concepts . 60
4.3 Semantics . 63
4.4 Out of band control bits . 71
4.5 Interactions with a substrate ISA . 72
4.6 Faults and unde�ned behavior . 75
4.7 Speci�c implementations and their interfaces . 77
4.8 Assembler and assembly language . 79
Summary . 80

59

60 CHAPTER 4. MACHINE MODEL & HARDWARE INTERFACE

4.1 Overview

This chapter is organized as follows:

ˆ section 4.2 presents the general concepts underlying the machine model, and section 4.3
explores the various semantics that can be attached to these concepts in speci�c im-
plementations;

ˆ section 4.4 explains how the scheduling hints and thread termination events can be
provided by programs;

ˆ section 4.5 reviews how the introduction of hardware microthreading in an existing
ISA interacts with the substrate ISA's features;

ˆ section 4.6 outlines potential behaviors for unplanned or erroneous situations;
ˆ section 4.7 introduces actual implementations and their speci�c interfaces, and rec-

ognizes three major �generations� of implementations. Section 4.8 then reviews the
concrete assembly languages for these implementations.

4.2 Concepts

Regardless of the speci�c implementation choices, a hardware microthreaded architectureZ
provides the following:

thread contexts, logical threads and thread programs.
Thread contexts are management structures in the Thread Management Unit (TMU)
that de�ne individually scheduled instruction streams in the microthreaded pipeline.
They are analogous to the �threads� of [II11a, II11b] and existing threading APIs
(e.g. POSIX [Ins95]), the �workers� of OpenMP [Ope08] or the �harts� of [PHA10].
Logical threads are the individual units of work de�ned by programs via the bulk
creation event, using a common starting PC and a logical index range. The TMU
maps logical threads sequentially over one or more thread contexts. Once activated,
logical threads execute athread program from the initial PC to completion. As such,
logical threads are akin to the �blocks� of Grand Central Dispatch (GCD) [Sir09, App]
or the �tasks� of OpenMP and Chapel [CCZ07].
Thread contexts are independently scheduled, and may interleave while they are active.
However, there is no interleaving of logical threads within single thread contexts. Only
logical threads are visible to programs; programs can control thread contexts only
indirectly via the placement of work, discussed below.

thread program actions and synchronization.
Thread programs contain instructions that perform actions on the environment. Each
instruction has some encoding which speci�es itsinput and output operands. The
encoding is assumed to derive from a RISC ISA. In particular, operands are encoded
either as immediate values or as a registername, which is a �xed o�set into a local
storage space.
Compared to a conventional register machine, where this storage space would be
general-purpose memory cells in hardware, i.e. physical registers, the microthreaded
core maps instruction operands todata�ow synchronizers. These implement I-variables:
a storage cell which may either contain a value (�full�) or be �waiting� on a value not
yet available [ANP87]. These are then used to provide asynchrony between individual
instructions, as a long-latency operation can now simply set its output operand to

4.2. CONCEPTS 61

�waiting� instead of actually stalling the processor. In other words, the microthreaded
machine model subsumes existing instruction sets by substituting data�ow synchro-
nizers for registers. This design was originally proposed in Denelcor's HEP [Smi81]
and Tera's MTA [SCB � 98] (later Cray's XMT).
However, memory outside of the core is not synchronizing: the indirect storage acces-
sible via �load� and �store� instructions behaves as regular data cells which always hold
a value, i.e. do not synchronize. This is where the design diverges conceptually from
the HEP and the MTA, both of which provide synchronization on the entire memory
space. The rationale for this stems from the observation that negotiating synchro-
nization is a communication activity, and that in general-purpose environments the
software implementer is most competent to recognize computation patterns and orga-
nize communication. By restricting implicit synchronization to core-local structures,
the machine interface defers the responsibility to organize non-local activities, includ-
ing arbitrary patterns of inter-core synchronization, to explicit remote synchronizers
read/write operations controlled by software.

synchronous vs. asynchronous operations.
The existence of data�ow synchronizers allows us to distinguish between:

ˆ synchronousoperations, which complete with a full output operand. These guar-
antee that any further instruction using the same operand as input will not sus-
pend.

ˆ asynchronousoperations, which complete with a non-full operand in the issuing
thread, while letting the operation run concurrently. These can be said to return
a �future� 1 on their result.

bounded and unbounded operation latencies.
The existence of asynchronous behavior mandates a comment on operation latency,
necessary to determine conditions toprogress in executing programs.
In the proposed design we can distinguish between:

ˆ operations with bounded latency: once the operation is issued, it is guaranteed to
complete within a �nite amount of time regardless of non-local system activity;

ˆ operations with unbounded latency: whether the operation completes at all is de-
pendent on non-local system activity, e.g. data-dependent branches in the control
�ow of other threads.

Intuitively, computation operations issued by programs should have a bounded la-
tency, especially arithmetic and control �ow. Yet some unbounded latencies become
possible depending on the choice of semantics for concurrency management, discussed
in section 4.3 below. In general, memory loads and stores, FPU operations, remote
synchronizer reads/writes, and bulk creation after allocation of a creation context
have a bounded latency; whereas requests to allocate new concurrency resources and
requests to synchronize on termination of another thread may be inde�nitely delayed
by non-terminating threads, and these operations thus have an unbounded latency.

local wait continuations, remote wake ups.
The synchronizing storage is �local� to the core's pipeline and its state is maintained

by the �ow of local instructions. In particular, only local instructions can suspend on a

1The concept of �future� is introduced in [Hal85]: �The construct (future X) immediately returns a
future for the value of the expression X and concurrently begins evaluating X. When the evaluation of X
yields a value, that value replaces the future.�

62 CHAPTER 4. MACHINE MODEL & HARDWARE INTERFACE

data�ow synchronizer. This choice guarantees that wake-up events to waiting threads
are always resolved locally upon writes to synchronizers.
Yet, synchronizers can be accessed remotely across the NoC. For example, a thread
running on one core may write remotely to another core's synchronizers and wake up
any threads waiting on it on that other core.

virtual mapping of the synchronization space, data�ow channels.
The �xed o�sets in instruction operands do not have a static mapping to synchro-
nizing storage; instead, the set ofvisible data�ow synchronizers can becon�gured per
thread during bulk creation, and de�ne a �window� on the synchronizing storage. In
particular:

ˆ if a synchronizer is visible from only one thread it is said to be �private,� or �local,�
to that thread. Since values stored in it are subsequently readable by further
instructions, it behaves functionally like a regular general-purpose register.

ˆ two or more threads can map some of their register names to the same synchro-
nizers. When this occurs, the con�guration can be said to implement adata�ow
channel between the threads: a �consumer� instruction in one thread will syn-
chronize with a �producer� instruction in a di�erent thread. Also, �consumer�
instructions which read from a data�ow channel may have an unbounded latency
as per the de�nition above.

bulk creation contexts.
Programs use bulk creation of logical threads to de�ne work. Yet bulk creation is itself
a multi-phase process which involves e.g. reserving thread contexts in hardware and
e�ecting the creation of logical threads (cf. section 3.3.5). This process itself has both
input parameters and internal state. Its parameters are the initial PC, a logical index
range, and potentially con�guration information for the mapping of register names to
synchronizers. Its internal state tracks which logical threads have been created and
terminated over time.
Both the parameters and internal state must be kept live until all logical threads have
been created, especially when some thread contexts must be reused for successive logical
threads. As such they constitute collectively abulk creation context which must be
allocated, con�gured and managed.

data�ow synchronizer contexts.
During bulk creation, the TMU can allocate a subset of the synchronizing data storage
to map it in the visible window of new threads. Conversely, synchronizers can be
released when threads terminate if they are not mapped elsewhere. The set of data�ow
synchronizers allocated to a group of bulk created threads thus forms theirdata�ow
synchronizer context, a resource that must be managed jointly with the threads.

bulk synchronizers.
Programs use bulk synchronization to wait on termination of threads. As discussed in
section 3.3.5 this implies space to store �what to do on termination� for the group of
threads waited upon, and a semaphore. Thesebulk synchronizers, separate from the
data�ow synchronizers, also constitute state which must be allocated, con�gured and
managed.

automatic work placement and distribution.
When issuing bulk synchronizations, programs can de�ne that the work is to be cre-
ated either locally or remotely, and on either one or multiple cores. Thisplacement
information is provided early and serves to route the bulk creation event to the appro-

4.3. SEMANTICS 63

priate TMU on chip. When targeting multiple cores in one request, multiple TMUs
cooperate to spread the logical index range over the cores.
Beyond the creation of threads, the TMUs also assist with the distribution of data. A
single event can be sent after bulk creation to broadcast a value to the synchronizers
of multiple cores, to serve as input to the logical threads.

binding of logical threads to cores.
In the proposed design, there is no mechanism provided to migrate the contents of
management structures across cores after they are allocated. Since the state of syn-
chronizers is notobservablein software either, this implies that logical threads cannot
be migrated to another core after they are created.

4.2.1 Families of logical threads

From the previous concepts, we can derive the notion of �family � to designate the set of
logical threads that are created from a single bulk creation.

Like logical threads, families are de�ned by programs andonly exist indirectly through
the bulk creation contexts, thread contexts and bulk synchronizers allocated and managed
for them in hardware. Although it merely designates an abstract concept, the term �family�
forms a useful shorthand for the collective work performed by a bulk created set of logical
threads. It is used with this meaning in the remainder of our dissertation and other literature
about hardware microthreading.

4.3 Semantics

For the TMU to be programmable, some set ofsemantics must be associated to its state
structures and their control events. Semantics establish the relationships between state
structures and how state evolves at run-time in response to events. To de�ne these semantics,
previous research on hardware microthreading has explored three mostly orthogonal aspects:

ˆ how to con�gure and trigger bulk creation and bulk synchronization (section 4.3.1);
ˆ how to manage the mapping of logical threads to cores and thread contexts (sec-

tion 4.3.2);
ˆ how to manage the mapping of logical threads to data�ow synchronizers (section 4.3.3).

4.3.1 Bulk creation and synchronization

The organization of bulk creation and synchronization determines primarily the relationshipZ
between bulk creation contexts, bulk synchronizers and thread contexts. We do not consider
here how many thread contexts are allocated and how many logical threads are created over
them, this will be covered in section 4.3.2.

Any choice of semantics must respect the following dependencies:

ˆ a bulk creation context must exist before the allocation of thread contexts and the
creation of logical threads starts;

ˆ a bulk creation context must persist until all logical threads have been created;
ˆ a bulk synchronizer must exist before:

� the earliest point at which another thread may issue a request for bulk synchro-
nization;

64 CHAPTER 4. MACHINE MODEL & HARDWARE INTERFACE

� the �rst logical thread is created;

whichever comes �rst;
ˆ a bulk synchronizer must persist until after:

� the latest point at which another thread may request bulk synchronization;
� all threads have terminated and a requesting thread is noti�ed;
� the bulk synchronizer is explicitly released;

whichever comes last.

Then any choice of semantics must select theinterface to use in programs, i.e. :

ˆ what machine instruction(s) trigger these processes;
ˆ what parameters can be provided and how;
ˆ under which condition a bulk creation or bulk synchronization request synchronizes

with the issuing thread;
ˆ what �output� either of these requests returns to the issuing thread.

In our work, all implementations provide at least the following primitives:

allocation of a bulk creation context.
This takes as input some placement information, and performs the allocation ofboth a
bulk creation context, a bulk synchronizer, a thread context and a set of synchronizers,
on the target core(s). It is an asynchronous operation which produces a future on an
identi�er to the bulk creation context to the requesting thread. Its latency is discussed
in section 4.3.1.1 below.
The reason why the allocation is combined is to guarantee that once the initial alloca-
tion succeeds, it will always be possible to create logical threads and synchronize on
their termination afterwards.

con�guration of bulk creation.
This takes as input an identi�er to a bulk creation context and writes a value in the
corresponding hardware structures, possibly remotely. It is an asynchronous operation
with bounded latency and no result.

Implementations then di�er in how they deal with allocation failures, and how they
trigger bulk creation, synchronization and resource de-allocation. We discuss these further
in sections 4.3.1.1 and 4.3.1.2.

4.3.1.1 Allocation failures

We have found three main classes of interfaces that di�er in how they deal with allocationZ
failures:

ˆ in a suspending interface, allocation always suspends until resources become avail-
able. In these semantics, allocation alwaysappears to succeed from the perspective of
running threads but may have an unbounded latency.

ˆ in a soft failure interface, allocation failures cause a failure code to be reported as a
value to the requesting thread with a bounded latency, for handling by the requesting
thread program. This allows the thread program to opt for an alternate strategy,
e.g. allocation with di�erent placement parameters or serializing the work.

4.3. SEMANTICS 65

ˆ in a trapping interface, allocation failures are handled within a bounded latency as a
fault, and trigger a trap to be handled by a �fault handler� separate from (and possibly
invisible to) the thread program.

We found implementations providing both suspending and soft failure interfaces, as
discussed in chapter 10. The latter trapping interface is theoretical as of this writing, yet
we believe it will become relevant in future work where issues of placement are managed by
system software separate from application code.

4.3.1.2 Fused vs. detached creation

We found two main classes of implementations that di�er in how they trigger bulk creationZ
and synchronization:

ˆ in a fused creation interface, bulk creation, bulk synchronization and resource de-
allocation are fused in a single asynchronous operation:

fused creation.
This takes as input an identi�er to a bulk creation context and an initial PC.
After issue, the operation triggers the start of logical thread creation, andalso
requests bulk synchronization and resource release on termination of all logical
threads. The request for bulk synchronization binds the output operand of the
fused creation operation with the bulk synchronizer.
The operation thus produces afuture on termination of the logical threads, with
an unbounded latency. All the bound resources are de-allocated automatically
after completion is signalled.

ˆ in a detached creationinterface, bulk creation, bulk synchronization and resource de-
allocation become independent asynchronous operations:

creation.
This takes as input an identi�er to a bulk creation context and an initial PC. After
issue, the operation triggers the start of extra context allocation and logical thread
creation. As soon as logical thread creation starts (which may be later than the
issue time, due to network latencies), an identi�er for the bulk synchronizer is
returned to the issuing thread.
The creation operation thus produces afuture on the start of creation with a
bounded latency. The latency is bounded because the prior allocation guarantees
that creation is always possible.

synchronization on termination.
This takes as input an identi�er to a bulk synchronizer. After issue, the operation
binds its output operand to the named bulk synchronizer.
It thus returns a future on termination of the logical threads with an unbounded
latency.

de-allocation.
This takes as input an identi�er to a bulk creation context. It has no output and
completes with a bounded latency. The operation triggers either de-allocation of
the resources if the work has completed, or automatic de-allocation on completion
if the work has not completed yet.
This interface does not de�ne the behavior when a synchronization request is
issued after a de-allocation request (there is then a race condition between thread

66 CHAPTER 4. MACHINE MODEL & HARDWARE INTERFACE

termination and the bulk synchronization request); however, it guarantees that
bulk synchronization is signalled before de-allocation if it was registered �rst.

4.3.2 Mapping of logical threads to cores and contexts

The design proposes to minimize thenecessaryamount of placement information to provide
during allocation, while providing extra control to thread programs when desired. The
placement information can specify �where� on the chip to allocate in terms of cores, then
�how much� on each core to allocate in terms of thread contexts, then �how to spread� the
logical index range over the selected thread contexts.

4.3.2.1 Mapping to cores

To select the target core(s), the following parameters are available to programs:Z

inherit. Also called �default� placement in previous work. The placement information that
was used to bulk create the issuing thread is reused for the new bulk creation request.

local. The bulk creation uses only the core where the issuing thread is running.
explicit. An explicit parameter is given by the program to target a named core, or cluster,

on the chip. The format of explicit placements then depends on the implementation,
although recent research has converged to provide a system-independent addressing
scheme (cf. chapter 11).

These parameters are intended to control locality and independence of scheduling be-
tween application components.

4.3.2.2 Selection of thread contexts

To select thread contexts, a single parameter called �block size� or �window size,� controlsZ
the maximum number of thread contextsto allocate per core during bulk creation. This
parameter is optional; a program may choose to leave it unspeci�ed, in which case the
hardware will select a default value. This parameter bounds per-core concurrency, which is
useful to control the working set size, and thus cache utilization, on each core. It can also
help control utilization of the synchronizer space as explained in [CA88].

In the implementations we have encountered, an unde�ned block size selectsmaximum
concurrency, i.e. allocate all thread contexts available on each core, or the number of logical
threads to execute per core, whichever is lower. However, we are also aware of ongoing
discussions to change this default to a value that selects the number of thread contexts
based on the local cache sizes, to minimize contention. The choice of default behavior
should thus be considered implementation-dependent.

4.3.2.3 Distribution of the logical indexes

In the proposed interface, a requesting thread can specify an index range by means ofstart ,Z
limit and step parameters (side note 4.1). Compared to a potentially simpler interface
which would only allow programs to set the number of logical threads, this interface enables
direct iteration over data sets, in particular the addresses of array items in memory. These
parameters are optional, and default to 0, 1, 1, respectively.

4.3. SEMANTICS 67

Side note 4.1: Logical index sequence.

The logical thread index sequence is de�ned from the start , limit , step parameters by using a counter
initialized with start and increased with step increments until it reaches limit . limit is excluded from the
sequence.

In the implementations we have encountered, no further control is provided to programs
over the distribution of logical threads. The index space is spread evenly over all selected
cores. On each core, thread contexts �grab� logical thread indexes on a �rst-come, �rst-served
basis until the local index pool is exhausted. Again, we are aware of ongoing discussions
to provide more control to programs to facilitate load balancing, a topic which we revisit
in chapter 13. The interfaces available to programs to control logical distribution should
thus be considered an implementation-dependent design choice, orthogonal to the general
concepts of hardware microthreading.

In each logical thread created, the �rst synchronizer is pre-populated by the TMU with
the value of the logical index.

4.3.3 Mapping of threads to synchronizers

As explained in section 3.3.3, the proposed architecture uses a dynamic mapping between
operand addresses in instructions and the synchronization space.How many synchronizers
are visible to each thread, andwhich synchronizers are visible, are both con�gurable prop-
erties of the thread context, fed into the pipeline for reading instruction inputs when each
instruction is scheduled.

4.3.3.1 Interface design requirements

The question then comes how to design an interface to con�gure this mapping. Here twoZ
forces oppose: on the one hand, maximum �exibility for software would mandate the oppor-
tunity for arbitrary mappings; on the other hand, the complexity of the mapping parameters
impacts logic and energy costs in the hardware implementation.

Any trade-o� when designing an interface must consider the following:

ˆ for the design to be truly general-purpose, the opportunity must be given to programs
to specify at least two private (non-shared) synchronizers per thread. This is the
theoretical minimum necessary to carry out arithmetic and recursion within a thread;

ˆ any con�guration that shares synchronizers between threads should establish clear
conditions for the eventual release of the synchronizers, lest their management becomes
a source of tremendous complexity in compilers;

ˆ a key feature of the design is the short latency bulk creation of logical threads over
thread contexts. Any design which requires the hardware to modify the mapping of
synchronizers between logical threads, or maintain heterogeneous mapping information
across thread contexts, will impact the latency of thread creation.

Another aspect is the selection ofwhere the con�guration is speci�ed. When considering
only performance and implementation costs, the cheapest and most e�cient choice is to
let the thread that issues a bulk creation provide the mapping parameters explicitly. Yet
this choice would be shortsighted. From a programmability perspective, a clear advantage
of the architecture is the ability to compose separately written thread programs via bulk

68 CHAPTER 4. MACHINE MODEL & HARDWARE INTERFACE

Figure 4.1: Example window mapping for two sibling threads with global and local synchro-
nizers.

creation. The knowledge of how many synchronizers are visible, and whether and how they
are shared between threads, is needed to assemble instruction codes. It thus belongs with the
code generator for the threads being created, not the threads doing the creation. Therefore,
an implementation should associate this con�guration information with the thread programs
that are the target of bulk creation somehow.

4.3.3.2 Common semantics

We could �nd the following consensus throughout implementations:Z

ˆ The con�guration information immediately precedes the �rst instruction of a thread
program. This answers the argument above, and provides good locality of access to
the creation process.

ˆ Thread programs can specify a number of private synchronizers.This answers the
generality argument above. The �xed number is then allocated for each participating
thread context and is reused by all successive logical threads running on these contexts.
These synchronizers are dubbed �local� in the remainder of our dissertation.

ˆ Thread programs can specify a number of synchronizers to become visible from all
threads. This is meant to provide common data to all threads. That �xed number of
synchronizers is mapped onto the visible window of all participating thread contexts
on that core. These synchronizers are henceforth dubbed �globals�; they are �global�
to all logical threads created from a single bulk creation. We also call them �global
data�ow channels� when they are used strictly for broadcasting.

An example is given in �g. 4.1.

4.3.3.3 Heterogeneous sharing patterns

Besides the �global� pattern introduced above, prior work has explored other forms of syn-Z
chronizer sharing between threads. The implementations we have used have proposed the
following features, in various combinations:

�shared� synchronizers between adjacent thread contexts.
With this feature, thread programs can specify a number of extra synchronizers to
share between neighbouring contexts during bulk creation. This creates the overlap
pattern illustrated in �g. 4.2. This feature is coordinated by the TMU so that logical
thread indexes are distributed accordingly, and a point-to-point communication chain

4.3. SEMANTICS 69

Side note 4.2: Purpose and motivation of �shared� synchronizers.

This feature was originally proposed to explore whether bulk created microthreads are a suitable alternative
to dependent sequential loops, when the loop-carried dependency has stride 1. We revisit this in section 13.8.

Figure 4.2: Example window mapping for three sibling threads with local and shared syn-
chronizers.

is created in the logical thread order. The mapping is heterogeneous because the
�border� thread contexts do not necessarily share synchronizers (cf. below).
When this pattern is used only to express a forward-only dependency chain, we call
the synchronizers �shared data�ow channels.� When necessary, from the perspective
of a given thread we distinguish further between �D� synchronizers which are shared
with the preceding context, and �S� synchronizers shared with the succeeding context.

�hanging� vs. �separated� global synchronizers.
In the �separated� variant, the global synchronizers of new threads are freshly allocated
from the synchronizing storage and initialized to the �empty� state upon bulk creation,
on each participating core. A dedicated NoC message is then available to programs to
broadcast a value to the participating cores explicitly.
In the �hanging� variant, if the core where the thread issuing a bulk creation is also a
target of the creation, then on that core the global synchronizers of new threads are
not freshly allocated; instead, the window of the new threads is con�gured to map to
someexisting private synchronizers of the thread that issued the bulk creation. Here,
the interface allows a creating thread to indicate which of its local synchronizers to
use as a base o�set for the created windows.
Then, if there are more cores participating, fresh synchronizers are allocated on the
remaining cores. The values stored in the synchronizers on the �rst core are automat-
ically broadcasted to the other cores during bulk creation.
The �hanging� variant results in higher utilization of the synchronizing store on the
�rst core. It was historically the �rst implemented. We can see it was primarily
designed for single-core systems and creates a strong resource dependency between
the creating thread and the created threads. The �separated� variant is more �exible
and homogeneous when multiple cores are involved.
We illustrate the di�erence between �hanging� globals and the �separated� alternative
in �g. 4.3.

�hanging� vs. �separated� shared synchronizers.
As with �separated� globals above, with �separated� shareds the shared synchronizers
of new threads are freshly allocated and initialized to �empty.� The �leftmost� synchro-
nizers in the �rst thread context may then be subsequently written asynchronously by
the issuing thread using a dedicated NoC message.

4.4. OUT OF BAND CONTROL BITS 71

We can identify this mapping order, using a string of the form �X-Y-Z...�, where X, Y,
Z... indicate the type of synchronizer mapped and the order in the sequence indicates the
order of mapping in the visible window. For example, some early implementations used
the order G-D-L-S, meaning that global synchronizers were mapped �rst (if any), followed
by the synchronizers shared with the previous context, followed by the local synchronizers,
followed by the synchronizers shared with the next context.

From the hardware designer's perspective, this choice seems neutral. However, here wej
discovered an extra requirement from the programmability perspective. Indeed, considering
a common software service that uses only local synchronizers (say, a routine to allocate heap
memory), it proves useful to be able to reuse the same code for this service from multiple
thread contexts with di�erent numbers of �global� and �shared� synchronizers. However, the
address of synchronizers are statically encoded in the instruction codes; this implies thatthe
mapping of local synchronizers must be identical regardless of the number of other synchro-
nizer types. To satisfy this, we have required that local synchronizers are always mapped
�rst in the visible windows of threads. Following our requirement the implementations have
been subsequently aligned to the order L-G-S-D.

4.4 Out of band control bits

Introduced in section 3.2.1, the instruction control bits indicate to the fetch unit when toZ
switch threads and when toterminate execution of a thread. These bits must be de�ned for
every instruction processed through the pipeline; there are three possible design directions
to program them.

The direction least intrusive for existing software, that is, able to preserve an existing
code layout from a pre-existing ISA, is also the most expensive in hardware: maintain two
PCs on the fetch unit, where one refers to code and the other to the control bits in a separate
area in memory. In this approach, the I-cache is shadowed by a cache for control bits, or
�C-cache.� Thread creation events should specify both the initial PC for instruction and
for control bits. Alternatively, the TMU can read the control bit PC by looking up thread
metadata at a �xed o�set from the initial instruction PC. The fetch unit must further
place threads on the waiting list on either an I-cache miss, or a C-cache miss. The extra
complexity of this approach comes from the synchronization of waiting threads: upon I-
cache re�lls, a thread can only migrate from the �waiting� state to �active� if the C-cache
hits, and vice-versa.

The most contrasting approach is to make the control bits part of the machine instruction
encoding, for example using two leading bits in the instruction format. With variably sized
instruction words, an existing ISA can be extended this way, however with any �xed-width
ISA (such as found in RISC designs) this approach requires to redesign the ISA because
some existing instructions may have no unused bits left. In the latter case, this approach is
also the most intrusive as it prevents reusing existing assembly code and compilers as-is.

The implementations we have encountered opt instead for an intermediate approach:
interleave control bits and machine instructions. In this approach, each group ofN instruc-
tions is immediately preceded by2N control bits. To ensure that the fetch unit can always
read the control bits, these must be present in the same I-cache line as the controlled in-
structions. This in turn constrains the minimum I-cache line size. With 32-bit instruction
formats, the �sweet spot� which incurs no wastage of space in I-lines while preserving a size
power of two lies at N � 15, with a minimum I-cache line size of 64 bytes. We detail the
optimal parameters in Appendix B.

72 CHAPTER 4. MACHINE MODEL & HARDWARE INTERFACE

Side note 4.3: Thread switching not speci�ed by control bits.

Besides where speci�ed by control bits, thread switches are also incurred automatically for instructions
laying on the boundary of I-cache lines. This avoids missing the I-cache during fetch (side note 3.3), but also
helps guarantee fairness of scheduling between active threads. Switches are also incurred upon branches for
fairness. Yet, for e�ciency it is recommended to still place a �switch� annotation on the branch instruction,
as this will ensure the next pipeline slot is �lled by an instruction from another thread and avoids a one
cycle pipeline bubble if the branch is taken.

Side note 4.4: Switching and thread termination as instructions.

Another approach may consider using explicit instructions for thread switching and termination. An in-
struction can signal a control event prior to the instruction that immediately succeeds it. This requires
embedding the few gates necessary to decode the instruction within the fetch stage itself. Alternatively,
an instruction can signal the event for the end of the next cycle. In this case, another instruction that
immediately follows would still be executed before the event is e�ected.
In either case, this solution incurs a pipeline bubble at every control event: the instruction occupies an idle
cycle that does not contribute to useful computations. It is thus only interesting if switching and thread
termination are uncommon. This solution is thus undesirable with �ne-grained interleaving, e.g. where
threads replace inner loop bodies and where memory loads incur switching, such as with the proposed
design.

To program this latter approach, the assembler program must emit a control word at
regular intervals between instructions. This is covered below in section 4.8.

4.5 Interactions with a substrate ISA

The proposed architecture concepts can be applied either to new RISC cores with a dedicated
ISA, or extend existing RISC cores, and thus to pre-existing ISAs. In the latter case, the
ISA is a substrate upon which the extensions are built. When working with a pre-existing
ISA, its semantics interact with the proposed micro-architecture. We list the most notable
possible interactions below.

4.5.1 Delayed branches

Delayed branches, as found in the MIPS, SPARC and OpenRISC2 ISAs, have been designedZ
for in-order, single-threaded pipelines to reduce the cost of control hazards: the instruction(s)
immediately succeeding a branch execute(s) regardless of whether the branch is taken; the
corresponding positions in the instruction stream are calleddelay slots. With �branch and
link� instructions, where the PC of the �rst instruction after the branch is saved to another
register, the �rst address after the delay slot(s) is used.

When an architecture using delay slots evolves to use out-of-order execution, e.g. via the
introduction of superscalar execution or pipeline multithreading, the �next instruction� in
instruction stream order may not immediately succeed the branch in the pipeline anymore,
and extra logic must be introduced to ensure that this instruction completes even when the
branch is taken. With hardware multithreading, this implies maintaining a separate �next
PC� register for every thread.

2http://opencores.org/or1k

4.5. INTERACTIONS WITH A SUBSTRATE ISA 73

4.5.2 Predication

Predication, as found in the ARM and IA-64 ISAs, is another feature designed to reduce theZ
cost of control hazards: each instruction is predicated on sharedcondition codes updated
by special instructions.

When an architecture using predication evolves to use out-of-order execution, extra logic
must be introduced to ensure that the ordering of tests to the condition codes follow the
ordering of updates. With hardware multithreading, this further implies that separate
condition codes must be maintained for each thread.

4.5.3 Register classes

Some ISAs rely onseparate register classesfor the operands and targets of certain instruc-Z
tions. Most processor designs use di�erent register classes for integer and �oating-point
instructions; then ARM also has a separate class for �return addresses,� used implicitly by
branch and link instructions, and SPARC has �status registers,� including the Y register
used as implicit operand for multiplies and divides.

With hardware multithreading, separate instances of these registers must be available in
each thread. Moreover, if these registers can become the target of long-latency operations,
such as the Y register in SPARC, the ordering of dependent instructions cannot be controlled
by the data�ow scheduling from section 3.2.1 unless these registers are also equipped with
data�ow state bits.

4.5.4 Multiple register windows per thread

We have outlined the role of sliding register windows in section 3.3.3. More generally, someZ
ISAs de�ne multiple register windows per thread and conditions to �switch� the instruction
stream from one to another. For example, ARM de�nes that a separate register window is
used upon traps, syscalls and interrupts.

With the introduction of hardware multithreading, di�erent instances of the register
windows must be available to each thread to avoid saving and restoring the registers to and
from memory during context switches. The number of windowsper thread does not change
as the desired number of hardware threads increases, and becomes the growth factor for the
register �le. However, mere duplication would be wasteful, as only one window is active per
instruction and per thread. Here two optimizations are possible.

When the ISA speci�es that extra register windows are used only for asynchronous events,
such as in ARM, it is possible to serialize all the asynchronous events from all threads over
a smaller set of registers. In this scenario, if a trap handler is ongoing for one thread, a
trap from another thread would suspend until the trap register window becomes available.
While this approach may suggest reduced parallelism, it is quite appropriate for trap and
syscall entry points which usually require atomic access to the core's resources (e.g. to fetch
exception statuses).

If the ISA de�nes explicit instructions to switch register windows, it is possible to replace
these instructions by explicit loads and stores to exchange the registers to memory. This
can be done either statically by substitution in a compiler (as we did, cf. Appendix H.9),
or dynamically by a dedicated process in hardware. This trades the complexity of a larger
register �le for overhead in switching windows within threads, which can be tolerated using
data�ow scheduling (section 3.2.2).

74 CHAPTER 4. MACHINE MODEL & HARDWARE INTERFACE

ISA MIPS SPARC Alpha ARM PowerPC OpenRISC
Delay slots yes yes no no no yes
Predication no no no yes no no
Register classes 2 3 2 3 2-6 2
Status register as
implicit operand

no yes no yes yes yes

Register windows no yes (8+) no yes (6) no no
Max. operands
per instruction
(input/output)

2/1 4/2 „ 2/1 3/2 … 2/1 2/1

„ std has 4 inputs and 1 output; ldd has 2 inputs and 2 outputs.
…dual multiplies have 3 inputs; long multiplies have 2 outputs.

Table 4.1: Features of existing general-purpose RISC ISAs.

4.5.5 Atomic transactions

With RISC-style split-phase atomic transactions, for example the Load-link, Store-conditionalZ
(LL/SC) instruction pairs found in MIPS, PowerPC, Alpha and ARM, the semantics can be
kept unchanged when the core is extended with multithreading, with no extra complexity.
However, the rate of transaction rollbacks may increase signi�cantly if the working set of all
local threads does not �t in the L1 cache.

In contrast, if the ISA features single instruction atomics, in particular Compare-and-
Swap (CAS) or atomic fetch-and-add found in most other architectures than the four already
named, the memory interface must be extended with a dedicated asynchronous FU for
atomics. Indeed, single-instruction atomics require locking the L1 line for the duration
of the operation, and without an asynchronous FU, any subsequent load would cause the
pipeline to stall until the CAS instruction is resolved.

4.5.6 Summary of the ISA interactions

This section has outlined the interactions between features of the substrate ISA and the
introduction of hardware microthreading. Of common pre-existing general-purpose ISAs
(table 4.1), the Alpha ISA is the one that requires the least added complexity when intro-
ducing microthreading. In our research, we have used implementations derived from both
the Alpha and SPARC substrate ISAs:

ˆ The original Alpha ISA uses neither delay slots, nor predication, nor sliding register
windows, and uses only two symmetric register classes for integer and �oating-point
instructions, with no implicit operands in instructions and only one window per thread.
It does not de�ne CAS instructions but does feature LL/SC.

ˆ The original SPARC ISA uses delay slots and sliding register windows, but no pred-
ication. It has three register classes, with implicit operands in integer multiply and
divide (the Y register). It also de�nes CAS instructions, and 8 sliding windows per
thread.

4.6. FAULTS AND UNDEFINED BEHAVIOR 75

4.6 Faults and unde�ned behavior

To increase understanding of the proposed interface, we found it useful to explore the �neg-Z
ative space� of the semantics. That is, provide information about situations that �should
not occur� but still may occur due to programming errors, malicious code, etc. From the
hardware interface perspective, we canspecify two types of reactions upon an erroneous or
unplanned situation in hardware.

If we specify that a situation constitutes a fault, we mean that it constitutes an error
recognized by the implementation, and where execution is guaranteed to not progress past
the fault. For example, after a fault occurs, either the entire system stops execution, or a
fault handler is activated to address the situation and decide an alternate behavior.

If we specify unde�ned behavior, we mean a situation where the behavior of an imple-
mentation is left unde�ned, that is, an implementation may or may not test for the situation
and execution may or may not progress past the situation. The characteristic of unde�ned
behavior is absence of knowledge about the behavior, in particular that no further knowledge
about the state of the system can be derived from past knowledge after the situation occurs.

We detail the situations we have found most relevant to programmability and validation
in the following sections.

4.6.1 Invalid synchronizer accesses

4.6.1.1 Unmapped synchronizers

If an instruction uses a synchronizer address that is not mapped in the visible window
(e.g. address �8� when there are only 4 synchronizers mapped), two behaviors are possible:

ˆ either an implementation guarantees that such situations will always read the value
zero as if it was a valid literal operand, or

ˆ the situation constitutes a fault.

We found implementations exhibiting both these behaviors.

4.6.1.2 Stale states and values in local synchronizers

Upon bulk creation, �local� synchronizers are freshly allocated for each thread context (sec-Z
tion 4.3.3.2). Yet an implementation may choose to not reset the data�ow state after
allocation. If that is the case, the synchronizer stays in the state it was from a prior use
by another group of threads. It may contain a value, or it may be in the �empty� state.
Therefore, in a new thread, if an instruction reads from a local synchronizerbefore it has
been written to by another instruction from the same thread, two behaviors are possible:

ˆ either the instruction reads from the previous state unchanged, and may read a stale
value or deadlocks the thread if the operand was in the �empty� state; or

ˆ the implementation guarantees that the value zero is read from any �empty� local
synchronizers.

This aspect is crucially important when generating code. Indeed, if the thread program
transfers control to a subroutine de�ned separately, and that subroutine subsequently spills
some callee-save synchronizers to memory, this may cause the thread to suspend (and dead-
lock) if the synchronizers were still in the �empty� state. To avoid this situation, a code

76 CHAPTER 4. MACHINE MODEL & HARDWARE INTERFACE

generation would thus need to explicitly clear all local synchronizers to a �full� state prior
to calling any subroutine. With the alternate implementation that reads zero from �empty�
local synchronizers, this initialization is not necessary.

4.6.1.3 Writing to a non-full synchronizer

If an instruction is issued with an output operand containing a future on the result of aZ
previous asynchronous operation from the same thread (e.g. the target of a prior memory
load, or the future of a family termination due to bulk synchronization), the following
behaviors are possible:

ˆ unde�ned behavior: the hardware may let the instruction execute and overwrite the
continuation of the pending result with a new value; when this happens, any threads
that were waiting on that result will never be rescheduled, and a fault may or may not
occur when the operation completes and the asynchronous response handler does not
�nd a continuation in the synchronizer; or

ˆ the instruction suspends until the target becomes full and can be written to.

Unde�ned behavior can be avoided within procedure bodies when compiling programs
with clear use-def relationships (as is the case in C), but is more insidious between procedure
calls. Indeed, when transferring control between subroutines, a subroutine may spill some
callee-save synchronizers to memory, and restore them from memory before returning con-
trol. This means that these subroutines end by issuing some memory loads but not waiting
on the result. When the caller resumes, it may then choose to not reuse the previous value
of the callee-save synchronizer, and instead write a new result to it. Without support from
the hardware (second alternative above), a code generator must ensure that all memory
loads at the end of a procedure are eventually waited upon, by introducing dummy �drain�
instructions.

4.6.2 Invalid bulk creation parameters

An invalid program counter during bulk creation (e.g. to non-readable memory) triggersZ
the same behavior as a control �ow branch to an invalid address, whatever this behavior is
speci�ed to be in the substrate ISA.

Concurrency management faultsare then signalled in the following situations:

ˆ the control word (section 4.4) contains invalid bit values;
ˆ a concurrency management operation is provided an input that is not of the righttype,

e.g. the parameter to a create operation is not the identi�er to a bulk creation context;
ˆ the order of operations in the protocol is violated, e.g. the bulk creation request is

sent twice on the same bulk creation context.

A more insidious situation comes from data-dependent behavior in bulk creation. In
particular, if an invalid index range is provided, for example with the start value greater
than the limit, then this yields unde�ned behavior in all the implementations we have
encountered. Some let the bulk creation process start creating logical threads and never
terminate, some others terminate bulk creation when the largest index value is reached.
These ought to be signalled as faults, yet we should recognize that detecting the condition
would add extra steps in the critical path of bulk creation, increasing its latency.

4.7. SPECIFIC IMPLEMENTATIONS AND THEIR INTERFACES 77

4.6.3 Deadlock detection and handling

With the proposed primitives, deadlocks should only occur as a result of thread programsZ
using the primitives explicitly in an order that creates a deadlock situation, or from the
exhaustion of available concurrency resources. For example, a thread may create another
logical thread which reads from an input data�ow channel, and then wait on termination of
that logical thread without providing a source value on the channel. While these situations
are avoidable �by contract� with a programmer or a higher-level code generator, they may
nonetheless occur in a running system.

The result is one or more thread contexts that are suspended and never resume execution.
The deadlock can then propagate (other threads waiting on termination recursively) or stay
isolated. In either case the allocated thread contexts are never released and cannot be
reused. This constitute leakage of hardware resources.

The implementations we have encountered do not provision any support for detecting
and handling resource leakage due to deadlocks when it occurs. At best, a system-level
deadlock detection may be available, which signals to an external operator that the entire
system is idle yet there are some threads suspended.

In [JPvT08], the authors propose that resources (core clusters, communication channels)
are leased to program components for contractual amounts of time or maximum memory
capacities. If the contract is violated (e.g. due to a timeout or quota excess), the resource
is forcibly reclaimed by the system. The existence of such mechanisms would provide a way
to address the deadlock situations mentioned above; however they are not (yet) available in
the implementations we worked with.

4.7 Speci�c implementations and their interfaces

During our work we have been exposed to multiple implementations with di�erent designZ
choices for the various aspects covered above. Some of these implementations are listed in
table 4.2. We can classify these implementations mostly into six categories along two axes:

1st, 2nd and 3rd generation ISAs. The �rst generation corresponds to the character-
istics captured in the UTLEON3 implementation on FPGA, eventually published
in [DKKS10, DKK � 12]. The second generation introduces detached creation (cf. sec-
tion 4.3.1.2), removes �hanging� mappings of synchronizers (cf. section 4.3.3.3) and
thus makes new threads fully independent from creating threads; this simpli�es code
generation as we discuss later in sections 6.3.4 and 6.3.5. The third generation codi�es
placement across arbitrary cluster of cores, we discuss this further in chapter 11.

SPARCv8 (32-bit) vs. Alpha (64-bit). The SPARC-based implementations extend the
SPARCv8 ISA with microthreading, but do not include support for traps, delay slots,
sliding register windows, data�ow scheduling on the status registers (including Y), nor
CAS. Sliding windows are replaced by explicit spills and restores (cf. Appendix H.9).
The Alpha-based implementations extend the Alpha 21264 ISA with microthreading,
but do not include support for traps, PALcodes nor LL/SC.

We illustrate these six major implementations in �g. 4.5. The �gure also shows how the
assembler and linker have evolved with the ISA generations.

78 CHAPTER 4. MACHINE MODEL & HARDWARE INTERFACE

Name Substrate
ISA

Allocation
failure
modes

Creation
style

Placement style Mapping
style for
�globals�

Mapping
style for
�shareds�

Window
layout

MGSim v1
200807

Alpha suspend
only

fused local, explicit
(local cluster)

hanging hanging G-S-L-D

MGSim v1
200902

Alpha,
SPARCv8

suspend
only

fused local, explicit
(local cluster)

hanging hanging G-S-L-D

MGSim v1
200904

Alpha,
SPARCv8

suspend
only

fused inherit, local,
explicit (named
static clusters)

hanging hanging G-S-L-D

MGSim v1
200909

Alpha,
SPARCv8

suspend,
soft fail

fused inherit, local,
explicit (named
static clusters)

hanging hanging G-S-L-D

MGSim v2
201004

Alpha,
SPARCv8

suspend,
soft fail

detached inherit, local,
explicit (named
static clusters)

separated separated G-S-L-D

MGSim v2
201005

Alpha,
SPARCv8

suspend,
soft fail

detached inherit, local,
explicit (named
static clusters)

separated separated L-G-S-D

MGSim v3
201103

Alpha,
SPARCv8

suspend,
soft fail

detached inherit, local,
explicit (arbitrary
clusters)

separated separated L-G-S-D

UTLEON3
@201003

SPARCv8 suspend
only

fused inherit only hanging hanging G-S-L-D

UTLEON3
201003

SPARCv8 soft fail
only

fused inherit only hanging hanging G-S-L-D

UTLEON3
201011

SPARCv8 soft fail
only

fused inherit only hanging hanging L-G-S-D

utc-ptl N/A trapping detached local, explicit
(local cluster)

hanging hanging N/A

dutc-ptl N/A trapping detached local, explicit
(nodes on
network)

hanging hanging N/A

hlsim
@201107

N/A trapping detached local, explicit
(local cluster)

hanging hanging N/A

hlsim
201107

N/A suspend,
soft fail

detached inherit, local,
explicit (arbitrary
clusters)

separated separated N/A

Table 4.2: Characteristics of various implementations.

Figure 4.5: History of the hardware platform implementations.

4.8. ASSEMBLER AND ASSEMBLY LANGUAGE 79

4.8 Assembler and assembly language

The assembler program translates textual machine code into binary code suitable for execu-
tion. Any given assembler, and more importantly its assembly language, are thus dependent
on the speci�c choice of instruction encoding and the design choices described earlier.

During our work we have been exposed to multiple assemblers, developed outside of our
own research. They were all derived from the GNU assemblers for the GNU/Linux/Alpha
(alpha-linux-gnu) and GNU/Linux/SPARC (sparc-linux-gnu) targets.

4.8.1 Common features

The following features exist across all implementations:Z

ˆ the new mnemonics �swch� and � end� are recognized. The assembler computes the
control bits (section 4.4) by associating the value �switch during fetch� to instructions
immediately followed by swch, and the value �switch in fetch and end thread� to
instructions immediately followed by end.

ˆ the new directive �.registers � is recognized. This should be used at the start of
a thread program and produces the synchronizer mapping con�guration discussed in
section 4.3.3. The numerical arguments specify the number of local synchronizers
per thread, the number of �shared� synchronizers shared between adjacent contexts,
and the number of �global� synchronizers shared by all contexts. There are di�erent
arguments for the di�erent register classes, for example integer and FP registers on
Alpha.

ˆ the format of register namesis extended to provide relatively numbered aliases to the
di�erent types of synchronizers in the visible window. For example, the name �$l3 � on
the Alpha on an implementation with a G-S-L-D layout (section 4.3.3.4) is translated
by the assembler to the operand o�setG � S � 3, where G and S are the number of
�global� and �shared� synchronizers declared earlier with �.registers �.
The formats $l N , $gN , $sN , $dN , $lf N , $gf N , $sf N , $df N (Alpha), %tl N , %tgN ,
%tsN , %tdN , %tlf N , %tgfN , %tsf N , %tdfN (SPARC) are recognized: �l� stands
for �local�; �g� for �global�, and �s� and �d� for the �S� and �D� parts of �shared�
synchronizer mappings (section 4.3.3.3). The SPARC variant uses a �%t� pre�x for
aliases to avoid ambiguity with the native SPARC name �%g0.�

4.8.2 Extra instructions

The instruction mnemonics available depend on the choice of interface for bulk creation andZ
synchronization (section 4.3.1). In all implementations we can �nd the following:

ˆ � allocate ,� which expands to instructions that allocate a bulk creation context. There
are di�erent forms depending on the supported failure modes (section 4.3.1.1) and
placement options (section 4.3.2.1).

ˆ � setstart ,� � setlimit ,� � setstep ,� � setblock .� These expands to instruction that
con�gure the parameters of bulk creation (sections 4.3.2.2 and 4.3.2.3).

Further instructions depend on:

ˆ the creation style, discussed in section 4.3.1.2:

80 CHAPTER 4. MACHINE MODEL & HARDWARE INTERFACE

� interfaces with fused creation provide a combined �create .� (The Alpha ISA
further distinguishes between �cred � and � crei � for immediate/direct and rela-
tive/indirect PCs speci�cations).

� interfaces with detached creation distinguish between �create � for bulk creation,
� sync� to request bulk synchronization, and �release � to request de-allocation
of the resources.

ˆ whether synchronizers are �hanging,� discussed in section 4.3.3.3:

� interfaces with �hanging� synchronizers must specify at which o�set of the visible
window of the issuing thread the sharing of hanging synchronizers should start.
Here there are two variants; either there is no interface and the hanging always
starts at the �rst �local� synchronizer (e.g. on UTLEON3); or an instruction
� setregs � exists to explicitly con�gure the o�set (e.g. on MGSim v1).

� for interfaces without �hanging� synchronizers, explicit � put � and � get � instruc-
tions are available to communicate values between an issuing thread and the
created threads.

We have constructed a detailed speci�cation of the exact formats and encodings of thej
various instructions on the Alpha and SPARC ISA variants of �MGSim v3� and �UTLEON3
201111,� reproduced in Appendix D.

4.8.3 Program images

The implementations use either �at memory images or ELF [Com95] images to load programZ
code and data into memory. The GNU linker has been modi�ed prior to our work to produce
these from object code created by the assemblers introduced above.

Summary

The machine interface of the proposed architecture subsumes an existing ISA by substitutingZj
general-purpose registers with data�ow synchronizers. In addition to this, new primitives
and extra semantics are added to the existing ISA to control the Thread Management
Unit (TMU) in hardware and thus provide control over concurrency management to pro-
grams. To illustrate, we provide in Appendix C an example concrete program for a speci�c
implementation.
Due to a diversity of possible implementation choices, the speci�c machine interfaces ofZ
given implementations may di�er slightly in their semantics. For example a fundamental
distinction, visible to programs, exists between �fused� and �detached� bulk creation. We
have highlighted the di�erent areas where implementation choices impact the machine in-
terface, and characterized the available implementations by their speci�c choices in these
areas.

Chapter 5

System perspective
�Identifying audiences, their expectations and opportunities

Give a man a �sh and you feed
him for a day. Teach a man to
�sh and you feed him for a
lifetime. Unless he doesn't like
sushi�then you also have to teach
him to cook.

Auren Ho�man, cited in [Dac06]

Abstract

The responsibility of the hardware architect extends beyond the design of hard-
ware components on a processor chip, to include meeting the platform expectations
of software ecosystems. The reward for entering a dialogue with the audience is the
opportunity to gain early feedback upon the innovation. In this chapter, we identify
candidate ecosystems for the proposed design from part I, the parties involved in the
dialogue and their expectations. This identi�cation allows us to sketch a technical path,
which we will then follow throughout part II.

Contents
5.1 Introduction . 84
5.2 Computing ecosystems . 85
5.3 Proposed dialogue scenario and opportunities . 87
5.4 Case study: hardware microthreading . 88
5.5 Platform de�nition . 92
Summary . 95

83

84 CHAPTER 5. SYSTEM PERSPECTIVE

5.1 Introduction

Ever since the advent of hardware speci�cation languages like Verilog or VHDL, innova-
tors in hardware architectures have been able to separate the design of newparameterized
componentsfrom the selection of actual parameter values.

This raises the question of how to evaluate a new design. In principle, it is possible to look
at a parameterized speci�cation in isolation and analyse the impact of design choices locally.
For example, the authors of [BJM96] study analytically the optimal number of threads that
must be active simultaneously in a microthreaded core to tolerate memory latencies; this
number of threads is then itself parameterized by the actual memory latencies in a concrete
system. However, local study of a new component is only possible by making assumptions
about the context where the component will be used. For example, simulating a new branch
predictor using precomputed execution traces assumes that the sequence of instructions on a
processor without the branch predictor is the same as when the branch predictor is available.
In general, simulations of a new component in isolation are only valid if the models of the
component's environment, which serve as input to the simulation, take into account the
impact of the innovation on the entire system.

The question of evaluation thus becomes non-trivial when a new component functionally
impacts multiple levels of a computing system. Impact on function implies that the structure
of software may become di�erent, and therefore that models of system behavior constructed
without the component become inaccurate as input to predict the behavior of a system
equipped with the new component. In this case,the construction of a system, or at least a
full system simulation, becomes unavoidable to evaluate the innovation.

This in turn raises the question of how much of a system one should construct to expose
and evaluate the innovation. Processor chip designers typically consider that innovation in
processor components is fully realized once the processor chip is fully con�gured, either on
silicon or in simulations. Yet the impact of an innovation at the level of processors can
only be studied in the context of software workloads. These workloads in turn are highly
dependent on the environment of the processor, including memory, of course, but also:

ˆ the logic that de�ne I/O interfaces , e.g. an Ethernet adapter, which de�nes the pro-
tocol used by software to react to external asynchronous events;

ˆ the �rst level code generation tools that provide a programming environment su�-
cient to implement software operating systems, since the operational semantics of the
�rst level programming languages will constrain those of any higher-level language
implemented on top of them.

There are thus two ways to expose a new component in processors, depending on the
impact of the innovation on the software ecosystem. If existing I/O infrastructure and
abstractions, as well as �rst level programming interfaces, can be reused without signi�cant
changes, then it becomes possible to argue that the new design can be used as a �drop-in
replacement� in existing systems, i.e. that it �preserves backward compatibility.� It then
becomes possible to use existing software and evaluation methods soundly, at a low cost. In
contrast, if the new design requires changes to any of these aspects, then the party in charge
of the innovation must take the responsibility to either implement the corresponding new I/O
infrastructure or code generation technology, or partner with third-parties to provide them,
before describing how software workloads must be adapted to the new proposed platform.

This is the topic introduced in this chapter, and covered in the rest of part II: we propose
a methodology to support the exposition and realization of an innovation in processor chips,
when the innovation has a potential impact on the system interface to software.

5.2. COMPUTING ECOSYSTEMS 85

In section 5.2, we expose the concept ofcomputing ecosystemand we highlight the inter-
actions between ecosystem actors in the design of computing platforms. Then in section 5.3,
we outline our methodology where theexpectations and requirementsof existing computing
ecosystems are used as a starting point for integration. Our key idea isconceptual backward
compatibility, i.e. the match of existing expectations in new integrations. This idea stems
from the observation that hardware and software components are nowadays modular, and
that a new platform provider can co-redesignpart of the hardware platform and the software
platform to tune it to a new chip design while reusing most components of existing systems.
The bene�t of this approach is that any form of partial technology reuse can provideearly
feedbackon the substance of the innovation. Our methodology involves �rst selecting a
computing ecosystem, then understanding their socio-technical dynamics, and in particular
identifying the subset of their technology that interfaces software with hardware. Then we
propose to use this understanding to derive integration steps where only this technology
subset is replaced by functionally equivalent hardware and software components. We then
apply this methodology in section 5.4 to the innovation from part I and derive possible
integration steps. We outline in section 5.5 the resulting system platform, which was used
subsequently for software developments.

5.2 Computing ecosystems

In any programming environment, application developers useexternal servicesin addition
to language intrinsics. These give access to features outside of the core language semantics.

From the language implementer's perspective, there is an additional qualitative distinc-
tion between autonomous library serviceswhich capture common algorithms or program
patterns as sub-programs or functionsexpressed only using the language and other library
functions; and system serviceswhich requires speci�c knowledge about the underlying com-
puting system. For example in C the string comparison function strcmp is autonomous,
whereas themalloc heap allocation function is a system service because it either requires
to know about the address space layout of the actual hardware, or requires support from a
virtual memory manager like POSIX's sbrk or mmap. This distinction is useful because the
de�nition of autonomous services requires only a dialogue between the application developer
and the language implementer, whereas the de�nition of system services needs a dialogue
between both these partiesand the underlying system's provider.

Which parties are involved, and how many, between the language implementers and the
hardware provider constitutes a distinguishing feature of acomputing ecosystem. For exam-
ple, with the �rst High Performance Computing (HPC) ecosystems and the early personal
micro-computer markets, there was no intermediate party between the language implementer
and the hardware provider. The latter provided detailed knowledge about the hardware in-
terface to both language implementers and application developers. This situation still exists
with small embedded systems, especially those based on microcontrollers. In contrast, the
IT service provider ecosystems of the early 21st century feature tens of parties involved in
de�ning abstractions between the hardware platforms and the actual applications visible to
customers.

5.2.1 Dialogue within ecosystems

The main dialogue between an ecosystem's actors considered here is the user-provider rela-
tionship, illustrated in �g. 5.1.

5.3. PROPOSED DIALOGUE SCENARIO AND OPPORTUNITIES 87

In this dialogue, a user party expresses wishes, orexpectations, which are answered by
a provider party in the design and implementation of their technology. The provider's de-
sign is then described to the user, who can subsequently use thisknowledgeto implement
more technology. A computing systemresults from an actual composition of the technolo-
gies. Run-time interactions between components are only eventually possible if thedialogue
between the parties was successful.

It may be tempting to describe a computing system as a linear,stacked relationship
between components of increasing levels of abstractions (�g. 5.2). In this idealized vision,
the actors in the ecosystem form a chain where the actor at one level of abstraction plays
the role of user for the actor at the level immediately lower, and provider for the actor at
the level immediately higher.

In reality however, ecosystems are more complex and a strict abstraction stack cannot be
clearly de�ned. The example in �g. 5.3 demonstrates that some actor pairs are both user and
provider to each other. For example, C compiler and library implementers are thus typically
co-dependents. Moreover, some actors will place expectations and require knowledge from
multiple providers. For example application programmers may place expectations, and
require knowledge from, both the compiler and library implementers.

Despite this diversity, we can recognize in most ecosystems:

ˆ the platform providers who have a privileged role as universal providers, as they do not
require knowledge about the technology of other actors to provide their own technology
(although they may advantageously exploit such knowledge when it is available);

ˆ various operating software providerswho do require knowledge about the platform and
whose technology is not directly visible by the eventual external users of the running
computing systems.

5.2.2 The need for a target audience

When pushing innovations from the hardware designer's perspective, which really is a part
of the platform provider's perspective, it is thus essential to determine or choose a target
ecosystem, so as to identify which parties are responsible for providing the �rst-level inter-
face to the platform. Depending on the ecosystem, these�rst level parties will be either
application-level programming language implementers, operating system providers, platform
virtualization providers, or possibly others, all of whose will have di�erent expectations and
customs that must be acknowledged in the dialogue.

This is the obstacle that creates the HIMCYFIO pitfall introduced in chapter 1: often
innovators resist choosing a target ecosystem, and thus fail to tailor their dialogue to the
speci�c culture of their �rst level parties who have direct access to the innovation in the
abstraction stack.

In this chapter, we propose a dialogue scenario to advertise architectural innovations,
and we illustrate this scenario with the case of hardware microthreading introduced in part I.

5.3 Proposed dialogue scenario and opportunities

The integration of architectural innovations involves both gaining the interest of the various
stakeholders and sketching anintegration path for them. This must outline which concrete
actions are required to perform the integration and �t the innovation into the ecosystem.

88 CHAPTER 5. SYSTEM PERSPECTIVE

For this, two di�erent perspectives must be adopted simultaneously. The �rst must look
backwards in time and provide �adequate� support for legacy applications. This must ac-
knowledge the perception of existing user communities, their assumptions and their culture.
What constitutes �adequate� backward compatibility can be negotiated based on contem-
porary expectations: for example, the simple preservation of standard system Application
Programming Interfaces (APIs) instead of full binary compatibility has become acceptable
for commodity computing in the �rst decade of this century, whereas it was frowned upon
ten years earlier. The second perspective must look forward and de�ne an attractive toolbox
for new applications. This must highlight issues with past customs of the ecosystem and
illustrate new opportunities to gain traction. This is where a new feature can be advertised,
for example hardware support for concurrency management.

This latter perspective is well-understood and usually spontaneously adopted by inno-
vators. However, the �rst perspective should not be adopted as an afterthought: innovators
who may resist acknowledging the full scope of their audience in the ecosystem may not
recognize that it is their responsibility to sketch the integration path as an extension of
current views.

To sketch an initial integration path, we suggest in a �rst iteration to mingle with thej
community and imitate previous integration scenarios from other successful innovators. We
have three motivations for this.

One is that using a known scenario makes it easier for parties to recognize and estimate
the work required to adopt an innovation. For example, porting an existing operating
system to a new hardware platform is a well understood undertaking, whereas designing an
entirely new operating system and then its backward compatibility layer involves high risks
in management and planning.

Another is that reusing an existing scenario allows audiences to easily di�erentiate the
innovation from its extra integration steps. For example, while porting an operating sys-
tem to a new hardware platform, the new hardware features will be readily recognized by
comparison with the other platforms where the operating system was running previously;
whereas if, to expose a new hardware platform, a new operating system is developed, the
bene�ts of the former may be occluded by design or engineering defects in the latter.

Our third motivation, perhaps the strongest, is that reusing a known scenario will min-
imize the e�ort to reach the �rst interested parties and encourage them to provide early
feedback. This is essential as early feedback may highlight key issues with the innovation
that must be addressed before e�ort is invested into a larger, long-term integration plan.

5.4 Case study: hardware microthreading

5.4.1 Target ecosystems

We have examined possible ecosystems for the innovation from part I, summarized in ta-
ble 5.1. This table identi�es for each ecosystem the parties interacting directly with the
platform provider and evaluates the estimated acceptability of the proposed hardware fea-
tures.

From this analysis we can recognize an interesting target: the community of IT service
providers, more speci�cally type II and III service providers1 who build upon Free and Open
Source Software (F/OSS).

1As per [RH11]: type I service service providers are those providing IT services to only one client,

5.4. CASE STUDY: HARDWARE MICROTHREADING 89

Ecosystem � First level parties in direct
dialogue with the hardware
provider

Preference for
homogeneous,
fungible chip
structure rather than
heterogeneous,
specialized
components

Tolerance of changes
to the machine
interface, forcing
recompilation of
programs

HPC Both performance language
implementers and application
providers

usually increasing

Desktop computing Both application providers
and operating software
providers

yes unusually,
but increasing

Mobile computing System integrators unusually yes
Video game consoles Game designers unusually unusually
Embedded systems Application providers no yes
Type I IT service providers Operating software providers yes unusually
Type II/III IT service providers Operating software providers yes usually

Table 5.1: Possible target ecosystems for the proposed architecture.
The candidate ecosystems are taken from those most likely to bene�t from the availability of large amounts of parallelism

on chip. This excludes e.g. domestic appliances.

Type II/III service providers are particularly interesting for two reasons. First, this com-
munity does not typically expect specialized computing platforms, i.e. its members expect
balanced general-purposeplatforms that they can specialize di�erently in software for dif-
ferent customers. This contrasts with type I providers who may consider specializing to the
needs of their unique client. Type II/III providers are thus direct consumers of the �stem
cells� of computing that we recognized in section 1.3; this ecosystem is therefore likely to be
accepting of, or interested in, hardware designs that are not tailored to a speci�c application.

The second reason is that this ecosystem's market dynamics do not allow products to
crystallize into aging legacy that must be preserved and maintained over time. This is
because the lifetime of the associated business contracts does not typically exceed the lifetime
of the platforms used. To the contrary, parties in this ecosystem welcome most technology
developments as a positive factor for business di�erentiation. They are thus accepting
of signi�cant platform developments, e.g. new ISA features that require recompilation of
program code, new �lesystem technology that requires data migration, etc. This is useful
since the proposed architecture does not propose to maintain backward binary compatibility
of application code with previous platforms.

The subset of F/OSS-oriented service providers [GA04] is also particularly interesting
for two reasons. The �rst is that the F/OSS movement is now widely acknowledged as a
driving force for innovation in software ecosystems [Lev84, Web00, LT02, vHvK03, LW03,
LT04, BS06, CHA06, Rie07]. Moreover, in the �rst decade of this century, F/OSS has also
become the primary source of �rst level infrastructure for the online IT service industry.
It must thus be acknowledged by hardware architects who want to partake in horizontal
innovation networks [vH07]. The second reason is that F/OSS, by de�nition, promotes
openness and transparency between the layers of the abstraction stack. This creates an
opportunity, from the hardware architect's perspective, to receive more feedback on the
promoted innovations from all parties of the ecosystem.

5.4.2 Dual ecosystem

While we were eventually able to recognize the IT service industry as a particularly relevant
candidate ecosystem, this recognition only clearly occurred in hindsight;during our work,

typically within their organization; type II service providers are those providing IT services to multiple
business units within their organization; type III providers cater to multiple external customers.

90 CHAPTER 5. SYSTEM PERSPECTIVE

(a) Ecosystem actors and user-provider dialogues.

(b) Interactions between technologies.

Figure 5.4: The Apple-CORE ecosystem and its technology.

our choices were merely intuitively and subjectively motivated by past professional experi-
ence with this ecosystem. Instead, our immediate target was a project consortium named
Apple-CORE, which we depict in �g. 5.4, and which shares design objectives (performance,
e�ciency) with the HPC community. In this ecosystem, four academic organizations play
the roles of seven actors, identi�ed as follows:

ˆ a platform provider implementing the proposed architectural features in FPGA and
emulation;

ˆ an operating software provider for a machine interface language, extending C with
primitives to control the new hardware features;

ˆ another operating software provider for the SAC2C compiler, generating C code from
Single-Assignment C (SAC) [GS06];

ˆ another operating software provider for a parallelizing C compiler;

5.4. CASE STUDY: HARDWARE MICROTHREADING 91

ˆ three application providers for: existing benchmarks using plain C, SAC benchmarks,
and hand-coded benchmarks using the proposed C language extensions.

Retrospectively, under the combined in�uence of both this ecosystem and the IT service
industry identi�ed earlier, our work has targeted a �middle ground� between the two. We
acknowledge this as a shortcoming, because it prevented us from making choices that would
have permitted performance improvements at the expense of portability, as would be ap-
propriate in the HPC community, and choices that would have increased portability of the
eventual platform to a larger diversity of application providers, as would be appropriate in
the IT service industry.

Nevertheless, as we show in part III our choices were eventually successful at gaining
early feedback, as per section 5.3, on the architectural innovation.

5.4.3 Ecosystem actors and their expectations

Our suggestion from section 5.4.1 was to target the ecosystem of IT service providers building
upon F/OSS. In this community, the �rst level audience from the platform provider's
perspective is constituted by:

ˆ F/OSS operating system providers(e.g. Solaris, GNU/Linux, BSD);
ˆ F/OSS system-level language implementers(e.g. GNU Compiler Collection, LLVM);
ˆ more recently, theproviders of virtualization platforms, either encapsulated (e.g. Java,

.NET) or para-virtualized (e.g. Xen, KVM, VMWare).

The diversity of actors in these categories has historically caused the community to self-
organize around community-basedstandards that document their provided technology, in
particular:

ˆ codi�ed ISO and IEEE speci�cations for the C and C ++ languages [II11b, II11a] and
the POSIX system interfaces [IEE08, II09];

ˆ informal consensus about commonly supported extensions to these speci�cations; for
example, the BSD network socket API and the GNU extensions to the C language.

With standards serving as middle ground with any downstream actors in the ecosystem,
innovators cannot simply make deals with particular application providers to implement
their own operating system and exploit their innovation directly; they must instead either
provide one of the existing standard interfaces to their proposed technology, or argue to the
community why the existing standard is inadequate and should be extended.

In the latter case, standardization of new interfaces �rst requires multiple proof-of-
concept system implementations of the proposed interface byindependent actors, then a
proposal for a new standard, then community evaluation of the proposal. For example, this
is the process that enabled the eventual integration of thread management in [II11b] com-
pared to the previous [II99]. This process, while lengthy, promotes peer review and avoids
tight vertical integration between hardware providers and speci�c application vendors.

In contrast, the lower interface between platform providers and the �rst level software
actors is not codi�ed and a large diversity of platform designs exists. This is a boon to
hardware innovators, because it creates a tolerance for new platforms, and it pushes existing
F/OSS operating systems to design forportability . This in turn signi�cantly reduces the
e�ort required to adapt an existing code base to a new hardware design.

92 CHAPTER 5. SYSTEM PERSPECTIVE

To summarize, the audience identi�ed above expects the platform provider to interact
with �rst level software actors towards providing a �rst implementation of the standard
interfaces. It also expects the platform provider to simultaneously explain to third parties
how they could exploit the platform on their own to deliver other implementations of the
standard interfaces.

5.4.4 Strategy

In this context, a strategy to advertise the innovation from part I in this ecosystem would
start with de�ning a hardware platform around the technology, then reuse existing F/OSS
operating software components to provide (some of) the established standard interfaces to
application developers, and then explain how this was done so that third parties could
reproduce and/or extend the work.

We spell out these steps as follows:

1. describe the hardware/software machine interface;
2. de�ne a hardware environment as will be observed by operating software components,

including I/O devices;
3. implement a freestanding C language environment [II11b, 4Ÿ6, 5.1.2.1] which can com-

pile autonomous code without external software dependencies;
4. port some operating system components using item 3 to provide hardware access to

software;
5. port some C library components using items 3 and 4 to de�ne ahosted C language

environment [II11b, 4Ÿ6, 5.1.2.2];
6. document any unusual/new speci�c aspect of the platform required by third parties

to reproduce steps 3 to 5;
7. illustrate with example/evaluation programs that exploit items 3 to 5.

The narrative of our dissertation essentially follows this plan. Part I, in particular
chapter 4 covered item 1. We then address item 2 in section 5.5 below. Chapter 6 covers
items 3 to 5. Chapters 7 to 11 address item 6. Item 7 is �nally covered in part III.

5.5 Platform de�nition

To support the implementation steps sketched above, a platform with memories and I/O
devices is needed around the processor chip.

The initial hardware environment implementing the architectural concepts from part I,
available prior to our work, was extended as depicted in �gs. 5.5 and 5.6. This equips the
prototype microthreaded chip with an I/O system that can be connected to the necessary
hardware devices, or low-level emulations thereof. More speci�cally, the FPGA integra-
tion was performed by another research group [DKK� 12], and we extended the emulation
environment to mimic the FPGA integration.

5.5.1 Support for I/O and legacy system services

Early on we observed that existing operating system code could not be reused directly with
the proposed microthreaded architecture, even equipped with I/O devices. Indeed, all ex-
isting reusable operating system codes we could �nd, from embedded to server platforms

5.5. PLATFORM DEFINITION 93

(a) Initial FPGA platform. (b) FPGA platform suitable for software integration.

Figure 5.5: Extension of an FPGA prototype into a complete system.

This extension was performed by other researchers [DKK� 12].

(a) Initial emulation platform (b) Extended emulation platform suitable for software
integration.

Figure 5.6: Extension of an emulation platform into a complete system.

This extension was performed as part of our work.

94 CHAPTER 5. SYSTEM PERSPECTIVE

and from monolithic kernels to distributed systems, require support forexternal control �ow
preemption (traps and interrupts) at the pipeline level for scheduling, and either IPIs or
on-chip programmable packet networksfor inter-processor control and system-level commu-
nication. Meanwhile, the proposed design from chapters 3 and 4 omits preemption from the
core pipeline to favor HMT instead. It also omits IPIs to favor a custom NoC supporting
active messages [vECGS92] instead.

Because of this mismatch, any e�ort to port an existing operating system would require
the system designer to either introduce the missing features into the architecture design,
with the risk that these would impact performance negatively and add complexity to the
machine interface, or redesign and re-implement the operating system components, which
would add another signi�cant development expenditure to the porting e�ort.

Instead, we took a transverse approach which we detail in [PLU� 12]: add one or morej
companion processors implementing a legacy architecture to the platform, and use them
to run one or more instances of an existing operating system. We call thisheterogeneous
integration. Once companion cores are available, it becomes possible todelegateany uses
of system services from application code running on the new architecture to the companion
processor(s).

The integration of a companion processor can be achieved either on-chip, i.e. on the same
die, or o�-chip, i.e. in a di�erent chip package, in either of two ways:

ˆ the companion processor shares the same memory system. In this case, the arguments
and results of system services can be communicated implicitly through the cache co-
herency protocol. This is the approach taken in �g. 5.5b;

ˆ the companion processor is a device on the I/O interconnect. In this case, the argu-
ments and results of system services must be marshalled. This is the approach taken
in �g. 5.6b.

The integration with shared memory provides the most �exibility for software and a higher
bandwidth, but requires that the legacy core design can integrate with the memory network.
Whether this is possible depends on the selected design: the address width, endianness and
layout of data structures by the compiler must be compatible. In contrast, the integration
on the I/O interconnect provides the most �exibility for the system integrator at the expense
of increased access latencies and reduced bandwidth due to the need to marshal arguments
and results.

Nevertheless, in either case, the porting e�ort for system services becomes minimal. The
only new implementation required is a set of wrapper APIs on the microthreaded processors
that serve as aproxy for a syscall interface implemented on the companion processor.

Although we developed this approach independently, we later recognized it in the �mul-
tikernel� approach proposed by the designers of Barrel�sh [BBD� 09], and at the larger scale
in the use of AMD Opteron chips to serve as �service processors� in Cray's XMT next to
the main grid of simpler MTA cores [Kon07].

5.5.2 System architecture overview

From the software perspective, the platform is structured as follows:

ˆ the microthreaded chip is connected to external memory and I/O devices through a
system interconnect;

5.5. PLATFORM DEFINITION 95

ˆ memory and I/O devices either share the same interconnect (e.g. �g. 5.5b), or memory
uses a separate network (e.g. �g. 5.6b, cf. also section 3.4.1);

ˆ a con�gurable Read-Only Memory (ROM) contains initialization routines and data
structures that describe platform parameters; for example, the number of processors,
the system topology, the access protocol on the NoC to the companion core(s), the
location of devices in the address space, the cache sizes, the RAM size;

ˆ there is at least one I/O device suitable to de�ne an interactive console (e.g. a Universal
Asynchronous Receiver-Transmitter (UART));

ˆ there is at least one I/O device able to measure real time and trigger asynchronous
events at speci�ed times (e.g. a Real-Time Clock (RTC));

ˆ there is at least one I/O device suitable to exchange larger data sets with the outside
world (e.g. disk, network interface, etc.);

ˆ there are one or more companion processor(s) running a legacy operating system for
system services that cannot be implemented on the microthreaded cores;

ˆ upon start-up, the microthreaded processor automatically starts a thread running the
initialization code from ROM.

In the FPGA environment, the ROM contents are de�ned while con�guring the fabric;
in the emulation environment, the ROM contents are initialized from �le in the host envi-
ronment. Other I/O devices, like a graphical frame bu�er and matrix displays were also
implemented but will not be considered further here.

Summary

Avoiding the HIMCYFIO pitfall, and marketing architectural innovations into existing com-
puting ecosystems require acknowledging both the current culture and assumptions of the
candidate audience. Theintegration of new features into usable systems should avoid in-
vesting in entirely new operating software code bases and instead bene�t from reusing the
existing knowledge and software code base of the ecosystems.
This in turn may constrain the hardware designer to provide some backward compatibilityj
with past concepts. While this may feel like a restriction, it is also an opportunity to gain an
early audience. Most importantly, any fundamental design issues will be revealed by legacy-
oriented audiences just as well as they would be by custom, future-oriented new software
stacks; meanwhile, they can be revealedearlier by targeting �rst existing ecosystems and
taking their viewpoint.
Applying these guidelines to the architecture from chapters 3 and 4, we have proposed inj
section 5.4 two candidate ecosystems and a strategy to achieve integration in this context.
This in turn requires the de�nition of a hardware platform, which we provided in section 5.5,
and allows us to plan software integration steps which will be followed by the following
chapters.

Chapter 6

First level programming environment
�A �quick and dirty operating system� for microthreaded chips

If it's a good idea, go ahead and
do it. It is much easier to
apologize than it is to get
permission.

Admiral Grace Hopper

Abstract

In this chapter, we describe how to provide an implementation of C to the new
proposed architecture. We use non-standard features from GNU CC in an e�ective,
yet simple way to generate code for the new architecture. We also de�ne a simple
input syntax to control the concurrency management primitives of the target machine,
which we call �SL.� We then generalize our approach as a compiler combinator which
can extend other code generators to recognize our input syntax. Finally, we use our
technology to port C library and operating system services to the platform introduced
in chapter 5.

Contents
6.1 Prior work . 98
6.2 Guiding considerations for an interface language . 98
6.3 Proposed code generator . 103
6.4 Operating software services . 110
Summary . 113

97

98 CHAPTER 6. PROGRAMMING ENVIRONMENT

6.1 Prior work

Prior to the work described in this dissertation, some research had been realized to de-Z
sign a C-based interface to the proposed architecture. This work was advertised starting
with [Jes06a] and culminating with [Ber10]. At the start of our research, we carried out an
extensive analysis of the design and semantics of this proposed interface, which we detail in
Appendix G.

To summarize, this language was based on a few language primitives that semi-trans-j
parently expose the ISA semantics introduced in chapter 4. However, through analysis we
were able to identify the following shortcomings, not described in previous work:

ˆ the proposed design only implements a subset of C, which con�icts with the require-
ments described below in section 6.2.1;

ˆ it introduces signi�cant complexity in the front-end and middle-end of a C compiler,
by requiring obtuse abstract semantics for the handling of synchronization channel
endpoints. We describe this in Appendix G.2;

ˆ it cannot be compiled to �rst generation interfaces (cf. section 4.7), which prevents its
applicability to the UTLEON3 platform which we intended to support. We prove this
in Appendix G.3.

While we attempted initially to �x the design with minor semantic restrictions to extend
its applicability to all our target platforms, we were not able to �nd a satisfying simple
solution to all these shortcomings. We thus chose early to not invest further e�ort in this
direction. Instead, we point out that these shortcomings are a consequence of a research
strategy that attempts to design a language prior to and independently from its prospective
implementations in a compiler.

6.2 Guiding considerations for an interface language

6.2.1 Choice of C, language subset or superset

The choice of C as a starting point, as opposed to some other language, can be debated.
Indeed, C presents the burden that it was designed for mostly sequential computers, and the
programmability and generality of the proposed architecture design could be demonstrated
using languages designed with concurrency in mind, for example Erlang [AVWW96] or
Google's Go [Goo].

Yet it is customary to implement C on new architectures. This is motivated �rst by the
ubiquity of C implementations that can be customized, the wide audience for the language,
and its de facto status as the low-level hardware interface language for the audiences iden-
ti�ed in chapter 5 (including its role in implementing portable operating systems). Beyond
these practical motivations, we found that there are four fundamental properties of C that
are relevant in architecture research:

1. C is not a �xed language de�ned by speci�cation; it is a family of languages, each
de�ned by the actual capabilities of its implementation, and the intention for interop-
erability between implementations.

6.2. GUIDING CONSIDERATIONS FOR AN INTERFACE LANGUAGE 99

Side note 6.1: Contenders to C to pitch new architectural designs.

LLVM IR/bytecode. This is a strong contender with C, however its developer communities still lack the
multiculturalism and distributedness of existing C communities as of this writing;

CLI (.NET) / JVM. These are not multifaceted, not lean, not multicultural, not distributed, and place
strong requirements on the underlying platform: mandatory isolation, mandatory preemption, manda-
tory coherent caches, etc.;

C ++ . Its language design derives from C, and most C ++ compilers contain parts of a C compiler as a
substrate. The strategy we describe in the rest of this chapter rely on the parts of a C compiler
common with C ++ compilers, and could thus be applied to C ++ with no changes.

2. Those shared semantics of most C implementations that are used as reference by pro-
grammers, and thus collectively named �standard� and captured in [II99, II11b],care-
fully and deliberately avoid making assumptions about features available in the hard-
ware machineunderlying any speci�c C implementation (any exceptions, e.g. required
support for preemption in signal , are encapsulated in library services, i.e. outside of
the core language).

3. Moreover, the C language is purposefully designed forhardware transparency, that is,
the language semantics do not attempt to hide the hardware machine interface.

4. All implementers of C are allowed toextend their implementation with new featuresnot
found in other implementations; these can then be publicly scrutinized and discussed
by international communities of industrial, academic and private experts. Successful
extensions are usually adopted by other implementers and become candidate for future
standardization.

It is this combination of well-structured, multifaceted and lean semantics, an imple-
mentation-driven community, a tolerance for and promotion of hardware diversity, and a
multicultural, distributed meritocratic approach to new developments, not found combined
in any other language, that makes C unique and especially desirable for hardware architec-
ture research.

We were asked to comment on the opportunity to support only a restricted subset of
the C language in a new implementation. This seems interesting because any speci�c set of
evaluation or benchmark programs only needs the features su�cient to compile them, and
restricted language support may reduce the amount of testing required before releasing tools
for public use. In response, we advise strongly against exploiting this opportunity. While a
language subset may be su�cient to compile small test programs, ultimately the run-time
environment also requires library and system services whose code typically exploits most
features of C. In particular, if an implementer wishes to reuse existing library or operating
system code, an extensive implementation of C is needed with support for common non-
standard extensions. This is the perspective we took in our work.

6.2.2 Language primitives vs. APIs

Once new features are introduced in a machine interface, two ways exist to exploit them
from programs: encapsulation in APIs and embeddinginto the language via new primitive
constructs recognized by compilers and associated new translation rules to machine code1.

1 In the case of C, extensions via the preprocessor's #pragmafeature is a form of embedding as it in�uences
code generation.

100 CHAPTER 6. PROGRAMMING ENVIRONMENT

Encapsulation is technically trivial, and it is desirable when porting existing software
using established APIs such as the POSIX thread interface. However the following must
be considered with the proposed architecture. As explained in chapter 4, a thread that
issues a long-latency asynchronous operation, e.g. memory load or thread creation, uses
regular ISA register names for the endpoints of the communication channels with the asyn-
chronous operation. Meanwhile, the proposed interface creates the opportunity to interleave
the asynchronous thread management operations (e.g. �allocate,� �create�) or inter-thread
communication operations with other instructions from the same thread. To exploit this
opportunity with encapsulation, the two phases must be part of separate API functions,
and code generators must be con�gured to avoid reusing these ISA register names for com-
putations while a thread management or communication operation is ongoing. Otherwise,
any register spills between phases will cause the thread to wait prematurely for completion
of the operation and waste an opportunity for overlapping instruction execution with the
asynchronous operation. The same applies for synchronizers that hold the future of asyn-
chronous completions (section 4.2): if the synchronizer that holds a future is spilled, this
would cause the creating thread to wait prematurely on the asynchronous operation. To
address these issues, a code generator would need to perform an inter-procedural register
allocation; furthermore, if the API implementation is compiled separately from the applica-
tion code, register allocation must then be deferred until all objects are available. Given that
no publicly available compiler framework had support for link-time inter-procedural register
allocation prior to our work, encapsulation seemed impractical with the new architecture
and embedding remained as the unavoidable strategy.

That said, there is also a quantitative reason as to why embedding is more desirable. The
architecture allows �ne-grained, short-latency thread management and inter-thread commu-
nication; and the cost of diverting the control �ow for a procedure call is large compared to
the synchronization latency (e.g. 40 processor cycles to transfer control to a di�erent pro-
cedure vs. 6 cycles to create a family of one thread and 0-1 cycle to communicate a scalar
value from one thread to another). In this circumstance, the choice to embed the TMU
primitives as new language primitives reduces the overhead to exploit the synchronization
and scheduling granularity o�ered by the architecture.

6.2.3 General design directions

One design motivation that supported our work was to entice code generators and program-
mers to expose the �ne-grained concurrencyof numerical computations, even the partial
concurrency available in dependent computations, in order to enable the automated map-
ping in hardware of all program fragments, even a few instruction long, to separate cores
or hardware threads. This requires, for example, simplifying the replacement ofsequen-
tial loops in programs by a construct that a) isolates simpler,non-repetitive communicating
sub-sequences, b) instructs the underlying hardware to run the fragments on separate,sim-
ple processors/threads and c) instructs the underlying hardware platform to connect the
processing units in a network of data�ow channels that corresponds to the computation
structure. When this design objective is reached, it becomes possible to transform depen-
dent loops in sequential programs by a network of dependent threads interleaved in the
pipeline, removing the need for branch prediction to maximize utilization.

Another motivation was to promote resource-agnosticism, that is promote the expression
of programs in a style where the semantics stay unchanged should the hardware parame-
ters evolve. In particular, the approach should discourage programmers from assuming,

6.2. GUIDING CONSIDERATIONS FOR AN INTERFACE LANGUAGE 101

or knowing, or restricting at run-time the speci�c amount of e�ective parallelism (e.g. the
number of processors or thread contexts available) when constructing algorithms. This is
because otherwise the program is tailored to a speci�c hardware topology and must be re-
designed upon future increases of parallelism. This requires language mechanisms that can
express concurrency mostly viadata dependenciesand declarative concurrency, in disfavor
of explicit control of individual thread creation and placement, and explicit inter-thread
communication. When these features are used, it becomes possible to scale the run-time
performance of a program by changing the amount of parallelism, and without changing
the machine-level encoding of the program. Conversely, it also becomes possible to run
any concurrent program on a single processor, since the program cannot assume a minimal
amount of parallelism. Thus the �exibility required for dynamically heterogeneous systems
(cf. chapter 2) is achieved.

We detail this second objective further in [PJ10]; they are shared with other language
designs, such as Cilk [BJK� 95] or more recently Chapel [CCZ07].

6.2.4 Mandating a sequential schedule

We considered the hypothetical situation where there were no theoretical or research chal-
lenges to the implementation of code generators and operating software services. We then
considered what were instead the likely practical obstacles to evaluation of the platform.
The motivation was to determine early on what the likely obstacles were, then integrate
their avoidance as technical requirements.

We found that the validation of the infrastructure, which is the step immediately prior
to evaluation, was the largest obstacle. Validation ensures that the various tools function
as expected; that is, for each tool we can check for:

completeness: valid input is accepted successfully;
correctness: valid output is produced consistently from valid inputs;
consistent rejects: invalid inputs are rejected consistently with informative messages.

By negating any of these aspects, we can enumerate all the possiblefailure modes which
could be observed in a software stack with higher-level compilers targeting a C interface, in
turn targeting the hardware platform:

incompleteness errors :

�F1� the higher-level compilers fail clearly on valid benchmark program;
�F2� the code generator fails clearly on valid input source code;
�F3� the assembler / linker fails clearly on valid input assembly;
�F4� the reference hardware implementation fails clearly on valid machine code;

incorrectness errors :

�F5� the higher-level compilers accept valid benchmark programs and produce invalid
code in the interface language;

�F6� the code generator accepts valid input source code and produces invalid assembly
code silently;

�F7� the assembler / linker accepts valid input assembly and produces invalid machine
code silently;

�F8� the reference hardware implementation accepts a valid machine code and produces
incorrect outcomes;

102 CHAPTER 6. PROGRAMMING ENVIRONMENT

inconsistency errors (�false positives�):

�F9� the higher-level compilers do not reject invalid benchmark programs and produce
apparently valid code with invalid behavior in the interface language;

�F10� the code generator does not reject invalid input source code and produces appar-
ently valid assembly with invalid behavior;

�F11� the assembler / linker do not reject invalid input assembly and produces appar-
ently valid machine code with invalid behavior;

�F12� the reference hardware implementation does not reject invalid machine code and
produces unclear outcomes;

compound failures : any combination of the above.

Based on personal prior experience with complex infrastructures, we established the need
for clear methods to isolate failure modes and the components of compound failures as a
primary requirement for any technical realization. In particular, we put the following goals
at the highest priority:

ˆ we needed to be able to clearly separate a) compounds of incorrectness errors upstream
and consistent rejects downstream from b) incompleteness errors. This is crucial to
establish responsibility upon failure. For example, if an error is observed at the code
generator, the cause of the error can be either failure mode �F5� or failure mode �F2�.
In the former case, the responsibility lies with the provider of higher-level compilers,
in the latter case with the interface language or below.

ˆ we needed to be able to clearly separate a) incorrectness errors at one level from
b) compounds of incorrectness errors upstream with a stack of inconsistency errors
downstream. This is crucial to estimate the cost to �x the error. For example, if
an error is observed at the hardware implementation, the cause can be either failure
mode �F8� or a combination of failure modes �F5� and �F10� to �F12�. The pitfall is
that peer operating software providers may be tempted to believe failure mode �F8�
and push the responsibility for the error entirely towards the platform, whereas work
at all levels is actually necessary to resolve the situation.

Retrospectively, these concerns were not completely new. At the level of the hardware
implementation, both the partners in charge of UTLEON3 and the author of MGSim had
set up an environment where any machine code could be repeatedly run over multiple points
in the hardware design space (e.g. varying number of cores, various memory architectures).
This could distinguish invalid machine codes, i.e. �software errors� which would fail consis-
tently across all design points, from incorrectness or incompleteness errors in the hardware
implementation, i.e. �hardware errors� which would fail inconsistently across hardware de-
sign points. More generally, to support more detailed failure mode detection upstream across
software layers, extensive unit test suites and regression tests are needed.

Beyond unit testing, we decided to place an extra requirement on any C language exten-
sions: ensure that the C compiler can generate validsequential code for any new language
constructs towards existing (legacy) downstream tools and architectures, e.g. commodity
desktop computers. This enables proper troubleshooting and analysis of behavior on existing
computers. This requirement is crucial to validate the correctness of the interface-level test
suite itself, and also to robustly distinguish inconsistency or incorrectness errors upstream,
under the responsibility of the higher level compiler providers, from any incorrectness or
incompleteness errors downstream, under the responsibility of the platform. This is akin to
requiring Cilk's faithfulness [Lei09] or Chapel'sserializability [Cra11].

6.3. PROPOSED CODE GENERATOR 103

(a) Translation with fused creation. (b) Translation with detached creation.

Figure 6.1: Translation of SL primitives for bulk creation (simpli�ed).

We describe the di�erence between fused and detached creation in section 4.3.1.2.

6.3 Proposed code generator

After an initial step where we crafted various unit test suites as per the requirement above,
we attempted to realize the semantics of the desired language constructs using an unmodi�ed
code generator and inline assembly: de�ning a thread program, de�ning data�ow channel
endpoints, using family creation instructions from the ISA.

Using a serendipitously powerful combination of existing language features from thej
GNU C Compiler (GNU CC), we successfully implemented a freestanding C translation
environment [II11b, 4Ÿ6], with extra language constructs to access the new hardware con-
currency management features. We detail this experimental process and the corresponding
code generation strategy in Appendix H.

To summarize, our implementation is based on a front-end with three phases. The �rst
phase occurs between C pre-processing and translation:new syntax forms that look like
function calls, i.e. keyword followed by parameters between parentheses, are substituted
using context-free rules in M4 [KR77]. The substituted C code uses GNU CC extensions,
including inline assembly. Then GNU CC's legacy code generator towards the substrate
ISA, i.e. without extensions, is invoked with �ags to instrument the register allocation
and control the visible synchronizer windows (cf. sections 3.3.3 and 4.3.3). Finally, a post-
processor modi�es the assembly code generated by GNU CC to adhere to the ISA semantics,
and extends it with control bit annotations for thread switching (section 4.4).

The new syntax forms thus form newlanguage primitives that extend the C substrate
language. These language primitives expose fewer semantics than allowed to programs by
the machine interface (chapter 4); they also intentionally erase the distinctions between the
various hardware implementation variants, so as to be translatable to all of them from a
single source representation.

The resulting compiler technology is able to input a program source expressed once usingj
this interface language, and emit code for various implementations of the new architecture
and for a legacy sequential processor, as required in section 6.2.4. We call this interface
language �SL,� which we describe in detail Appendix I, and whose main constructs and
their translation are illustrated in table 6.1 and �g. 6.1. We further ensured that the main
command-line tool that controls the transformation pipeline, called slc , has the same in-
terface as an existing compiler command (gcc); this way, we were later able to successfully
reuse it as a drop-in replacement in existing build systems for legacy software, for example
existing C library code needed to run benchmarks as described below in section 6.4.

104 CHAPTER 6. PROGRAMMING ENVIRONMENT

Construct Description
sl_def(name� channels:::) {
body:::
} sl_enddef

De�ne a thread program. The signature declares a
static set of channel endpoints.

sl_create(range, name,
channels:::);
::: sl_sync()

Perform bulk creation and synchronization on a
named thread program with �source� values for the
data�ow channels. Both parts form a single syn-
tactic construct.

sl_glparm(type, name) ,
sl_glarg(type, name � , v�)

Declare a �global� data�ow channel endpoint.
Types are manifest. The �a� version optionally
provisions a source value.

sl_shparm(type, name) ,
sl_sharg(type, name � , v�)

Declare a pair of �shared� data�ow channel end-
points. Types are manifest. The �a� variant op-
tionally provisions a source value for the �leftmost�
channel.

sl_getp(name) , sl_geta(name) Read from the named endpoint of a data�ow chan-
nel.

sl_setp(name, v) ,
sl_seta(name, v)

Write to the named endpoint of a data�ow channel.

Table 6.1: Main constructs of the resulting SL language.

A speci�cation is given in Appendix I; example uses are given in Appendices J and K;

Figure 6.2: Overview of the placeholders in the SL tool driver.

6.3.1 Compiler combinators

A remarkable aspect of the SL tool chain, one originally motivated by short-term practical
requirements, is that it does not modify the underlying C compiler used to generate the
assembly code from the input source. Instead of going the �traditional route� of language
extensions by modifying an existing compiler and introducing new features throughout the
front-end, middle-end and back-end, we insteadsubverted the compilation pipeline of the
existing C compiler to �trick� it into creating valid code for the new architecture.

A bird's eye overview is given in �g. 6.2: we �rst let the underlying compiler pre-process
the code, then we perform source-to-source transformations on the pre-processed code to
insert the new machine constructs via inline assembly and other techniques, then we let the
underlying compiler process the code, and �nally we post-process the generated assembly
source to ensure its validity to the target machine interface. We detail this scheme in
Appendix H. We then made it simple to con�gure which underlying compiler is used and the
set of rulesfor the upstream code transformation and downstream assembly post-processing.

6.3. PROPOSED CODE GENERATOR 105

(a) with alpha-linux-gnu-gcc .

(b) with sparc-linux-gnu-gcc .

(c) with a legacy C compiler.

Figure 6.3: Combinations of the SL tool chain with various underlying C compilers.

We would like to suggest that the resulting framework is acompiler combinator: givenj
an existing C compiler, we can combine the existing compiler with a set of rules and our tool
chain to obtain a new compiler for a di�erent target and/or an extended input language.
With this methodology, we were later able to quickly support three di�erent implementations
of the new architecture (a 64-bit platform with the Alpha ISA and two 32-bit platforms
using the SPARC ISA) and sequential execution by simply changing the operands of the
combinator, as illustrated in �g. 6.3.

We consider the generality of this approach, together with our ability to reuse existing
code generators without changes, to be a con�rmation that the new architecture's design
can be considered as an add-on improvement on existing ISAs, instead of a radical new
approach to programming parallel processors at a low level. As we show in the remainder
of our dissertation, the originality of the proposed design is found at a higher level, with
memory semantics and resource management. By choosing an implementation strategy that
keeps away from complex approaches to code generation, we were able to invest more e�ort
into addressing system-level issues. Besides, our strategydoes not sacri�ce performance:
the benchmark results in chapter 13 show that our non-intrusive, blunt approach to code
generation was su�cient to exploit the architecture's �ne-grained concurrency management
features.

The generality of the framework was con�rmed again later with the successful re-targeting
of the SL tool chain to other software-based concurrency management frameworks [vTJLP09,
Mat10, UvTJ11] for existing hardware architectures.

6.3.2 Discussion on the generality of the approach

As we detail in Appendix H, to achieve our implementation we used standard features
from [II99, II11b] and a tool box formed of carefully selected pre-existing language extensions
from the GNU C Compiler (GNU CC):

106 CHAPTER 6. PROGRAMMING ENVIRONMENT

ˆ type inference with the typeof keyword [Fred], to produce declarations to new vari-
ables with the same type as an existing variable, for example:
__typeof__(a) b;

ˆ inline assembly with the asmkeyword with access to enclosing local C variable from
the assembly code [S.03, Frea], for example:
__asm__("mov %1,%0" : "=r"(b) : "r"(a));

ˆ explicit machine registers for local variable declarations [Free], for example:
int a __asm__("$1");

ˆ the ability to exclude selected register names from register allocation [Frec], for exam-
ple using the command-line argument-ffixed-$1 .

We investigated whether our implementation was tied to GNU CC due to the use of
these non-standard language extensions, or whether the strategy could be adapted to other
compiler technologies. The purpose of this investigation was twofold. First, we acknowledge
a recent trend (post-2010) that promotes LLVM as a substitute to GNU CC for general-
purpose programming, and we wish to ensure a future transition path, should one become
necessary. Second, we wish to highlight that the successful exploitation of the architectural
features was not dependent on this speci�c compiler technology, so as to enable third parties
to develop their own compiler technology instead.

We found active support for typeof also in IBM's and Intel's compilers [IBMb, Intb], and
in ARM's compiler until version 3.0. Although this construct for type reuse in C variants is
still relatively uncommon, we expect support for this feature to become prevalent once the
new C++ language standard [II11a] is adopted by vendors: most industry-grade frameworks
share features between their C and C++ compilers and the new standard mandates support
for the C++ decltype keyword with identical semantics astypeof .

Support for the asm keyword has been historically pervasive across implementations
of C. It is the main means provided to C programmers by the compiler implementer to
bypass the compiler and emit machine instructions explicitly. We found active support for
both asmand the use of C variables in inline assembly in particular in Microsoft's Visual
C/C ++ compiler [Cor], Oracle's (previously Sun's) Solaris Studio compiler [Ora11], IBM's
XL compiler [IBMa], Intel's C/C ++ compiler [Intc], ARM's compiler [ARMa], LLVM and
its Clang front-end [LLV], and Open Watcom [Con08].

Support for explicit mapping of variables to registers is less prevalent but not unique
to the GNU implementation either. We found that it is supported by Intel's and ARM's
compilers using the same syntax as GNU [Intb, ARMb] and in Open Watcom via pragmas.

Finally, we also found support for customizable register sets during register allocation
in Intel's compiler (-mfixed-range , [Inta]). The set of available machine registers is also
expressed explicitly in the source code of Open Watcom's and LLVM's back-end code gener-
ators, so one could manually modify this set and generate multiple compilers with di�erent
register uses in each. We expect that this technical modi�cation could be realized in pro-
prietary compilers as well, if need arises.

To summarize, although we were fortunate to �nd this conjunction of features and their
�exibility in the GNU implementation, we can reasonably expect that other compilers sup-
port similar features, or can be modi�ed to support them at a low cost.

6.3.3 The need for manifest typing

The reason why we separate the syntax to declare integers and pointer thread arguments
(sl_glparm , sl_glarg) from the syntax for �oating-point (sl_glfparm , sl_glfarg) is that

6.3. PROPOSED CODE GENERATOR 107

1 sl_create (. . .) ;
2 i f (cond)
3 sl_sync (. . .) ;

(a) Halves not in the
same level.

1 i f (cond)
2 sl_create (. . .) ;
3 sl_sync (. . .) ;

(b) Halves not enclosed in
a block.

1 i f (cond) {
2 sl_create (. . .) ;
3 sl_sync (. . .) ; }

(c) Valid use: halves en-
closed in a block.

Figure 6.4: Example uses ofsl_create ...sl_sync .

they must be translated to di�erent register classes in the inline assembly, and our translation
strategy cannot analyze C types.

This syntax is undesirable because it exposes a feature of the underlying ISA (namely,
di�erent register classes on Alpha) that C was originally intended, by design, to hide. More-
over, this proposal is incomplete as support for C'slong double and _Complextypes require
other register classes or register pairings on most ISAs which would require yet additional
SL syntax with the current implementation.

Instead, to alleviate this issue and properly hide register classeswithout introducing
type analysis in the source-to-source transformer, we suggest that future work use the new
_Generic construct from [II11b, 6.5.1.1] which can select di�erent expressions based on the
actual type of a conditional expression. This mechanism would enable delegating the task
of choosing the right implementation based on the type information to the underlying code
generator.

6.3.4 Why �create� and �sync� are bound

A characteristic SL feature, detailed in Appendix I.5.8.1, is the binding between the words
� sl_create � and � sl_sync � in one syntax rule for C's block item. This implies, for example,
that the forms in �gs. 6.4a and 6.4b are invalid, whereas the form in �g. 6.4c is valid.

There are three motivations for this, one fundamental and two practical.
The fundamental motivation is to hide the semantic distinction between �fused creation�

ISAs and �detached creation� ISAs introduced in section 4.3.1.2. To hide this, we specify
that the created work starts �no earlier than sl_create � and �no later than sl_sync � in the
control �ow. This is to provide the understanding to the programmer that either part of
the construct is ultimately responsible for the actual creation, without specifying which. If
the language had allowed to omitsl_sync , as in �g. 6.4a, we would not be able to generate
code for fused creation ISAs where the information needed for creation, generated by uses
of sl_seta , is only fully known at the point sl_sync is reached. We detail this further in
Appendix G.3.

The �rst practical reason is that each use of sl_create expands to both multiple state-
ments at the point where it is used, and new variable de�nitions at the beginning of the
current scope. The scope is identi�ed by the last preceding occurrence of the left brace �{ �
in the program source. The new variables are used both by the expansion ofsl_create
and subsequently by the expansion ofsl_sync . If the language would allow sl_sync to
occur in a higher-level scope thansl_create , then the variable declarations would need to
be pulled upwards to the �rst common scope. This is not possible in our setting, because
some of the data types involved may be de�ned withtypedef in the inner scope. A proper
treatment of this would require full type analysis of the program source, i.e. a full-�edged
C front-end, which is what we tried to avoid in the �rst place.

108 CHAPTER 6. PROGRAMMING ENVIRONMENT

(a) Detached creation with lexical
binding.

(b) Separated creation and syn-
chonization.

Figure 6.5: Translation of SL primitives for detached creation (simpli�ed).

The other practical reason is that if the language would allow the pair �sl_create -
sl_sync � to occur in a position in the C syntax which only accepts statements (as in
�g. 6.4b), we would confuse text editors and other source analysis tools which assume that
the semicolon is a statement separator.

6.3.5 Opportunities for platforms with detached creation

Setting aside the aforementioned requirement to support fused creation ISAs, and focusing
instead exclusively on ISAs featuring detached creation, an opportunity exists to expose this
�exibility in the language interface.

We explored this opportunity as follows. First we extended the pair �sl_create -sl_sync �
with a new form � sl_create -sl_detach � with the same lexical structure as described above
in section 6.3.4, but where the bulk synchronizer is released uponsl_detach without syn-
chronization (�g. 6.5a).

We also de�ned a new statementsl_spawn which performs bulk creation, sends source
values for the data�ow channels, and produces the identi�er for the remote bulk synchro-
nizer into a variable. We then de�ned a new statement sl_spawnsync that combines both
synchronization on the named bulk synchronizer and releasing the bulk synchronizer. We
summarize this in �g. 6.5b. As is, this construct does not allow spawned workloads to use
the �shared� data�ow channels from section 4.3.3.3, because the argument list ofsl_spawn,
necessary to declare the temporary variables to hold the channel sink values, may not be
visible from sl_spawnsync.

Through discussions with our users, we obtained the following feedback:

ˆ the behavior of sl_spawnsync is only properly de�ned if it is used only once by
a program on a given bulk synchronizer. This is because after a �rst occurrence
releases the synchronizer, any further occurrence would use a stale, invalid synchronizer
identi�er. The hardware protocol is not designed to handle this situation. Because of
this, the de�nition of proper functional futures [Hal85] usingsl_spawn...sl_spawnsync
with multiple uses of the second half would require an additional �ag to test the validity
of the bulk synchronizer, which must be updated atomically throughout the system at
the �rst run-time use of sl_spawnsync.

ˆ a problem exists if the argument list of �sl_create ...sl_detach � or � sl_spawn� does
not �t entirely through hardware synchronizers. Indeed, our implementation escapes
arguments to the call stack, as we will describe in chapter 8 forsl_create ...sl_sync ;
this approach can only be used if the lifetime of the activation record of the creating

6.3. PROPOSED CODE GENERATOR 109

thread extends beyond the lifetime of the created thread(s). This is only true if
sl_spawnsync is executed before the escaped arguments are cleaned up, or the created
workload terminates before the creating thread. To solve this the language feature
must be constrained in either of the following ways:

� sl_spawnsync must appear within the same C scope atsl_spawn; or
� sl_spawn and sl_create ...sl_detach are restricted to only acceptN arguments,

where N is an implementation-speci�c constant that describes the number of
channels physically available; or

� sl_spawn and sl_create ...sl_detach allocate extra arguments on a shared heap.
Then either the �rst use of sl_spawnsync (for sl_spawn), or the termination
of the created work, whichever happens last, becomes responsible for the de-
allocation of the argument data from the shared heap.

The spectrum of solutions to these issues involve complex trade-o�s between usabilityP
and performance which we did not explore fully. Lacking understanding of these trade-o�s,
we chose instead to not advertise these constructs as an o�cial language feature. Instead, we
used them as a system-oriented feature (i.e. hidden from applications) to implement some
of the operating software services described below in section 6.4.

6.3.6 Discussion on the language design and future work

We do not claim any innovation in terms of programming language design. We acknowledge
that the proposed language constructs are crude and tailored to the speci�c architecture
considered. Their semantics are a mash-up of concepts borrowed from traditional fork-join
parallelism, bulk-synchronous parallelism, Cilk, and previous work from our research group,
selectively chosen to facilitate the demonstration of the proposed machine interface.

A scienti�c contribution should be found instead in the careful choice of syntax which
enables straightforward code generation from the same source semantics to a diversity of
platforms, using a relatively simple wrapper around existing compilers (section 6.3.1).

Since the advertised innovation is to be found in the machine interface, it follows thatP
a diversity of existing programming languages could be extended or ported towards the
proposed architecture. For example:

ˆ the parallel loop constructs with static scheduling from OpenMP [Ope08], independent
loops in Fortran, and the parallel loops from Intel's TBB [Rei07], map transparently
to bulk creation and synchronization in our platform. The variants of these constructs
that require dynamic scheduling can be translated to a program using the run-time
scheduler from [SM11].

ˆ the fork-join constructs from Cilk can be mapped ontosl_spawn/ sl_spawnsync such
as described in section 6.3.5. The issues we identi�ed withsl_spawn/- sl_spawnsync
would not apply because Cilk forces its �sync� construct to be in the scope of its
�spawn� constructs and does not allow multiple �sync� occurrences for each �spawn.�

ˆ the vector operations from OpenCL [Khr09] can be translated to bulk creation and
termination of threads running programs that implement the corresponding OpenCL
operators. OpenCL's explicit memory types can be discarded as there is only one
shared memory system.

Note that the existing languages' semantics cannot be translated to SL source text, in
other words SL cannot serve as a common intermediate representation for the diversity of

110 CHAPTER 6. PROGRAMMING ENVIRONMENT

concurrency constructs in existing languages. This is because these languages also contain
additional data types, synchronization devices and scheduling hints which do not have equiv-
alents in SL, although they could be implemented by directly targeting the machine interface
from chapter 4 in a dedicated code generator.

To conclude, we do not advertise our SL extensions as the only possible interface language
to the target architecture. Common interfaces, if any were de�ned, would likely exist as the
internal intermediate representations in compilers' middle-ends. Instead, we propose our
work as a modest yet practical vehicle to bootstrap further research in this environment.

6.4 Operating software services

We subsequently used the aforedescribed new compiler technology to port operating software
code as described in the sections below.

6.4.1 Minimal run-time requirements

The minimal run-time environment required by the test and benchmark applications we
considered includes support for:

ˆ the following components from the standard C library: math functions, string manip-
ulation, console output (stdout , stderr), heap allocation.

ˆ the following POSIX services: abnormal asynchronous termination (abort), �le I/O
(read/ write).

Autonomous services from the C library can be obtained cheaply by reusing standard
F/OSS implementations, as we describe below in section 6.4.3. Existing heap allocators
mostly require only the traditional service sbrk which can be implemented cheaply on a �at
address space. In contrast, console and �le access are a more costly requirement because
they imply full-�edged support for external I/O channels, persistent storage and �lesystems.
To implement these cheaply, we used the heterogeneous integration with companion cores
described in section 5.5.1.

6.4.2 Operating system services

We used companion processors to support �le access: we implemented �proxy� functionsj
for the base POSIX calls open, close , read, write , link , unlink , sync, dup, dup2,
getdtablesize , fsync , rename, mkdir , rmdir , stat , fstat , lstat , opendir , fdopendir ,
rewinddir , telldir , seekdir , closedir , readdir . This was su�cient to implement the
streams and �le I/O APIs from the standard C library and support direct uses of the system
interface for �le access by programs. We also wrapped the supplementary X/Open �parallel
I/O� operations pread and pwrite , because contrary to read / write these provide the
�le position explicitly and can thus be issued concurrently from separate threads without
interference. We surmise that extended �le access APIs such as POSIX's asynchronous I/O
interfaces (aio_read , aio_write) can be added similarly at minimum cost.

Several system services, in contrast, did not require to delegate the behavior to thej
companion processor: system memory allocation (sbrk and anonymous mappings withmmap)
can run locally on the microthreaded cores to support C'smalloc . Time and date functions
(gettimeofday , which support C's time) can access a RTC device directly. We also used
the substrate ISA's time-stamp counters to support C's clock .

6.4. OPERATING SOFTWARE SERVICES 111

To implement console input-output (POSIX's special �le descriptors 0, 1, 2), we im-j
plemented a con�guration option which selects between various I/O device combinations
(e.g. either the UART or matrix display devices).

The following features were designed but are not yet implemented:P

ˆ for dynamic process creation (vfork + exec) and process data encapsulation, a loader
can make a copy of the initial program data segments in the shared address space, a
strategy suitable with an Alpha ISA substrate, which uses GP addressing, or alter-
natively the entire program image is duplicated and re-linked, as suggested with the
default image format for the SPARC ISA substrate;

ˆ the environment variables (for C's getenv) are loaded from ROM for the �rst program,
and subsequently inherited upon further process creations.

ˆ during program initialization, the loader creates a new thread of execution from the
program's entry point, which maps to the C library initialization routine, which in
turn initializes the C library's internal state (e.g. malloc 's allocation pool), runs any
program-de�ned data constructors and �nally transfers control to the program's main
function.

Instead, in our implementation we provided a simple loader able to execute a single mono-
lithic program with both application and operating software in a single memory image. We
suggest the features above as future work.

6.4.3 C library services

To avoid re-implementing a C library from scratch, we studied how to reuse existing code.
To select a code base, we pre-selected existing implementations satisfying the following
requirements:

�L1� available in source form, either in C or assembly source for one of the target ISAs,
because it had to be recompiled/re-assembled to the binary format suitable for the
new architecture;

�L2� suitable for cross-compilation, since the platform where the code was compiled would
not be the target architecture;

�L3� suitable for execution on a shared memory heavily multithreaded platform, since this is
the basic setting of all selected benchmarks;

�L4� modular, since not all library functions would be needed and some could not be possibly
supported initially anyways, such as support for �le access;

�L5� compiler-agnostic, since we could not guarantee support for speci�c existing non-
standard C extensions beforehand.

We then analyzed those few codebases that satisfy requirements �L1� and �L2�: newlib
[Red], � Clibc [YMBYG08, pp. 115�127] [And], the GNU C library [Freb], the standard C
library of BSD systems [MBKQ96, McK99], the standard C library of OpenIndiana2 [JIS].

Our results are summarized in table 6.2. The implementations from GNU and OpenIn-
diana needed to be excluded early because of requirement �L5�. We then considered the
following choice: either start from a thin embedded implementation and improve it to en-
sure that it would be suitable for use in a large multithreaded setting, or start from a larger

2OpenIndiana was forked from OpenSolaris when Oracle discontinued the OpenSolaris project.

112 CHAPTER 6. PROGRAMMING ENVIRONMENT

Implementation �L3� �L4� �L5�
newlib yes no yes
� Clibc no yes yes
BSD yes yes yes
GNU yes no no
OpenIndiana yes no no

Table 6.2: Requirements satis�ed by existing C library implementations.

The listed implementations all satisfy requirements �L1� and �L2�.

implementation that satis�ed requirement �L4� and reduce its dependencies on underlying
operating system support.

We adopted the latter approach, starting from the BSD components, for the following
reasons:

ˆ analyzing the uclibc and newlib implementations revealed multiple shared global-scope
variables and a design made with the assumption of sequential execution; adding the
necessary state protection to arbitrate state access during concurrent execution seemed
an arduous task, with the associated high risk of errors that would add a potentially
costly troubleshooting overhead to the benchmarking e�orts;

ˆ due to its longer history and wide audience, the BSD library is more comprehensive
feature-wise and thus its selection reduceda priori the risk that our choice would fail
to support any additional application requirement discovered in a later phase of our
research.

By reusing components from the FreeBSD project [MNN04] with few changes, we werej
able to provide comprehensive support for the following C standard services: diagnostics
(assert.h , [II99, B.1]/[II11b, B.1]); character handling (ctype.h , [II99, B.3]/[II11b, B.3]);
errors (errno.h , [II99, B.4]); characteristics of �oating types (float.h , [II99, B.6]); sizes of
integer types (limits.h , [II99, B.9]/[II11b, B.9]); mathematics (math.h, [II99, B.11]/[II11b,
B.11], support for long double omitted); variable arguments (stdarg.h , [II99, B.14]/[II11b,
B.15]); boolean types and values (stdbool.h , [II99, B.15]/[II11b, B.17]); common de�nitions
(stddef.h , [II99, B.16]); integer types (stdint.h , [II99, B.17]); bu�ered output functions,
including formatted output, on standard output streams and character strings (stdio.h ,
[II99, B.18]/[II11b, B.20]); a subset of the general utilities (stdlib.h , [II99, B.19]/[II11b,
B.21]); a subset of the string handling functions (string.h , [II99, B.20]/[II11b, B.23]); a
subset of the date and time functions (time.h , [II99, B.22]/[II11b, B.26]).

The remaining standard library services from [II99] and other newer features from [II11b]P
were not implemented because they were not needed by the test applications we considered.
If they were ever needed, the following could be imported from existing codebases at little
cost: extensions from [II11b] to the services already listed above, format conversions of inte-
ger types [II99, B.7]/[II11b, B.7], alternative spellings for operators [II99, B.8]/[II11b, B.8],
localization [II99, B.10]/[II11b, B.10], alignment operators [II11b, B.14], standard input
and �le access [II99, B.18]/[II11b, B.20], the arithmetic general utilities [II99, B.19, abs,
div , etc.]/[II11b, B.21], multi-byte/wide character utilities [II99, B.19,B.23,B.24]/[II11b,
B.21,B.27,B.28,B.29], and type-generic math functions [II99, B.21]/[II11b, B.24], the �no
return� function speci�er from [II11b, B.22].

In contrast, the following services would require more research and e�ort:P

6.4. OPERATING SOFTWARE SERVICES 113

ˆ support for complex arithmetic (complex.h , [II99, B.2]/[II11b, B.2]) and long �oating
types (long double) would require extra attention during code generation as they
require more than one machine register (or synchronizer in the proposed architecture)
for a single variable;

ˆ support for controlling the �oating point environment (fenv.h , [II99, B.5]/[II11b,
B.5]) requires a hardware interface to control the FPU in the platform;

ˆ non-local jumps (setjmp.h , [II99, B.12]/[II11b, B.2]) require platform-speci�c, hand-
coded assembly code as they cannot be expressed directly in C;

ˆ signal handling (signal.h , [II99, B.13]/[II11b, B.13]) conceptually con�icts with the
purpose of hardware microthreading, a topic which we revisit later in sections 14.2
and 14.5;

ˆ the process management interfaces (system, atexit , [II99, B.19]/[II11b, B.21]) require
operating system support for separated processes, a topic which we revisit later in
sections 14.4 and 14.5;

ˆ support for atomic object access and threads introduced in [II11b, 5.1.2.4, B.16, B.25]
does not map directly to the proposed concurrency management features, a topic which
we revisit in chapter 7.

To summarize, the large compatibility of the proposed C compiler with legacy C code
allowed us to reuse large existing code bases for operating software components. The result-
ing combination of compiler and library code provides a large subset of the standardhosted
C execution environment from [II11b, 4Ÿ6, 5.1.2.2].

Summary

We have acknowledged prior work which has attempted to provide an interface languageZj
to the proposed architecture, and we demonstrated the shortcomings of this approach. We
have outlined the design requirements for a machine interface language derived from C. We
then adopted a practical implementation strategy based on maximum reuse of existing tools.
Using this strategy, we succeeded in providing a C compiler for the target architecture. We
also provided ameta-compiler that implements transformations of a C language extension,
which we call �SL,� towards multiple platforms including the proposed architecture from
part I. While our implementation exploits compiler features speci�c to GNU, we also show
that the strategy is portable to other compiler substrates. Then using our freestanding
programming environment, we subsequently ported existing operating software components
suitable to run hosted C programs on the platform introduced in chapter 5. We also outlinedP
how to extend this software support in future work.

Chapter 7

Disentangling memory and
synchronization
for shared state and communication

The important thing in science is
not so much to obtain new facts
as to discover new ways of
thinking about them.

William L. Bragg

Abstract

In this chapter, we highlight the opportunity to synchronize program behavior
by means other than memory. Then we show how to expose synchronization and
consistency semantics in the proposed interface language from chapter 6.

Contents
7.1 Introduction . 116
7.2 Extending C with memory-independent synchronization 119
7.3 Extending C with multi-thread consistency . 123
7.4 Examples of incorrect synchronization . 127
7.5 Pitfall: atomicity anomalies . 130
7.6 Relationship with the latest C and C ++ speci�cations 131
7.7 Position of the model from the programmer's perspective 132
7.8 Other related work . 132
Summary . 135

115

116 CHAPTER 7. DISENTANGLING MEMORY AND SYNCHRONIZATION

Side note 7.1: About implicit communication.

From an information-theoretic perspective, communication exists as soon as information is exchanged be-
tween a sender and a recipient. Communication requires that the parties share a commonality a priori ,
usually shared semantics for the language of messages; however it typically does not require a third party
to participate in the exchange. We recognize two extended forms of communication which actively rely on a
third party. The �rst is proxied communication , where the third party acts as a relay for the signal without
sharing the commonality between sender and recipient. Encrypted network channels are examples: the
intermediary network nodes that carry the encrypted bits do not know the keys necessary to provide mean-
ing to the messages exchanged. The second is implicit communication , where a third party is the shared
commonality. For example, the meaning of the message �the meaning of this message is to be read from
the �rst book published tomorrow� cannot be derived from the text of the message itself; instead it must
be fetched from the external shared commonality, in this case the �rst book published tomorrow. In this
chapter, we are considering implicit communication that occurs between processors using the information
in shared storage devices as shared commonalities.

7.1 Introduction

Ever since the advent of architectures where multiple processors, or virtualizations thereof
via threads, can access a single storage device via their interconnect, computer users at all
levels of abstraction have attempted to exploit the opportunity for implicit communication
which exists between stores issued by one processor and loads issued by another,regardless of
whether the processors may be connected to each other via dedicated communication channels.
To clarify, we provide our de�nition of �implicit communication� in side note 7.1.

While investigating diverse applications and languages, we were able to reduce all uses
of implicit communication to only two essential patterns. The �rst is persistent shared
state in multi-agent computations, e.g. the service provided by a shared �le system. This
is characterized by the ability to observe the state even when no agent is active, and the
ability of the agents to access the state without knowinga priori which other agent last
accessed it. The other isimplicit communication channels, i.e. the ability to communicate
an arbitrarily shaped data structure by using only a reference to it. We distinguish these
two serviceshere to ground the following observations:

ˆ shared state and communication channels are abstract concepts which do notrequire a
physically shared storage to be implemented. For example, if shared state can be rep-
resented logically, it can be transferred between the physical locations where it is used
without the need for a central repository; this is the principle behind REpresentational
State Transfer (REST) [Fie00]. Communication channels, in turn, can be implemented
by serializing the arbitrarily shaped data over dedicated links between processors, sep-
arate from the memory system;

ˆ each of these two concepts requires di�erent kinds of support from the substrate hard-
ware with regards to synchronization. To implement shared state, the substrate must
provide mechanisms fortransactions, to provide an illusion of atomicity of multiple
updates by one agent from the perspective of other agents. To implement channels,
the substrate must provide mechanisms toguarantee order of communication events
and signal the availability of data or the readiness of the agents to participate in a
communication activity.

Despite this distinction, the conceptual model of general-purpose processors has been
historically simpli�ed to the point that the memory interface has become the only communi-
cation interface between the processor and its outside world. There are three consequences
to this:

7.1. INTRODUCTION 117

ˆ this simpli�cation has allowed programming language designers to con�ate the concept
of side e�ect with the concept of memory operation, whereas previously side e�ects
would also include actions on other physical links than those connecting the processors
to memory (e.g. dedicated I/O links);

ˆ the simpli�cation has diluted the need in programming languages toexpose the shape
and purpose of dataaccessed concurrently by di�erent processors to the underlying
platform: all memory addresses are considered symmetrical with regards to their reach-
ability, and programs do no longer explicitly distinguish which addresses participate
in a multi-processor activity from those that don't;

ˆ it has created a general understanding and expectation from software implementers
that the memory system is �the great coordinator� between processors, and that the
only synchronization primitives available in programs are one-size-�ts-all memory-
centric mechanisms like �atomic fetch-and-add� or �atomic compare and swap� that
can be used to implement both shared state and communication channels.

This con�ation of concepts is worrying. By erasing the conceptual nuance between state,
communication and memory, it erases the fact that shared state and communication are
actually built upon fundamentally separate synchronization mechanisms. Theinnovation
spacewhere architects could introduce other features, next to memory, with di�erent and
more e�cient characteristics, is thereby reduced. Moreover, it creates pressure on the
providers of memory services, i.e. memory architects and system integrators, to provide
increasingly comprehensive mechanisms for synchronization. Mechanisms to control the
ordering and signalling required by logical communication channels, in particular, increase
the overall logic and energy cost of the memory system as a wholeeven for those uses
of memory not concerned by multi-processor interactions. This pressure is the origin of
discussions about �memory consistency�, which we revisit below in section 7.1.1.

Hopefully, future architectural innovations will safeguard and exploit the conceptual
nuances identi�ed above in general-purpose computers. We can recognize an example
step in this direction with �scratchpad memories,� [BSL� 02] where small, dedicated and
non-synchronizing memories are placed next to cores on Multi-Processor Systems-on-Chip
(MPSoCs) with other mechanisms like hardware mailboxes [FH76] to organize synchroniza-
tion and communication between cores.

The proposed architectural innovation we described in part I also contributes to this
vision. As we explain below in section 7.1.2, it negotiates synchronization between processors
via mechanisms distinct from memory. We show a possible abstraction of these semantics
in a system-level language interface in sections 7.2 and 7.3, which we apply in sections 7.4
and 7.5. We then discuss related work in sections 7.6 and 7.8.

7.1.1 The pressure on memory: from simple to less simple

The original de�nition of �memory� is a physical device which provides some guarantee
that the values sent via store operations will be read by subsequent load operations. It is
fundamental because it is one of the two halves of the general computer, the other half being
the processor, which makes the computing system analogous to a Turing machine, and thus
able to compute (cf. section 1.2.1). It is also quite simple and in�exible: the memory must
guarantee that loads from one processor will return the value most recently stored by that
processor, no matter what; otherwise, computation is not possible. This in�exibility holds
for a single-threaded processor, or in a concurrent system for its simplest virtualization, the
single thread.

118 CHAPTER 7. DISENTANGLING MEMORY AND SYNCHRONIZATION

Once multiple processors, or threads, are connected together, a choice then exists in a
design: either each of them can only access its own memory isolated from other processors,
or they can share storage devices. As outlined above, thepurposeof such sharing is a desire
of software implementors to enableimplicit communication between stores issued by one
processor and loads from another, in a quest for more simplicity in programming models.
Without this sharing, processors can typically only communicate via explicit point-to-point
messages (�message passing�).

The �rst implementations were simple: each �memory� was a single physical device, and
the links between processors and memory simply preserved the ordering of the operations as
issued by the processors. The use of such an architecture in programs is not too complicated:
stores by any processor are visible in the same order by all other processors sharing the same
memory. This guarantee is called �sequential consistency,� and was long thede facto machine
abstraction for multi-programming.

What happened then was a back-pressure from hardware architects.
One force was the introduction of caching, especially separate caches for separate pro-

cessors connected to the same backing store. As storage capacity grows, latency of access
grows too. When its sharing factor increases (more processors per storage unit), contention
occurs and the latency of access grows more. Caching is then desirable to provide the illusion
of uniform, lower latency to access larger storage, given some locality of access. However,
cache protocols, in particular coherency protocolsresponsible for propagating cache updates
between multiple processors, are expensive to implement if they must provide the illusion
of sequential consistency. It is much cheaper for the architect to �break the contract� in
part, for example by saying that a store by a processor will only a�ect its local cache and
that further loads by other processors will not see the update until the �rst processor ex-
plicitly �ushes its changes. This is simpler to implement and incurs less pressure on the
cache-memory network, but it does not respect the expectation of global visibility in the
sequential model. As such, it makes the implementation of shared state and communication
channels over memory, the two applications identi�ed above, somewhat more di�cult.

The other force was the introduction of reordering across network links, for example for
congestion control or extra ILP within processors. Even in the absence of caches and using a
single memory, reordering can cause stores from two processors to arrive in a di�erent order
than they were emitted. For example, a thread A can perform �a := 10; b := 20; barrier�
and a thread B can perform �barrier; a := 30; b := 40� and the memory ends up containing
�a=30� and �b=20�. Again, this contradicts an expectation of the sequential model, this time
the preservation of store order. This constitutes another obstacle to the implementation of
shared state and communication channels.

In addition, both techniques (caching and reordering) can combine, creating even more
exotic situations. The status quo at the time of this writing is a trade-o�, where the architect
combines the cheaper consistency protocols with extra control over the memory system,
namely barriers to �ush stores globally, acquire-release locksto delineate a subset of stores
that must be implicitly propagated globally, and reordering fenceswhich disable reordering
selectively, usable by programs to declare their intent to obtain the illusion of sequential
consistency for identi�ed sequences of loads and stores. We should deem this state of a�airs
still unsatisfactory, as these primitives do not scope synchronization: when updates must
be propagated, the memory system must assume that they must become visibleeverywhere.
Even though application knowledge may exist to inform that the data is needed only in a
speci�c area of the system, and thus create an opportunity to save synchronization latency

7.2. EXTENDING C WITH MEMORY-INDEPENDENT SYNCHRONIZATION 119

and energy, there is currently no mechanism to communicate this knowledge to the hardware
in general-purpose designs.

To summarize, issues of consistency, which are at the heart of the discussion about the
programmable semantics of multi-processor systems where memory coordinates all interac-
tions, is the result of the collision between software implementers, who strive for conceptual
simplicity, and hardware architects, who strive for simplicity in the implementation towards
more e�ciency and scalability.

7.1.2 Synchronization and memory in the proposed architecture

The innovation from part I is focused on the internal organization of cores for latency toler-
ance, and the e�cient coordination of work distribution across multiple cores. It proposes
that threads can synchronize using dedicated data�ow synchronizers in hardware within
cores, and uses a dedicated delegation network combined with a distributed bulk creation
and synchronization protocol implemented in hardware.

What interests us here is that this innovation is fundamentally agnostic of how the cores
are connected to storage, i.e. it does not mandate a speci�c memory architecture nor does
it propose speci�c mechanisms to coordinate access to data. Instead, it proposes the same
synchronization mechanisms regardless of whether a shared memory system is available, and
regardless of what consistency semantics are available in the shared memory, if any.

Of course, this approach does notpreclude a chip design using a strongly consistent
memory system in combination with the proposed core design and inter-core synchroniza-
tion subsystem. For example, the FPGA-based implementation introduced in section 4.7
connects the proposed core design to a traditional memory bus. However, at the same time
the approach stronglysuggestsexploring whether the hardware synchronization mechanisms,
which are independent from memory, could provide a powerful multi-core programming envi-
ronment when coupled with asimple, e�cient, scalable but weakly coherentmemory system
that does not o�er synchronization mechanisms.

This is the approach that we introduced previously in section 3.4.1. For example, the
reference processor chip implementation that we used to de�ne the platform from chapter 5
provides cache coherency between cores that share a single L2 cache, but updates to L2
caches are only propagated upon bulk creation and synchronization events. This means
that a thread running on a core connected to an L2 cache cannot communicate or share
state reliably using memory with a thread running on a core connected to another L2
cache,even though they can organize communication and synchronization using the dedicated
synchronization network.

Given these circumstances, we explored whether we could abstract the semantics of our
platform in an abstract machine suitable for a programming language like C. This process
is especially important because most computing ecosystems rely on the abstract machine of
system-level language interfaces to construct software and de�ne its semantics, instead of
using knowledge about the speci�c hardware platforms. The rest of this chapter documents
our �ndings.

7.2 Extending C with memory-independent synchronization

In this section we explain how the ordering of concurrent operations is decided from thej
order of execution of specialsynchronizing operationsby programs, independently from the
order of loads and stores to memory.

120 CHAPTER 7. DISENTANGLING MEMORY AND SYNCHRONIZATION

7.2.1 Synchronizing operations and �scheduled before�

1 We consider the execution of programs on a parallel machine, where virtualized processors,
i.e. threads, enter and leave the system dynamically.

2 Each thread executes a thread program consisting ofinstructions, each specifying the exe-
cution of one operation at run-time. The operations correspond to an observable e�ect on
the direct environment of the processor that executes it, for example changing the state of
an I/O device, advancing an instruction counter, or issuing a load or store to a memory
system.

3 We call the program order between instructions, speci�ed by the thread program's control
�ow in a programming language, the �sequenced before� order, and we denote it � . This is
equivalent to the relation of the same name in [II11b, 5.1.2.3Ÿ3].

4 Certain operations synchronize with other operations performed by another thread. This
relation is asymmetric: if b synchronizes with a, the execution of b does not start beforea
completes, but no extra information is given as to when the execution ofa starts.

5 We name the partial ordering of the execution of operations at run-time �scheduled before�,
we denote it , and we specify:

ˆ �sequenced before� constrains �scheduled before�: ifa and b are instructions, and ar

and br are the corresponding operations at run time, thena � b � ar br

ˆ all implementations of the abstract machine guarantee that the execution of a ready op-
eration x starts a �nite amount of time after all operations ˜ y Sy x• have completed.
This guarantees progress of execution for all schedulable operations.

6 We say that two operations a and b are concurrent if a ~ b and b ~ a. An implementation
may execute concurrent operations simultaneously, or choose an arbitrary scheduling order
between them.

7 The de�nition of the special synchronizing operations below extends the relation and thus
constrains scheduling further.

7.2.2 Threads and families

7.2.2.1 Threads

1 We denote the set of all logical threadsT .
2 For readability, we will denote henceforth �x ˆ i • � for �operation x executed by threadi >T ,�

and
i
� the sequence order of operations executed byi .

3 We denote begin̂ i • and endˆ i • the minimum and maximum of
i
� , i.e. the �rst and last

operations executed by a thread. Threads that perform no operations can be considered to
execute a single pseudo-operation with no e�ect so thatbegin and end are always de�ned.

7.2.2.2 Families

1 T is partitioned in totally ordered subsets namedfamilies.
(the grouping of threads into families are an emergent sub-structure ofT
caused by the use of thec operation (described below in section 7.2.3) by
programs)

2 We denoteF ˆ i • ` T the family of thread i , and ™ the total order within a family.
3 We denote:

ˆ for any family F , the �rst thread of F , denoted�rst(F) , that dominates all other threads
in F via ™;

7.2. EXTENDING C WITH MEMORY-INDEPENDENT SYNCHRONIZATION 121

ˆ for any family F , the last thread of F, denoted last(F) , which is dominated by all other
threads in F via ™;

ˆ for any family F and t x lastˆF • >F , the successor oft in F , denotedsucc(t), verifying
~§ t2 >F � t™t2™sucĉ t• .

(the last thread in a family has no successor; in a family of one thread, the
only thread is both the �rst and last thread)

4 Each family F is further partitioned as a set of sequential segmentsseq̂ F •, which are
sub-sets of participating threads that are executed internally sequentially.

5 We further name segment pre�x the sub-set of a sequential segment that contains all threads
in that segment but the last via ™, i.e. ¦ S >seq̂ F •; pref ix ˆS• � ˜ t St >S,§ tœ>S � t™tœ• .

6 Sequential segments further constrain scheduling as follows:

¦ S >seq̂ F •; ¦ t >pref ix ˆS•; endˆ t• begin̂ sucĉ t••

Rationale: This denotes that within a sequential segment, the end of a thread
dominates the start of its successor in the scheduling order. This expresses
that there is no concurrency between threads that belong to the same segment,
whereas concurrency may still exist across separate segments. This constraint
re�ects the sequential scheduling of logical threads over thread contexts intro-
duced in sections 3.3.1 and 4.2.

7.2.3 Schedule ordering of threads from family creation

1 The abstract machine provides a special synchronizing operationc�F � , called �family cre-
ation.�

2 This constrains scheduling as follows:

¦ t >F c�F � begin̂ t•

7.2.4 Schedule ordering of threads upon family termination

1 The abstract machine provides a special synchronizing operations�F � , called �family syn-
chronization.�

2 This constrains scheduling as follows:

¦ t >F endˆ t• s�F �

7.2.5 Data�ow synchronizers

1 The abstract machine de�nes a setO of data�ow synchronizers and a setV of unit values.
2 It then provides the following special synchronizing operations on these synchronizers, de-

noted for any o >O:

ˆ r sˆo• for �start synchronizing read,�
ˆ r f ˆo• for ��nish synchronizing read,�
ˆ qˆo• for �query synchronizer,�
ˆ wˆo; v• for �synchronizing write� (v >V), and
ˆ ê o• for �clear synchronizer.�

122 CHAPTER 7. DISENTANGLING MEMORY AND SYNCHRONIZATION

3 �Start synchronizing read� and ��nish synchronizing read� are pseudo-operations that always
come in pairs in programs, expressed as a single concrete �synchronizing read� instruction
that entails both operations immediately one after the other during execution.

Rationale: We distinguish them because only thecompletion of a synchroniz-
ing read is constrained, as described below.

4 We will denote �xsˆo•� for �any operation that is either a r s, r f , q, w or e operation on o.�
5 All xs operations on a given synchronizer are atomic, even across threads:

¦ o;¦ xsˆo•; ¦ xsœ̂o• x xs xs xsœ- xsœ xs
6 �Finish read� operations synchronize with writes the �rst time after a clear:

¦ ê o•, ¦ r f ˆo• � e r f , ˆ~§ eœ� e eœ r f • , ¦ wˆo; v• � e w , ˆ~§ wœ� e wœ w• , ˆ~§ eœ�
e eœ w•, w r f

7 The e�ect of executing an unprovisioned ��nish read� operation is unde�ned, i.e. any r f

such that e r f , ˆ~§ w � e w r f • may not complete, trigger a fault to signal deadlock
or e�ect some other unspeci�ed behavior.

8 Each readr f ˆo• evaluates to the valuev >V stored by the most recentwˆo; v• according to
 : ¦ r ˆo•; ¦ wˆo; v• ˆ~§ ê o• � w e r • , ˆ~§ wœ� w wœ r • � r ˆo• yields v

9 Each queryqˆo• evaluates to the valuev >V stored by the most recentwˆo; v• according to
 , if any exists; otherwise, i.e. if there is no lastw or if the last non-q operation on o is a
r s or e operation, it evaluates to a non-deterministic, unspeci�ed value ofV.

10 Each threadi is associated with a partial function of Z to O, denoted V � i � , that represents
its visible data�ow synchronizers. (For example V � i �ˆ n• >O is the n-th synchronizer visible
by i .)

7.2.6 Mapping of synchronizers to families

1 O is partitioned between families, i.e. a given synchronizero may be visible from multi-
ple threads within a family but is not visible from threads belonging to di�erent families:
¦ ˆ i; n; i œ; nœ• F ˆ i • x F ˆ i œ• � V � i �ˆ n• x V � i œ�ˆ nœ•

2 The execution of a program shall occur as if an initial �clear� operation was issued to every
visible synchronizer prior to the execution of all threads, i.e.¦ i >T ; ¦ o >V � i � ; §e0ˆo• � e0
begin̂ i •

7.2.7 Data�ow synchronization between families

1 The abstract machine provides two operations �w� i �ˆ n; v• (i > T ; n > Z; v > V) and �q� i �ˆ n•,
respectively for �remote synchronizing write� and �remote query,� which may be executed
by other threads than i .

2 The execution of one�w� i �ˆ n; v• operation incurs, after a �nite amount of time, the execution
of onewˆV � i �ˆ n•; v•.

3 The execution of one instance of�q� i �ˆ n• incurs, after a �nite amount of time, the execution
of one qˆV � i �ˆ n•• ; the execution of �q further produces in the thread where it is issued the
value produced by the correspondingq.

7.2.8 Mapping in the language interface

The items de�ned above are exposed in the proposed SL extensions to C as follows:

ˆ C's evaluations map to operations of the abstract machine;

7.3. EXTENDING C WITH MULTI-THREAD CONSISTENCY 123

ˆ thread programs in SL, and the C functions called recursively from them, map to
thread programs in the abstract machine;

ˆ the � sl_create ...sl_sync � construct entails the execution of a c (family creation)
operation no earlier than the point � sl_create � is reached during execution, and no
later than the point � sl_sync � is reached;

ˆ the � sl_create ...sl_sync � construct entails the execution of as (family synchroniza-
tion) operation at the point � sl_sync � is reached during execution, and thus execution
does not proceed past �sl_sync � until all threads in the created family have termi-
nated;

ˆ the logical index range and �block size� parameters to �sl_create � de�ne the sequen-
tial segments of the created family, as detailed in Appendix I.5.8.1;

ˆ SL's data�ow channels map to the abstract machine's data�ow synchronizers;
ˆ the � sl_seta � construct entails the execution of a �w operation, and �sl_geta � entails

the execution of a �q operation;
ˆ the � sl_setp � construct entails the execution of aw operation, and �sl_getp � entails

the execution of ar s~r f operation pair.

The q and e operations are intendedly not exposed in SL, although the platform im-
plementation may support them, in order to encourage the expression of deterministic,
sequentializable programs.

7.3 Extending C with multi-thread consistency

In this section, we explain under which circumstances stores by one thread are visible toj
loads by another thread, as a function of the scheduling order de�ned in the previous section.

7.3.1 General condition for consistency

1 The abstract machine provides a setL of locations, corresponding to �memory addresses.�
2 It then de�nes two operations ldˆ l >L • and stˆ l >L ; v >V•, for �load� and �store� respectively.

3 It then de�nes for every location l >L , a partial consistency order for l , denoted
l
h, over all

ld and st operations operating onl.
Rationale: The partial order h is de�ned independently for every memory
address. This is intended to support the independent ordering of memory
operations touching separate cache lines in a cache coherency protocol.

4 The abstract machine then de�nes avisibility property over ld and st operations as follows.
Given some operationsstˆ l; v• and ldˆ l• , if the following conditions all hold:

ˆ st
l
h ld, and

(a store st to a given location precedes a loadld from the same location)

ˆ ~§ stœx st st
l
h stœl

h ld, and
(there is no other storestœto the location that precedesld and is preceded
by st)

ˆ ~§ stœx st stœ~
l
h ld , ld ~

l
h stœ,

(there is no other storestœto the same location that neither precedesld
nor is preceded byld)

then st is visible from ld.

124 CHAPTER 7. DISENTANGLING MEMORY AND SYNCHRONIZATION

Rationale: This property establishes visibility as a function of the consistency
ordering, separately for every memory address.
Note that the third condition is possibly non-intuitive: unlessh is further
constrained, any store not related to a load viah e�ectively �hides� any other
store to the same location from that load, even those related viah and including
those dominated by the load. This provision exists because we consider weakly
coherent cache systems which do not protect against erroneous race conditions
in programs.

5 The abstract machine then de�nes aprovision property as follows: any loadld is provisioned
if there exists at least one storest visible from ld in h.

6 Further, the following hold:

ˆ if an st operation starts, then it completes within a �nite amount of time;
Rationale: Stores should complete eventually.

ˆ if a provisioned ld operation starts, then it completes within a �nite amount of time;
and the actual value produced by its execution is an element of the set of values written
by the st operations to the same location that are visible fromld.

Rationale: Loads should complete eventually if they are provisioned. Fur-
thermore, if they are provisioned they yield one of the values stored most
�recently� according to h.
Meanwhile, the behavior of unprovisionedld operations is unde�ned. For
example, an implementation may cause halting, a deadlock, or produce a
value that causes halting or deadlock of any subsequent operation using
it, or produce a non-deterministically chosen valid value.

7 A program is consistent if all its possible executions that are compatible with the abstract
machine guarantee that all loads are provisioned.

8 A load operation is a data race if it is provisioned by more than one store.
9 A program is deterministically consistent if it is consistent and executes no data race.

7.3.2 Communication domains

j

1 The abstract machine provides the notion ofImplicit Communication Domain (ICD) .
2 Each pair of (thread, location) is associated with exactly one ICD, notedCˆ i; l • .
3 The abstract machine then speci�es that precedence implies visibility, within the same com-

munication domain:

¦ ˆ i; j • ; ¦ x ˆ i • ˆ l • ; ¦ yˆ j • ˆ l • � Cˆ i; l • � Cˆ j; l • , x y� � x
l
h y

Rationale: ICDs capture the notion of implicit communication between stores
and loadswithin a region of the system, and constrained by the partial ordering
between threads. In particular stores from di�erent threads that are not mutu-
ally ordered via can �hide� each other as per clause 7.3.1Ÿ4. ICD boundaries
correspond to boundaries in the system where implicit communication is not
guaranteed, even between operations ordered via .

7.3.3 Consistency domains

j

1 The abstract machine provides the notion ofConsistency Domain (CD).

7.3. EXTENDING C WITH MULTI-THREAD CONSISTENCY 125

2 Each pair of (thread, location) is associated with exactly one CD, noted�Cˆ i; l • .
3 The abstract machine then speci�es that all loads and stores within the same CD to the

same location appear in some order globally visible within the CD:

¦ ˆ i; j • ; ¦ x ˆ i • ˆ l • ; ¦ yˆ j • ˆ l • �Cˆ i; l • � �Cˆ j; l • � x
l
h y - y

l
h x

Rationale: CDs capture the notion of �eventual visibility� of stores for all
subsequent loadswithin a region of the system. Stores not synchronized via
cannot �hide� each other within a CD if there are no unordered stores issued
outside the CD. CD boundaries correspond to boundaries in the system across
which stores may not be propagated automatically.

4 Henceforth the set of all consistency domains is notedC. We will also denote �xC � for �an
operation x executed by a thread associated to consistency domainC.�

7.3.4 Memory communicators

With the de�nitions so far, threads can communicate arbitrarily via memory within CDs,j
and the store-load visibility follows the edges of the scheduling order within ICDs. However,
no provision is made to make stores executed in one ICD visible to loads executed in another
ICD. For this purpose, we introduce semi-explicit communication operations as follows.

1 The abstract machine de�nes a setM of memory communicators, and a set R of relative
locations for use with communicators.

2 It then provides three communicating operations:

ˆ b�R�ˆ m•, for � bind m to a set R of relative locations� (m >M ; R ` R);
ˆ pˆm•, for � propagateupdates to the locations bound tom� (m >M);
ˆ aˆm•, for � activate updates to the locations bound tom� (m >M).

(b and p are intended for use by the writer side, whereasa is intended for use
by the reader side)

3 It also provides a relative addressing partial function t which translates, within a given
consistency domain and relative to a given memory communicator, a relative address usable
in programs into an address suitable for implicit communication through the communicator:
t � C� M � R (L .

4 The abstract machine then proposes the following service: any store to a location that is
scheduled after ab operation and before ap operation and which operates on a location
bound by b, becomes visible to loads scheduled after ana operation if a is scheduled after
p, given that b, p and a operate on the same communicator. In other words:

For any given communicator m, ¦ m >M ,
given two ICDs C1 and C2, ¦ ˆC1; C2• >C2,
given a range of relative addressesR, ¦ R ` R,
for any b, p operations executed inC1 and a exe-
cuted in C2 such that b is scheduled beforep and
p is scheduled beforea,

¦ ˆbC1 �R�ˆ m•; pC1 ˆm•; aC2 ˆm•• �
b p a,

for any relative addressl in that range, ¦ l >R,
if l1 � tˆC1; m; l • and l2 � tˆC2; m; l • then

for any st operation on l1 scheduled betweenb
and p in C1,

¦ v >V; ¦ stC1 ˆ l1; v• � b st p,

and for any ld operation on l2 scheduled aftera
in C2,

¦ ldC2 ˆ l2• � a ld,

126 CHAPTER 7. DISENTANGLING MEMORY AND SYNCHRONIZATION

the execution of ldˆ l2• occurs as if an operationstˆ l2; v• was visible from it in the same
ICD, i.e.

§stC2 ˆ l2; v• � st
l th ld

(the b̂ m• operation �captures� a range of addresses intom and starts �record-
ing� stores, until a pˆm• operation which �propagates� the changes. Thea
operation in a di�erent consistency domain then �activates� the changes so
they can be used by further loads.)

5 If multiple stores to the same location occur between ab and p operation pair, or if multiple
p operations are scheduled before a correspondinga, then only the last in the h order will
be visible to loads occurring aftera.

7.3.5 Possible implementations of t, b, p and a

Distinct platform implementations may provide the b, p and a operation and t function via
separate mechanisms. We provide three examples below.

Note that a, b and p are not synchronizing; therefore they must be combined with the
other synchronization mechanisms from section 7.2 to ensure e.g. thata is not executed
before p completes.

7.3.5.1 Using message passing and a �push� protocol

ˆ b prepares output bu�ers for a communicator;
ˆ t accesses the output bu�ers;
ˆ p sends the bu�er to the �destination� of the communicator, the data is received

asynchronously at the destination;
ˆ a �nishes waiting on reception of the data.

7.3.5.2 Using message passing and a �pull� protocol

ˆ b prepares output bu�ers and associates addresses with the communicator;
ˆ p is no-op;
ˆ a remotely reads the data from the �sources� of the communicator;
ˆ on the origin side, t is the identity; on the pulling side, t either is the identity (single

address space) or addresses a receive bu�er.

7.3.5.3 Using the proposed platform

ˆ the b and m operations are no-ops,
ˆ t is the identity;
ˆ p is implemented using a write memory barrier which �ushes outstanding stores glob-

ally.

7.3.6 Mapping in the language interface

The items de�ned above are exposed in the proposed SL extensions to C by stating that the
addresses of bytes in C objects map to locations in the abstract machine, and that accesses
to objects in programs map to ld and st operations. The visibility of object updates from
object reads is then decided by the consistency rules and the scheduling order as per the
speci�cation above.

7.4. EXAMPLES OF INCORRECT SYNCHRONIZATION 127

1 thread i : thread j :
2
3 A: s t (l1 , v1) D: s t (l2 , v3)
4
5 B: s t (l1 , v2) E : ld (l 2)
6
7 C: ld (l 1)
8 . . .

Listing 7.1: Two unrelated threads.

Note that no further language support is available here to control the communication
operations b, p and a and use the t function. Because of this, the language described in
Appendix I can only be used to program within one communication domain.

Extra SL support for cross-ICD communication has been explored by peers and is re-
ported on in [Mat10]: their work proposes to introduce explicit �memory objects� into the
language, which are a combination of data�ow synchronizers and memory communicators,
operations on these that control b, p and a, and accessors for thet function. These are
then automatically removed, at compile time or run-time, if both sides of a communicating
activity are known to be running within the same consistency domain.

We also sought to support cross-ICD communication in our proposed platform fromP
chapter 5 without inserting new language constructs. We noted thata, b and t are transpar-
ent (cf. section 7.3.5.3 above), and then we proposed to insert ap operation in the generated
code immediately before everyc and s operation. This enables implicit cross-ICD commu-
nication from all cores. While we implemented this feature in our proposed compiler from
chapter 6, we highlight that this technique incurs excess memory barriers when threads are
created within the same ICD. A more e�cient approach should thus attempt to determine
automatically when p is not needed based on placement information and elide it in those
cases.

7.4 Examples of incorrect synchronization

7.4.1 Abstract example to illustrate the hiding e�ect

Consider a program causing the concurrent execution of the two threads in listing 7.1,

unrelated through synchronization. By construction, we haveA
l 1
h B

l 1
h C and B is visible

from C. Likewise, D
l 2
h E and D is visible from E. The program is consistent.

Consider now a program executing concurrently the threads in listing 7.2. Because we

do not know that C
l
h D, nor do we know that D

l
h C, we must understand that D hides

both A and B, so C is not dominated by a store to l and the program is not consistent.

7.4.2 Invalidated idioms

We assume the following examples run within one CD.
A load ld may observe the value written by a storest that happens concurrently with

ld. Even if this occurs, it does not imply that loads happening after ld will observe stores

128 CHAPTER 7. DISENTANGLING MEMORY AND SYNCHRONIZATION

1 thread i : thread j :
2
3 A: s t (l , v1) D: s t (l , v3)
4
5 B: s t (l , v2)
6 . . .
7 C: ld (l)
8 . . .

Listing 7.2: Two unrelated threads with a race condition.

1 in t a , b ;
2 sl_def (f) {
3 a = 1 ; b = 2 ;
4 } sl_enddef
5

6 sl_def (g) {
7 p r i n t (b) ; p r i n t (a) ;
8 } sl_enddef
9

10 sl_def (main) {
11 sl_create (, , , , , , , f) ;
12 sl_create (, , , , , , g) ;
13 sl_sync () ;
14 sl_sync () ;
15 } sl_enddef

Listing 7.3: Independent ordering of loads/stores to di�erent addresses.

to another addressthat happened beforest. For example, in the program from listing 7.3,
it can happen that g prints 2 and then 0.

Double-checked locking is an attempt to avoid the overhead of synchronization. For
example, the twoprint program might be incorrectly written as in listing 7.4: there is
no guarantee that, in doprint , observing the store to done implies observing the store to
a. This version can unexpectedly, but correctly print an empty string instead of "hello,
world" . Instead, proper synchronization is achieved using listing 7.5.

Another incorrect idiom is busy waiting for a value, as in listing 7.6. As before, there
is no guarantee that, in main, observing the store to done implies observing the store to
a, so this program could print an empty string too. Moreover, if the threads are merely in
the same ICD but maybe in di�erent CDs, there is no guarantee that the store to done will
ever be observed bymain, since there is no synchronization between the two threads. The
loop in main is not guaranteed to �nish. There are subtler variants on this theme, such as
the program in listing 7.7. Even if main observesg != NULLand exits its loop, there is no
guarantee that it will observe the initialized value for g->msg.

7.4. EXAMPLES OF INCORRECT SYNCHRONIZATION 129

1 char * a ; boo l done ;
2 sl_def (setup) {
3 a = " he l l o , world " ;
4 done = t rue ;
5 } sl_enddef
6 sl_def (dopr in t) {
7 i f (! done) {
8 sl_create (, , , , , , , se tup) ;
9 sl_sync () ;

10 }
11 p r i n t (a) ;
12 } sl_enddef
13

14 sl_def (twopr in t) {
15 sl_create (, , , , , , , dopr in t) ;
16 sl_create (, , , , , , , dopr in t) ;
17 sl_sync () ;
18 sl_sync () ;
19 }

Listing 7.4: Implementation of twoprint , insu�ciently synchronized.

1 sl_def (twopr in t) {
2 sl_create (, , , , , , , dopr in t) ; sl_sync () ;
3 sl_create (, , , , , , , dopr in t) ; sl_sync () ;
4 } sl_enddef

Listing 7.5: Proper synchronization for twoprint .

1 char * a ; boo l done ;
2 sl_def (setup)
3 { a = " he l l o , world " ; done = t rue ; }
4 sl_enddef
5

6 sl_def (main) {
7 sl_create (, , , , , , , se tup) ;
8 while (! done) {}
9 p r i n t (a) ;

10 sl_sync () ;
11 } sl_enddef

Listing 7.6: Invalid busy waiting for a value.

130 CHAPTER 7. DISENTANGLING MEMORY AND SYNCHRONIZATION

1 typedef struct {
2 char * msg ;
3 } T;
4

5 T* g ;
6

7 sl_def (setup) {
8 T* t = mal loc (s i zeo f (T)) ;
9 t � >msg = " he l l o , world " ;

10 g = t ;
11 } sl_enddef
12

13 sl_def (main) {
14 sl_create (, , , , , , , se tup) ;
15 while (g == NULL) {}
16 p r i n t (g � >msg) ;
17 sl_sync () ;
18 } sl_enddef

Listing 7.7: Invalid busy waiting on a pointer.

7.5 Pitfall: atomicity anomalies

Atomicity anomalies can appear when thegranularity of consistency o�ered by an imple-
mentation is di�erent from the one assumed by the high-level description of a program.
Intuitively, the granularity of consistency corresponds to the minimum �size� of two values
so that, if they are stored �next to each other� they will still have di�erent locations.

The �rst anomaly is the following. Suppose that machine addresses identify 4-byte long
objects, but the programmer is treating one machine object as 4 di�erent 1-byte abstract
objects each with a di�erent (abstract) location. Two independent threads may each perform
an update to two di�erent abstract locations, expecting each update to be visible to a
successor load within the same thread from the same (abstract) location. But, if these 1-
byte values are packed into the same 4-byte platform location, then these stores are really
concurrent stores to the same location. Consequently, one of the two stores may non-
deterministically mask the other, or they may mask each other, and the update to one of
the bytes, or both, may be lost. The solution to avoid this problem is to avoid packing
together abstract objects that might be updated by concurrent stores. In our platform from
part I and chapter 5, the machine granularity is 1 byte so this problem is avoided.

The other anomaly is the following. Suppose the system supports 4-byte concrete objects,
but the programmer wants to manipulate an 8-byte logical object. If two concurrent threads
each update the entire 8-byte object, the programmer might expect a common successor 8-
byte load via to receive one of the two 8-byte values written previously. However, the
8-byte load may non-deterministically receive 4 bytes of one value and 4 bytes of the other
value, because the 8-byte load is really two 4-byte loads, and the consistency of the two
halves is maintained separately. Note that this problem can only occur if the load is a data
race. When programs are written to avoid data races entirely, programmers need not worry
about it. In our platform from part I and chapter 5, this granularity anomaly only appears
with assignments to aggregate types whose size is larger than the underlying ISA's word
size, that is 8 bytes on Alpha or 4 bytes on SPARC.

7.6. RELATIONSHIP WITH THE LATEST C AND C ++ SPECIFICATIONS 131

7.6 Relationship with the latest C and C ++ speci�cations

Concurrently to our own research, the American National Standards Institute (ANSI) pub-
lished a new speci�cation for both the C and the C++ languages [II11b, II11a]. Compared
to [II99, II03], this new version introduces concurrency semantics in both languages, pur-
posely crafted by their respective working groups to be mostly compatible with each other.
These additions can be summarized as follows:

ˆ the notion of concurrently executing threads is introduced. C++ speci�es that all
threads are fairly scheduled (�Implementations should ensure that all unblocked threads
eventually make progress.� [II11a, 1.10Ÿ2]), whereas C does not.

ˆ synchronization between threads is introduced via specialatomic objects, which are
regular memory-based objects declared with the speci�er_Atomic. Accesses to the
same atomic object are globally ordered, and special �acquire� operations (used for
mutex locks) synchronize with special �release� operations (used for unlocks).

ˆ the visibility of updates to non-atomic objects relative to subsequent evaluations of
those objects is decided via a �happens before� partial order between operations, con-
strained between concurrent threads by the interleaving of accesses to atomic objects.

In short, the designers of these extensions assume that the memory is �the great coor-
dinator� as we explained in section 7.1. Their de�nition of the �happens before� relation
between operations is particularly complex, because it must simultaneously specify the visi-
bility of non-atomic object updates and the visibility of updates to atomic objects. Although
these updates have quite separate consistency rules (atomic accesses are synchronizing, non-
atomic accesses are not), because they are both memory objects their de�nition must be
interleaved to decide what constitutes a race condition vs. a consistent access.

In contrast, our semantics allow the programmer to reason about execution order inde-
pendently from memory accesses. The resulting situation is that although we started from
the same language (C and C++ as per [II99, II03]), our proposed semantics diverge from the
direction taken by ANSI for C and C++ . The question thus arises of whether this situation
is desirable and what are its consequences.

Here we start by observing that the concurrency semantics of [II11b, II11a] can be
emulated in our environment by containing the execution of the entire program within
one consistency domain, and requiring the memory system to provide support for atomic
transactions. This is possible because:

ˆ neither [II11b] nor [II11a] mandates a minimum number of simultaneously executing
threads, so the platform restrictions on the number of thread contexts may freely
constrain how many of [II11b, II11a]'s thread creations may occur;

ˆ all valid non-racy executions according to [II11b, II11a] are valid non-racy executions
in our abstract machine within one CD;

ˆ data races are de�ned in both [II11b, II11a] and our abstract machine to result in
unde�ned behavior.

Because [II11b, II11a] can be emulated, we can provide abackward compatibility environ-P
ment in an implementation of SL, where any program that requires [II11b, II11a]'s semantics
is forced to run on a region of the system contained within one CD, without changing the
abstract machine. We conclude that our proposed abstract machine is more general than
those envisioned by ANSI for C and C++ . We then revisit how operating software can
constrain the placement of programs to speci�c consistency domains in chapter 11.

132 CHAPTER 7. DISENTANGLING MEMORY AND SYNCHRONIZATION

7.7 Position of the model from the programmer's perspective

In [KMZS08] the author attempts to isolate criteria to classify programming models for
parallel systems. The proposed criteria are:

1. System architecture: shared memoryvs. distributed memory.
2. Programming methodologies: how concurrency is exposed to programmers (API, di-

rectives, language extensions, etc)
3. Worker management: how execution units are managed,implicit (MPI, OpenMP) vs.

explicit (Pthreads)
4. Workload partitioning scheme: how workloads are divided in chunks (tasks),implicit

(OpenMP) vs. explicit (MPI)
5. Task-to-worker mapping: how tasks are mapped to workers,implicit (OpenMP) vs

explicit (POSIX threads)
6. Synchronization: time order in which shared data is accessed,implicit (UPC) vs.

explicit (MPI)
7. Communication model: private shared address space, message passing, global parti-

tioned address space, etc.

Within this classi�cation we place our system as follows. With regards to system archi-
tectures, our system aims to target both shared memory systems and distributed memory
systems. Information about locality, if available, can be used to optimize code and re-
duce communication overhead by eliding uses of theb, p and a primitives. The proposed
abstract machine does not mandate a speci�c programming methodology. Our SL imple-
mentation (including the extensions presented by [Mat10]) use language extensions while
another [vTK11] uses an API. Workload partitioning is explicit, but �ne grained. Our sys-
tem suggests the de�nition of separate threads even for very small units of work. Once this
is done, the granularity can be made coarse again by aggregating threads together automat-
ically (run as loops), as we suggest in chapter 10. This has been described also in [Mat10].
Worker management, task-to-worker mapping and synchronization are mostly implicit in
our system. A form of optional explicit mapping is introduced later in chapter 11. The
communication model, subject of this chapter, is a global address space augmented with
consistency and implicit communication domains, that de�nes regions of the address space
where communication can be largely implicit. Across domains, communication must be
more explicit.

7.8 Other related work

Our abstract machine borrows concepts both from Global Address Space (GAS)-derived
models such as UPC [UPC05], Fortress [ACH� 08], Titanium [YSP � 98], Co-Array For-
tran [NR98], and from data�ow (implicit synchronization) models such as Cilk [BJK � 95]
and Google Go [Goo].

7.8.1 Weak consistency within ICDs, overview from Go

Go is a concurrent programming language developed by Google. It providesgoroutines,
which are small lightweight threads. Memory consistency between concurrent goroutines is
relaxed.

7.8. OTHER RELATED WORK 133

The weak consistency model proposed by our system within a given implicit communica-
tion domain shares much similarity with Go. The similarity is so close that the description
of Go's memory consistency1 also describes consistency within an ICD in our system. In
particular, by stating that stores not ordered by thread synchronization can hide each other,
Go shares our visibility semantics from clause 7.3.1Ÿ4.

7.8.2 Comparison with Cilk

Cilk [BL93, BJK � 95, Joe96] was developed by MIT as both a programming language and
an execution model. The Cilk programming language extends a subset of C in a way that
a deterministic Cilk program stripped of all Cilk keywords becomes a valid C program with
the same functional behavior.

However the Cilk execution model is more general than the Cilk language itself. The
unit of work in Cilk, as with our system, is a logical thread. Thread de�nitions in Cilk are
also schedule agnostic, i.e. the synchronizing dependencies between threads are explicit and
the run-time system only guarantees that they are satis�ed without specifying the execution
order.

The essential di�erence between Cilk and our system is the granularity of synchroniza-
tion. In Cilk, a thread begins to execute only after all its dependencies are satis�ed; it then
runs until completion at which point its output is checked to see if it satis�es a dependency
for another thread. In our system, threads can start even when not all their dependencies are
satis�ed; running threads can wait for termination of threads they have created previously;
and ordering is guaranteed between individual reads and writes todata�ow synchronizers
visible across threads. Also, new threads can be created and start executing even during
the execution of their parents.

Due to this di�erence, our execution model is more general and �ne-grained than Cilk
with respect to synchronization and concurrency. This stems from the following observation:
any Cilk program using N concurrent execution units can be executed within our model with
N execution units, using only one consistency domain. However a program that can useN
concurrent execution units in our model may not be able to use more thanM units when
expressed using Cilk primitives, with M < N , because parent/child and family siblings
which are concurrent in our system would need to be scheduled in sequence in Cilk to
satisfy dependencies.

Apart from this principal di�erence, the consistency models proposed for Cilk ([Joe96,
Chap. 6], [BFJ� 96]) and our model are similar. In Cilk, stores are visible from loads if
they dominate loads according to the directed acyclic synchronization graph de�ned by
inter-thread dependencies. This is called �DAG consistency�. In our model, stores are also
visible from loads if they dominate loads according to the directed acyclic precedence graph
with edges. In both models, multiple stores visible from a single load are resolved non-
deterministically. Our model further states that consistency is not decidable when there
exists a store that is not ordered with a load, whereas Cilk leaves this topic unspeci�ed.

Also, our system extends the Cilk model by de�ning communication across consistency
domains. This extension preserves the simplicity of de�ning consistency based on the de-
pendency graph, but requires to enclose reads and writes to memory betweena, b and p
communication operations.

1http://golang.org/doc/go_mem.html

134 CHAPTER 7. DISENTANGLING MEMORY AND SYNCHRONIZATION

7.8.3 Communication granularity, comparison with CAF / UPC

In [CDMC � 05], the authors study Co-Array Fortran (CAF) and Uni�ed Parallel C (UPC)
as two languages that o�er SPMD over a global address space. Their primary statement is
that:

[...] CAF and UPC programs deliver scalable performance on clusters only when
written to use bulk communication. However, our experiments uncovered some
signi�cant performance bottlenecks of UPC codes on all platforms. We account
for the root causes limiting UPC performance such as the synchronization model,
the communication e�ciency of strided data, and source-to-source translation
issues. We show that they can be remedied with language extensions, new syn-
chronization constructs, and, �nally, adequate optimizations by the back-end C
compilers.

The solution the authors propose to optimize communication is twofold. The �rst is to
adapt the granularity of synchronization to the actual functional requirement of programs,
i.e. minimize the scope of synchronization and avoid barriers. This is present in our system
already since all synchronization is explicitly scoped by default.

The other solution is to group individual accesses to memory into bulk communication
of entire chunks of memory. Then they suggest directions to partly automate this process
and synthesize bulk transfers:

We believe that developing e�ective compiler algorithms for synchronization
strength reduction is appropriate. However, we also believe that having point-
to-point synchronization available explicitly within the languages is important
to avoid performance loss when compiler optimization is inadequate. [...]

The SL constructs for synchronization using explicit data�ow channels, and our choice
to expose theb, p and a operations for consistency, go along with this suggestion.

7.8.4 ZPL's Ironman interface

ZPL [Cha01] was a precursor to Chapel [CCZ07] designed at the University of Washington.
The designers of ZPL were already highly concerned by issues of memory consistency over
weakly coherent systems and distributed memories. Like us, they were interested to both
support distributed memory and automate the elision of communication primitives when
communication partners were running in the same memory domain. Their solution was
the Ironman interface, introduced in [CCS98] and detailed in [Cha01, Chap. 4]. As we do
in section 7.3, this interface proposes abstract primitives for use in the code generated by
compilers; the primitives are then projected to di�erent implementations in the run-time
environment depending on the underlying communication infrastructure. The primitives in
Ironman are, on the writer side:

SR (Source Ready) : The values at the source processor will not be written again prior
to transfer. The source processor is now ready to begin the data transfer.

SV (Source Volatile) : The data at the source processor is about to be overwritten.
Execution cannot continue until the transfer is completed.

Our proposed p operation combines the function of Ironman's SR and SV operations.
The primitives on the reader side are:

7.8. OTHER RELATED WORK 135

DR (Destination ready) : The locations at the data destination will not be used again
until the transfer has completed. The destination processor is now ready to accept
data from the source processor.

DN (Destination Needed) : The values at the data destination are about to be read.
Execution cannot continue until the data from the source processor has been received.

Our proposeda operation combines the function of DR and DN.
The Ironman primitives are designed to facilitate the overlap of communication with

computation, by separating issuing a communication operation from completing it. As such
they are similar to e.g. MPI's asynchronous send/receive APIs; their di�erence with an
API is that they can be elided at run-time by direct shared memory synchronization if the
communication endpoints are close to each other.

These primitives further assume that any address in the local address space can serve
as communication bu�er. In particular, they does not o�er a handle on system that require
bu�ers to be allocated in a dedicated memory space, like ourb and a operations do.

Summary

Abstract machines establish a contract between a platform provider and the designers of
higher-level abstractions, including programmers. This should be provided and detailed, so
as to create an abstraction interface where external observers can reason about program
semantics independently from speci�c implementations.
In our work, we have designed such an abstract machine to describe the semantics of thej
platform introduced in part I and chapter 5. The abstract machine describes data�ow
synchronization and establishes memory consistency as a derived property of the directed
acyclic graph of the scheduling order in programs. It also introduces �communication and
consistency domains� to expose di�erent kinds of implicit communication using hierarchical
shared memory systems. We have postulated that the new concurrency semantics addedP
to the latest revisions of the C and C++ standards can be emulated using the proposed
abstract machine.

Chapter 8

Con�guration of the visible synchronizer
window
�Highlight on speci�cs, opus 1

Abstract

Some architectural innovations may be eventually invisible to application developers
and thus not part of the �advertised� main features of a design. Yet they may signi�-
cantly impact issues under control of operating software providers, and thus must be
fully described for this audience. The proposed machine interface from chapter 4 illus-
trates this. In traditional register machines, the number of register names available for
use in programs is �xed by the ISA de�nition. In our case, the code generator that pro-
duces the machine code canchoose the number of register names available for use: as
per sections 3.3.3 and 4.3.3, the hardware dynamically maps register names to physical
synchronizers. The set of mapped synchronizers constitutes a �visible window� from
the perspective of individual threads. A lower requirement on the number of available
register names enables more compact use of the synchronizing storage, potentially more
thread contexts active, and thus potentially better opportunities for latency tolerance.
In this chapter, we describe to operating software providers how a code generator can
con�gure the layout of the visible window.

Contents
8.1 Introduction . 138
8.2 Formalism . 138
8.3 General constraints . 139
8.4 Degree of freedom from register allocation . 140
8.5 Strategies for synchronizer mapping . 141
Summary . 146

137

138 CHAPTER 8. VISIBLE SYNCHRONIZER WINDOWS

8.1 Introduction

The machine interface in chapter 4 allows software to con�gure a separate register window
layout for each thread program. Speci�cally, a code generator must produce a triplet of
values G, S, L in the machine code for each thread program. These specify the number of
synchronizers that must be made available by the architecture at run-time before execution
of the thread program starts; respectively, the number of �global� synchronizers visible from
all thread contexts, the number of �shared� synchronizers shared by adjacent contexts, and
the number of �local� synchronizers private to each context (cf. �gs. C.1 and C.2 for an
example). These values are constrained only by the equationG � 2S � L B M , where M is
the total number of register names available for use by programs in the ISA, commonly 31.
The question thus arises of how to determine these values.

We have explored multiple strategies. In this process, we determined the general upper
and lower bounds on these values, as well as the design spectrum of possible solutions,
which we describe. Our implementation uses the outcome of our �ndings, described below.
We distinguish in our text further between �synchronizers,� which are the physical units
of storage, and �register names,� which are the addresses used as operands in machine
instructions.

8.2 Formalism

We start by formalizing as follows:j

ˆ we de�ne the set P of all machine representations for thread programs on the archi-
tecture, and

ˆ the set F of all machine representations for regular functions (which can becalled
from a thread, not executed as a family of threads).

ˆ Then for any P >P we can de�ne:

� L ˆP•, the number of register names reserved as local synchronizers in the declared
interface (cf. section 4.3.3);

� GˆP•, the number of register names used for incoming �global� channel endpoints
(cf. section 4.3.3.2);

� SˆP•, the number of register names used for outgoing �shared� channel endpoints
(cf. section 4.3.3.3);

� RˆP•, the highest register name actually used as local synchronizer inP (R BL);
� D cˆP• ` P, the set of thread programs that are used as the target of family

creation in P;
� D f ˆP• ` F , the set of functions called directly from P;

ˆ and for any F >F we can de�ne:

� RˆF •, the highest register name actually used as local synchronizer inF ;
� D cˆF • ` P, the set of thread programs that are used as the target of family

creation in F ;
� D f ˆF • ` F , the set of functions called directly from F .

8.3. GENERAL CONSTRAINTS 139

ˆ We also de�ne D ‡
f ˆx• ` F , the set of all functions called transitively from x (from

either P or F), de�ned by:

D 0
f ˆx• � D f ˆx•

D n � 1
f ˆx• � ˜ D f ˆy•Yy >D n

f ˆx••
D ‡

f ˆx• � � n � ª D n
f ˆx•

(This set is �nite on any actual implementation of the architecture due to the �niteness
of the address space)

8.3 General constraints

From the de�nitions above, we are able to formulate the following constraints onG, S andj
L :

1. outer interface �t :
¦ P >P GˆP• � 2SˆP• � L ˆP• BM

This denotes that the window speci�cation must �t the maximum size in the substrate
ISA. The factor 2 for S comes from the fact that there are two sets of �shared�
synchronizers: those shared with the previous context and those shared with the next
context (cf. �gs. C.1 and C.2).

2. required lower bound for calls:

¦ F >F

Œ max
F œ>D ‡

f ˆ F •
RˆF œ•‘ BRˆF •

¦ P >P

Œ max
F >D ‡

f ˆ P •
RˆF •‘ BRˆP• BLˆP•

This denotes that must be enough private synchronizers to allow the code of any
directly and indirectly called functions to run within the same context.

3. required lower bound for creations, in interfaces with �hanging� synchronizers (sec-
tion 4.3.3.3):

¦ P >P

Œ max
P œ>D c ˆ P •

ˆGˆPœ• � SˆPœ• � 1•‘ BRˆP• BLˆP•

¦ F >F

Œ max
P œ>D c ˆ F •

ˆGˆPœ• � SˆPœ• � 1•‘ BRˆF •

This denotes that there must be enough private synchronizers to serve as channel
endpoints for all the created families.

140 CHAPTER 8. VISIBLE SYNCHRONIZER WINDOWS

Figure 8.1: Register allocation as a function of the number of available register names.

Figure 8.2: E�ect of various numbers of available register names on the outcome of register
allocation with a simple function updating a variable in memory.

4. required lower bound for creations, in interfaces with �separated� synchronizers (sec-
tion 4.3.3.3):

¦ P >P œ
0 BRˆP• BLˆP• if D cˆP• � g
1 BRˆP• BLˆP• otherwise.

¦ F >F œ
0 BRˆF • if D cˆF • � g
1 BRˆF • otherwise.

8.4 Degree of freedom from register allocation

We focus here on the distinction between the number ofavailable register names, which is
the value declared with L , and the number of e�ectively used register namesR in a given
machine representation.

To understand their relationship, we must consider how register allocation works in a
compiler. To summarize, a compiler considers the maximum number of simultaneously ac-
tive local (C's �automatic�) variables in a function body, together with intermediate results
in expressions, and deduces the required number offrame slots N for a function or thread
program body. N is independent of the target architecture con�guration. Then the vari-
ables that are most used are mapped ontoA available register names, whereA is typically
con�gurable. We illustrate the functional nature of register allocation in �g. 8.1.

8.5. STRATEGIES FOR SYNCHRONIZER MAPPING 141

If N BA, then R � N BA register names are used. IfN CA, then R � A register names
are used and the code generator inserts extra instructions to save and restore value slots
to and from memory. We illustrate this in �g. 8.2, where a single C function performing
arithmetic on an array is processed through various values ofA. Traditionally, A is �xed by
subtracting a number of �reserved� names (e.g. stack pointer) fromM . It then becomes an
architectural constant valid for all code generators on that architecture. For our architecture,
we can choose bothL and A, with the constraint that A BL BM � G � 2S.

In short, next to G, S and L there is an additional degree of freedomA which is an input
to code generation.

8.5 Strategies for synchronizer mapping

We considered only strategies for synchronizer mapping that account for separate compila-j
tion, that is, a given thread program or C function may be compiled without knowing the
de�nition of all other thread programs or functions that it composes through family creation
or C function calls. We acknowledge that there exist other strategies when all the program
source is visible during code generation, but we decided early on to focus �rst on providing
a platform where separate compilation is possible.

With separate compilation, any strategy to compute a synchronizer mapping for a func-
tion needs to account for the possibility that the resulting machine code may be composed in
a yet unknown program context. This requires any strategy to selectG and S using only the
prototype declaration of the thread program being considered, since this is the only infor-
mation available from another translation unit during separate compilation. In particular,
it is not possible to chooseG and S as a function of L , sinceL will not be known in another
translation unit while G and S will be required to generate code for family creations.

Furthermore, to ensure compilation soundness, the strategy should not cause a valid
program composition in the semantics of the source language to have no valid representation
in the machine code.

We considered �rst the numbers Gs and Ss of �global� and �shared� channel endpoints
de�ned in the program source. Then we considered the simplest possible strategy, i.e. use
G � Gs, S � Ss, then chooseA � L � M � G � 2S. There are three problems with this
strategy. To understand why, we �rst distinguish �tting programs whereGs � 2Ss BM and
over�owing programs whereGs � 2Ss AM . Then:

1. The strategy is �synchronizer-greedy,� since a simple thread program which may only
use a few synchronizers and channel endpoints will still end up reserving allM register
names from the architecture.

2. The strategy is not sound. There are two situations:

ˆ with �hanging� synchronizer mappings (section 4.3.3.3), once a �tting program
P1 is compiled, it becomes impossible to separately compile another programP2

which creates a family runningP1 if GˆP1• � SˆP1• � 1 CM � GˆP2• � 2SˆP2• , even
though P2 on its own may be �tting. In other words, this strategy establishes
that whether a thread program can be used to create a family is a function of the
interface of the creating thread.

ˆ with �separated� synchronizer mappings, once a �tting C function F is compiled
(RˆF • B M), it may be impossible to separately compile a thread programP
which calls F if RˆF • C M � GˆP• � 2SˆP•, even though P on its own may

142 CHAPTER 8. VISIBLE SYNCHRONIZER WINDOWS

be �tting. (The di�erence with the previous argument is that it is now plain C
function calls, instead of thread creations, that defeat soundness.)

3. The strategy requires the code generator to reject over�owing programs. This is unsat-
isfactory, because it requires the programmer to knowM to decide whether a program
is valid, and it establishes a lower bound onM for future architectural changes as soon
as a program is written.

We addressed these problems in turn, as described below, to establish the strategy we
�nally used in our implementation.

8.5.1 Minimizing the number of local synchronizers

To solve the �rst problem, we can chooseA � M � G � 2S �rst, let register allocation runj
and use the resultingR as a value forL (this is possible sinceR B A). The alternative is
choosingA @M � G � 2S, to reduce the mandatory synchronizer cost of the thread program
even further. However, as seen in the previous section, whenA becomes smaller, the code
generator must introduce extra memory load and store instructions for spills. This means
that using A to control the synchronizer cost is e�ectively a trade-o� between this cost and
memory access penalties. To distinguish the bene�ts and drawbacks, we must therefore look
more closely at the hardware implementation:

ˆ in an interleaved multithreaded execution (one pipeline, one synchronizer store), adding
memory operations is always a penalty, even if all memory latencies can overlap with
useful computations, because the total number of executed instructions increases. In
this situation, the largest value A � M � G� 2S should be used to minimize the number
of memory accesses in all cases.

ˆ in a simultaneousmultithreaded execution (multiple pipelines sharing one synchronizer
store), A should be reduced so that there can be enough threads to keep all functional
units busy and also tolerate the latencies of the added memory latencies.

Since the implementations we used have one in-order pipeline per synchronizer store, we
chooseA � M � G � 2S accordingly.

8.5.2 Ensuring sound composition

8.5.2.1 Case with �hanging� synchronizer mappings

We consider �rst �hanging� synchronizer mappings as introduced in section 4.3.3.3. In thisj
case, any upper bound forG and S for a given program P becomes a lower bound on the
choice ofL for any other program that wishes to create a family running P. A lower bound
on L is in turn an upper bound on G and S in that other thread. Since any solution must
ensure compatible values ofG, S and L for family compositions across separate translation
units, we must establish a�xed point for the upper bound on G and S, and the lower bound
on L. Let us call this �xed point X . By de�nition, ¦ P > P GˆP• � 2SˆP• B X and
GˆP• � SˆP• � 1 BLˆP• BM � X .

Furthermore, X must be independent from speci�c program sources, sinceX must be
known by convention across all separate compilations. This means thatX can be chosen
arbitrarily. Once the �xed point is chosen, we can deduce fromX the upper bounds onG,
S and L as per the de�nition above.

8.5. STRATEGIES FOR SYNCHRONIZER MAPPING 143

Figure 8.3: Maximum allowable values ofG, S, L for various values ofX , with M � 31.

Con�gurations suitable for �hanging� synchronizer mappings, as per section 4.3.3.3.

Since register allocation bene�ts from large values ofL , and inter-thread communication
bene�ts from large values of G and S (more asynchrony), we are thus interested to choose
X in a way that maximizes L , G and S. To clarify, we plotted in �g. 8.3 the upper bounds
for all values of X with M � 31. As can be seen in this diagram, all values ofX below 15
enable more communication endpoints at the expense of local synchronizers. Values between
15 and 20 allow more �shared� channel endpoints at the expense of both �global� channel
endpoints and local synchronizers. Values above 20 restrict all three values further.

The optimization of X would require empirical results across a set of applications. In-
deed, a low value ofX can require inter-thread communication to occur more often via
memory instead of the architecture's dedicated channels, while a high value ofX can re-
quire more spills to memory due to a smaller number of private synchronizers. The best
trade-o� for a given application depends on the source code of the entire application and
how program components are composed together; the best trade-o� for an entire application
domain requires empirical evaluation across the entire domain.

Without considering a speci�c application domain, we made X con�gurable and set it
by default to X � 12. We motivated this default value as follows. First we observed that
a prospective user of our technology, the SAC2C compiler for Single-Assignment C [GS06],
was structured to make heavy use of common loop variables, which would be translated
to �global� channel declarations in our interface language. This suggested maximizing the
upper bound on G, and thus choosing the largest possible value ofX while keepingX B15.
Then we observed that the calling conventions for procedure calls on existing general-purpose
processors with RISC ISAs often choose to use 4 to 8 register names to argument passing
(table 8.1), plus 6 to 12 �scratch� caller-save register names for temporary variables. Then
we deduced from this observation that the designers of these calling conventions must have
empirical knowledge that this is an optimal trade-o� to support C functions and calls in
general-purpose workloads. So we adopted this requirement in our setting, and we deduced
the constraint L C18, henceX � 12.

OnceX is set, the resulting code generation strategy can be summarized as follows: �rst
set G and S from Gs and Ss while ensuring G � 2S B X ; then run code generation with
A � X , and �nally set L � R after code generation. This is the implementation we describe
in Appendix H. The procedure calling convention within threads is left unchanged from the
substrate ISA.

144 CHAPTER 8. VISIBLE SYNCHRONIZER WINDOWS

ISA ABI Integer arg. regs. FP arg. regs.
PowerPC (all) 3-10 33-40
Alpha (all) 6 6
SPARC32 System V, Sun 6 0
SPARC64 Sun 6 16
MIPS32/64 �old� 4 2
MIPS32/64 �new� 8 8
ARM Standard [ARM09] 4 8
x86-64 Unix 6 8
x86-64 Microsoft 4 4

Table 8.1: Calling conventions on existing general-purpose processors.

Information extracted from the GNU CC target machine con�gurations.

Figure 8.4: Maximum allowable values ofG, S, L for various values ofX , with M � 31.

Con�gurations suitable for �separated� synchronizer mappings, as per section 4.3.3.3.

8.5.2.2 Case with �separated� synchronizers

We consider here �separated� synchronizer mappings as per section 4.3.3.3. Any upper boundj
for A (or R) for a given C function F becomes a lower bound onL for a program P that
wishes to callF . A lower bound on L is in turn an upper bound on G and S in P. Since any
solution must ensure compatible values onG, S, L and R for function calls across separate
translation units, we must establish a �xed point for the upper bounds on G and S, and the
lower bound onL. Let us call this �xed point X . By de�nition, ¦ P >P GˆP• � 2SˆP• BX
and 1 BLˆP• BM � X .

As described before,X must be known by convention, and once known it can be used
to derive L , G and S in thread programs, and A (or R) in C functions. As before, we are
interested to chooseX in a way that maximizes L , G, S, and R for C functions. With the
new constraint, we plotted in �g. 8.4 the upper bound for all values of X with M � 31. As
can be seen in this diagram, increasingX allows for more channel endpoints as the expense
of local registers.

Again, the optimization of X requires empirical data across a target application domain.
The trade-o�s remain unchanged, as well as the methodology. We thus felt justi�ed to reuse
the same semi-arbitrary choice ofX � 12 in our setting, for the same reason as above. This
allows us to keep the previous decision strategy forG, S and L unchanged.

8.5. STRATEGIES FOR SYNCHRONIZER MAPPING 145

1 sl_def (foo , sl_glparm (T1 , N1) , : : : sl_glparm (Tn , Nn)) {
2 : : : sl_getp (N1) : : : sl_getp (Nn) : : :
3 } ;
4 : : :
5 {
6 sl_create (: : : , foo , sl_glarg (T1 , N1 , Vn) ,
7 : : : sl_glarg (Tn , Nn , Vn)) ;
8 sl_sync () ;
9 }

Listing 8.1: Code fragment using multiple virtual �global� channels.

1 struct foo_i { T1 N1 ; : : : Tn Nn ; } ;
2 sl_def (foo , sl_glparm (struct foo_i * , __mp)) {
3 : : : sl_getp (__mp) � > N1 : : : sl_getp (__mp) � > Nn : : :
4 } ;
5 : : :
6 {
7 struct foo_i __mp = { V1 , : : : Vn } ;
8 sl_create (: : : , foo , sl_glarg (struct foo_i * , , &__mp)) ;
9 sl_sync () ;

10 }

Listing 8.2: Translation of listing 8.1 to use only one �global� channel.

Note that we use here the constraint betweenX , G and S stemming from program
composition via C function calls under separate compilation, whereas the constraint we
used in section 8.5.2.1 stemmed from composition via thread creations. The reason why we
did not use the same constraint in both sections is that the constraint from composition via
thread creation is more restricting with �hanging� synchronizer mappings, whereas it is less
restricting with �separated� mappings.

8.5.3 Handling over�owing programs

The last problem was dealing with programs where the number of expressed channel end-j
points is too large for the code generation constraints. In our case, withX � 12, we can use
at most 12 hardware endpoints for �global� channels directly, or 6 endpoint pairs for �shared�
channels, or any combination whereG � 2S B 12. We could propagate these constants to
the input language de�nition, and thus make programmers (or code generators) aware of
this hardware limit and accept the invalidity of over�owing programs as a design choice;
however, an additional improvement is possible.

Indeed, we can reuse the strategies from [JR81] to supportvirtual inter-thread channels
on the new architecture. With only one physical �global� channel endpoint, it is possible to
emulate a virtually unbounded number of other �global� channel endpoints by storing the
source values in memory instead. For example, the program fragment in listing 8.1 can be
replaced by listing 8.2 without any changes in semantics. In general, any number of �global�
endpoints declared in source can be mapped toG C1 endpoints in hardware, where the �rst
G � 1 hardware endpoints are mapped directly to program-speci�ed endpoints, and the last

146 CHAPTER 8. VISIBLE SYNCHRONIZER WINDOWS

endpoint in hardware is mapped to a pointer to a data structure in memory that contains the
source values for the other program-speci�ed endpoints. We call this methodescaping the
channel source values into memory, because it trades physical hardware channels for memory
capacity. When we use escaping, no value ofGs causes the program to be over�owing as
soon asG C1 is allowed by X . We actually implemented this method in our solution.

The method can be further extended to �shared� channels by reserving a data structure
in memory in each logical thread in a family to hold the source values for the next logical
thread.

However, here a di�culty arises. We cannot translate multiple individual uses of sl_setp
that manipulate di�erent virtual �shared� channel names to multiple uses of sl_setp that
manipulate the same hardware channel endpoint. This is because the machine interface
does not allow us to reset the synchronization state of the channel, i.e. we must assume the
channel only synchronizes once. This requires us to replace all escaped uses ofsl_setp by
non-synchronizing memory assignments, andalso add a single use ofsl_setp at the earliest
point of the control �ow graph that is guaranteed to run after all the memory assignments.

Unfortunately, this would be a program transformation that requires semantic analysis ofP
the program source, which is outside of the scope of the framework we discussed in chapter 6.
For this reason, we originally chose to not extend the method to �shared� channels in our
implementation. Then we realized that there exists an alternative, to add the trailing
sl_setp at the end of the control �ow graph, i.e. at the end of the function body and at
every use ofreturn . This would be a suitable context-free substitution. The drawback of
this method is that it over-synchronizes by forcing the sequentialization of all participating
threads. If proper virtualization of �shared� channels is desired, this technique could be
added to our implementation at a low cost. The reason why we did not yet implement this
solution is suggested in section 13.8.

Our resulting implementation can be summarized as follows:

ˆ in the language speci�cation (Appendix I, clause I.4.2Ÿ2), we guarantee support for
1271 �global� channel endpoints and 1 �shared� endpoint pair;

ˆ in the actual implementation, the number of �global� endpoints is e�ectively bounded
only by the memory available to the creating thread, and the number of �shared�
endpoint pairs is indirectly bounded by X , to 6 pairs in our case; however, we do not
advertise this value so as to enable other implementation-dependent choices forX .

Summary

Variably sized visible windows in�uence register allocation during code generation. To enable
separate compilation, a static limit must be set on the number of register names available
to register allocation in code generators for local variables, which in turn constrains the
number of register names available to de�ne synchronization channel endpoints.
In this chapter, we have formalized the possible trade-o�s in this choice. We then describedjP
how to virtualize an arbitrary number of logical channels de�ned in programs over a �xed set
of register names in the ISA. The result is a con�guration strategy that is mostly invisible
from the perspective of the C programmer or higher-level code generator.

1For symmetry with the limits on the number of function arguments in [II99, 5.2.4.1Ÿ1] and [II11b,
5.2.4.1Ÿ1].

Chapter 9

Thread-local storage
�Highlight on speci�cs, opus 2

Abstract

Some functional requirements of operating software providers may be both invisible
to hardware architects and invisible to application developers; they may exist to support
the generality of the operating software or its reusability across platforms. From the
hardware architect's perspective, an opportunity exists to learn about these require-
ments and optimize a design accordingly. For example, Thread-Local Storage (TLS) is
a necessary feature of run-time environments when threads must run general-purpose
workloads. This is fully under the responsibility of the operating software, as TLS
is �just memory� from the hardware provider's perspective, and assumed to pre-exist
by application developers. Meanwhile, on a massively concurrent architecture which
encourages the creation of many short logical threads in hardware, such as the one
introduced in part I, provisioning TLS via traditional heap allocators would be largely
detrimental to performance and e�ciency due to contention and over-allocation. In this
chapter, we show the gains to be obtained by co-designing support for TLS between
the hardware architect and the operating software provider. We provide an analysis
of the requirements to provision TLS on such architectures and a review of the design
space for solutions. We illustrate with our own implementation.

Contents
9.1 Introduction . 148
9.2 �Traditional� provisioning of TLS . 148
9.3 Smarter provisioning of TLS . 150
9.4 Implementation . 151
9.5 Integration with the machine interface . 159
Summary . 160

147

148 CHAPTER 9. THREAD-LOCAL STORAGE

9.1 Introduction

A C compiler for most register-based machines uses a stack pointer for two purposes:

ˆ to allocate and access function activation records1.
ˆ when using the commonly-supported C extension �alloca � or [II99]/[II11b]'s vari-

ably sized arrays scoped to a function body, to perform the corresponding dynamic
allocation at run-time.

In addition to this, most existing C compilers support the notion of �thread-local vari-
ables,� declared with a special storage quali�er (�thread � or similar), and which are guar-
anteed to designate, at run-time, a di�erent object in each thread whose initial value in each
thread is the initial value de�ned in the program at the point of de�nition. This de�nition
has been captured in the latest speci�cations [II11a, II11b]. The implementation of this
feature is based on a �thread local storage template� generated by the compiler statically,
and passed by reference to each newly created thread to be duplicated in a thread-local
memory.

Activation records, dynamic local allocation and thread-local variables de�ne collectively
the notion of �Thread-Local Storage (TLS),� which is an area of memory that can be used by
thread program code with the assumption that no other thread will inadvertently overwrite
its values. In general terms, TLS is required for a thread to properly virtualize a general-
purpose computer with the computing abilities of a Turing machine (cf. section 1.2.1).
Conversely, an execution environment must provision TLS to claim its support for general-
purpose workloads.

In this chapter, we examine how TLS can be provisioned to threads e�ciently in an
architecture with �ne-grained concurrency, and how access to TLS can be gained from the
perspective of code generation.

9.2 �Traditional� provisioning of TLS

The two traditional strategies to obtain access to TLS in new threads are: dynamic pre-
allocation, before the thread starts by the creating thread, or self-allocation by the newly
created thread after it has started. With pre-allocation, a pointer to TLS can be passed as
an argument, or at a prede�ned location. With self-allocation, a protocol must exist so that
a thread can request the allocation of TLS.

9.2.1 Dynamic pre-allocation

Dynamic pre-allocation requiresa priori knowledge of an upper bound on the TLS size. We
found an extensive analysis of this in [Gru94]. To summarize, a combination of compiler-
based analysis of the call graph in each thread program, together with a pro�le-directed
analysis of the actual run-time requirements, can provide a conservative estimate of this
upper bound in a large number of applications.

There are two issues with pre-allocation however. The �rst issue arises when a primitive
exists to bulk create many logical threads over a limited set of hardware threads, such as
presented in part I. Each logical thread potentially needs TLS. This has two consequences:

1Activation records primarily contain local variables that do not �t in registers, e.g. local arrays, and
also possibly spill space and the return address in called procedures.

9.2. �TRADITIONAL� PROVISIONING OF TLS 149

ˆ since the mapping of logical threads to hardware thread contexts may not be visible
in software, potentially as many separate TLS spaces would need to be allocated as
there are logical threads in the family. This would cause severe over-allocation for
large logical families running over a few execution units;

ˆ any use of pre-allocation would require two values to be passed as argument (a base
pointer and a size) and would mandate either a potentially expensive multiplication
with the logical thread index in every thread, or sizes that are powers of two, to allow
a cheaper shift operation instead.

The second issue is that pre-allocation is not an appropriate general scheme: it is unable
to provide TLS for recursion where the depth cannot be statically bound, for example data-
dependent recursions, and it cannot cater to dynamic allocation of local objects whose size
is known only at run-time. Because of this latter issue, whether pre-allocation is used or
not, a fully general system would thus need to also o�er self-allocation as an option.

9.2.2 Self-allocation

Self-allocation, in contrast, seems relatively simple to implement. It su�ces to emit, at the
start of every thread program that requires TLS, an invocation of a system service in charge
of dynamic memory allocation. Supposing such a service exists, we explore here how its
interface should look. There are two possible strategies. Either the service is implemented
by means of a regular procedure, which is called by branching control within the same
thread, or it is implemented as a thread program, which is accessed by creating a new
thread running that program. In both cases, some form of mutual exclusion over a shared
memory allocator is required; otherwise, the two strategies di�er as follows.

The procedure-based approach requires an allocation service that can be run from indi-
vidual threads at a low cost. To keep logical thread creation lightweight, requirements such
as a privilege switch or a trap to access the service would be inappropriate. The allocator
would be a procedure that negotiates exclusive access to some data structure, determines a
range of addresses to use as TLS, and releases the data structure. For best performance this
should have a �xed, low overhead in most cases. In turn this requires minimizing non-local
communication, hence requires a pooled memory allocator with per-processor pools. This
is the approach taken by e.g. the �polo stack� allocation strategy from [Abd08, Chap. 6].

The thread-based approach creates the opportunity to delegate the allocation to some
other resource on the system. This is bene�cial as the designer may not wish to equip
every processor with the hardware facilities required for a memory allocator, yet desire to
allow every logical thread to access TLS. This is of course constrained by contention: the
system must provision enough bandwidth to this service, either through faster processors
implementing the service or a larger number thereof.

Then, the service interface must guarantee that the thread creation is always possible2.
This in turn mandates that there is at least one thread context which is never automatically
used by bulk creation except for TLS allocation requests, and that the program must be able
to force the hardware �allocate� request to grab that speci�c context. This in turn requires
a mechanism in hardware to reserve a context permanently and an addressing scheme to
identify that context in the �allocate� operation.

2The scheme described later in chapter 10 does not apply here as it pre-requires TLS to serialize the
behavior locally.

150 CHAPTER 9. THREAD-LOCAL STORAGE

To summarize, TLS self-allocation is a viable strategy which can either be implemented
locally on each processor, or on service processors shared between multiple multithreaded
cores. It requires mutual exclusion and an allocation algorithm with an extremely low
overhead, so that thread creation stays cheap. Contention may be an issue when sharing
the service between multiple cores, a topic that we revisit later in section 14.4.

9.3 Smarter provisioning of TLS

Dynamic pre-allocation and self-allocation require the time overhead of a procedure call or
one extra thread creation and synchronization during the start-up of every logical thread.
This overhead, commonly between 50 and 200 processor cycles on contemporary hardware
(for procedure calls) or 50 cycles on the proposed architecture, does not compare favorably
with the low logical thread activation overhead on the reference implementations of our new
architecture (less than 5 processor cycles per logical thread). Moreover, since the machine
interface does not guarantee that the values of the local synchronizers persist across logical
threads sharing the same thread context, it would be necessary to either design a new
architectural mechanism to carry the TLS pointers from one logical thread to the next, or
invoke the allocation service in every logical thread, not only the �rst. We present two
alternative strategies, presented below.

9.3.1 Persistent dynamic allocation

The �rst strategy we considered preserves a TLS range across logical threads sharing thej
same thread context. In this approach, each thread context retains, next to the program
counter, a base pointer for the area of TLS reserved for all logical threads sharing the context.
This is a valid approach since all logical threads execute in sequence without interleaving
(sections 3.3.1 and 4.2). When the �rst logical thread in a family starts in a context, it
checks this base pointer, and performs an initial allocation if the base pointer is not yet
con�gured. All subsequent logical threads in the same context can reuse the same TLS3.

Here there are two storage reclamation strategies:aggressivereclamation, where TLS is
de-allocated as soon as the context is released, anddelayedreclamation where TLS remains
allocated between families.

To enable aggressive reclamation, either a hardware process, or the thread synchronizing
on termination of a family, would explicitly de-allocate all the TLS areas allocated for each
thread context e�ectively used by the family. This has linear time complexity with the
number thread contexts used for the family per core, and is independent of the logical
thread sequence which is typically larger. The cost of allocation is then repeated for each
new created family.

With delayed reclamation, TLS space is reused across families: the cost of allocation is
factored at the expense of possible over-allocation. There is a spectrum of implementation
strategies. Asynchronous Garbage Collection (GC) of TLS areas for inactive thread contexts
is possible if the application code guarantees no sharing of TLS data between threads.
Otherwise, synchronous GC can be used, or the operating system can reclaim storage when
the entire program terminates.

3We assume here that all threads have the same TLS size requirements. Otherwise, the size should be
stored alongside the base pointer, compared upon thread startup, and the TLS should be reallocated when
a new size is desired.

9.4. IMPLEMENTATION 151

9.3.2 Context-based pre-reservation

We pushed the concept of persistent allocation with delayed reclamation further: we exploredj
more static schemes where TLS space is pre-allocated for all thread contexts on a group of
processors before a software component is assigned to this group.

To optimize this situation, we propose to allow a logical thread to construct a pointer to
a region of TLS from the identity of the thread context where the logical thread runs. We
experimented with multiple implementations, with various trade-o�s between the latency
bene�t and the cost of the required extra logic. We determined two orthogonal design deci-
sions: how the space isallocated from shared storage, and how the addresses aredistributed
to threads.

Regarding allocation, we found two implementable strategies:

ˆ static pre-allocation: a predetermined amount of storage is allocated for each thread
context. This is suitable if pre-allocation is possible, i.e. when there are known upper
bounds on TLS size and the provision of TLS for all contexts �ts in the available
storage;

ˆ deferred pre-reservation using virtual addressing: a predetermined number of virtual
addresses are reserved for each thread context, then storage is allocated on-demand
when the addresses in the TLS areas are �rst used. Although this scheme also bounds
the amount of TLS via the number of addresses reserved, it is possible to make this
bound so high that the addresses available to each thread context would be su�cient
to address the entire physical storage.

Regarding distribution, we found two implementable strategies:

ˆ external distribution: a table exists in the system, indexed by the logical processor
identi�er and thread context identi�er of each thread, which can be con�gured to
contain a di�erent address and size for TLS for every thread context. This table can
reside in main memory with a base address determined by convention, or in dedicated
memory structures on chip next to each processor;

ˆ computeddistribution: a common base pointer and TLS size are accessible to multiple
thread contexts by convention, and can be con�gured in software. In each thread, the
program can compute a private area of TLS by multiplying a combination of its logical
processor identi�er and thread context identi�er with the common size, and adding
this to the common base pointer. The pair (base pointer, size) can be shared by all
processors in the system, or con�gurable by processor.

We summarize the trade-o�s of these four combinations in table 9.1.
The external/static and external/deferred schemes are the schemes used in most existing

general-purpose operating systems to implement processes and threading. For example in
GNU/Linux, Solaris and BSD each system thread is allocated a range of virtual addresses
as stack, which is populated on demand while the thread runs. In uCLinux for embedded
systems without virtual addressing, processes receive a dedicated subset of the physical
memory as TLS.

9.4 Implementation

We did not implement dynamic pre-allocation in our technology (cf. chapter 6). We also did
not thoroughly explore self-allocation or any scheme requiring mutual exclusion, including

152 CHAPTER 9. THREAD-LOCAL STORAGE

Distribution
External Computed

A
llo

ca
tio

n

S
ta

tic

Thread contexts compete for a sub-
set of the physically available mem-
ory, but heterogeneous sizes are pos-
sible.
Time-expensive to pre-con�gure (lin-
ear in the number of contexts), cheap
in logic (needs access only to the con-
text identi�er).

All thread contexts compete equally
for a subset of the physically available
memory.
Cheapest in time and extra logic to
pre-con�gure (constant time, needs
access only to the context identi�er),
least �exible for software.

D
ef

er
re

d Thread contexts compete for a subset
of the virtual address space, and het-
erogeneous address windows are pos-
sible.
Most time-expensive and logic-
expensive to pre-con�gure (linear
in the number of contexts, requires
virtual addressing and handling of
translation faults), most �exible for
software.

All thread contexts compete equally
for a subset of the virtual address
space.
Cheap in time to pre-con�gure (con-
stant time), expensive in extra logic
(requires virtual addressing).

Table 9.1: Trade-o�s of context-based TLS partitioning

Side note 9.1: Support for heap-based dynamic allocation.

Although we did not study self-allocation for obtaining TLS space in threads, we did not deliberately avoid
dynamic memory allocation altogether. Indeed, our software integration work eventually included a two
stage allocator into the standard C library available to programs, to support the � malloc � API. This
allocator handles small sizes locally using binned allocation of �xed sizes chunks in TLS-based �local heaps,�
and delegates allocation of larger sizes centrally by an o�-the-shelf allocator using mutual exclusion, Doug
Lea's dlmalloc [Lea96]. Our allocator is available publicly with our SL software.

persistent dynamic allocation from section 9.3.1. We made this decision for two reasons.
First, as highlighted at the start of section 9.3, the overhead of dynamic allocation is high
compared to the latency of thread creation, and we were interested in exploring strategies
that provide TLS at lower latencies. Then, the system implementation we had at our disposal
did not provide facilities for mutual exclusion until a much later phase, where our techniques
from section 9.3 were already implemented and demonstrated to perform adequately.

Considering the context-based pre-reservation schemes from section 9.3.2, we also avoided
the schemes based on external distribution. We made this choice because we were focus-
ing on parallel execution over large numbers of processors, and we predicted that external
distribution would incur large pre-con�guration costs every time a group of processors is
recycled between benchmark applications.

Instead, during our work we explored the two remaining context-based schemes that we
have identi�ed: static/computed and deferred/computed. We found them attractive because
they are simple to implement and the computed access to TLS makes the precon�guration
costs scalable to large numbers of processors and thread contexts.

9.4. IMPLEMENTATION 153

Physical RAM
reserved for TLS

Number of
processors

Contexts per
processor

TLS size

256 KiB 1 64 4 KiB
16 MiB 1 64 256 KiB
256 KiB 8 8 4 KiB
16 MiB 8 8 256 KiB
1 GiB 8 8 16 MiB
256 KiB 64 64 64 B
16 MiB 64 64 4 KiB
1 GiB 64 64 256 KiB

Table 9.2: TLS size per thread with the static/computed scheme.

9.4.1 Static/computed partitioning

The �rst scheme we implemented was a context-based, static computed partitioning of the
address space. In this scheme, the operating system allocates a �xed subset of the physical
RAM and divides it equally across all thread contexts. This scheme does not allow the
TLS space of a thread context to be expanded, with the same drawbacks as presented in
section 9.2.1.

We present possible con�gurations in table 9.2. As can be seen in this table, the stat-
ic/computed strategy does not scale well for larger numbers of processors and/or thread
contexts per processor. It incurs signi�cant wasted storage space, caused by di�erent TLS
requirements between logical threads: the common size must be large enough to cater to
the highest requirement, which is typically uncommon at run-time. The amount of wasted
space increases with the number of processors and/or the number of contexts per processors.

Nevertheless, this was the scheme eventually used to test the UTLEON3-based plat-
form [DKK � 12], as this implementation contains only 1 core.

9.4.2 Deferred/computed partitioning

The second scheme we implemented was context-based, deferred/computed partitioning of
the address space with virtual addressing. We made the assumption that the entire system
shares a single virtual address space, i.e. that the same address translation unit is used by
all processors and the inter-processor memory network uses virtual addresses. Then we used
the following address format for TLS:

MSB LSB
1 P P P T T T - - : : : -

In this scheme, a thread can construct a valid address for its TLS area by setting the Most
Signi�cant Bit (MSB), then concatenating its logical processor index and thread context
index in the most signi�cant bits of the address. Since this information is already present in
each processor's pipeline to support scheduling, this value can always be constructed cheaply
(one or two pipeline cycles). The lower half of the address space (with the MSB unset) stays
available for common data, code, shared heaps, system data structures, etc.

We document the maximum allowable TLS size per thread under various architecture
con�gurations in table 9.3. Despite the static address space reservation, with 64-bit ad-
dressing there is su�cient address space capacity in each thread to potentially address the

154 CHAPTER 9. THREAD-LOCAL STORAGE

Number of
address bits

Number of
processors

Contexts per
processor

Maximum TLS
size

32 8 8 32 MiB
32 64 64 512 KiB
32 1024 256 8 KiB
64 64 64 2 EiB
64 1024 256 32 PiB
64 1024 1024 8 PiB

Table 9.3: Maximum possible TLS sizes with the deferred/computed scheme.

Figure 9.1: Potential bank and line con�icts with 64-bit addresses, 1024 cores, 256 contexts
per core.

entire capacity of contemporary physical RAM chips. With 32-bit addressing however, this
scheme is restrictive except with very few thread contexts overall.

While this scheme is transparent to use in programs, we found three signi�cant issues at
the level of system integration: cache and bank con�icts, Translation Lookaside Bu�er (TLB)
pressure and storage reclamation.

9.4.2.1 Cache and bank con�icts

Since most threads use only a small part of their TLS area, from the perspective of the
memory system, most accesses are made to addresses that di�er only via their most and
least signi�cant bits. Meanwhile, most common designs for bank and cache line selection in
hardware select banks based on atag computed with the middle bits of the address, which
will be mostly identical between all threads in our scheme (�g. 9.1).

This e�ect was recognized in previous work [MS09], but existing solutions to avoid this
situation are mostly applicable to external TLS distribution schemes, e.g. by randomization
of the TLS base address for each thread context. This cannot be used here since we use
computed distributions.

Instead, cache and bank selection randomization techniques do apply and are e�ective
at mitigating this e�ect [RH90, Rau91, Sez93, GVTP97, KISL04, VD05].

To test this e�ect we have used four synthetic multithreaded benchmarks, two which do
not use TLS at all and two that use less than 512 bytes of TLS per thread. The two programs

9.4. IMPLEMENTATION 155

(a) Per-thread latency (clock cycles) (b) Instructions per cycle

Figure 9.2: E�ect of TLS address con�icts with direct mapping.

(a) Per-thread latency (clock cycles) (b) Instructions per cycle

Figure 9.3: Reduced TLS address con�icts with XOR-based randomization.

which do not use TLS perform simple data-parallel computations. The two programs using
TLS perform a more complex data-parallel operation which requires several procedure calls,
and thus multiple stack-related operations besides the computation. We then ran these
programs on a single multithreaded core with various numbers of thread contexts, given
in the �gures' x-axes. The processor is connected to a 128KiB 4-way associative L2-cache,
which �ts the working set of all 4 benchmarks.

As can be seen in �g. 9.2, the pattern of memory accesses in the two latter benchmarks
incur a per-thread latency of several hundred cycles, contrasting with less than 50 cycles
per thread for the simple benchmarks. Despite the potential for latency tolerance o�ered
by �ne-grained hardware multithreading, the number of instructions per cycle remains low
(@50%, �g. 9.2b). Monitoring of the L2 cache activity reveals that more than 40% of accesses
are misses caused by con�icts.

We then implemented an XOR reduction of the top and lower address bits to map L2
cache lines, inspired from [GVTP97]. As can be seen in �g. 9.3, this simple change caused
a 400% performance increase of the most memory-bound benchmark, mostly by allowing
independent memory accesses by di�erent threads and thereby increasing IPC (�g. 9.3b).

156 CHAPTER 9. THREAD-LOCAL STORAGE

Figure 9.4: Address bit shu�ing for non-TLS pages.

Figure 9.5: Address bit shu�ing to aggregate distinct small TLS spaces into shared physical
pages.

Note that the IPC measurement anomaly in �g. 9.3b is caused by an imprecision in our
accounting: some cycles attributed to one benchmark, which causes its IPC to exceed 100%,
should be accounted for another instead.

To summarize, although an extensive study of cache design was not within the scopeÈ
of our research, our work highlights that this TLS scheme places a strong need for tag
randomization in the cache system.

9.4.2.2 TLB pressure

With a naive implementation of virtual addressing, our scheme would require at least one
di�erent translation entry for every thread context, because the address spaces of each TLS
area (megabytes for 32-bit addressing, petabytes for 64-bit addressing, cf. table 9.3) would
be larger than the virtual addressing page size (typically kilobytes on current systems). With
large numbers of processors and thread contexts (e.g. 256� 1024 contexts on large chips), this
would require ine�ciently large TLB implementations.

However, considering that the actual required TLS space in each thread is typicallyj
smaller than the page size, e.g. a few hundred bytes if only a few activation records are
de�ned, we can propose an optimization to aggregate the actually used regions of TLS
within single translation entries. To do this, we organize virtual addressing as follows.

We consider that there are 2P cores (e.g.P � 6, 64 cores) and2T thread contexts per
core (e.g.C � 7, 128 contexts). We also consider that there are2C bytes in a cache line
(e.g. C � 6, 64 bytes). As a �rst step, we require that the virtual page size is at least2C � P � T

bytes wide (e.g. 512KiB in our example). We consider that each page contains2B bytes,

9.4. IMPLEMENTATION 157

Number of
processors

Contexts per
processor

Page size TLS storage per
thread in each page

8 8 4 KiB 64 B
8 8 16 KiB 256 B
8 8 1 MiB 16 KiB
64 64 256 KiB 64 B
64 64 1 MiB 256 B
64 64 16 MiB 4 KiB
1024 256 16 MiB 64 B
1024 256 128 MiB 512 B
1024 256 1 GiB 4 KiB
1024 1024 64 MiB 64 B
1024 1024 1 GiB 1 KiB
1024 1024 16 GiB 16 KiB

Table 9.4: Amount of TLS storage provided for each thread per virtual page.

Values assuming 64-byte cache lines.

with B C C � P � T. Then we modify the Memory Management Unit (MMU) as follows.
When a request to translate a virtual address enters the MMU, the highest address bit is
tested. If the bit is set, indicating TLS, the virtual address is �rst translated as depicted in
�g. 9.5:

1. the lowest B � P � T bits are left unchanged;
2. the P � T most signi�cant bits (except the highest) are shifted next to the lowest

B � P � T bits forming a complete in-page address;
3. the most signi�cant bit (set) is shifted as the least signi�cant bit of the page address;
4. the remaining original bits (from position B � P � T � 1 to B � 1) are shifted to the

remaining positions of the page address (fromB � 2 onwards).

If the highest bit is not set, then the address is �rst translated as depicted in �g. 9.4:

1. the lowest B bits are left unchanged;
2. the most signi�cant bit (unset) is shifted as the least signi�cant bit of the page address;
3. the remaining original bits (from position B � 1 onwards) are shifted to the remaining

positions of the page address (fromB � 2 onwards).

(The lowest C address bits are left unchanged to preserve locality within cache lines.)
Then the resulting page address is looked up in the TLB and/or translation table(s).

With this scheme in place, each virtual page with an odd address provides2B � T � P bytes
of storage to every thread context in the system (e.g. 64 bytes with 512KiB pages, 2KiB
with 16MiB pages). This way, the number of TLB entries grows only as a function of the
largest TLS address e�ectively used in the system. Since it is uncommon to see a large
number of threads using simultaneously large TLS addresses, this relieves pressure on the
TLB.

We provide a few examples of the provision for TLS per virtual page in table 9.4. As can
be seen in this table, usual page sizes on contemporary operating systems (4KiB to 16MiB)
are su�cient to provision at least a cache line per thread context up to moderately sized
system (64 cores), and only a four-fold increase to at least 64 MiB per page is su�cient to
support future-generation chips with thousands of cores.

158 CHAPTER 9. THREAD-LOCAL STORAGE

Figure 9.6: Address bit shu�ing for non-TLS pages (virtual processes).

9.4.2.3 Reclamation of TLS storage

To analyze the issues related to reclamation, we must separately consider the situation
without the TLB aggregation scheme presented above, and the situation once it is enabled.

Without the optimization, the issues of reclamation for this scheme are similar to those
from the persistent dynamic allocation scheme described in section 9.3.1. The main di�er-
ence is that the TLS address ranges are de�ned as translation entries in the virtual addressing
subsystem, instead of per-context base addresses on each processor.

This makes aggressive reclamation di�cult to implement: since the program and the vir-
tual addressing subsystem are typically isolated from each other, the program must signal
to an operating system every bulk creation and termination event to enable reclamation.
Since the overhead of interactions with system services is typically higher than local proce-
dure calls, it would defeat the entire approach and make persistent dynamic allocation more
attractive. Context-based partitioning with deferred allocation and aggressive reclamation
would only be viable if virtual addressing is under direct control of the program.

Delayed reclamation, in contrast, is tractable: a concurrent GC can asynchronously
inspect the areas of memory pointed to by the active translation entries, and unmap all the
unused areas. Or, alternatively, an operating system can release all translation entries at
once when the program terminates.

With the aggregation optimization presented in the previous section, there is a signi�cant
problem however: reclamation becomes impossible because each page contains a part of the
TLS area of all thread contexts in the systemdue to the bit shu�ing.

To overcome this obstacle, we introducevirtual resource identi�ers as part of the ad-j
dressing scheme in addition to the physical processor identi�ers, as depicted in �g. 9.6.
These are numerical identi�ers that delimit a memory management domain, for example a
process in an operating system. In the addressing scheme, each access to TLS by a thread
places the virtual resource identi�er above the processor bits in virtual addresses, and the
MMU shifts them to form the Least Signi�cant Bit (LSB) of page addresses prior to address
translation.

We suggest that this extension only applies to implementations with 64-bit addressing,
since the size of the virtual resource identi�er constrains the address width usable to address
memory. Also, the width of the virtual address identi�er in bits directly impacts TLB
pressure, since TLS addresses from threads with di�erent resource identi�ers will map to
di�erent pages. This is similar to how synonyms increase cache pressure in virtually tagged
caches [CD97a, CD97b].

9.5. INTEGRATION WITH THE MACHINE INTERFACE 159

However, virtual resource identi�ers solve the reclamation problem. Indeed, since the
resource identi�er is part of the page identi�er, two application components using distinct
resource identi�ers will map to di�erent pages, and reclamation becomes possible by reclaim-
ing entire sets of pages sharing the same resource identi�er. This assumes that applications
are constrained to avoid sharing of memory between program components that have distinct
resource identi�ers, or that explicit registration of common memory objects to a reclamation
system service is mandatory.

Final reclamation at program termination is the reclamation strategy we adopted in ourP
implementation. We expect concurrent GC of translation entries to be better suited against
over-allocation in long-running programs, however we could not explore this direction due
to our limited e�ort budget.

9.5 Integration with the machine interface

Depending on the selected TLS scheme for a given implementation, the required architecture
support di�ers:

ˆ for dynamic pre-allocation and self-allocation, some form ofmutual exclusion is re-
quired;

ˆ for persistent dynamic allocation, both mutual exclusion and access to a per-context
TLS base pointer and sizeis required;

ˆ for all context-based partitioning schemes using external distribution, mutual exclusion
may not be required, but access to the per-context TLS pointer and TLS size is
required;

ˆ for all context-based partitioning schemes using computed distribution, mutual exclu-
sion may not be required but access to a common TLS base pointerand TLS address
space sizeare required to compute the actual local, per-context TLS base pointer.

To summarize, either mutual exclusion or a way to obtain or con�gure the per-context
TLS base pointer and size is required, or both. Since mutual exclusion can be introduced
by traditional means (either memory-based atomics or as an operating system service), we
focus here on the latter.

The requirement is for each logical thread to be able to retrieve the TLS base pointer for
its own thread context, as well as the corresponding TLS size. Alternatively, the thread can
be allowed to retrieve the �rst and last address of its TLS area, from which it can compute
the size if needed.

In our work, we opted for the following extension to the machine interface:

ˆ two new operations �ldbp� and �ldfp� are introduced, with the corresponding assembly
mnemonics �ldbp � and � ldfp .� The �rst loads the base TLS address into its target
operand, and the second loads the �rst address past the end of the TLS area. This
allows us to both derive the size of the TLS and let a system implementation choose
for upwards or downwards stack growth;

ˆ in addition, two new operations �gettid� and �getcid� are introduced, with the corre-
sponding mnemonics �gettid � and � getcid .� The �rst loads the local thread context
identi�er of the issuing thread into its target operand, and the second loads the local
processor (core) identi�er. Both use 0-based indexing. This allows us to implement
context-based TLS schemes using explicit distribution with arbitrary data structures
in memory.

160 CHAPTER 9. THREAD-LOCAL STORAGE

1 mov (__f i rst_t ls_top � __tls_base) , %t l 1 ! t l 1 := sz
2 gett id %t l s p ! sp := t i d
3 s l l %t l sp , %t l1 , %t l s p ! sp := t i d * sz
4 sethi %hi (__f i rs t_t ls_top) , %t l 1 ! t l 1 := f i r s t top
5 add %t l sp , %t l1 , $ t l s p ! sp := f i r s t top + t i d * sz

Listing 9.1: Code sequence to access TLS on UTLEON3.

9.5.1 Example with the 1-core FPGA prototype

On the UTLEON3-based FPGA prototype implementation, we used the static/computed
scheme, with 1 KiB bytes of RAM allocated to each of the 128 thread contexts.

To implement this, a 128 KiB array is de�ned in the program data. A linker symbol
named �__first_tls_top � is placed at the address 1 KiB past the start of the array in
memory. The compiler then emits the sequence in listing 9.1 at the start of every thread
program which uses TLS. At run-time, each of these instructions executes in one processor
cycle and access to TLS is gained in 5 cycles. It is possible to reduce this to 4 cycles if we
�x the size to a static value, in which case the �rst operation is not needed and the size can
be given as immediate constant to �sll .�

9.5.2 Example with the multi-core system emulation

On the MGSim system emulation, we used the deferred/computed scheme. Here the imple-
mentation is simpler: the compiler simply needs to emit a single use of �ldfp $sp � at the
start of every thread program which uses TLS. At run-time, the bits required to construct
the TLS �nal address are available in the pipeline and allow the operation to complete in 1
processor cycle. The size of the individual TLS areas can be further obtained by subtracting
the output of �ldbp� from the output of �ldfp.�

9.5. INTEGRATION WITH THE MACHINE INTERFACE 161

Protocol Mechanism Time cost„

Dynamic pre-allocation procedure call or active
message by creating thread

A1

Self-allocation procedure call or active
message by each created
logical thread

Aœ
1 � N

Persistent dynamic allocation procedure call or active
message by the �rst logical
thread of a context

Aœœ
1 � P

Context-based pre-reservation static pre-allocation,
external distribution

A1 � A2 � C1ˆP•

Context-based pre-reservation deferred pre-allocation,
external distribution

A2 � C1ˆP• � C2ˆP•

Context-based pre-reservation static pre-allocation,
computed distribution

A1 � C3ˆN •

Context-based pre-reservation deferred pre-allocation,
computed distribution

C4ˆP; N •

„ N : number of logical threads created.P: number of thread contexts participating in
the bulk creation. A1: cost to perform one allocation of TLS space.A2: cost to allocate
an array of pointers. C1ˆP•: cost to compute and store one pointer for each context.
C2ˆP•: cost to provision virtual memory upon �rst access by each context (may be
aggregated across multiple contexts and occur concurrently).C3ˆN •: cost to compute
one pointer in each logical thread (may occur concurrently).C4ˆP; N •: combined cost
of provisioning virtual memory and computing pointers (may occur concurrently).

Table 9.5: Protocols to provision TLS for one bulk creation.

Summary

Provisioning Thread-Local Storage (TLS) to threads is an essential feature of a general-
purpose system, mostly because per-thread stacks are necessary to support recursion and
arbitrary large numbers of local variables.
One speci�c challenge related to massively concurrent architectures is support for a large
number of threads and the design objective to keep thread creation cheap throughout the
abstraction stack. This opposes traditional operating software approaches which exploit a
common memory allocation service using mutual exclusion, as this would become a con-
tention point as the rate of thread creation increases overall.
Another challenge related to the speci�c design from part I is that TLS is a feature of logical
threads, whereas our physical unit of concurrency is the physical thread context. As the
number of logical threads can be arbitrary large but they are serialized over the hardware
contexts, TLS should be allocated per context and not per logical thread.
In this chapter we have reviewed traditional approaches to provision TLS to threads. Wej
summarize the various options in table 9.5. We presented multiple schemes that pre-allocate
address space and associate semi-statically TLS areas to thread contexts. They address both
challenges identi�ed above at once. They involve joint support from the architecture andÈP
from operating software providers, in particular with regards to reclamation of unused TLS
ranges.

Chapter 10

Concurrency virtualization
�Highlight on speci�cs, opus 3

Abstract

A key role of abstraction is to hide the �niteness of physical-world resources, in
particular through their virtualization . Virtualization in turn requires speci�c support
from the underlying architecture, and thus constitutes an ongoing interaction between
the platform provider and operating software provider. In this chapter, we illustrate
this interaction for the virtualization of the �family,� a group of cooperatively scheduled
logical threads that can be created and joined using single bulk operations.

Contents
10.1 Introduction . 164
10.2 Context and related work . 165
10.3 Controllable automatic serialization . 166
10.4 Limitations and future work . 171
Summary . 173

163

164 CHAPTER 10. CONCURRENCY VIRTUALIZATION

10.1 Introduction

As noted in [Day11], a duality exists between specialization and generalization when con-
structing abstractions. �Specialization� refers to language restrictions, compile-time (static)
solutions and the exploitation of machine-speci�c facilities�in the interest of e�ciency.
�Generalization� refers to general language constructs, run-time (dynamic) solutions and
machine-independent language design�in the interest of correctness and reliability. When
catering to operating software providers, the hardware architect must recognize this duality
and enter a dialogue at both levels.

In particular, general abstractions often hide implementation-speci�c resource limits, to
ensure portability and forward compatibility of software. This hiding is achieved by introduc-
ing �virtual� resources, which appear unbounded in the abstract semantics of programming
languages.Resource virtualization thus achieves a separation of concerns between software
speci�cation and its realization at run-time where resource constraints apply. To implement
resource virtualization, platform providers and operating software providers must co-design
virtualization mechanisms. For example, the virtualization of variable slots in programming
languages is typically supported by introducing relative addressing in processors and o�set
tables in compilers. Meanwhile, the need for specialization requires that users of abstrac-
tions can control resources explicitlywhen so desired[Kic91]. Any virtualization mechanism
should thus provide and document optional control to disable or bypass virtualization.

In the context of general-purpose systems, the need for resource virtualization has tra-
ditionally been o�set by ensuring that most resource abstractions available in programing
languages could be expressed in terms of data structures in memory: once multiple resources
can be represented by memory, only one virtualization mechanism for memory is needed to
virtualize these resources. This is the approach taken e.g. in Unix-like operating systems
where inter-process communication channels, �les and synchronization devices are all rep-
resented by data structures in memory and thus appear unbounded with the backing of
virtualized memory. Processes, which are, resource-wise, a combination of virtualized pro-
cessors and memory, require a separate mechanism to virtualize processors; Unix uses time
sharing for this purpose.

When innovating in processor chip design, it is thus necessary to interact with the op-
erating software providers to de�ne virtualization mechanisms for all the resource types
introduced. As the Unix experience illustrates, a potential strategy is to represent new
resource types in terms of data structures in virtual memory.

10.1.1 Example new resources to virtualize: concurrency contexts

As we explained in part I, the proposed architecture design introduces �execution contexts�
for concurrent tasks, dedicated to optimize the management of concurrency throughout the
system stack. The architecture design introduces three types of resources: one is thelogical
thread of execution, another is the bulk creation context to prepare the automatic creation
of multiple logical threads, and the last is the bulk synchronizer to synchronize on the
termination of multiple logical threads at once.

As explained in section 3.3.1, the proposed machine interface already provides dedicated
support to virtualize logical threads: it states that an arbitrarily large number of logical
threads are automatically scheduled over the physical thread contexts. Thread virtualization
is thus achieved in hardware.

10.2. CONTEXT AND RELATED WORK 165

Meanwhile, our proposed abstract machine (chapter 7) de�nes primitives to create and
synchronize on concurrent tasks hierarchically as abstractfamilies, at run-time. Its seman-
tics make an assumption of unlimited hardware resources, by implying that creating logical
threads and waiting on their termination always succeeds. In other words, our abstract
machine communicates the illusion that programs can always create new families, regardless
of where in the program, and when during run-time, creation is expressed. This enables
resource-agnostic programming where concurrent program blocks can be freely composed
without having to choose which computation is de�ned as a concurrent family and which
computation should be de�ned as a sequential process.

However, the bulk creation contexts and bulk synchronizers have an explicit, named
existence in the machine interface, as explained in chapters 3 and 4. Without support for
virtualization of the bulk creation context and bulk synchronizers, it is possible to express
programs that may de�ne more families during their execution than there are bulk creation
contexts available in hardware. For example, divide-and-conquer algorithms exhibit this
situation when the depth of the recursion is data-dependent. With a transparent mapping
of the input language construct for family creation to machine primitives, progress and
termination of otherwise semantically valid deterministic programs would not be guaranteed,
since an extra context allocation when all hardware resources are busy would yield a deadlock
or failure (section 4.3.1.1).

To resolve this mismatch, we propose in this chapter a controllable mechanism to virtual-
ize the bulk creation contexts and bulk synchronizers. In section 10.2, we start by outlining
how concurrency resources are managed and virtualized in related work. We then outline
our proposed protocol in section 10.3 and analyze its limitations in section 10.4.

10.2 Context and related work

The example situation we are addressing here is averted in most existing concurrency man-
agement environments, in either of two ways:

ˆ in resource-awareconcurrent programming environments, the resource limitations of
the underlying execution platform are exposed in the programming language semantics:
the programmer or automatic program generator must either acknowledge and assume
a �xed set of processing units knowna priori , or explicitly query at run-time how many
processing units are available before starting parallel execution.
This situation can be found, for example, with programs that distribute work over
parallel �worker� processes implemented with POSIX processes or threads; the appli-
cation must query the number of actual processors in the system, and possibly also
how many POSIX processes/threads are supported by the operating system, to de-
termine how many workers to start. The Apache web server application1 uses this
scheme. It can also be found with the MPI environment, where a process needs to
query the number of processes involved in a communicator withMPI_Comm_sizebefore
spawning sub-processes withMPI_Comm_spawn.

ˆ in virtualized resource-agnostic concurrent programming environments, most imple-
mentations support unbounded numbers ofvirtual concurrency contexts backed up
by main system memory: any request to spawn a new parallel thread of execution is
matched by the dynamic allocation, in main memory, of the required data structures.

1http://httpd.apache.org/

166 CHAPTER 10. CONCURRENCY VIRTUALIZATION

In this situation, the maximum amount of concurrency that can be de�ned is typically
orders of magnitude larger than the number of hardware processing units, ensuring
that the limit is never reached in all practical circumstances.
This situation can be found in most existing task-based concurrency interfaces: tasks
in .NET's Thread Parallelism Library (TPL) [Duf09] and Intel's Threading Building
Blocks (TBB) [Rei07], blocks with GCD [App, Sir09], tasks with OpenMP [Ope08],
etc.

In both situations, there is no interface mismatch: in the former case, the input con-
currency matches the number of execution contexts by design, and in the latter case the
number of execution contexts scales automatically with the amount of concurrency de�ned
by the input program.

Arguably, resource-agnostic programming should be the privileged approach for pro-
gramming current and future multi-core systems [PJ10]. However, virtualization of execu-
tion contexts, where there can be more execution contexts de�ned than there are processors
available, often incurs implementation complexity and run-time overheads: unless some re-
striction is made on scheduling, space must be allocated from memory to save the state of
tasks at every context switch. This incurs contention on memory allocators and extra tra�c
on the memory network.

An example restriction that alleviates the need for saving the state of all tasks to memory
is so-calleddeclarative, resource-agnosticconcurrent programming environments. In these,
programs declare concurrent operations to perform without indicating whether, where or
how to perform them, and the language compiler and underlying platform then cooperate
to determine the cheapest and most e�cient execution strategy. The speci�c advantage
of declarative concurrency constructs in the associated languages is that any excess con-
currency can be serialized cooperatively, as a loop or recursion, automatically within single
execution contexts without changes in semantics. As such it constitutes a form ofcooperative
virtualization .

This is the approach exploited by e.g. the automatic folding of concurrent spawns in the
parent task in Cilk [BJK � 95], the aggregation of multiple iterations of loops as single tasks
in OpenMP [Ope08], the various aggregation strategies of the SAC2C compiler of Single-
Assignment C [GS06], the automatic aggregation of parallel algorithms via �partitioners� by
Intel's TBB run-time system [Int11], the automatic serialization of data parallel algorithms
by the Chapel compiler and run-time system [Cra11].

10.3 Controllable automatic serialization

In this chapter, we propose a possible implementation of declarative concurrency for the pro-j
posed target architecture. While doing so, we remove partly from the language semantics
the transparency between the concurrency expressed in the program and actual parallelism
of execution on the platform at run-time. Our strategy is to delay the choice between con-
current execution, via hardware families, and sequential execution within the context of an
existing active thread, via serialization, until run-time when the actual availability of exe-
cution units is known. Meanwhile, we reserve the opportunity to control the virtualization
via optional language constructs. We thus propose two interfaces to control concurrency:

ˆ when the implicit form of concurrency constructs is used in programs, the automatic
scheme is used and run-time resource availability is used to choose between concurrent
and serial execution;

10.3. CONTROLLABLE AUTOMATIC SERIALIZATION 167

ˆ additionally, a programmer, code generator or run-time system implementer can add
explicit speci�ers to the constructs to either force concurrency creation or force se-
quentialization in a speci�c syntactic locus.

In both cases, the semantics presented in chapter 7 apply to describe the functional
semantics of programs. With the implicit form, progress and completion of workloads are
guaranteed by reusing existing contexts for any excess concurrency. With the explicit form,
progress and completion are only guaranteed if the entity that wrote the program (program-
mer or code generator) collaborates with a resource management service on the system to
not require more contexts than are available in the actual platform.

10.3.1 Implementation

Prior to the introduction of �soft failure reporting� in the allocation of bulk creation contexts
(cf. section 4.3.1.1), we attempted to exposeresource countersin the hardware that would
re�ect the occupancy of the hardware structures. We could make these counters visible either
via special memory addresses or dedicated instructions in the ISA. However, we found that
any counter-based scheme which does not also adapt the family allocation mechanism is
�awed, because the �ne-grained concurrency in the system makes the value of such counters
essentially inaccurate: there can be family allocations, or de-allocation events, between a
point a counter is sampled and the point the value is acted upon. Generally, any feedback
mechanism must ensure that the test on availability and the allocation of a processing
resource if there is one available are performedatomically.

Instead we co-designed �soft failure reporting� with the architecture implementers. WithÌ
this feature the �allocate� primitive returns a special �invalid� value upon failure to allocate a
bulk creation context. We further introduced a parameter to the operation, to select whether
failure allocations are reported to the software (�soft failure�), or whether allocation should
wait inde�nitely until a context becomes available (�suspending�). The latter option allows
to implement mandatory concurrency, or mandatory delegation of an activity such as needed
for system services (section 5.5.1), without using busy waiting loops on allocation failures.

Once the feedback mechanism becomes available in the target implementation, we can use
it during code generation as follows: whenever execution reaches a point where a concurrent
family of threads is declared in the input program, the executed code �rst attempts the
context allocation2. Then, if the result indicates a failure, the code branches to the serialized
version of the declared work. Otherwise the declared work is created as a concurrent family
of logical threads.

To illustrate this scheme, we consider the example code from listing H.21, which de�nes
a thread program �innerprod� and uses it in a �kernel� function. With our strategy enabled,
the translation stage before code generation produces the code given in listing 10.1, which
in turn causes code generation and post-processing to produce the assembly code given in
listing 10.2 for the SPARC-based target ISA.

This example allows us to highlight the following:

ˆ the scheme requires duplication of the code of thread programs: one version must be
generated suitable for creation as a thread (listing 10.1, line 5), and another suitable
for a procedure call in C (line 6); furthermore, both must be declared before they are
de�ned, in case the input program uses recursion;

2This causes the hardware allocator to attempt an allocation of the desired number of contexts, or any
smaller size down to a single context, or fail if no context is available whatsoever.

168 CHAPTER 10. CONCURRENCY VIRTUALIZATION

1 void _mts_innerprod (void) ;
2 void _seq_innerprod (long _I , int * , int * , int *) ;
3 extern void * innerprod [2] ;
4

5 void _mts_innerprod (void) { / * th read program * / }
6 void _seq_innerprod (long _I , int * _mtp_a, int * _mtp_b,
7 in t * _mtp_sum) { / * p l a i n C f u n c t i o n * / }
8 void * innerprod [2] =
9 { &_mts_innerprod , &_seq_innerprod } ;

10

11 in t A[1 0 0] ;
12 in t B [1 0 0] ;
13

14 sl_def (kerne l , , sl_shparm (int , r e s)) {
15 long _fid , _start , _ l imit , _step , _block , _idx ;
16 in t * _arg1 , * _arg2 , _arg_sum_11 ;
17

18 / * common i n i t i a l i z e r s from program source : * /
19 _star t = 0 , _ l imi t = 100 , _step = 1 , _block = 0 ;
20 _arg1 = A, _arg2 = B, _arg_sum = 0 ;
21

22 / * a l l o c a t i o n t e s t : * /
23 asm vo la t i l e (" a l l o c a t e %0" : "=r " (_f id)) ;
24 i f (� 1 == _f id)
25 goto _seq ;
26

27 / * here c o n f i g u r e and c r e a t e as fam i l y o f th reads ,
28 us ing con t ex t _fid ,
29 range (_star t , _ l imi t , _step) ,
30 window s i z e _block ,
31 source v a l u e s _arg1 , _arg2 , _arg_sum ,
32 t h read program _mts_innerprod ,
33 then synchron ize and update _arg_sum * /
34 goto _end ;
35

36 _seq :
37 i f (_step > 0)
38 for (_idx = _star t ; _idx < _l imi t ; _idx += _step)
39 _seq_innerprod (_idx , _arg1 , _arg2 , &_arg_sum) ;
40 e lse
41 for (_idx = _star t ; _idx > _l imi t ; _idx += _step)
42 _seq_innerprod (_idx , _arg1 , _arg2 , &_arg_sum) ;
43

44 _end :
45

46 sl_setp (res , 0) ;
47 }

Listing 10.1: Automatic serialization code for listing H.21 (simpli�ed).

10.3. CONTROLLABLE AUTOMATIC SERIALIZATION 169

1 ! (` ` innerprod ' ' code omit ted)
2 . global _mts_kernel
3 . type _mts_kernel , #f unc t i on
4 . reg is ters 0 1 6 0 0 0
5 _mts_kernel :
6 al locate %t l 3 ! . ` ` t r y or f a i l ' '
7 cmp %t l3 , � 1; swch ! . s u c c e s s ?
8 be . LL13 ! . no : branch below
9 nop

10 sethi %hi (A) , %t l 0 !+ load channel source
11 or %t l0 , %lo (A) , %t l 0 !+ load channel source
12 sethi %hi (B) , %t l 1 !+ load channel source
13 or %t l1 , %lo (B) , %t l 1 !+ load channel source
14 mov 0 , %t l 2 !+ load channel source
15 set l imi t %t l3 , 99 !+ c o n f i g u r e l i m i t
16 sethi %hi (_mts_innerprod) , %t l 5 !+ load PC
17 or %t l5 , %lo (_mts_innerprod) , %t l 5
18 setthread %t l3 , %t l 5 !+ c o n f i g u r e PC
19 create %t l3 , %t l 3 ; swch !+ c r e a t e fami l y
20 mov %t l3 , %t l 3 ; swch !+ wai t on te rm ina t ion
21 . LL14 :
22 mov %t l2 , %ts0 ! . propagate r e s u l t
23 end ! . end thread
24 . LL13 :
25 sethi %hi (B) , %t l 4 ! � load argument
26 sethi %hi (A) , %t l 5 ! � load argument
27 mov 0 , %t l 0 ! � i n i t counter
28 mov 0 , %t l 2 ! � load argument
29 or %t l4 , %lo (B) , %t l 4 ! � load argument
30 or %t l5 , %lo (A) , %t l 5 ! � load argument
31 . LL15 :
32 ld [% t l 4+%t l 0] , %t l 3 ! i n l i n e d load
33 ld [% t l 5+%t l 0] , %t l 1 ! i n l i n e d load
34 add %t l0 , 4 , %t l 0 ! � increment counter
35 smul %t l3 , %t l1 , %t l 1 ; swch ! i n l i n e d mul
36 cmp %t l0 , 400 ! � t e s t counter
37 add %t l2 , %t l1 , %t l 2 ; swch ! i n l i n e d reduc t i on
38 bne . LL15 ! � next i t e r a t i o n
39 nop
40 b , a . LL14 ! � back to common end
41 nop
42 . s i ze _mts_kernel , . � _mts_kernel

Listing 10.2: Generated assembly code for listing 10.1.

170 CHAPTER 10. CONCURRENCY VIRTUALIZATION

ˆ once the de�nition of the C function is in scope, the inlining capabilities of the code
generator can operate as usual; this is demonstrated in the example where the code
generator inlines the kernel loop entirely (listing 10.2, line 31);

ˆ although there are two loops to cater for both increasing and decreasing index se-
quences, usually constant propagation of the step value by the code generator will
ensure that only one branch is compiled, as demonstrated in the example;

ˆ the overhead of the scheme compared to a pure sequential code using a loop is 3
machine instructions: one use of family allocation (listing 10.2, line 6) and a conditional
branch (lines 7 and 8);

ˆ the overhead of the scheme compared to a transparent use of the concurrency primitives
of the underlying architecture is 2 machine instructions, i.e. the conditional branch;

ˆ although the two versions can be separately identi�ed by name mangling3, we also
need to generate a singlefunction descriptor (listing 10.1, line 8), de�ned as an array
of pointers to the two codes and with the original name �innerprod,� to allow a single
address for the function to be taken and stored in C data structures, as required for
system code;

ˆ although an allocation failure causes a serialized version of the family-de�ning loop to
be used, this does not imply that the family is fully serialized: if the thread program
of the serialized family uses further family creations, these will attempt to allocate a
concurrent context again. This allows parallelism to be re-gained dynamically once
some contexts become available.

10.3.2 Impact on the language semantics

Thanks to the requirement of serializability introduced early on (section 6.2.4), the base
language semantics as of chapter 7 and Appendix I did not require any change with the
introduction of this automated resource scheduling scheme in theimplicit form of the con-
currency constructs. In particular, all our de�nitions about scheduling, ordering of side
e�ects, etc. discussed in chapter 7 apply to the new operational semantics of our implemen-
tation just as well as they did without the scheme implemented.

However, as described in section 10.3, we also found necessary to cater for the need ofj
system code by providing anexplicit control over this scheme. We did this by extending the
syntax form of create speci�ers (Appendix I.5.8.1):

create-speci�er :
: : :
sl__forceseq
sl__forcewait

With this syntax extension, it becomes possible to use the words �sl__forceseq � or
� sl__forcewait � as the 6th positional parameter of the �sl_create � construct. The code
translator can then determine which allocation mode to use, respectively �wait and succeed�
or �try or fail,� and also avoid emitting the version of the creation code that is left unused
(respectively the serialized and non-serialized part). See also side note 10.1.

From a semantics perspective, these speci�ers do not modify the functional behavior
of the program; however we intentionally choose to notadvertise their existence in our

3e.g. �_mts_innerprod � vs. � _seq_innerprod �

10.4. LIMITATIONS AND FUTURE WORK 171

Side note 10.1: Static vs. dynamic allocation failure management.

The syntax-based discrimination is static : the speci�ers are lexical keywords and it is their presence or
absence in the syntax that determines the choice at compile-time.
We chose a static scheme over a dynamic scheme, i.e. where the run-time value of an expression would deter-
mine the behavior, because we found that in all situations where control is desired, we know statically which
implementation should be used. If future work shows that a dynamic choice is required instead, we estimate
that the additional implementation work required to add a run-time conditional in the generated code is
minimal; however we highlight that a run-time conditional would prevent the static elision of whichever
version is not used from the generated code.

(a) Sequential (b) 1 family context (c) 32 family contexts

Figure 10.1: Execution of QuickSort on 1 core.

These diagram represent memory activity over time. The horizontal axis represents time; the
vertical axis represents cells in the array being sorted. A dot in the diagram represents a memory
read or write operation. In a sequential execution, only one branch of the recursive divide-and-
conquer step is executed at a time (e.g. �gs. 10.1a and 10.1b); with concurrency, multiple branches
are executed simultaneously (e.g. �g. 10.1c).

published interface language speci�cation, since they require the conceptual introduction of
a resource model which does not otherwise exist in C.

10.3.3 Run-time behavior

In Appendix J we detail the behavior of two naive recursive QuickSort implementations with
our strategy enabled.

As expected, the use of our concurrency constructs adds overhead compared to a pure
sequential version if the program is forced to run as a single thread, because the hardware
must stall the execution at every attempt to allocate a bulk creation context until the
allocation unit reports a failure. However, as soon as more than one context is available
in hardware, it is automatically exploited by the program and the resulting multithreaded
execution provides latency tolerance and speedup, even on one core (�g. 10.1).

Interestingly, we found that it is not very bene�cial to instrument the naive version to
only use concurrency when the amount of work at a given recursion level, here the size of
the sub-array to sort, is larger than a threshold (�g. 10.2). Indeed, since the cost of testing
the sub-problem size is comparable to the cost of trying an allocation, any threshold-based
alteration to the scheme amounts to trading one time overhead with the same.

10.4 Limitations and future work

As seen above, our scheme incurs a check overhead, with longer execution times than a
pure sequential program, if concurrent code executes in a mostly sequential environment.

172 CHAPTER 10. CONCURRENCY VIRTUALIZATION

(a) 1 family context (b) 32 family contexts

Figure 10.2: Execution of QuickSort on 1 core (threshold: 16 elements).

Furthermore, this overhead cannot be trivially avoided by means of a threshold on the
problem size, because simple conditionals have a comparable cost to a failed allocation.

We generalize by stating that a program containing dynamically heterogeneous con-
currency should only be expressed using concurrency constructs in the source code if a
reasonable con�dence exists that multiple family contexts will be available at run-time to
provide multithreading overlap and compensate for the overheads. This con�dence can be
provided by an on-chip resource manager that partitions the chip between application com-
ponents (cf. chapter 11). Otherwise, the concurrency management overheads contribute to
the critical path through the execution, as highlighted in [FLR98].

We suggest that the scheme could be extended by duplicating the entire recursion asP
a purely sequential program, with a unique start-up check in the algorithm entry point
on whether the underlying execution resource is sequential or not. In the sequential case,
the sequential code is used and this overhead could be avoided. This possible extension
constitutes future work.

There is another limitation that can be observed when running families de�ning manyP
logical threads, for example one thread per item in an array. If an algorithm exhibits both
dynamically heterogeneous concurrency, e.g. data-dependent divide-and-conquer, and large
families, it becomes possible that the serialization of a family causes a load imbalance: once
a leaf family starts to run as a loop, it will execute entirely as a loop, even if concurrency
contexts become available during the loop execution. We suggest to extend our scheme to
try and allocate contexts within the loop body, and switch back to parallel execution when a
context becomes available. To avoid a detrimental e�ect on the performance of inner loops,
these attempts should be performed by an outer loop with a con�gurable coarser step than
the inner loop. This should be explored in future work.

Furthermore, while working on TLS (chapter 9), we discovered another limitation toP
this scheme: the serialization of a family of threads as a loop also merges any thread-
local storage requirements, e.g. minimum stack frame sizes, of the serialized family into the
thread where the serialization occurs. In other words, in any situation where serialization
may occur, the execution environmentmust provision extended thread-local storage to each
serializing thread context. With recursion, the thread-local storage of some threads may
become arbitrarily large during execution. This in turn requires an e�cient, low-latency
dynamic memory allocation scheme with extremely low contention to keep all threads on
each core active [Gru94]. Concurrent dynamic memory management is a known active
�eld of research, and we expect any future result in that direction to be relevant to the
architecture considered.

10.4. LIMITATIONS AND FUTURE WORK 173

Finally, we highlight that the virtualization scheme described in this chapter is coop-P
erative. In particular, it requires that the programming language semantics do not expose
mandatory parallelism, i.e. the ability for a program description to require from the plat-
form that two activities must be carried out in parallel (e.g. so that they can communicate
bidirectionally). This requirement holds for languages like our proposed interface from chap-
ters 6 and 7, where the main constructs for concurrency are declarative. However, as we
suggested in section 6.3.6 and detail further in chapter 12, other programming interfaces
may be devised for the platform. For example an implementation of Unix would require
another form of concurrency virtualization that guarantees fair scheduling between inde-
pendent processes. If or when this happens, and an alternate interface o�ers mandatory
parallelism in its semantics, other virtualization mechanisms will be required.

Summary

In this chapter, we have highlighted the dialogue between the hardware architect and thej
operating software provider to design virtualization mechanisms that abstract away the
�niteness of physical resources. This dialogue must be engaged each time a new resource
type is added to a platform design.
We have illustrated this dialogue with the example ofconcurrency resourcesin the proposed
architecture, which are �nite on any given implementation and are desirably unbounded
in abstract models. We have addressed this virtualization need by introducingdeclarativeÌj
concurrency constructs in the interface language. We have also proposed an implementation
of these constructs that automatically and cooperatively sequentializes units of work at run-
time when concurrency resources in the underlying platform become exhausted. We haveP
isolated a need to manage the mapping of workloads to resources in future work. We have
also highlighted that declarative concurrency may not be suitable for other programming
abstractions, where di�erent virtualization mechanisms may be required instead.

Chapter 11

Placement and platform partitioning
�Highlight on speci�cs, opus 4

The way forward seems to be to
provide reasonable operations,
and make costs somewhat
transparent.

Andrei Matei

Abstract

When adding new architectural features that do not have corresponding abstrac-
tions in the operating software stack, it is sometimes necessary to create �holes� in the
lower level interfaces so that the new features can be exploited directly. However the
constructs to drive these new features should still be designed to abstract away uninter-
esting characteristics of the implementation, and expose instead its general principles.
We illustrate this with the example of work placement. As explained by [PHA10] and
previous work, placement optimization cannot be fully automated in hardware and the
e�cient execution of �ne-grained concurrent workloads over large many-core chips will
require dedicated interfaces to control the mapping of computations to speci�c cores in
operating software. However, no consensus yet exists as to what these interfaces should
be. Upcoming many-core system stacks will thus need to explore placement issues by
exploiting primitives that are not yet part of the usual abstraction tool box. In this
chapter, we discuss how such primitives from the architecture proposed in part I can
be exposed to the operating software providers.

Contents
11.1 Introduction . 176
11.2 On-chip work placement: exposing control . 177
11.3 On-chip work placement: how to exploit . 182
Summary . 186

175

176 CHAPTER 11. PLACEMENT AND PLATFORM PARTITIONING

11.1 Introduction

In chapter 5, we outlined the special relationship between platform providers and the
providers of ��rst level� operating software, such as the C programming environment. We
also highlighted the integration process for innovations at the level of the machine interface:
�rst level operating software is �rst extended beyond the scope of established standards,
then applications start to use non-standard features, and then features con�rmed to be
useful across a range of applications are retrospectively integrated in new revisions of the
standards. To enable this process, there must exist �holes� in the abstraction layers to
provide direct access to new features. An example of this is theasm construct in most
C implementations, which allows C programs to use machine instructions not yet used by
existing C language features.

Placement of computations and data on physical resources on a chip is another example
of a platform feature still missing standard abstractions.

In contemporary systems, explicit placement is usually available through a system API
with a large granularity: a program wishing to bind a computation, usually a thread or a pro-
cess, to a particular processor will request so through an interface to the operating system's
scheduler. Examples are Linux'sched_setaffinity or FreeBSD's cpuset_setaffinity .
This usually requires special privileges and the overhead of a system call, and in practice
is usually only performed once at program start-up to assign �worker� threads to speci�c
processors, which then cooperatively negotiate the dispatch of tasks through data structures
in shared memory. Even when considering the task dispatching process itself as a placement
mechanism, overheads are also incurred by the cache coherency required to communicate
the task data structures across cores in the memory network.

In contrast, the concurrency management primitives available with the architecture from
part I allow programs to optionally and explicitly control the mapping of computations onto
cores via a dedicated �delegation� NoC. The delegation messages are issued via special ISA
instructions. This protocol enables the dispatch and synchronization of multi-core workloads
within a few pipeline cycles; the direct use of the corresponding ISA instructions by programs
is therefore orders of magnitude faster than the overhead of calling a system API, andalso
faster than sharing task data structures via a memory network.

However, direct use in programs also implies that the �rst level interface languages in the
operating software must expose the hardware primitives as �rst-class language constructs
that can be used at any point in algorithms. In the case of C, for example, this is a
radically new requirement as C had never exposed knowledge about the physical location of
sub-computations previously.

What should this language interface look like? One the one hand, we can predict that
a �rst level interface can hide hardware-speci�c details such as the encoding of the special
instructions. On the other hand, there is obviously not enough information at the lower
level of the abstraction stack to devise high-level abstractions, for example �automatically
perform the best work distribution for a given parallel computation.� This knowledge and
the corresponding decision mechanisms are typically found at a higher level in the operating
software stack, for example in the run-time system or the user of a �productivity� language
like Chapel [CCZ07] or SAC [GS06].

This situation thus warrants creating an �abstraction hole,� to delegate to operating
software providers at a higher abstraction level the responsibility to make placement deci-
sions. In this chapter, we illustrate how to achieve this with the proposed architecture in
our interface language SL, previously introduced in chapter 6.

11.2. ON-CHIP WORK PLACEMENT: EXPOSING CONTROL 177

11.2 On-chip work placement: exposing control

11.2.1 Architectural support

The machine interface in chapter 4 was designed with two mechanisms for placement in mind.Z
Historically, the �rst mechanism was a design-time partitioning of the many-core chip into
statically named clusters. Later on, a �exible dynamic partitioning protocol was introducedÌ
as well, which we jointly designed and prototyped with the platform implementers. Both
can be used in combination in a design, where larger, static cluster can be �internally�
divided further at run-time into �ne-grained sub-clusters. We detail the latter �ne-grained
placement protocol in Appendix E.

In both cases, the �allocate� instruction that reserves bulk creation contexts accepts a
�placement� operand. This is a resource address which triggers remote access, through the
delegation NoC, to the named cluster if the address does not match thelocal addressof the
thread issuing �allocate.� With static clusters, the address corresponds to the master core
connected both to the delegation NoC and its neighbour cores in the cluster; with dynamic
clusters, a virtual cluster address is formed by the address of a �rst core, together with a
cluster size and security capability, combined in a single integer value.

Jointly to this addressing mechanism for new delegations, two machine instructions �get-
pid� and �getcid� are introduced. �getpid� produces the address of the cluster where the
current thread was delegated to, also calleddefault or current placement. �getcid� produces
the address of the local core within its cluster. To avoid the overhead of extra instructions,
�allocate� also recognizes the symbolic value 0 to implicitly reuse the default placement; and
it also recognizes 1 to use the local core only, i.e. avoid multi-core execution altogether.

With large static clusters, an operating software would likely not bind small computing
activities to the static clusters at a high rate. In other words, the granularity of placement
over large static clusters is coarse enough that this type of placement can be requested via
system APIs. It is the existence of small clusters and the ability to dynamically partition
clusters at run-time, within a few hardware cycles, which justi�es the need for low-overhead,
direct access via language primitives.

11.2.2 Language primitives

We propose to transparently pass the run-time value of the �place� family con�guration ex-j
pression, which is the 2nd positional parameter to the �sl_create � construct (clauses I.5.8.1Ÿ3
and I.5.8.1Ÿ26), as the placement operand of the �allocate� operation. If the place expression
is not provided (it is optional in the input syntax), the value 0 is used. With this translation
in place, a program can specify, at the point of family creation:

ˆ either no place expression at all, which uses the default placement implicitly, or
ˆ one of the symbolic values 0 or 1, which designate the default placement or the local

core explicitly, or
ˆ a fully speci�ed target cluster address.

Separately, we extend the library environment as follows:j

ˆ we encapsulate the �getpid � and � getcid � machine instructions as C macros, de�ned
in a SL library header, named �sl_default_placement() � and
� sl_local_processor_address() ,� respectively;

178 CHAPTER 11. PLACEMENT AND PLATFORM PARTITIONING

Name Description Cost1

sl_placement_size(C) Number of cores in the clusterC. 2
sl_first_processor_address(C) Address the �rst core in the cluster C. 2
at_core(P) Address the relatively numbered coreP

in the current cluster.
5/6

split_upper() Split the current cluster and address the
upper half.

5

split_lower() Split the current cluster and address the
lower half.

5

split_sibling() Split the current cluster and address the
sibling half from the perspective of the
current core.

11

next_core() Address the next core within the current
cluster, with wraparound.

13

prev_core() Address the previous core within the cur-
rent cluster, with wraparound.

13

1 Number of processor cycles required with the Alpha or SPARC ISAs.

Table 11.1: Core addressing operators in the SL library.

ˆ we de�ne a C typedef name �sl_place_t � wide enough to hold placement addresses.

With these primitives, a thread in the program can read and manipulate its own place-
ment information, for example to compute thread distributions explicitly.

11.2.3 Integer arithmetic to compute placements

A characteristic feature of the proposed protocol in Appendix E is that it exposes the format
of core addresseson the delegation NoC. In contrast to most contemporary systems where
knowledge about the inter-processor fabric is entirely encapsulated in system services queried
via privileged APIs, the proposed protocol allows programs to construct processor addresses
�from scratch� without involving a system service.

To achieve this, the protocol advertises that a valid virtual cluster address is constructed
by concatenating together a security capability1, the address of the �rst core in the cluster
and the desired cluster size in a single machine word. This encoding creates the opportunity
for programs to compute relative core addresseswith the overhead of a few integer arith-
metic instructions. For example, in our work we have captured the common patterns in
table 11.1 as inlineable functions in a SL library header. Their implementation is given in
Appendix E.3.

11.2.4 Example usage: inner product

The abstraction above allows programs to expressrelative constraints on placement of com-
putations, useful to distribute reductions over variable numbers of cores.

1The capability is optional and can be used by a coarse-grained system service to provide isolation
between computing activities running on separate large-scale core clusters on the chip.

11.2. ON-CHIP WORK PLACEMENT: EXPOSING CONTROL 179

1 double ke rne l3 (s i ze_ t n , double *X, double * Z)
2 {
3 sl_create (, , , n , , , , innerk3 ,
4 sl_shfarg (double , Qr , 0 . 0) ,
5 sl_glarg (double * , , Z) , sl_glarg (double * , , X)) ;
6 sl_sync () ;
7 return sl_geta (Qr) ;
8 }
9

10 sl_def (innerk3 , , sl_shfparm (double , Q) ,
11 sl_glparm (double * , Z) , sl_glparm (double * , X))
12 {
13 sl_index (i) ;
14 // Q += Z [i] * X[i]
15 sl_setp (Q, sl_getp (Z) [i] * sl_getp (X) [i] + sl_getp (Q)) ;
16 }
17 sl_enddef

Listing 11.1: Concurrent SL code for the Livermore loop 3 (inner product).

Figure 11.1: Parallel reduction using explicit placement, for problem sizen � 16 and a
virtual core cluster containing 4 cores.

The boxes indicate the generated logical thread indexes.

As an example, consider the naive implementation of the vector-vector product in list-
ing 11.1. This de�nes a C function kernel3 which computes the inner product of then-sized
vectors X and Z using a single family of threads. Because there is a carried dependency be-
tween all threads, this implementation cannot bene�t from multi-core execution: the �rst
logical thread on every core but the �rst will wait for the last output from the last logical
thread on the previous core (cf. also side note E.2).

Instead, we can modify this program source using the new placement primitives as in-
dicated in listing 11.2. For clarity, we omit the extra logic necessary to handle array sizes
that are not a multiple of the number of cores. The top-level function kernel3 deploys
two levels of reduction, where all threads at the �rst level run on the same core, and each

180 CHAPTER 11. PLACEMENT AND PLATFORM PARTITIONING

1 double ke rne l3 (s i ze_ t n , double *X, double * Z)
2 {
3 sl_place_t p l = s l_defau l t_p lacement () ;
4 long ncores = s l_p lacement_s ize (p l) ;
5 long span = n / ncores ;
6

7 p l = s l_ f i r s t _p rocesso r_add ress (p l) | 1 / * f o r c e s i z e 1* / ;
8

9 sl_create (, / * l o c a l p lacement : * / 1 ,
10 0 , ncores , 1 , , , reduct ionk3 ,
11 sl_shfarg (double , Qr , 0 . 0) ,
12 sl_glarg (double * , , Z) , sl_glarg (double * , , X) ,
13 sl_glarg (long , , span) , sl_glarg (sl_place_t , , p l)) ;
14 sl_sync () ;
15

16 return sl_geta (Qr) ;
17 }
18

19 sl_def (reduct ionk3 , , sl_shfparm (double , Q) ,
20 sl_glparm (double * , Z) , sl_glparm (double * , X) ,
21 sl_glparm (long , span) , sl_glparm (sl_place_t , p l))
22 {
23 sl_index (cpuidx) ;
24

25 long lower = sl_getp (span) * cpuidx ;
26 long upper = lower + sl_getp (span) ;
27

28 sl_create (, sl_getp (p l) + cpuidx * 2 ,
29 lower , upper , 1 , , , innerk3 ,
30 sl_shfarg (double , Qr , 0 . 0) ,
31 sl_glarg (double * , , sl_getp (Z)) , sl_glarg (double * , , sl_getp (X))) ;
32 sl_sync () ;
33

34 sl_setp (Q, sl_geta (Qr) + sl_getp (Q)) ;
35 }
36 sl_enddef

Listing 11.2: Concurrent SL code for the Livermore loop 3, optimized.

11.2. ON-CHIP WORK PLACEMENT: EXPOSING CONTROL 181

Figure 11.2: Performance of the Livermore loop 3.

family created at the second level runs on a di�erent core within the cluster. The resulting
placement at run-time is illustrated in �g. 11.1.

The e�ect of this strategy on performance is given in �g. 11.2. To obtain these results,
we ran the kernel on di�erent virtual cluster sizes, with the input n � 64000. As described
further in section 13.2 and table 13.1, the microthreaded cores run at 1GHz and the baseline
is a sequential program running on 1 core of an Intel P8600 processor at 2.4GHz.

As can be observed, the parallel reduction is advantageous and o�ers a performance
improvement over the baseline past 32 core. As described later in chapter 13, microthreaded
cores are expected to be signi�cantly smaller in area than cores in the baseline architecture.
The performance per unit of area on chip therefore compares advantageously. Moreover,
the proposed design does not use speculation, which suggests that the performance per watt
may also be lower. At any rate, multi-core scalability is achieved without a priori knowledge
about the number of cores while writing the program code.

11.2.5 Relationship with memory consistency

Regardless of how heterogeneous a chip is, and thus how much information on-line resource
managers must maintain (cf. section 2.4), a general-purpose, multi-core chip must expose
the accessibility of memory from processors as a basic property of the system. Indeed, the
topology of the memory networkimpacts the implementation of operating software at all
layers of the abstraction stack, as we outlined in section 3.4.1 and chapter 7.

This is mandatory even for so-called �shared memory� chips, because as we explained
previously in chapter 7, upcoming and future chip design may feature weak consistency
models as an opportunity to simplify and optimize cache coherency protocols. As multiple
consistency granularities start to appear, the distributed nature of many-core chips becomes
unavoidable to the operating software providers [BPS� 09].

To characterize these aspects in a language abstract machine, we introduced the notion
of Implicit Communication Domain (ICD) and Consistency Domain (CD) in section 7.3.
These describe subsets of a platform where implicit communication between memory store
and load operations is possible between asynchronous threads. Communication is fully

182 CHAPTER 11. PLACEMENT AND PLATFORM PARTITIONING

implicit within a CD, whereas it requires some semi-explicit coherency actions in a ICD.
Across ICDs, the memory address space is not shared. For example, a Symmetric Multi-
Processor (SMP) system with full cache coherency would form a single CD and ICD; di�erent
nodes in a distributed cluster would form distinct ICDs; and nodes in a distributed cache
system2 may form a single ICD but distinct CDs.

The placement operators we introduced in the previous sections are tightly related to
the memory topology. Indeed, a program code which assumes a single CD cannot safely
spread work across a virtual core cluster spanning multiple distinct CDs. For example, on
the reference implementation of the proposed architecture, coherency between L1 caches
sharing a single L2 cache uses a fully coherent snoopy bus, whereas coherency between L2
caches is lazy: writes may not be propagated to other L2 caches until a thread terminates.
This implies that a group of cores sharing the same L2 cache form one CD, but separate L2
caches form separate CDs. A program wishing to use implicit memory-based communication
between separate threads, without resorting to explicit memory barriers, must thus ensure
that the threads are assigned to cores sharing a single L2 cache. How should this knowledge
be negotiated between the hardware implementation and the operating software?

As a �rst step in this direction, we propose the following two primitives:j

ˆ local_consistent_cluster(C) : for a given cluster addressC, produce the address of
the largest cluster that encompassesC but provides a single CD. For example, on the
proposed architecture this would evaluate to an address for the local L2 core group,
whereas on a conventional SMP this would evaluate to an address for the entire local
system.

ˆ local_implicit_cluster(C) : for a given cluster addressC, produce the address of
the largest cluster that encompassesC but provides a single ICD. For example, on the
proposed architecture this would evaluate to an address for the entire chip, whereas
on a distributed chip with separate local memories for each core this would evaluate
to an address for the local core only.

We propose that these primitives be used in the run-time system of a higher-level pro-
gramming language, to select at run-time which implementation to run (whether suitable
for a single CD or multiple) depending on the actual resources available locally to a compu-
tation.

11.3 On-chip work placement: how to exploit

The primitives provided so far allow a program to control thread placement within a virtual
cluster at run-time, including partitioning an existing virtual cluster into physically separate
sub-clusters. With the proposed encoding of addressing information, the corresponding
operations can be carried out within a few pipeline cycles. This suggests a high level of
dynamism, where placement can be decided at a �ne grain in algorithms at run-time.

11.3.1 Related work

We have found similar considerations about on-chip placement in the three high-productivity
languages for large parallel systems produced during the DARPA projectHigh Productivity

2For example: http://msdn.microsoft.com/en-us/magazine/dd942840.aspx , http://www.
sharedcache.com/cms/ , http://www.linuxjournal.com/article/7451

11.3. ON-CHIP WORK PLACEMENT: HOW TO EXPLOIT 183

Computing Systems[DGH � 08]: Sun's Fortress [ACH� 08], Cray's Chapel [CCZ07], and IBM's
X10 [CGS� 05]. We describe them below.

Also, we supervised an application of our proposal for cross-domain consistency to dis-
tributed clusters, which we describe as related work in section 11.3.1.3.

11.3.1.1 Relationship with Chapel and Fortress

Virtual clusters in our setting correspond closely to the concept oflocales in Chapel and
regions in Fortress:

In Chapel, we use the termlocale to refer to the unit of a parallel architecture that
is capable of performing computation and has uniform access to the machine's
memory. For example, on a cluster architecture, each node and its associated
local memory would be considered a locale. Chapel supports alocale type and
provides every program with a built-in array of locales to represent the portion of
the machine on which the program is executing. [...] Programmers may reshape
or partition this array of locales in order to logically represent the locale set as
their algorithm prefers. Locales are used for specifying the mapping of Chapel
data and computation to the physical machine [...]. [CCZ07, p. 13]

A locale is a portion of the target parallel architecture that has processing and
storage capabilities. Chapel implementations should typically de�ne locales for a
target architecture such that tasks running within a locale have roughly uniform
access to values stored in the locale's local memory and longer latencies for
accessing the memories of other locales. As an example, a cluster of multi-core
nodes or SMPs would typically de�ne each node to be a locale. In contrast a pure
shared memory machine would be de�ned as a single locale. [Cra11, Sect. 26.1]

Every thread (either explicit or implicit) and every object in Fortress, and every
element of a Fortress array (the physical storage for that array element), has
an associatedregion. The Fortress libraries provide a function region which
returns the region in which a given object resides. Regions abstractly describe
the structure of the machine on which a Fortress program is running. They
are organized hierarchically to form a tree, the region hierarchy, re�ecting in an
abstract way the degree of locality which those regions share. The distinguished
region Global represents the root of the region hierarchy. The di�erent levels of
this tree re�ect underlying machine structure, such as execution engines within
a CPU, memory shared by a group of cores, or resources distributed across the
entire machine. [...] Objects which reside in regions near the leaves of the tree are
local entities; those which reside at higher levels of the region tree are logically
spread out. [ACH� 08, Sect. 21.1]

Like with locale and region variables in Chapel and Fortress, our approach allows pro-
grams to manipulate clusters of cores using an abstract handle (a virtual cluster address
in our setting). We also suggest in our reference implementation a form of data locality
between cores within a locale (cf. �g. 3.9). Furthermore, both Chapel and Fortress pro-
vide explicit placement of computations on named locales/regions (with the keywordon in
Chapel, at in Fortress) and relative addressing via the special name �here,� which corre-
sponds tosl_default_placement() in our setting.

184 CHAPTER 11. PLACEMENT AND PLATFORM PARTITIONING

Neither Chapel nor Fortress formalize a consistency model for concurrent accesses to
memory, like we do. Moreover, our questions about the acquisition of additional resources
and how to determine appropriate cluster sizes, mentioned above, do not have an answer in
Chapel nor Fortress either.

Despite these similarities, both Chapel and Fortress are considerably more mature with
regards to data locality. In particular, both languages de�ne primitives that allow pro-
grams to assign variables, especially arrays, to named virtual core clusters. When these
constructs are used, any computation using these variables is implicitly distributed across
virtual clusters so that each unit of computation becomes local to its operands.

In our setting, this feature is not available natively: variables are either de�ned in the
global scope, in which case they are shared by all clusters visible to the program, or in the
local scope, in which case they are only conceptually local to the thread where they are
de�ned and all other threads running on the same core.

In practice, memory locality is obtained automatically by any thread on its local core in
our reference implementation, because as seen above this uses a distributed cache protocol
which migrates cache lines automatically to the point of last use. However the work on
Chapel and Fortress suggests that explicit control of memory placement may be desirable in
the language semantics. Moreover, explicit data placement could provide a reliable handle
on allocation if our architecture were extended to support multiple distributed memories on
chip. We consider this further in section 11.3.1.3.

11.3.1.2 Relationship with X10

Places in IBM's X10 are similar to Chapel's locales and Fortress' regions:

A place is a collection of resident (non-migrating) mutable data objects and the
activities that operate on the data. Every X10 activity runs in a place; the
activity may obtain a reference to this place by evaluating the constant here.
The set of places are ordered and the methodsnext() and prev() may be used
to cycle through them.

X10 0.41 takes the conservative decision that the number of places is �xed at
the time an X10 program is launched. Thus there is no construct to create a
new place. This is consistent with current programming models, such as MPI,
UPC, and OpenMP, that require the number of processes to be speci�ed when
an application is launched. We may revisit this design decision in future versions
of the language as we gain more experience with adaptive computations which
may naturally require a hierarchical, dynamically varying notion of places.

Places are virtual � the mapping of places to physical locations in a NUCC
system is performed by adeployment step [...] that is separate from the X10
program. Though objects and activities do not migrate across places in an X10
program, an X10 deployment is free to migrate places across physical locations
based on a�nity and load balance considerations. While an activity executes at
the same place throughout its lifetime, it may dynamically spawn activities in
remote places [...] [CGS� 05, Sect. 3.1]

Like Chapel and Fortress, X10 allows both explicit assignment of computations and
data to processing resources, and the local sub-partitioning of resources. With regards to

11.3. ON-CHIP WORK PLACEMENT: HOW TO EXPLOIT 185

consistency, X10 de�nes places as sequentially consistent, which in our model would translate
as a constraint that core clusters do not span multiple consistency domains.

The new concept with X10 is the run-time mapping of virtual places (visible by programs)
and physical resources (invisible by programs). This reduces the amount of knowledge about
the environment provided to programmers but creates the opportunity to optimize load
balance at run-time outside of the program speci�cation.

It is conceptually possible to introduce this feature in our setting by indirecting every
bulk creation through a system service in charge of placement, which would hold the mapping
between place identi�ers (manipulated by the program) and physical cluster addresses. The
trade-o� of this approach is a mandatory overhead at each bulk creation, which would defeat
the bene�t of architectural support for the e�ective parallelisation of small workloads. This
observation highlights the fact that the primary bene�t of hardware support for concurrency,
that is low overheads for concurrency creation and synchronization, can only be reaped in
applications if the program has direct access to the machine interface.

11.3.1.3 The Hydra run-time

Under our supervision, the author of [Mat10] has thoroughly investigated the use of the
proposed consistency semantics across clusters of SMPs. In this work, more SL language
primitives have been designed which integrate consistency semantics, placement and object
(data) declarations.

This work extends the vision that data should be migrated automatically to the point
where it is used, to provide locality implicitly. In contrast to the three �high-productivity�
languages mentioned above, the proposed language semantics provide a placement-neutral
declaration for variables, and provides instead explicitdeclarative constructs to inform the
run-time system where data may be needed. The run-time system then exploits this infor-
mation to determine the minimum amount of necessary communication su�cient to satisfy
the consistency semantics assumed in the program. For example, when multiple logical
threads explicitly declare inter-domain communication for di�erent subsets of a data item,
the run-time system automatically merges these declarations during execution so that only
one communication event occurs per node for all logical threads sharing a view on the data
item.

11.3.2 Open questions to operating software providers

If the proposed �ne-grained interface to placement is to be adopted, operating softwareP
providers will need to answer the following questions:

ˆ how does a program obtain access to a virtual cluster initially? Implicitly, we have
assumed so far that the top-level thread(s) of a program are placed at some virtual
cluster by an �operating system� upon program start-up. With the proposed language
constructs, a program can then address cores within this initial cluster. However,
system services must be designed to gain access toadditional clusters if automatic
scalability to varying resource availability is desired.

ˆ in an attempt to answer the previous question in our own work, we have prototyped a
cluster allocation serviceable to partition the entire chip into sub-clusters on demand.
However, we could not �nd a satisfying protocol to query this service: what should be
its request parameters?

186 CHAPTER 11. PLACEMENT AND PLATFORM PARTITIONING

Our naive initial choice was to de�ne a �desired number of cores� and �whether a single
consistency domain is desired� as request parameters. However, this was misdirected:
programmers and operating software abstractions do not reason in terms of number
of cores and consistency domains; instead, they have real time constraints (e.g. guar-
anteed minimum throughput on an algorithm) or optimization goals (e.g. maximize
the throughput on an algorithm). We are not aware of any existing methodology to
translate these requirements to placement requests at a �ne grain.

ˆ in more general terms,can application-level extra-functional requirements on through-
put and latency be expressed only as constraints on the number and location of cores
involved? The proposed architecture tries hard to achieve this simpli�cation with its
distributed cache, which conceptually provides a uniform view over a shared o�-chip
backing store and isolates tra�c between separate core clusters using a hierarchical
topology (cf. section 3.4.1).
However, we did not �nd any results that suggest that these properties hold in an
actual implementation for larger number of cores. Quite the contrary, using the im-
plementations described in section 4.7 we observed memory bandwidth and latency
interference between independent core clusters. We thus cannot exclude that future
many-core chips will feature Non-Uniform Memory Access (NUMA) topologies with
load-dependent bandwidth and latency properties. Were this to happen, thecom-
munication activity between program components must be characterized and taken
into account by the operating software infrastructure. This would in turn imply that
operating software providers will require to know about the semantics of memory con-
sistency protocols on chip, and language designers will need to derive communication
requirements between units of work expressed to run concurrently in program source
code. We are not aware of any coordinated approach in that direction at the time of
this writing.

Nevertheless, the integration of placement at the machine interface creates acommon
vocabulary to reason and talk about these issues between operating software providers. Such
a common ground is sorely missing in current architectures, where issues of work placement
are resolved using di�erent abstractions in each operating software environment, and are thus
di�cult to compare analytically. We should thus expect that a common set of primitives
will facilitate further research activities.

Summary

In this chapter, we have introduced preliminary support for explicit placement of computa-ZÌ
tions to clusters of cores de�ned dynamically. This support is su�cient to control threadj
placement in operating software and accelerate multi-stage parallel computations. It also
avoids requiring programmers or code generators to make assumptions about the overall
topology of the system.
We have also isolated further research questions that must be answered before a full integra-P
tion of these primitives into higher-level abstractions can be achieved. By studying related
work we observe that these questions have not yet been fully answered by other modern,
contemporary parallel programming languages; we suggest that common abstractions in the
machine interface will facilitate future research in this area.

Chapter 12

Issues of generality

Abstract

In section 1.4.3, we have highlighted that innovation in computer architecture is
composed of two parts, one that answers the �inner question� by designing the substance
of the innovation, and another that answers the �outer question� which places the in-
novation into its context for consideration by external observers. In [Lan07, Lan1x],
the author answers the inner question for hardware microthreading in depth, by de-
tailing the hardware design and intrinsically demonstrating its behavior. As part of
our process to answer the outer question, we have exposed so far the features of the
design visible from software, which we will illustrate in the context of existing software
ecosystems in part III. There is however one aspect not covered by the previous chap-
ters of this dissertation nor [Lan07, Lan1x]: the argument to the audience about the
generality of the invention. In this chapter, we argue that the proposed design provides
fully general cores and is suitable to support most parallel programming patterns.

Contents
12.1 Introduction . 188
12.2 Turing-completeness: one and also many . 188
12.3 Abstract concurrency models . 189
12.4 Turing completeness, take two . 195
12.5 Exposing the generality to software . 196
12.6 Generality in other designs . 197
Summary . 198

187

188 CHAPTER 12. ISSUES OF GENERALITY

12.1 Introduction

We consider two levels of generality. The �rst level is common to any microprocessor design:
show whether the proposed design is �t for use for true general-purpose computing, and how
the interactive Turing machine is approximated. This re�ects the requirements set forth in
sections 1.2.1 and 1.3. The second level is speci�c to a design that o�ers a parallel execution
environment: de�ne what the abstract semantics of communication and synchronization
are, how new processes and channels are de�ned, and what are the conditions under which
deadlock freedom and progress are guaranteed.

Usually, in computer architecture, the ancestry of a new component is su�cient to argue
for its generality: a new pipeline that supports control �ow preemption via interrupts and
is connected to a su�ciently large RAM is conceptually su�ciently close to all previous
microprocessor designs that its generality can beimplicitly inherited . Usually, universal and
interactive Turing-completeness for individual pipelines stems from conditional branches and
the RAM interface to both storage and external I/O, whereas generality relative to parallel
execution comes from the availability of time sharing and virtual channels over a consistent
shared memory. However, the situation is not so clear if some features are omitted relative to
previous approaches, or in the presence of hardware parallelism. For example, the proposed
design from part I does away with control �ow preemption and consistent shared memory:
can it still be used to support general concurrency patterns? It also supports orders of
magnitude more concurrent threads than in existing processor designs: what is the cost to
guarantee access to a private memory on each individual thread, as required to guarantee
Turing-completeness?

An argument for generality can be constructed either by showing that a new design can
be described by one or more of the existing theoretical models, or cansimulate arbitrary
programs expressed using these models. Turing-completeness has the Turing machine,� -
calculus or queue machines, as seen in section 1.2.1. For concurrent execution, one can use
Hoare's Communicating Sequential Processes (CSP) [Hoa78], Hewitt's Actors [HBS73] or
Milner's � -calculus [MPW92a, MPW92b].

In doing so, the �niteness of resources in a concrete implementation should be acknowl-
edged. In general, when some property of an abstract model is dependent on the recur-
sive unfolding of a theoretically unbounded inductive abstract rule, for example the arbi-
trary scrolling of the tape in a Turing machine, or a property over the replication operator
!P � PSPSP::: in the � -calculus, the argument about an actual design must show which con-
crete resource supports the unfolding and which implementation parameter(s) can be tuned
to approximate an arbitrarily large speci�cation of a program in the abstract model. In par-
ticular, the simulation should be complexity-preserving: a basic operation of the simulated
model with a constant time and space cost should have a constant maximum time and space
cost in the simulation.

As parting words on the topic of the inner question around hardware microthreading,
this chapter argues for this generality in the proposed innovation.

12.2 Turing-completeness: one and also many

The generality of the design in part I can be directly derived from the generality of onej
individual thread context on chip. As the proposed innovation reuses a standard RISC
pipeline, including its support for conditional branches and its memory access instructions,
and execution using only thread has access to the entirety of the arbitrarily large external

12.3. ABSTRACT CONCURRENCY MODELS 189

Side note 12.1: Implementation-independent interleaving.

Our proposed interleaving of N abstract tapes into one is only valid if an upper bound for N is known.
As is, our scheme is thus implementation-dependent. However there also exist implementation-independent
interleavings. For example, the bits of the context address and the bits of the memory address can be
interleaved, as suggested by Morton [Mor66] and Pigeon [Pig01, Sect. 5.3.6.3, p. 115]. The ability to
interleave is thus implementation-independent.

memory, the thread can be described by (and simulate) a universal Turing machine, with
intuitive cost properties.

An issue arises when considering multiple thread contexts executing simultaneously. For
each context to be Turing-complete, all must have access to their dedicated,private region
of memory to simulate their Turing machine's tape. As illustrated in chapter 9, this can
be achieved by splitting the logical address space of the entire chip by the actual number
of thread contexts on the chip. Other such interleavings can be constructed for any system
implementation (cf. side note 12.1). If there areN thread contexts, a Turing machine of
any degree of complexity can be implemented by any thread context independently from
all others by growing the external memory accordingly by a factor N . This simulation
of private memories is further complexity-preserving, assuming the back-end RAM system
provides independent, bounded access times to all memory locations.

Finally, we highlight that Turing-completeness is not su�cient per se; as mentioned in
section 1.2.1, threads should also support interaction, i.e. the ability to interact with the
outside world besides RAM. Yet the design from chapter 3 proposes that only some cores
are connected to an external I/O interface. For the other cores, the argument for generality
can be constructed as follows: as long as an operating software proposes an I/O forwarding
service to all cores, where an I/O read or write access from any thread can be delegated,
via TMU events over the chip, to a core with physical access to I/O devices, then all cores
can be considered general. This simulation of interaction for all cores can further be made
complexity-preserving by ensuring that the I/O forwarding services have a �xed overhead,
i.e. with a maximum added I/O latency and space requirement for management data struc-
tures; this property was e.g. achieved in our implementation of POSIX system services
(cf. section 6.4.2); the distributed operating systems Barrel�sh [SPB� 08] and fos [WA09]
also support this pattern.

12.3 Abstract concurrency models

12.3.1 Prior work

In [BBG � 08, Jes08b, vTJ11, vTJLP09] and other publications, the authors introduce �SVP,�Z
a �general concurrency model� derived from hardware microthreading. This model describes
the behavior of a program in term of concurrent families of threads that are dynamically
created and synchronized upon by individual threads. It also de�nes data�ow channels
between threads directly related by family creation, and an asynchronous shared memory
where the visibility of writes relative to loads is only guaranteed by family creation and
synchronization.

In [VJ07], the authors project the semantics of SVP onto thread algebra [BM07] to
demonstrate deadlock freedom under at least the following conditions:

ˆ families are created and synchronized upon by the same parent thread;

190 CHAPTER 12. ISSUES OF GENERALITY

ˆ all actions other than reading from a channel are not blocking;
ˆ the data�ow channels are connected so that the directed data�ow graph is acyclic, a

thread may only be waiting for a data produced by its predecessors, and all channels
are provisioned with a value by their source thread after the source thread has received
a value from its predecessor threads.

Furthermore, [VJ07] shows that SVP is deterministic with regards to the values emitted on
its data�ow channels and the values written to memory when the program is both deadlock
free and race free.

Finally, SVP disallows arbitrary point-to-point communication. Data�ow channels are
only connected between a parent thread and the families it directly creates. Communication
via memory between concurrent threads is in turn disallowed by stating that writes by one
thread are only visible to loads by itself and its successor threads: either those created as
new families by the writer thread, or the parent thread after the writer's termination. As
such, SVP cannot be used to simulate arbitrary concurrency patterns from CSP, Actors or
� -calculus.

This abstract model assumes unbounded resources, in particular that threads can com-
municate over an arbitrary number of channels and that the creation of a family is a non-
blocking operation that always succeeds. As we discussed in chapters 4, 8 and 10, this
assumption does not hold for the proposed hardware design, where the maximum number
of data�ow synchronizers and bulk synchronizers are bound by physical resources on chip.

To increase the number of channels that can be de�ned from SVP's perspective, we
de�ned in chapter 8 a method to �escape� channels as slots on the activation records of
thread programs. This simulation is also complexity-preserving since each communication
operation is simulated by a �xed number of memory addresses and a �xed number of memory
stores and loads. However, using this method an arbitrary number of channels can only be
created if the thread context performing a family creation has access to an arbitrarily large
private memory. For the scheme to work from any context, every context must have access
to an arbitrarily large private memory.

Similarly, to increase the number of families that can be created from SVP's perspective,
we de�ned in chapter 10 a method to �escape� creation as asequential procedure call. Again,
this simulation is complexity-preserving as each family creation translates to a �xed number
of memory addresses and operations. However, using this method an arbitrary number of
families can only be created if the �rst thread context where hardware creation fails supports
an arbitrary recursion depth. For the scheme to work from any thread context, an arbitrary
sequential recursion depth must be available everywhere. Also, this method only works
because the behavior of any family in SVP is serializable into a sequential process.

We highlight that the abstract de�nition of SVP in [VJ07] and other previous publi-j
cations did not mention explicitly their requirement on arbitrary large private memories
and recursion depths from individual SVP threads. As we showed here, these features are
mandatory if SVP is to be simulated by a platform with a �nite number of concurrency
resources. Conversely, if an implementation does not o�er arbitrarily large memory and
recursion depth per thread, then it does not simulate SVP and is not free of deadlock even
when all data�ow channels are provisioned. Of course, if all thread contexts are otherwise
Turing-complete, for example as discussed above in section 12.2, both escape mechanisms
are implementable and the system can simulate SVP completely.

12.3. ABSTRACT CONCURRENCY MODELS 191

12.3.2 Communicating sequential processes

We postulate that the proposed hardware design can simulate the semantics of Hoare's CSP
in the form described in [Hoa85]. Unfortunately, we have not yet demonstrated this formally;
this section merely argues that the platform goes a long way towards supporting CSP, which
the SVP model above does not. If the platform can run CSP programs, software audiences
can gain con�dence that it can also support existing programming abstractions based on
CSP such as Occam [MS90], Erlang [AVWW96] or MPI [Mes09].

We consider here only CSP programs that de�ne up toN processes, whereN is the
number of thread contexts available in the platform. We place this restriction because
supporting more than N processes would require interleaving of multiple CSP processes over
single thread contexts, which the architecture does not currently support (cf. section 3.3.2).
We do not consider this as a strong restriction however: the reference platform we used for
evaluation (cf. table 13.1) supports at least 4000+ simultaneously running thread contexts1.
Further technology advances will likely allow the implementer to increase this limit further.

CSP further exhibits the following features:

ˆ processes can communicate over named channels;
ˆ communication is synchronous, i.e. sending a value in one process and receiving a value

in another are a rendezvous;
ˆ each process can name (and thus use) an arbitrarily large, but statically known set of

channels;
ˆ processes communicate values over channels, and values can be neither channel names

nor processes;
ˆ choice: processes can wait for an event from two or more channels simultaneously and

react as soon as any one channel has an event available;
ˆ channels support communication only in one direction and between two processes [Hoa85,

Sect. 4.2, p. 114];
ˆ processes can recurse and activate new processes at every step of the recursion2;
ˆ concurrent events that do not synchronize processes can proceed concurrently.

Per-process recursion stems from the Turing-completeness of individual thread contexts,
discussed previously. The activation of new processes can in turn be implemented using the
concurrency management services of the TMU introduced in section 3.3.1. Since separate
thread contexts are independently scheduled (cf. section 3.2.1), concurrency of CSP processes
mapped to separate thread contexts is guaranteed.

Not considering CSP's support for choice, point-to-point communication can be imple-
mented by the platform's synchronizers and the remote register access primitives of the
TMU, described in chapter 3. More speci�cally, one channel between two processes can
be implemented by using two synchronizers at each endpoint, using remote writes to one

1 It actually supports up to 32000+ contexts if some of them consume less data�ow synchronizers per
context than the number allowed by the ISA (cf. section 3.3.3 and chapter 8). However, the number of
independent thread contexts is also bound by the number of bulk synchronizers, 32 per core in the reference
implementation. Unless multiple CSP processes can be instantiated in a single bulk creation, the number of
bulk synchronizers bounds the maximum number of CSP processes that can be created.

2 In his original paper [Hoa78], Hoare recognized that the semantics of CSP allowed programs to dy-
namically create new processes but was reluctant to encourage the use of this feature. In the later CSP
book [Hoa85], dynamic process creation was explicitly allowed and a note was simply added at the end that
some implementations, in particular Occam on the Transputer [MS90] could not create arbitrary numbers
of new processes dynamically [Hoa85, Sect. 7.3.6, p. 225].

192 CHAPTER 12. ISSUES OF GENERALITY

synchronizer to transmit data and remote writes to the other for acknowledgements. This
direct mapping of CSP channels to pairs of hardware synchronizers supports at mostL~2
channels, whereL is the number of private synchronizers allocated for the thread context
(cf. chapter 8); it is complexity-preserving since each CSP communication is simulated by a
�xed number of synchronizing operations.

Simple pairs of synchronizers cannot implement CSP's choice operation. Choice cannot
be implemented over multiple synchronizers, because one thread can wait on at most one
synchronizer at a time. Choice from multiple channels cannot be implemented over a single
synchronizer either, because concurrent remote register writes to the same target register
yield unde�ned behavior: they are resolved non-deterministically, and the receiving thread
does not know that more than one event has been delivered, incurring event loss.

To implement choice, communication must be lifted to active messages[vECGS92] in-
stead: sending a message by a CSP thread over a CSP channel must be implemented on our
platform by sending a request to create a new thread at the core of the receiving thread.
The new thread runs a dedicated �remote delivery� thread program which then stores the
value, at the target core, into some incoming bu�er and wakes up the thread(s) waiting
for input from the CSP channel. This simulation is intuitively complexity-preserving. This
basic idea then raises two issues.

The �rst issue is how to guarantee that there is always a thread context available to
receive incoming active messages. This can be obtained by pre-allocating a context on each
core prior to program start-up using the TMU's �allocate� event, then storing the context
addresses into an array visible from all cores. Then each core willing to communicate would
look up the context address from the address of the target core, and send an active message
by sending the TMU's �create� event followed by �sync� to the pre-allocated context. �Sync�
is required because CSP communication is synchronous: the sender thread must wait until
reception is acknowledged by the target mailbox.

The second issue is how to wake up one thread from another on the same core. To
implement this, a thread that wishes to wait on one or more channel(s) can reserve a single
synchronizer R locally, then set the state of R to empty, then write the address of R and
the identities of the channel(s) it wishes to wait on in local memory at a location visible
from the remote delivery threads on the same core, then start reading fromR which causes
the thread to suspend. All these primitives can be implemented using the interfaces from
chapter 4. When a remote delivery for a given channel arrives at a core, its thread program
�rst reads the synchronizer addressesR1; R2 : : : for that channel from local memory (there
may be multiple processes waiting on the same channel), then sends TMU remote register
writes of the incoming value to all R1; R2 : : : addresses via the core's loopback NoC interface.
Atomicity of access to the memory structures between threads on one core can be negotiated
using any of the mechanisms introduced in section 14.1.

The mechanisms introduced above e�ectively implement arbitrary virtual channels be-
tween thread contexts, using one mailbox per core that can be implemented in a local
memory. It therefore lifts the limitation on the number of channels introduced above by the
direct use of synchronizer pairs. The total number of channels that can be read from in a
process is only bound by the size of the local memory at the process' core.

To summarize, the proposed platform is likely as powerful as Hoare's CSP, and ourj
proposed simulation of CSP uses only the concurrency control primitives o�ered by the
TMU without requiring a single memory system shared by all cores. It is also universal
since the de�nition of processes and channels can be described fully in software.

12.3. ABSTRACT CONCURRENCY MODELS 193

12.3.3 Actors

In contrast to Hoare's CSP, the Actor model introduced by Hewitt [HBS73] and developed
by Agha [Agh85] is relatively simple:

Actors are computational agents which map each incoming communication to a
3-tuple consisting of:

1. a �nite set of communications sent to other actors;
2. a new behavior (which will govern the response to the next communication

processed); and,
3. a �nite set of new actors created.

When an actor receives a message, the system spawns atask which computes this 3-tuple.
The Actor model does not mandate a speci�c computational power for the implementation
of individual tasks, although [Agh85] suggests that tasks can at least perform arithmetic
and simple conditionals.

Communication between actors is further de�ned to be asynchronous, that is, an actor is
immediately ready to accept a new message after sending a message irrespective of whether
the target actor(s) have already processed the communicated event. An actor can only
communicate with another target actor if it previously knows its mail address, i.e. there
is no global name space of actors. Each new actor causes the appearance of its own new
mailing address, which is known to the creating or created actor, or both.

Following the discussion on CSP above, we can argue that the proposed platform from
part I can implement a system of actors. To describe a single actor, an implementation can
use a data structure on a local memory on one core which contains a pointer to the task
program and its initial parameters, provided when the actor was created. An actor mail
address is then composed by pairing the address of the core and the local address of the
actor data structure on that core. Then the mailbox mechanism introduced in section 12.3.2
is reused: when a task wishes to send a message to a actor whose address it knows, it sends a
�create� TMU event to the target core, providing the local address of the actor's structure as
functional argument of the �create� message, and the pointer to a �remote delivery� thread
program. The task needs not use �sync� since actor communication is asynchronous. On
the target core, the �remote delivery� thread program in turn looks up the actor structure
from the provided address in its local memory, then creates (possibly locally) a new thread
running the task program speci�ed in the actor structure. It also provides as arguments to
the task both the initial actor parameters and the actual payload of the received message.
The remote delivery thread can then terminate without waiting on the created task.

To de�ne the �next behavior� of its actor, a task simply overwrites the task and param-
eters in its own actor's data structure.

Finally, a task that wishes to create a new actor simply requests allocation of an actor
data structure from the environment. In [Agh85] the author leaves openwhere the environ-
ment should create the actor physically, so an implementation on our platform could choose
any core on the system that has some free local memory remaining.

Using these mechanisms, the maximum number of actors that can be active at the same
time is bounded by the number of independent thread contexts, e.g. 4000+ in our reference
implementation. However, the maximum number of actors that can bede�ned, as well as
the maximum number of messages in-�ight between actors, is bounded only by the total
capacity of the private memory reachable by each core in the system. This can either be

194 CHAPTER 12. ISSUES OF GENERALITY

bounded by on-chip memory capacity if cores use local scratchpads, or become arbitrarily
large using the techniques from chapter 9. This simulation is complexity-preserving for the
behavior of individual actors if the actor tasks are run natively by hardware threads. It can
also be made complexity-preserving for communication if a bound is set on the maximum
number of actors, so that the look up process at each mailbox has a bounded maximum
space and time cost.

To summarize, we can construct a simulation of the Actor model on the proposed plat-j
form using only TMU primitives and local memories at each core. Our simulation fully
exploits the opportunities o�ered by actors for concurrent execution, both from the behav-
ior independence of distinct actors and the asynchrony of communication. It is furthermore
universal since actors can be described fully in software.

12.3.4 � -calculus

Milner's � -calculus is a development from Milner's own Calculus of Communicating Systems
(CCS) [Mil80], developed concurrently to Hoare's CSP.

Because CCS and CSP where both inspired from thezeitgeist of their times, they share a
number of similarities: processes communicate over channels, communication is synchronous,
processes can be combined concurrently or via the choice operator, and recursions of concur-
rent process de�nitions are allowed. One of the main di�erences between CCS and CSP is
that CCS o�ers a restriction operator, which allows a group of processes to bind a channel
name to a private channel not visible by other process groups. In contrast, in CSP the
channel name space is shared by all processes.

As in CSP, in CCS channels and processes are in name spaces distinct from the values
communicated over channels. The main extension of the� -calculus over CCS was to allow
channel names as communicated values. Moreover, the� -calculus supports arbitrary N -to-
M communication over single channels.

As in section 12.3.2, we postulate that the proposed platform from part I can simulate
the semantics of the� -calculus as described in [MPW92a, MPW92b]. Again, we have not
yet demonstrated this formally but we are able to argue so based on simulations.

We start by observing that we cannot directly reuse the simulation infrastructure intro-
duced in section 12.3.2. Although our proposal for CSP can be trivially extended to support
a dynamically evolving number of channels, and although the identity of channels could
be communicated as values, it binds the receiver endpoint of a channel to a speci�c core
address on chip, where the receiving process is running. This is needed because the active
message implementing remote delivery must be addressed to an explicit location on chip.
Moreover, so far we considered only one sender and one receiver per channel. In contrast, in
the � -calculus, any process can send or receive from a channel whose name it knows. Our
previous mailbox-based system which assumes that receiving threads are on the same core
as the mailbox does not support this.

Instead, we can implement a forwarding service as follows. Any time a process in the
� -calculus de�nes a new channel, its implementation as a thread would send a request at
a commonly agreed �channel management� service in the system that would allocate a new
channel data structure in the local memory of an arbitrarily selected core in the system to
serve as shared mailbox. Any subsequent operation thatsends a channel identitywould
then communicate the address of the shared mailbox to the receiver process(es); any time a
processreceives a channel identity, it would receive the address of the corresponding shared

12.4. TURING COMPLETENESS, TAKE TWO 195

mailbox service and would then inform the shared mailbox that it is now a candidate receiver
for that channel. This technique is inspired from the IPv6 �home routing� protocol [PJ96].

Subsequently, any communicationover the channel would cause two communications,
one from the sender thread to the shared mailbox, then from the shared mailbox to the local
mailbox of the candidate receiver process(es).

This mechanism indirects communication between two threads implementing� -calculus
processes via a third party core, and thus incurs an extra latency compared to the simula-
tions of sections 12.3.2 and 12.3.3. However, each new channel can be instantiated over a
di�erent shared mailbox, and the channel management service can thus theoretically spread
the communication load over the entire system. This simulation is intuitively complexity-
preserving for the sequence of actions by individual processes. As with actors above, it
can be made complexity-preserving for communication if a bound is set on the maximum
number of channels, so that the look up process at each mailbox has a bounded maximum
space and time cost.

To summarize, the proposed platform is probably as powerful as Milner's� -calculus.j
As with CSP above, our proposed simulation uses only the concurrency control primitives
o�ered by the TMU without requiring a shared memory system. It is also universal.

12.4 Turing completeness, take two

In [Mil90], Milner considers pure � -calculus, where the only actions that can be performed
by processes are the communication events and operators of the� -calculus itself. The author
then proceeds to demonstrate that the pure� -calculus is equivalent to Church's� -calculus,
by simulating two evaluation strategies for � -terms in the � -calculus (one strict and one
lazy). His simulations implement � -terms as processes in the� -calculus, and environment
bindings of variables to� -terms as replicating processes that forward the binding information
to other requesting agents implementing� -reductions. Partial � -reductions further execute
as concurrent processes in the� -calculus, and thus fully take advantage of the inherent
concurrency of the� -calculus.

With this proof in hand, we can consider a hypothetical implementation of the proposed
architecture where some individual thread contexts are not Turing-complete. For example
we could reduce the implementation so that some thread contexts have access only to a
small amount of local memory, invalidating the techniques from chapter 9. Or we could
consider that some thread contexts can use only a smaller instruction set which does not
support arbitrary recursion depths. In this heterogeneous platform, we would then be able
to distinguish between �fat,� general-purpose thread contexts and �light� thread contexts
with reduced functionality.

In this setting, the simulation techniques presented in section 12.3.4 can still be used to
simulate the � -calculus using �light� contexts. Indeed, the primitives from the section 12.3.4
are implemented in our simulation using only simple synchronizing reads and writes and
sending TMU events. The main simulation logic occurs outside of the simulated� -calculus
processes, in the mailboxes, where larger memory and recursion are required. However, we
can note that only one mailbox per core is necessary; an arbitrary number of �light� thread
contexts can be used around each mailbox without changing the semantics of the simulation.

In such an environment with a few �fat� mailbox thread contexts and many �light�j
thread contexts, the system would be able to carry out the reduction of arbitrary � -terms
as per [Mil90], by spreading the evaluation over a dynamically de�ned, arbitrarily large
network of small communicating processes. In other words, the systemas a wholewould be

196 CHAPTER 12. ISSUES OF GENERALITY

Turing-complete. Moreover, its expressivity power could expand arbitrarily by increasing
the number of �light� thread contexts, at a �xed �fat� context budget. The system would
also be universal because processes and channels would still be speci�ed by software. The
only drawback of reducing the number of �fat� contexts is that they are a bottleneck for
communication: a smaller number of �fat� contexts implies less available bandwidth overall.

Unfortunately, we were not able to determine yet whether this simulation would be
complexity-preserving, that is whether a bound can be set on the space and time costs to
simulate one execution step of the simulated Turing machine.

12.5 Exposing the generality to software

The arguments above merelysuggestthat the design is general. There are two ways forward
to convince audiences more thoroughly. The �rst is to describe the semantics of the hardware
interface from chapter 4 precisely in an abstract model, and then prove formally that this
model is at least as expressive as other existing models. This approach, while necessary
to gain credibility in theoretical circles, would be however largely ine�cient in making the
invention accessible. Instead, more popular audiences will requireprogramming languages
and frameworks that expose the system's potential to their creativity (cf. section 1.3).

So far, our contributions provide a general-purpose programming environment for indi-
vidual cores (the C language), and a handful of concurrency-related features:

ˆ constructs to spread work over multiple thread contexts and cores, with semantics
related to the SVP model described in section 12.3.1;

ˆ a memory consistency model where updates by unrelated concurrent threads may be
visible to each other (namely, if they are part of the same CD, cf. chapter 7);

ˆ the foundations of a �nite resource model (chapters 10 and 11).

These features makes our contribution only barely more powerful than the SVP modelP
described in section 12.3.1. In particular, to implement the CSP, Actors and� -calculus
simulations introduced in section 12.3, the language interface must be further extended
with operators to:

ˆ take the address of a synchronizer;
ˆ issue a remote access to a synchronizer whose address is known;
ˆ reserve a thread context (�allocate�) and store its identity;
ˆ create threads in a previously reserved context3;
ˆ synchronize on termination of threads without releasing the context4;
ˆ organize atomicity of access to memory between threads running on a single core.

We estimate that little e�ort is required to add these primitives to the framework in-
troduced in chapter 6, since these primitives are already available in the hardware interface
from chapter 4. However, we also highlight that any program that would subsequently use
these features would not necessarily be serializable any more, limiting the user's ability to
troubleshoot programming errors (cf. section 6.2.4). This may warrant the separation of
these additional services in either a separatesystem language, or a set ofprivileged language
constructs that would be only usable by the operating software of higher-level parallel lan-
guages, and not directly by application programmers. Alternatively, an emulation of these

3Currently, reservation and creation are bound in a single creation construct.
4Currently, synchronization and release are bound in a single synchronization construct.

12.6. GENERALITY IN OTHER DESIGNS 197

primitives could be implemented on a legacy platform to serve as reference for troubleshoot-
ing. We suggest that this exploration in language design be performed in future work.

12.6 Generality in other designs

Most contemporary SMP chip designs inherit their generality in an almost boringly sim-
ple way. For example, each individual core in Intel's general-purpose multi-core o�erings,
including the P6, NetBurst, Core, Nehalem, Atom, Sandy Bridge micro-architectures, com-
bine traditional general-purpose ISAs with a timer interrupt, coherent views on a common
shared memory and direct access to system I/O; so do AMD's K8-K10 and Sun's/Oracle's
SPARC multi-core products. The timer interrupt in turn allows programmers to de�ne
arbitrarily large numbers of virtual processes interleaved using a software scheduler; the
coherent shared memory enables arbitrarily large numbers of virtual channels connected in
arbitrary patterns. Universality and interactivity on each core are evident, as every behavior
is de�ned in software and all cores have symmetric access to I/O. We can �nd more diversity
in other �exotic� designs that have surfaced in the last 10 years.

In IBM's Cell Broadband Engine [KDH � 05], a general-purpose PowerPC core called PPE
is combined with 8 to 16 smaller RISC cores called SPEs. Although each SPE supports a
general instruction set featuring conditional branches, and direct access to the outside world
via its own Direct Memory Access (DMA) controller, it is connected only to a local RAM with
a capacity of 256KiB which contains both code and data. This capacity may be su�cient to
accommodate the workload of sub-computations driven from the PPE; however it seems to
us insu�cient for general-purpose workloads driven directly from the SPE. Meanwhile, each
SPE supports inter-SPE communication via 128 distinct synchronous channels implemented
in hardware. This makes the SPE group a suitable platform for simple process networks
with up to 8-16 processes (the number of SPEs). Although each SPE supports control �ow
preemption via external interrupts, this feature could not simply be used by a software
scheduler to virtualize more processes because the channel read and write operations are
not interruptible.

In NVIDIA's Fermi [LNOM08, NVI09] GPGPU designs, each core, called an SM, is
equipped with a threading engine able to schedule multiple independent threads concur-
rently. Each thread can run arbitrarily patterns of conditional branches and can be con�g-
ured to access an arbitrarily large private memory via a uni�ed cache to external RAM (a
feature not present in NVIDIA's previous GPGPU o�erings). As such, each thread features
Turing-completeness. However, Fermi threads lack the generality required in section 1.2.1:
they cannot be interactive, because Fermi does not allow GPGPU threads to access external
I/O devices.

In terms of concurrency patterns, Fermi threads do not support control �ow preemption
via a timer interrupt and thus cannot multiplex multiple logical processes over one thread
context. However, Fermi does support inter-thread synchronization within one SM using
atomic accesses to a local, 16KiB shared memory. Since each SM can run 768 separate
threads, the chip should thus support CSP and� -calculus up to that number of processes
within each SM, using mechanisms similar to those we propose later in sections 12.3.2
and 12.3.4, with the number of channels limited by the local memory capacity. When con-
sidering the entire chip of multiple SMs instead, communication between SMs is possible via
the external RAM, however memory atomics do not cross SM boundaries so synchroniza-
tion would require busy waiting. To summarize, Fermi's architecture can support general

198 CHAPTER 12. ISSUES OF GENERALITY

concurrency patterns e�ciently within one SM, and less e�ciently across all SMs in one
chip.

We also considered Intel's Single-Chip Cloud Computer (SCC) [MRL� 10], a research
platform, and Tilera's TILE64 [BEA � 08], a product o�ering for network applications. Both
integrate a larger number of general-purpose cores on one chip than contemporary multi-core
product o�erings: 48 for the SCC, 64 for TILE64. All cores are connected to a common NoC.
On both chips, Turing-completeness at each core is achieved by a traditional design�the
MIPS pipeline for TILE64, the P54C pipeline for the SCC�and a con�gurable mapping from
cores to external memory able to provide the illusion of arbitrarily large private memory to
each core. Interactivity is provided on the TILE64 by direct access to external I/O devices
on each core via dedicated I/O links on the NoC; on the SCC, the NoC is connected to
an external service processorimplemented on FPGA which forwards I/O requests from the
SCC cores to a host system. The SCC approach to I/O is thus similar to the one we took
in chapter 5.

For parallel execution, TILE64 and SCC only support one hardware thread per core, but
cores feature preemption as the means to multiplex multiple software processes. TILE64
o�ers comprehensive support for communication: it supports 4 hardware-supported asyn-
chronous channels to any other cores (UDN), a single channel to a con�gurable, static set of
peers (STN) and two dedicated channels to external I/O devices per core (IDN). Alterna-
tively, cores can also implement virtual channels over a coherent, virtually shared memory
implemented over another set of NoC links (MDN), although the communication latency is
then higher. This diversity of communication means ensures that the design can support
most general parallel programming patterns.

In contrast, the SCC does not o�er a coherent view of shared memory to cores. While
each pair of cores has access to a local scratchpad of 256KiB, called Message-Passing Bu�er
(MPB), which can be accessed remotely by other cores via the NoC, the MPB does not
synchronize. Instead, point-to-point synchronization can be negotiated only via IPIs, or by
disabling the local caches and busy waiting on changes to external memory regions. As
such, while the SCC theoretically supports most general parallel programming patterns, its
actual implementation yields poor point-to-point communication latencies.

12.6. GENERALITY IN OTHER DESIGNS 199

Summary

When designing new components as building blocks for computing systems, the innovator
should describe the level of semantic generality provided by the invention. Especially when
designing components forgeneral-purposesystems, generality should be argued by relating
the new component to theoretical models whose generality has been previously established.
In most contemporary microprocessor designs, generality is implicitly inherited by reusing
the traditional model of Turing-complete processors implementing timer-driven control �ow
preemption and connected to a shared memory that can implement arbitrary point-to-
point communication. These basic conceptual models inherit Turing completeness from the
individual processors and the semantics of most abstract concurrency models developed
since the 1970's.
In contrast, the proposed CMP design that we covered earlier does not provide preemption.
It supports but does not require a shared memory. Also, it provides a large number of
thread contexts which compete for a single address space. Because of these di�erences, a
new bridge must be constructed between this design and existing abstract models before it
can be advertised as �general.�
In this chapter, we have acknowledged previous work in this direction by our peers, whereZ
a �concurrency model� named SVP was de�ned. We also showed the limitations of this
approach.
Instead, by constructing simulations using only the platform's dedicated hardware concur-j
rency management primitives and private memory on each core (i.e. without requiring a
shared memory system), we were able to relate it to Hoare's CSP, Hewitt and Agha's Ac-
tors and Milner's � -calculus. Furthermore, using our contribution from chapter 9, we were
able to regain Turing-completeness for individual cores under the assumption of arbitrary
large external memory. If this latter assumption does not hold, we are still able to suggest
Turing-completeness for the entire system based on support for the� -calculus. Our simu-P
lations are based on the machine primitives described in chapter 4. These primitives are
not all yet exposed in the language interface from chapter 6; therefore, future work must
provide further language support before the full generality of the platform becomes available
to external audiences.

Part III

Applications and experiences
�Feedback on the answers to the inner and outer questions

Chapter 13

Core evaluation
�Lessons learned about hardware microthreading

Abstract

Once a platform is de�ned around an architectural innovation, e�ort must be in-
vested into engaging with the audience and gaining feedback about the innovation. In
this chapter, we provide an example of this interaction. In our ecosystem, a comprehen-
sive evaluation of the architecture and its implementations was realized. We highlight
some key results from this evaluation, for two purposes besidesthe evaluation results
themselves. One purpose is to document how the platform de�nition from part II is
practically related to the actual evaluation work, i.e. what interactions actually took
place. The other is to illustrate that the interaction with our audience has enabled
early feedback on the architecture design, as suggested in section 5.3.

Contents
13.1 Introduction . 204
13.2 Evaluation e�orts from the ecosystem . 204
13.3 Separate impact of multi-threading and load balancing 210
13.4 Applicability to irregular functional concurrency . 213
13.5 Optimization of performance per watt . 215
13.6 Applicability to throughput-oriented applications . 217
13.7 Issues of system bandwidths, design trade-o�s . 218
13.8 Relevance of thread-to-thread sharings . 220
Summary . 221

203

204 CHAPTER 13. CORE EVALUATION

13.1 Introduction

As we explained in section 5.4.2, we worked in an ecosystem speci�cally set up to evaluate
the innovation from part I. We faced three direct audiences: a research partner organization
in charge of demonstrating the bene�ts of SAC [GS06] to program the proposed architecture,
a partner organization in charge of discovering �ne-grained concurrency in plain C loops,
and various individuals in charge of hand-writing benchmarks using C and our proposed
language extensions. In section 13.2 below, we explain through a running example the
methodology used by our audience to carry out the platform evaluation. We also explain
how our contributions from part II were useful in this context.

While we participated in these activities merely as support sta�, we gained insight into
the architecture. As this insight has not yet been published elsewhere, we share it in the
remainder of this chapter. In particular:

ˆ in section 13.3, we explain how we can separate the impact of multithreading from the
impact of multi-core execution to understand performance results;

ˆ in section 13.4, we identify dynamically heterogeneous, functional concurrency and
introduce an architectural feature that we co-designed to optimize this use case;

ˆ in section 13.5, we illustrate issues of power usage;
ˆ in section 13.6, we illustrate throughput-oriented workloads;
ˆ in section 13.7, we identify high-level issues shared by other multi-core designs;
ˆ in section 13.8, we identify that a hallmark feature of the proposed design, the sharing

of synchronizers by adjacent thread contexts, is actually of limited use and could be
advantageously removed in favor of other, simpler features.

13.2 Evaluation e�orts from the ecosystem

The benchmarking activities were organized around a single common theme: produce speedup
diagrams that demonstrate the scalability of a single code representation across di�erent
hardware con�gurations. To achieve this, all the benchmarks have been written to share a
common pattern:

1. load input data in memory;
2. sample performance counters;
3. execute a workload;
4. sample performance counters, and report the di�erences;
5. optionally, execute steps 2 to 4 multiple times.

Each program is then:

1. compiled once using our tools from chapters 6 and 8,
2. run multiple times on our platform from chapter 5, by placing it at start-up on core

clusters of di�erent sizes (from 1 to 64 cores) using the primitives from chapter 11.

Most programs further required the features detailed in chapters 9 and 10. The outcome
for each benchmark is a series of samples which report the time to completion, the num-
ber of instructions executed, and other variables relevant to the evaluation of a processor
architecture.

In addition to the features from part II, we implemented the following additional oper-j
ating software for the benchmarking activities:

13.2. EVALUATION EFFORTS FROM THE ECOSYSTEM 205

Side note 13.1: About the relevance of the Livermore loops.

We acknowledge that the Livermore kernels are extremely small kernels unrepresentative of contemporary
large applications. They were designed to be representative of loops in large high-performance applications
and were selected/designed to test how e�ective vectorising compilers were at recognising concurrency in
these applications. This benchmark suite is nowadays mostly superseded by newer developments that also
test workloads from outside the HPC community, e.g. the more diversi�ed Standard Performance Evaluation
Corporation (SPEC) and NASA Advanced Supercomputing (NAS) benchmark suites. We discuss this further
in chapter 15.

1 COMMON /SPACE1/ U(1001) , X(1001) , Y(1001) , Z(1001)
2 COMMON /SPACER/ Q, R, T
3 . . .
4 c d i r $ ivdep
5 1007 DO 7 k= 1 ,n
6 X(k)= U(k) + R * (Z(k) + R *Y(k)) +
7 1 T* (U(k+3) + R * (U(k+2) + R *U(k+1)) +
8 2 T* (U(k+6) + Q * (U(k+5) + Q *U(k +4))))
9 7 CONTINUE

Listing 13.1: FORTRAN code for the Livermore loop 7.

ˆ a resource management service that reserves a cluster of cores upon system start-up
and starts the benchmark program'smain function on this cluster;

ˆ a performance counter sampling framework providing a uniform API to programs
across all target implementations;

ˆ a custom data input API able to load large arrays of data from �les.

Beyond measuring performance over multiple core cluster sizes, each benchmark was
also used to experiment with di�erent compiler optimization �ags, both at the higher-level
SAC or parallelizing C compiler, and the SL tool chain. Each benchmark was also used
to experiment with di�erent architecture parameters, e.g. number of cores, cache sizes, etc.
These benchmarking activities were spread over the ecosystem; an exhaustive report of
all the benchmark results would be outside of our scope. Instead, we focus below on one
benchmark to illustrate how the work was carried out in our technical framework.

13.2.1 Running example: Livermore loops

The Livermore FORTRAN kernels [McM86] are a sequence of 24 algorithms taken from
scienti�c code. Their reference implementation is a FORTRAN program that exercises all
24 algorithms multiple times and computes a statistical report of their performance.

13.2.2 Implementation

Each of the 24 kernels was extracted individually from the FORTRAN implementation. One
partner rewrote the kernels using SAC; separately, using a translation of the FORTRAN
code to C as a basis, one partner used their parallelizing C compiler to automatically discover
concurrency in the sequential C code and replace loops by uses of our language extensions,
whereas we did the same work manually. We depict this implementation work in �g. 13.1.

206 CHAPTER 13. CORE EVALUATION

Figure 13.1: Implementing the Livermore loop benchmarks using our proposed framework.

1 double u [1 0 0 1] , x [1 0 0 1] , y [1 0 0 1] , z [1 0 0 1] ;
2 double q , r , t ;
3 . . .
4 for (k=0 ; k<n ; k++) {
5 x [k] = u [k] + r * (z [k] + r * y [k]) +
6 t * (u [k+3] + r * (u [k+2] + r * u [k+1]) +
7 t * (u [k+6] + q * (u [k+5] + q * u [k+4]))) ;
8 }

Listing 13.2: Sequential C code for the Livermore loop 7.

1 spec ia l i ze
2 double [+] Loop7 (int n , double q , double r ,
3 double t , double [1 0 0 1] u , double [1 0 0 1] y ,
4 double [1 0 0 1] z) ;
5 double [+] Loop7 (int n , double q , double r ,
6 double t , double [+] u , double [+] y ,
7 double [+] z)
8 {
9 a = u + r * (z + r * y)

10 + t * (sh i f t ([� 3] , u) + r * (sh i f t ([� 2] , u) + r * sh i f t ([� 1] , u))
11 + t * (sh i f t ([� 6] , u) + q * (sh i f t ([� 5] , u) + q * sh i f t ([� 4] , u)))) ;
12 return (take ([n] , a) , i n t e r) ;
13 }
14 . . .
15 x = Loop7 (n , q , r , t , u , y , z) ;

Listing 13.3: SAC code for the Livermore loop 7.

13.2. EVALUATION EFFORTS FROM THE ECOSYSTEM 207

1 sl_def (innerk7 , , sl_glparm (double * , x) ,
2 sl_glparm (double * , u) , sl_glparm (double * , z) ,
3 sl_glparm (double * , y) , sl_glfparm (double , r) ,
4 sl_glfparm (double , t) , sl_glfparm (double , q))
5 {
6 sl_index (k) ;
7 double * x = sl_getp (x) , * u = sl_getp (u) ,
8 * z = sl_getp (z) , * y = sl_getp (y) ,
9 r = sl_getp (r) , t = sl_getp (t) , q = sl_getp (q) ;

10

11 x [k] = u [k] + r * (z [k] + r * y [k]) +
12 t * (u [k+3] + r * (u [k+2] + r * u [k+1]) +
13 t * (u [k+6] + q * (u [k+5] + q * u [k+4]))) ;
14 }
15 sl_enddef
16 . . .
17 double U[1 0 0 1] , X[1 0 0 1] , Y[1 0 0 1] , Z [1 0 0 1] ;
18 double Q, R, T;
19 . . .
20 sl_create (, , , n , , , , innerk7 ,
21 sl_glarg (double * , , X) , sl_glarg (double * , , U) ,
22 sl_glarg (double * , , Z) , sl_glarg (double * , , Y) ,
23 sl_glfarg (double , , R) , sl_glfarg (double , T) ,
24 sl_glfarg (double , , Q)) ;
25 sl_sync () ;

Listing 13.4: Concurrent SL code for the Livermore loop 7.

To illustrate further, we focus on one particular kernel, the equation of state fragment,
whose original FORTRAN code is given in listing 13.1. This was separately translated to
an equivalent C loop (listing 13.2) and parallel SAC code (listing 13.3); we then manually
encapsulated the C loop body in a thread program and to produce the concurrent SL version
in listing 13.4. Compared to the C code, we explicitly lift the reference to the globally
declared variables as thread program channels in our SL code to avoid an external symbol
reference in every thread, because our implementation strategy prevents the underlying
C compiler from automatically detecting common sub-expressions across thread functions.
Otherwise, no di�culty is introduced: the sequential loop of n iterations is replaced by a
family creation of n logical threads. Another Livermore loop example using semi-explicit
work placement to perform parallel reductions was also provided in chapter 11.

13.2.3 Results

Some example results for this benchmark are illustrated in �gs. 13.2 to 13.4. Both the cycle-
accurate, many-core, microthreaded platform emulation and a legacy architecture were used
for comparison. The system characteristics of the legacy platform and the microthreaded
platform for the results of this chapter are listed in table 13.1.

The code was compiled once (�g. 13.1) using version 3.6b of the SL tool chain, relying
on GCC version 4.5 as an underlying code generator for the microthreaded architecture and
GCC 4.2.1 to compile the sequential C code to the legacy architecture. The default compiler
settings were used for optimization (�-O2�).

208 CHAPTER 13. CORE EVALUATION

Figure 13.2: Time to result (performance) for the Livermore loop 7.

Problem size and baseline are described in section 13.2.3.

Figure 13.3: Instructions per cycle (utilization) for the Livermore loop 7.

Problem size and baseline are described in section 13.2.3.

For this benchmark, the input n � 990was used as per the original Livermore benchmark
speci�cation. We used two baselines for comparison: the �rst is the behavior of the sequential
C code on the legacy system, and the second is a hand-written, hand-tuned raw assembly
program for the microthreaded platform written by an architecture expert.

There are di�erent types of observations to draw from these results, depending on the
audience.

13.2.3.1 Observations from the architect's perspective

The results have illustrated that this speci�c implementation is able to scale performance
for small workloads, e.g. 990 microthreads in the results above (each performing one iter-
ation of the original loop) over multiple cores, up to dozens of cores, e.g. 32 cores above.
This is remarkable as such small workloads (less than105 instructions) would not be able
to compensate concurrency management overheads (106 instructions or more) on a legacy

13.2. EVALUATION EFFORTS FROM THE ECOSYSTEM 209

Figure 13.4: Floating-point performance for the Livermore loop 7.

Problem size and baseline are described in section 13.2.3.

Legacy platform Microthreaded platform
System MacBookPro7,1 MGSim v3
Processor chip Intel Core 2 Duo P8600 Many-core MT chip
Core
micro-architecture

Intel Penryn In-order 6-stage RISC
pipeline + microthreading

Issue width 4 1
ISA x86-64 DEC/Alpha (64-bit)

+ MT extensions
Core frequency 2.4GHz 1GHz
Number of cores 2 128
FPUs 2 64
Hw. threads 2 32640
Hw. threads / core 1 255
L1 cache (total) 128K 768K
L2 cache (total) 3MB 4MB
L1 cache / core 64K 6K
Memory interface 1x DDR3-1066 4x DDR3-1600„

RAM in system 4GB 4GB
Chip technology 45nm 45nm (est.)
Chip area 107mm2 120mm2 (est.)
„ The implementation for the DDR3 interface was incomplete, see section 13.7.1 for

details.
Table 13.1: System characteristics.

210 CHAPTER 13. CORE EVALUATION

architecture. This result, repeated over most other benchmarks, con�rms that the low-
overhead hardware support for concurrency management in the proposed design is able to
exploit more software concurrency than traditional software-based approaches.

For larger numbers of cores, the performance then saturates. Various e�ects cause this
limitation, including memory access latencies, overhead of communicating concurrency man-
agement events over a larger number of cores, memory bandwidth, load imbalance. Again,
a full analysis of the performance characteristics are outside of the scope of our dissertation.

Nevertheless, we were particularly excited to �nd that the performance of the 1-core
legacy baseline was matched in multiple benchmarks by less than 32 microthreaded cores,
e.g. 8 cores in the running example above. Considering the technology details from table 13.1,
this corresponds to a smaller area on chip than 1 core of the selected legacy platform, which
was close to the state of the art at the time of this writing. In other words, for this speci�c
benchmark the performance per unit of area is higher with the new architecture. Combined
with the observation that the proposed design does not use speculation in any way, contrary
to the legacy design, these results suggest that the performance per watt is also higher.

13.2.3.2 Observations from the software engineer's perspective

The naive rewrite of the sequential C loops (e.g. listing 13.2) as a thread family (e.g. list-
ing 13.4) is su�cient to obtain, after compilation through our tool chain, performance �gures
close to the hand-optimized assembly code (e.g. more than 85% in the example). The over-
head of using SL comes mainly from the absence of global common sub-expression elimitation
(across thread programs), which forces array base address to be recomputed in every logical
thread. In other words, despite our simple and coarse approach to compilation in chapter 6,
we could successfully rely on the interface language to expose the performance opportunities
of the new architecture.

The preliminary results as to the applicability of the new design to existing software
code bases are also encouraging. Indeed, the benchmarks show that code automatically
parallelised from C using the partner technology, reported on in [SEM09, SM11] can attain
both a higher performance than the legacy baseline within the same chip area budget, and
also multi-core performance scalability, cf. e.g. �g. 13.2.

13.3 Separate impact of multi-threading and load balancing

The evaluation activities have revealed that the key parameters to optimize execution e�-
ciency are multi-threaded execution per core and techniques to optimize load balance across
cores, and these are mostly orthogonal.

To illustrate this, we use an example program which exposes a heterogeneous workload.
The workload is de�ned by a bulk creation of 40000 logical threads where the amount of
work per thread varies irregularly, as illustrated in �g. 13.5.

We show the performance of this workload in the same environment as section 13.2
(table 13.1) in �g. 13.6. We used two implementations that di�er in how the logical threads
are distributed across cores:

ˆ in the �even� implementation, the logical range is divided into P equal segments where
P is the number of cores in the cluster, i.e. corep runs indices˜ start p; start p � 1; start p �
2: : :• . This is the straightforward use of the hardware bulk creation process, by re-
questing a single bulk creation over all cores in the cluster;

13.3. SEPARATE IMPACT OF MULTI-THREADING AND LOAD BALANCING 211

Insns.
per
thread

Number of
logical
threads

Instructions
accounted

0�83 35524
(88.81%)

1141009 (31.45%)

84�167 1314 (3.29%) 145456 (4.01%)
168�251 332 (0.83%) 65760 (1.81%)
252�335 120 (0.30%) 34824 (0.96%)
336�419 64 (0.16%) 23518 (0.65%)
420�503 36 (0.09%) 16448 (0.45%)
504�587 32 (0.08%) 17596 (0.49%)
588�671 16 (0.04%) 9968 (0.27%)
672�755 14 (0.04%) 10126 (0.28%)
756�839 14 (0.04%) 11504 (0.32%)
840�923 2534 (6.33%) 2151336 (59.31%)
(40000 logical threads, 3627545 instructions total)

Figure 13.5: Actual thread sizes in the example heterogeneous workload.

Side note 13.2: Description of the example heterogeneous workload.

Each logical thread l in the range � 0; 40000� evaluates the function mˆ l • de�ned by

¢̈
¨̈̈
¨
¦
¨̈̈
¨̈
¤

mˆ l • � f ‰xstart � xstep � ˆ l mod N • � i ˆ ystart � ystep �
 l~N �• Ž
f ˆ c• � min ˆ˜ k S2 B Szk S•8 ˜ 64•• with z0 � c and zn � 1 � z2

n � c
xstep � ˆ xend � xstart •~N
ystep � ˆ yend � ystart •~M

where ˆ xstart ; xend ; ystart ; yend • are input parameters that de�ne a window over the complex plane, and
ˆ N; M • are input parameters that de�ne the discretization of this window. We use:

ˆ N � M � 200, hence N � M � 40000 logical threads;
ˆ xstart � ystart � � 2, xend � yend � 3.

The function f computes which iteration of the complex quadratic polynomial zn � 1 � z2
n � c �rst escapes the

closed disk of radius 2 around the origin, with a maximum of 64 iterations. This is the function typically
used to visualize the boundary of the Mandelbrot set [PR86]. We provide the corresponding source code in
Appendix K.

(a) Time to result. (b) Instructions per cycle.

Figure 13.6: Performance of the example heterogeneous workload.

212 CHAPTER 13. CORE EVALUATION

(a) Even distribution, 1 thread/core. (b) Even distribution, 16 threads/core.

(c) Round-robin distribution, 1 thread/core. (d) Round-robin distribution, 16 threads/core.

Figure 13.7: Per-core activity for the example heterogeneous workload running on 32 cores.

ˆ in the �round-robin� implementation, the logical range is distributed in a round-robin
fashion over the P cores in the cluster, i.e. corep runs indexes˜ p; p � P; p � 2P : : :• .
This triggers bulk creation separately with di�erent logical index ranges on every core
of the cluster.

As can be observed in �g. 13.6, the performance of the proposed platform exceeds the
reference baseline consistently past 32 cores, and for some parameters beyond 2 cores. This
is compatible with the observations from section 13.2.3.1.

Furthermore, �g. 13.6 reveals that the round-robin distribution is radically bene�cial
to performance. The reason why this is so is exposed more clearly in �g. 13.7: with the
even index distribution, the heterogeneity of the workload causes imbalance between cores,
whereas the round-robin distribution exploits the local homogeneity of the computational
problem to spread the workload more evenly across cores.

This example illustrates the following:

ˆ per-core multithreading is e�ective at increasing per-core utilization, i.e. instructions
per cycle on each core, regardless of load distribution. This can be observed in �g. 13.7b
relative to �g. 13.7a and �g. 13.7d relative to �g. 13.7c. While this is a well-known
e�ect for I/O- or memory-bound workloads, this benchmark con�rms that �ne-grained
multithreading is also e�ective at tolerating latencies of FPU operations, which are
handled asynchronously in the proposed architecture.

ˆ the default logical index distribution performed by the hardware bulk creation process,
primarily designed for the deployment of regular data-parallelism across cores, i.e. as

13.4. APPLICABILITY TO IRREGULAR FUNCTIONAL CONCURRENCY 213

Side note 13.3: Choice of QuickSort for evaluation.

QuickSort was chosen as an instance of general, unstructured divide-and-conquer algorithm, to evaluate
load balancing when no application-speci�c knowledge is known. In particular no consideration was given
as to whether it was the fastest algorithm to sort arrays of integers. We acknowledge that for this speci�c
application, using instead an algorithm based on sorting networks [Bat68],[Knu98, pp. 219�247],[PF05,
Part 6] would make most e�cient use the parallelism available on the target architecture.

a general-purpose substitute of specialized SIMD units, cannot be naively applied to
heterogeneous workloads tomaximize performance. For example, �gs. 13.6 and 13.7
reveal that the even distribution yields 3� to 4� higher execution times than the
round-robin distribution for this workload.

ˆ Nevertheless, even with load imbalance and sub-optimal performance, the higher per-
formance density of the proposed design may allow a naive implementation to exceed
the performance of a legacy design in the same area budget, as demonstrated in �g. 13.6
from 8 cores.

ˆ As shown in this example, maximum performance can be approximated with a round-
robin distribution when the workload is known to be locally homogeneous despite the
overall heterogeneity. This application-speci�c decomposition domain transposition is
further facilitated by the full con�gurability of the ˆstart; limit; step • parameters to
the hardware creation process.

This latter observation suggests capturing the distribution of globally heterogeneous,P
but locally homogeneous workloads in a programming language construct at some level of
abstraction. The exploitation of this opportunity in higher-level programming languages
should thus constitute future work.

The next section explores cases where the application domain does not provides good
static decompositions.

13.4 Applicability to irregular functional concurrency

There is limited support in the platform to resolve load imbalance in functionally concurrent
programs where the amount of work per sub-problem is dependent on the input. An example
was provided by the evaluation of QuickSort using SAC on the proposed platform (cf. side
note 13.3). QuickSort uses divide-and-conquer concurrency where the depth of any sub-tree,
and thus the complexity of any spatial sub-part of the concurrent workload, is dependent
on the values to sort. The design from part I does not provide any hardware support for
dynamic load balancing; instead, the QuickSort evaluation carried out by our audience used
di�erent explicit placement strategies using our proposed operators from table 11.1.

An example performance graph is given in �g. 13.8; it reports the time to sort 1024
integers using three implementations: one using the current core and the next in the cluster
at each divide step (�g. 13.9a); another using the previous and next cores (�g. 13.9b); the
last using the upper and lower half of the current cluster at each divide step (�g. 13.9c).
Although �g. 13.8 shows relatively good scalability of the last implementation up to 16 cores,
the work distribution is still strongly imbalanced, as shown in �g. 13.9d.

In an attempt to minimize such dynamic load imbalances, we jointly co-designed anÌ
extension to the hardware bulk creation context with our audience, where the �allocate�
message sent to a cluster (cf. section 3.4.2) would travel two times through all cores, one
time to select the least used core and the second to actually reserve the thread context.

214 CHAPTER 13. CORE EVALUATION

Figure 13.8: QuickSort performance on the proposed platform.

Figure reproduced with permission from [SHJ11].

(a) Current/next distribu-
tion.

(b) Previous/next distribu-
tion.

(c) Lower half/Upper half
distribution.

(d) Lower half/Upper half distribution on 64 cores.

The y-axis (vertical) represents the
number of logical threads per core. The
x-axis represents the code index in the
cluster. The z-axis (depth) represents
unfolding steps, i.e. time during execu-
tion.

Figure 13.9: Di�erent logical thread distributions for QuickSort.

Figures reproduced with permission from [SHJ11].

13.5. OPTIMIZATION OF PERFORMANCE PER WATT 215

Figure 13.10: QuickSort performance using automatic load balancing.

Figure reproduced with permission from [SHJ11].

We considered that the higher latency of a two-pass transaction would still be relatively
small compared to a software-based load balancing scheme, and would be compensated by
a lower load imbalance. To enable the use of this feature in software we introduced the
optional keyword � sl__strategy(balanced) � as a speci�er for the constructs sl_create
(Appendix I.5.8.1) and sl_spawn (section 6.3.5).

Analytically, this automatic load balancingfeature is only bene�cial to performance when
the rate of new delegations over the entire local cluster is lower than the bandwidth of
the delegation network for the cluster. Otherwise, contention occurs on the delegation
network: the latency of each request increases and may not be compensated any more. The
applicability of this feature can thus only be increased either by using a coarser concurrency
granularity, or increasing the delegation bandwidth.

This feature was thus combined with concurrency throttling in the QuickSort example:
the code was modi�ed to use load balancing, and to perform sorting sequentially for sub-
lists of less than 10 elements. As �g. 13.10 shows, this combination indeed enables improved
performance up to 8 cores (cf. �g. 13.8 for comparison). In this benchmark, beyond 8 cores
the increased latency is still not properly compensated by the workload on each core. It is
possible to increase this threshold at the cost of more load imbalance.

13.5 Optimization of performance per watt

Another aspect illustrated by �g. 13.6 is the spectrum of possible parameter choices when
selecting an implementation to meet a performance constraint: one can either tweak the
number of thread contexts per core, the number of cores actually used or the load distribution
of logical threads across cores.

When performance constraints are expressed asreal-time deadlines, e.g. �this computa-
tion must complete in less than 1ms,� there may still exist multiple parameters that satisfy
the constraint. With the example from �g. 13.6, this speci�c deadline can be met using e.g. 4
cores with round-robin distribution and 16 threads contexts used per core, or 64 cores with
even distribution and 1 thread context per core. We illustrate this diversity in �g. 13.11.

Although intuitively, a selection should favor a smaller number of cores to minimize
energy usage, i.e. the parameters of �gs. 13.11b to 13.11d over those of �g. 13.11a, the
optimal decision strategy may not always be to choose the highest performance per unit
of area. For instance, the best choice may depend on the availability of frequency scaling.

216 CHAPTER 13. CORE EVALUATION

(a) Even distribution, 1 thread/core, 64 cores. (b) Even distribution, 16 threads/core, 16 cores.

(c) Round-robin distribution, 16 thread/core, 16
cores.

(d) Round-robin distribution, 16 threads/core, 4
cores.

Figure 13.11: Per-core activity for the example heterogeneous workload with a 1ms deadline.

Without frequency scaling, parameters that perform with an overall load imbalance may be
bene�cial as they would allow the system to gate the clock of and power o� cores that become
unused over time. This would favor choosing e.g. the parameters of �g. 13.11b over those of
�g. 13.11c. In contrast, if frequency scaling is available, the con�guration of �g. 13.11c can
be run at a third of the clock frequency and both con�gurations of �gs. 13.11b to 13.11d
may have a similar energy cost. The selection can then be guided by other considerations
such as heat dissipation, which would then favor the con�guration of �g. 13.11c which better
spreads the load than those of �gs. 13.11b and 13.11d.

These considerations support our earlier remarks from section 11.3.2: we still lack aP
performance model which accounts for both con�gurable core cluster sizes and energy usage
by computations. For this reason, a simple on-line resource manager that dynamically
places computations based on resource availability and application demands still eludes us�
despite, and perhaps regardless of, the availability of hardware primitives for concurrency
management.

To summarize, the evaluation con�rms that hardware microthreading as an architecture
design direction can increase computing density (instructions executed per unit of time
and unit of area), including for heterogeneous concurrency, but it does not fundamentally
change the problem of making high-level scheduling decisions. If anything, it makes it
computationally harder due to the larger amount of concurrency being managed.

13.6. APPLICABILITY TO THROUGHPUT-ORIENTED APPLICATIONS 217

Figure 13.12: Throughput for one stream on one core.

Figure 13.13: Combined throughput for 1-8,16 streams per core on 1-16 cores.

The �gure shows 1-256 streams. The IXP2800 performance is shown in the leftmost 3 bars at each
core group.

Figure 13.14: Pipeline under-utilization for �g. 13.13.

13.6 Applicability to throughput-oriented applications

The authors of [TLYL04, YLT05] have introduced NPCryptBench, a benchmark suite to
evaluate network processors. We have run unoptimized code for these ciphers and hash
algorithms on our reference platform. First the throughput of the unoptimized code for one
�ow on one microthreaded core is compared against the unoptimized throughput for one
�ow on one core of the Intel IXP chips ([TLYL04, �g. 4], [YLT05, �g. 3]). Two codes are
used on our platform, one purely sequential and one where the inner loop is parallelised.
Both are implemented using only our proposed interfaces from chapters 6 and 11. As the

218 CHAPTER 13. CORE EVALUATION

results in �g. 13.12 show, the microthreaded hardware provides a throughput advantage
for the more complex AES, SEAL and Blow�sh ciphers, whereas the dedicated hardware
hash units of the IXP accelerate MD5 and SHA-1. For the other kernels, the microthreaded
hardware is slower: with RC5, RC6 and IDEA, a carried dependency serializes execution
and minimizes latency tolerance. With RC4, the modi�ed state at each cipher block must
be made consistent in memory before the next thread can proceed, which also partly se-
quentializes execution. Further throughput deviation from the IXP should be considered in
light of the frequency di�erence (1.4GHz for the IXP vs. 1GHz for our platform) and the
fact the microthreaded hardware was not designed speci�cally towards cryptography.

Figure 13.13 shows the scalability of the most popular cryptographic kernels, using the
purely sequential, unoptimized code for each stream on our platform and the Level-2 opti-
mized code for the IXP2800 ([TLYL04, �g. 6], [YLT05, �g. 8]). For each sub-cluster size,
increasing the number of �ows per core increases utilization (�g. 13.14) and thus overall
throughput. Throughput is furthermore reliably scalable up to 16 cores. With RC4 and
64 �ows on 16 cores the workload reaches the memory bandwidth of the chip; with ad-
ditional �ows, contention on the internal memory network appears, and the utilization is
reduced slightly as well as the throughput. The throughput then stabilizes at 96 �ows
around 1.6Gbps.

13.7 Issues of system bandwidths, design trade-o�s

13.7.1 External bandwidth to memory

According to the Amdahl/Case rule of thumb on balanced designs, cited and updated
in [GS00], a platform should provision 1 bit per second of external bandwidth for each
potential instruction per second. With cores clocked at 1GHz this would imply 1Gbit/s per
core. At �rst sight, this seems matched in the proposed con�guration: the internal cache
network supports 64-byte transfers at 1GHz, totalling 512Gbits/s internal bandwidth, and
uses 4 DDR3-1600 external channels totalling 409Gbits/s external bandwidth, well above
the 128Gbits/s implied by the rule of thumb.

Yet while carrying out evaluation activities with our community we did observe exper-
imentally that computation kernels running on 1 to 64 cores, i.e. before fully utilizing the
128 cores available, can saturate the memory bandwidth. We reported on this in [BGH� 11].
Further analysis with our peers in charge of the hardware design has revealed the following
limiting factors:

ˆ a programming error in the simulation infrastructure: although the DDR interface
speci�cation supports pipelining, this feature was not used in the cycle-accurate plat-
form simulation used for evaluation. Instead, this implementation supported only one
outstanding request to external memory. The maximum bandwidth for consecutive
reads was thus determined by DDR's read latency (tCL), and not the issue delay
(tCCD), yielding a maximum of 34Gbit/s per DDR channel in the reference con�gu-
ration instead of the expected 102.25Gbit/s;

ˆ even if full pipelining was available,multi-thread interference in Dynamic RAM (DRAM)
accesses would still limit bandwidth. This is inherent to the low-level access protocol
to DRAM banks: the time to load a row of cells into the row bu�er is higher than
the time to access di�erent cells within the row bu�er. While successive accesses by
a single thread can be expected to target addresses within the same row, accesses by

13.7. ISSUES OF SYSTEM BANDWIDTHS, DESIGN TRADE-OFFS 219

multiple threads are interleaved on the channel and may require in the worst case to
switch DRAM rows at each memory operation. This would incur DDR's row precharge
(tRP), activate (tRCD) and minimum open-close latencies (tRAS) at every access, and
thus limit the bandwidth for DDR3-1600 channels to 10.5GBit/s per channel.

This last issue is the most severe and has a�ected all the memory-bound results reported
in this chapter and previous academic publications up to 2012. Under high load by het-
erogeneous multithreaded workloads, thevisible bandwidth of 4 DDR3-1600 channels may
degrade to 42Gbit/s, well below the 128Gbit/s recommended for a balanced design. To
overcome this issue, the system designer may consider that the DRAM access delays only
constrain accesses to a single bank. Additional bandwidth can thus be obtained by increasing
memory-level parallelism, i.e. the number of visible banks, andexpose the address-to-bank
mapping to operating software so that it can map di�erent activities to di�erent banks.

This solution was identi�ed in [JYS � 12]. However, the authors of this paper explain that
increasing memory-level parallelism has a non-trivial cost. With the advent of narrow point-
to-point memory interconnects such as FB-DIMM [HV05, GJWJ07] and Intel's QuickPath
Interconnect [Cor09, ZBMS10], it becomes possible to overcome the traditional package
pin count limitation and increase the number of separate memory channels; however this
comes at the cost of extra latencies and power consumption. Alternatively, one may want to
increase the number of independent banks per DRAM module, however the authors estimate
that market e�ects will prevent this opportunity and mandate increasing core count to bank
count ratios in future systems. Instead, the authors suggest to useDRAM sub-ranking,
which allows the memory controller to load data from di�erent ranks into the same row
bu�er; however this comes at the cost of extra logic and latency per memory channel.

Future work must thus determine the technology sweet spots that maximize externalP
memory parallelism, and thus the visible bandwidth, at a given logic and energy cost. The
memory topology must be exposedat the machine interface and the operating software must
use this information to map di�erent software activities to di�erent DRAM banks.

13.7.2 Internal bandwidth

The overall internal bandwidth of the on-chip networksconstrains the communication pat-
terns of distributed algorithms and the minimum latencies of SIMD/SPMD operations. As
such it is a factor in the maximum performance that can be reached for a given workload.

Any given choice of platform parameters will yield a speci�c set of network properties.
For example, the memory network in the reference con�guration has a theoretical point-
to-point maximum bandwidth of 512Gbit/s, and the delegation/distribution NoC has a
maximum point-to-point bandwidth of 8Gbit/s. Furthermore, any choice of protocol will
impact the visible internal bandwidth of the chip. For example, the proposed distributed
cache network uses update and eviction messages to propagate stores across caches. These
messages reduce the bandwidth available to other messages like loads. In [BGH� 11] we
discovered that inter-cache management messages can cause a reduction of up to 40% of the
visible on-chip memory bandwidth.

We then considered whether this result is a suggestion that the chip designer shouldP
provide wider network lanes and higher connectivity, and/or whether new protocols should
be designed with more control to software to avoid unnecessary tra�c. However, any invest-
ment of logic into the network would reduce the maximum number of cores, and thus possibly
become detrimental to the performance of compute-bound workloads. This should remind

220 CHAPTER 13. CORE EVALUATION

us of the discussion in [EBSA� 11], where the authors argue that for any given many-core
chip con�guration a signi�cant area of logic will be under-utilized, invisible to most work-
loads except the few that require it; this is subsequently calleddark silicon. Addressing this
issue may involve the integration of re-con�gurable logic on chip, where a resource manager
on the chip would con�gure gates towards either extra network lanes (higher communication
bandwidth) or cores (higher computation throughput) depending on the workload. We are
not aware of any existing research in this direction at the time of this writing, and this issue
may constitute a basis for future research.

In the mean time, we should highlight here that anyquantitative analysis of the high-levelj
issues about the internal parameters of a chip cannot occur before speci�c chip parameters
are selected. We can thus argue that thecrystallization of a platform, such as performed
in this book, constitutes a necessary �rst step towards the development of actual CMPs
around hardware microthreading.

13.8 Relevance of thread-to-thread synchronizer sharings

We have explained in section 4.3.3.3 that the ability to share physical synchronizers between
multiple threads opens the opportunity to daisy-chain logical threads by overlapping the
visible window of adjacent thread contexts and spreading the logical indexes in a round-
robin fashion.

This feature was originally proposed to explore whether bulk created microthreads are
a suitable alternative to dependent sequential loops. The general idea is that expressing
a sequence as a network of dependent threads allows dependent threads from a loop to
execute in parallel and reduces the need for hardware logic that �discovers� concurrency
from the instruction stream. It was implemented in our platform, and we exposed language
constructs to use it in chapter 6. An example bene�t of this feature can be seen above in
�g. 13.12. In these results, a single stream of data �ows through a cryptography kernel
implemented both sequentially and using dependent microthreads for the inner loop. As
illustrated in the �gure, using dependent microthreads increases the performance of most
kernels by 40%-90%.

Yet further analysis by [SEM09] suggest that the feature has only marginal bene�ts. It
only enables performance gains when both the following conditions are met:

ˆ the loop has a constant stride;
ˆ all carried dependencies �t in synchronizers (note that their number is limited due to

the substrate's ISA register naming in the instruction format�our parameters from
chapter 8 further limit their number to 6).

Furthermore, the authors of [SM11] propose to rewrite automatically data-parallel workloads
that would require a dependent loop in sequential code using a regular data�ow graph that
would be e�ciently executed using a specialized software scheduler running on multiple
microthreaded cores. This transformation has been prototyped successfully in a compiler.
As illustrated by �g. 13.2 (�Parallelised C�), this scheme obtains performance �gures close
to the hand-optimized code.

Beyond the software scheduler of [SM11], we have identi�ed other general ways to orga-j
nize partially sequential computations between microthreads using onlyexisting features of
the design:

	Contents

