Downloaded from UvA-DARE, the institutional repository of the University of Amsterdam (UvA) http://dare.uva.nl/document/197730

File ID 197730 Filename Notation

SOURCE (OR PART OF THE FOLLOWING SOURCE):

Type Dissertation

Title Mass transfer effects in distillation

Author P.A.M. Springer Faculty Faculty of Science

Year 2004 Pages 140

FULL BIBLIOGRAPHIC DETAILS:

http://dare.uva.nl/record/161632

Copyright

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use.

Notation

A_{i}	area for component i, m ²
a'	interfacial area per unit volume of vapour bubbles, m ² /m ³
$a_{\rm b}$	vapour-liquid interfacial area per unit volume of dispersion, m ² /m ³
$a_{\rm d}$	liquid-liquid interfacial area per unit volume of dispersion, m ² /m ³
B_{ij}	NRTL parameters; see Table 3.3, K
$c_{\rm i}$	molar concentration of species i , mol/m ³
	mixture molar density, mol/m ³
c.L	mixture molar density, mol/m mixture molar density of the liquid phase, mol/m ³
$c_{\mathrm{t}}^{\mathrm{L}}$ $c_{\mathrm{t}}^{\mathrm{L}}$ $c_{\mathrm{t}}^{\mathrm{V}}$	mixture molar density of the riquid phase, mol/m ³
$d_{\rm b}$	bubble diameter, m
$d_{\rm d}$	droplet diameter, m
D_{12}	Fick diffusivity in binary mixture, m ² /s
D_{12} $D_{ m ij}$	Maxwell-Stefan diffusivity for pair i-j, m ² /s
$D_{ m ij} = D_{ m x,ij}$	Maxwell-Stefan diffusivity for pair i-j for the liquid phase, m ² /s
	Maxwell-Stefan diffusivity for pair i-j for the vapour phase, m ² /s
$ \mathcal{D}_{\mathrm{y,ij}} $	component Murphree stage efficiency, dimensionless
$E_{ m i} \ E_{ m i}^{ m MV}$	component Murphree stage efficiency, dimensionless
Fo	Fourier number, dimensionless
G_{ij}	NRTL parameters; see Table 3.3, dimensionless
	acceleration due to gravity, m/s ²
g h	distance along froth height, m
$h_{ m f}$	height of dispersion, m
i	component index
[I]	identity matrix, dimensionless
j j	component index
$J_{\rm i}$	molar diffusion flux of species <i>i</i> relative to the molar average reference
0 1	velocity \boldsymbol{u} , mol/m ² s
$k_{ m ij}$	element for matrix of multicomponent mass transfer coefficient, m/s
[<i>k</i>]	matrix of multicomponent mass transfer coefficients, m/s
$[k_{\mathrm{x}}]$	matrix of multicomponent liquid mass transfer coefficients, m/s
$[k_{y}]$	matrix of multicomponent vapour mass transfer coefficients, m/s
$K_{ m i}$	concentration factor for component i, kg ⁻¹
$[K_{\rm eq}]$	diagonal matrix of K-values, dimensionless
$[K_{\mathrm{Oy}}]$	matrix of multicomponent overall mass transfer coefficients, m/s
$[K^{OV}]$	matrix of multicomponent overall mass transfer coefficients, m/s
m	mass (of molecule), kg
$N_{ m i}$	molar flux of species i, mol/m ² s
$N_{ m t}$	mixture molar flux, mol/m ² s
$[NTU^{OV}]$	matrix of overall number of vapour phase transfer units, dimensionless
$[NTU_{\rm Ox}]$	matrix of overall number of liquid phase transfer units, dimensionless
$[NTU_{\rm Oy}]$	matrix of overall number of vapour phase transfer units, dimensionless
n	number of diffusing species, dimensionless
n	number of species in the mixture, dimensionless
[Q]	$\equiv \exp[-[NTU_{Oy}]]$, dimensionless
$r_{\rm i}$	response factor of the GC for component i , m^2/kg

$[R_{y}]$	matrix of inverse mass transfer coefficients, m ⁻¹ s
S	parameter defined in Eq. (4.13), m/s
Sh	Sherwood number, dimensionless
$t_{\rm b}$	liquid-bubble contact time, s
$t_{\rm c}$	liquid-bubble contact time, s
T	temperature, K
$\boldsymbol{u}_{\mathrm{i}}$	velocity of the diffusing species i, m/s
и	molar average mixture velocity, m/s
V	volume, m ³
V_{b}	single bubble rise velocity, m/s
$V_{\rm injection}$	injection volume taken by the GC automatically, m ³
x_{i}	liquid composition for component i, dimensionless
y_i	vapour composition for component i, dimensionless
z_{i}	mole fraction of component i of the appropriate phase, dimensionless

Greek letters

non-randomness parameter in NRTL equation; see Table 3.3, dimensionless
hold-up of vapour, dimensionless
hold-up of drops, dimensionless
binary Maxwell-Stefan mass transfer coefficients, m/s
binary Maxwell-Stefan liquid mass transfer coefficients, m/s
binary Maxwell-Stefan vapour mass transfer coefficients, m/s
density of the liquid, kg/m ³
liquid viscosity, Pa s
molar chemical potential, J/mol
surface tension, N/m
vapour phase residence time, s
vapour phase residence time, s
NRTL parameters; see Table 3.3, dimensionless
dimensionless distance along dispersion or column height, dimensionless

Subscript

	8
cal	referring to calibration solution
cs	referring to calibration sample (for GC)
E	referring to conditions entering a specified stage
eq	referring to equilibrium
f	referring to the froth
i	component index
j	component index, stage index
k	component index
L	referring to conditions leaving a specified stage
Lc	referring to the continuous liquid phase

referring to a bubble

Ld	referring to the dispersed liquid phase
mix	referring to withdrawn column samples
n	component index
ov	overall parameter referred to the vapour phase
Oy	overall parameter referred to the vapour phase
ref	referring to reference solution/component
S	referring to sample solution (for GC)
solvent	referring to solvent to dissolve in
t	referring to total mixture
V	referring to the vapour phase
X	referring to the liquid phase / component index
y	referring to the vapour phase

referring to the liquid phase

Superscript

Lc

Lc,b

Lc.d

Ld	referring to dispersed liquid droplet phase
M	referring to Murphree
V	referring to the vapour phase
*	referring to equilibrium state
Dimer	Sherwood number $\left[\frac{\kappa d_b}{\Phi} = \frac{2}{3}\pi^2 \left[\frac{\sum_{m=1}^{\infty} \exp\{-m^2\pi^2 Fo\}}{\sum_{m=1}^{\infty} \exp\{-m^2\pi^2 Fo\}}\right]\right]$
	$\sum_{n=1}^{\infty} \left\{ \begin{array}{c} n^2 - 2 & F_n \end{array} \right\}$

referring to the continuous liquid phase

referring to the continuous liquid phase next to bubble

referring to the continuous liquid phase next to drop

$$Sh_{ij} \qquad \text{Sherwood number } \begin{bmatrix} \frac{\kappa_{y,ij}}{D_{y,ij}} \frac{d_b}{d_b} = \frac{2}{3}\pi^2 \begin{bmatrix} \sum_{m=1}^{\infty} \exp\left\{-m^2\pi^2 F o_{ij}\right\} \\ \sum_{m=1}^{\infty} \frac{1}{m^2} \exp\left\{-m^2\pi^2 F o_{ij}\right\} \end{bmatrix}$$

$$Fo \qquad \text{Fourier number } \begin{bmatrix} \frac{4D}{d_b^2} \end{bmatrix}$$

$$Fo_{ij} \qquad \text{Fourier number } \begin{bmatrix} \frac{4D}{d_b^2} \end{bmatrix}$$

