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Principal component analysis of ensemble recordings
reveals cell assemblies at high temporal resolution
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Abstract Simultaneous recordings of many single neu-
rons reveals unique insights into network processing
spanning the timescale from single spikes to global
oscillations. Neurons dynamically self-organize in sub-
groups of coactivated elements referred to as cell
assemblies. Furthermore, these cell assemblies are re-
activated, or replayed, preferentially during subsequent
rest or sleep episodes, a proposed mechanism for mem-
ory trace consolidation. Here we employ Principal
Component Analysis to isolate such patterns of neural
activity. In addition, a measure is developed to quantify
the similarity of instantaneous activity with a template
pattern, and we derive theoretical distributions for the
null hypothesis of no correlation between spike trains,
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allowing one to evaluate the statistical significance of
instantaneous coactivations. Hence, when applied in an
epoch different from the one where the patterns were
identified, (e.g. subsequent sleep) this measure allows
to identify times and intensities of reactivation. The
distribution of this measure provides information on
the dynamics of reactivation events: in sleep these occur
as transients rather than as a continuous process.

Keywords PCA · Reactivation · Sleep ·
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1 Introduction

Ensemble recordings, or the simultaneous recordings
of groups of tens to hundreds cells from one or mul-
tiple brain areas in behaving animals, offer a valuable
window into the network mechanisms and information
processing in the brain which ultimately leads to behav-
ior. In the last two decades, the dramatic increase in
yield of such techniques with the use of tetrodes, silicon
probes and other devices (McNaughton et al. 1983;
Buzsáki 2004) poses extremely challenging problems to
the data analyst trying to represent and interpret such
high-dimensional data and uncover the organization of
network activity.

Starting with Donald Hebb’s seminal work (Hebb
1949), theorists have posited cell assemblies, or
subgroups of coactivated cells, as the main unit of
information representation. In this theory, information
is represented by patterns of cell activity, which create
a coherent, powerful input to downstream areas.
Cells assemblies would result from modifications of
local synapses, e.g. according to Hebb’s rule (Hebb
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1949). Their expression and dynamics are likely driven
to a large extent by specific interactions between
principal cells and interneurons (Geisler et al. 2007;
Wilson and Laurent 2005, Benchenane et al. 2008).
From an experimental point of view, cell assemblies
can be characterized in terms of the coordinated firing
of several neurons in a given temporal window, either
simultaneously (Harris et al. 2003), or in ordered se-
quences of action potentials from different cells, as
has been shown in both hippocampus (Lee and Wilson
2002) and neocortex (Ikegaya et al. 2004). Ensemble
recording provides the opportunity to measure these
co-activations in the brain of behaving animals.

To date, only few methods for rigorous statistically
based quantification of cell assemblies have been pro-
posed (e.g. Pipa et al. 2008). This problem is all the
more delicate when temporal ordering of cells’ dis-
charges is taken into consideration (Mokeichev et al.
2007), requiring immense data sets in order to attain
the necessary statistical power (Ji and Wilson 2006). On
the other hand, cell assemblies’ zeros-lag co-activations
already provide a rich picture of network function
(Nicolelis et al. 1995; Riehle et al. 1997), and may rep-
resent an easier target for statistical pattern recognition
methods. Moreover, the effective connectivity between
cells is a dynamical, rapidly changing parameter. Be-
cause of this, it is important to follow cell assemblies
at a rapid time scale. This would improve our under-
standing of the temporal evolution of the interaction
between cells, their link to brain rhythms, the activity
in other brain areas or ongoing behavior.

Principal Component Analysis (PCA) has previously
been used to find groups of neurons that tend to fire
together in a given time window (Nicolelis et al. 1995;
Chapin and Nicolelis 1999). PCA (see e.g. Bishop 1995)
can be applied to the correlation matrix of binned
multi-unit spike trains, and provides a reduced dimen-
sionality representation of ensemble activity in terms of
PC scores, i.e., the projections over the eigenvectors of
the correlation matrix associated with the largest eigen-
values. This representation accounts for the largest
fraction of the variance of the original data for a
fixed dimensionality. Also, PCA is intimately related to
Hebb’s plasticity rule: it has been shown to be an emer-
gent property of hebbian learning in artificial neural
networks (Oja 1982; Bourlard and Kamp 1988).

A remarkable success of ensemble recordings was
the demonstration that, during sleep, neural patterns of
activity appearing in the immediately previous awake
experience are replayed (Wilson and McNaughton
1994; Nádasdy et al. 1999; Lee and Wilson 2002; Ji

and Wilson 2006). This is proposed to be important
for memory consolidation, i.e. turning transient, labile
synaptic modifications induced during experience into
stable long-term memory traces. Replay appears to
take place chiefly during Slow Wave Sleep (SWS). In
the hippocampus, a brain structure strongly implicated
in facilitating long term memory (Scoville and Milner
1957; Marr 1971; Squire and Zola-Morgan 1991; Nadel
and Moscovitch 1997), cell assemblies observed during
wakefulness are replayed in subsequent SWS episodes
(Wilson and McNaughton 1994) in the form of cell
firing sequences (Nádasdy et al. 1999; Lee and Wilson
2002). This occurs during coordinated bursts of activity
known as sharp waves (Kudrimoti et al. 1999).

To detect replay, we first need to characterize
the activity during active experience, and to generate
representative templates from it. Then, templates are
compared with the activity during sleep to assess their
repetitions. Previous methods have only provided a
measure of the overall amount of replay occurring
during a whole sleep episode (Wilson and McNaughton
1994; Kudrimoti et al. 1999), by using the session-
wide correlation matrix as a template. Alternatively,
templates have been generated from the neural activity
during a fixed, repetitive behavioral sequence. This
is possible, for example, for hippocampal place cells,
which fire as the animal follows a trajectory through the
firing fields of the respective neurons (Lee and Wilson
2002), if the animal runs through the same trajectory
multiple times (Louie and Wilson 2001; Ji and Wilson
2006; Euston et al. 2007), or when a new and transient
experience occurs (Ribeiro et al. 2004). One can then
search for the repetition of this template during the
sleep phase. However, such a template construction
technique is not applicable when the behavior is not
repeated, or if the behavioral correlates of the recorded
cells are not known.

Recently, we used PCA to identify patterns in pre-
frontal cortical neurons ensembles (Peyrache et al.
2009), without making reference to behavioral se-
quences, and we devised a novel, simple measure using
the PCA-extracted patterns to assess the instantaneous
similarity of the activity during sleep. During sleep, this
similarity increased in strong transients demonstrat-
ing that neuron ensembles appearing in the AWAKE
phase reactivate during SWS. Further, the fine tempo-
ral resolution of this approach uncovered for the first
time a link between assembly replay in the prefrontal
cortex and hippocampal sharp waves, as well as the
relationship between this replay and slow cortical os-
cillations. It was also possible to determine the precise
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behavioral events corresponding to the origin of re-
played patterns. Moreover, we were able to determine
that the formation of these cell assemblies involves spe-
cific interactions between interneurons and pyramidal
cells (Benchenane et al. 2008).

The present paper presents this methodology in
detail with mathematical and statistical support, and
provides new results on how the statistical significance
of the replay can be assessed. We show how random
matrix theory can be used to provide analytical bounds
for quantities of interest in the analysis using a multi-
variate normal distribution as a null hypothesis, and we
show how deviations from normality can be dealt with
in a consistent manner.

2 Methods

2.1 Experimental setting

Four rats were implanted with 6 tetrodes (McNaughton
et al. 1983) in the prelimbic and infralimbic areas in
the medial PreFrontal Cortex (mPFC). 1692 cells were
recorded in the mPFC from four rats, during a total of
63 recording sessions (Rat 15: 16; Rat 18: 11; Rat 19:
12; Rat 20: 24). Rats performed a rule-shift task on a
Y maze, where, in order to earn a food reward, they
had to select one of the two target arms, on the basis of
four rules presented successively. The rules concerned
either the arm location, or whether the arm was illu-
minated (changing randomly at each trial). As soon as
the rat learned a rule, the rule was changed and had to
be inferred by trial and error. Recordings were made
also in sleep periods prior to (PRE) and after (POST)
training sessions. For an extensive description of the
behavioral and experimental methods, see Peyrache
et al. (2009).

2.2 Analysis framework

The inspiration for developing this method was to
quantitatively and precisely compare the correla-
tion matrix of the binned multi-unit spike trains
recorded during active behavior with the instantaneous
(co)activations of the same neurons recorded at each
moment during the ensuing sleep. Throughout the ar-
ticle, the bin width is fixed at 100 ms. The “awake”
correlation matrix can be seen as the superimposition
of several modes of patterns of activity. The PCA
procedure makes it possible to separate such patterns.
The precise mathematical definition of the algorithm is

given in the following sections, but schematically, our
procedure is divided in five steps:

1. Spike trains from multiple, simultaneously re-
corded cells from the awake epoch are binned and
z-transformed.

2. The correlation matrix of the binned spike trains is
computed, and diagonalized.

3. The eigenvectors associated to the largest eigenval-
ues are retained; a threshold value can be computed
from the upper bound for eigenvalues of correla-
tion matrices of independent, normally distributed
spike trains.

4. Spike trains from the sleep epoch are binned and
z-transformed.

5. A measure of the instantaneous similarity (termed
reactivation strength) of the sleep multi-unit activity
at each time (the population vector) with the eigen-
value is computed.

Reactivation strength is a time series describing how
much the sleep ensemble activity resembles the awake
activity at any given time. To make the claim that
replay of experience-related patterns is taking place
during sleep, we need to test the computed reactiva-
tion strength against an appropriate null hypotheses.
The simplest null hypothesis is that the sleep activity
is completely independent from the awake data, and,
for example, is drawn from a multivariate normal dis-
tribution. Clearly enough, disproving this hypothesis
does not provide sufficient evidence for replay: certain
structural activity correlations may have existed prior
to the experience, perhaps because of already present
synaptic connections. Moreover, activity distributions
may be non-normal, if for no other reason, because
binned spike trains for small enough bin sizes will tend
to be very sparse and thus much of the mass of the
distribution will concentrate around zero, causing the
distribution to be strongly asymmetrical. Nevertheless,
from the conceptual point of view, this null hypothesis
is interesting as it allows to better characterize devi-
ations from normality in the activity distribution and
their consequences.

To control for structural correlations, the sleep data
must be compared with another sleep session recorded
prior to the experience: if reactivation strengths in
sleep after experience (the POST epoch) tend to be
larger than the values for the same neuron ensemble
measured for the sleep before (or the PRE epoch), one
may conclude that the experience epoch contributed
to increase sleep activity correlations, and replay has
taken place. If no difference between PRE and POST
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reactivation strength is measured, one may conclude
that experience had no effect on correlations in spon-
taneous activity during sleep.

An important feature of this technique is that it
permits instantaneous assessments of replay. Formally,
reactivation strength measures similarity between the
correlation matrices for the awake and sleep data (the
approach followed in works such as e.g. Kudrimoti et al.
1999), which was decomposed into the contributions
coming from each eigenvector and each time during
sleep. As discussed below, this considerably increases
analysis power, as replay time series can be correlated
with other physiological time series of relevance.

Furthermore, it is also useful to apply the analysis
in the opposite sense: extracting templates from replay
events in the sleep epoch, and matching them to the
awake data. In this way, one can identify those behav-
ioral events with activity most similar to sleep activity,
and therefore, which behavioral events may contribute
the most to replay. For this reason, we will describe
the procedure in terms of generic TEMPLATE and
MATCH epochs.

2.3 Isolation of neural patterns

Let us consider N neurons recorded simultaneously
over the time interval [0 . . . T]. The neurons’ activity
could be represented by a series of spike times noted
{t i

j} where t i
j is the j-th spike of the i-th neuron (i =

1 . . . N).
This activity is then binned yielding a time series of

spike counts si(tk) where i = 1 . . . N, tk = 1 . . . B, where
B is the total number of bins and tk represents the
center time of the bins:

si (tk) = card
({

t i
j

}
: tk + b/2 > ti

j > tk − b/2
)

(1)

Here, b is the bin width (b = T/B). Hereafter, for
the sake of clarity, the indices of the discrete times
tk will be omitted. Then, these binned activities are z-
transformed, obtaining the Q matrix:

Qit = si(t) − 〈si〉
σsi

(2)

where 〈si〉 = 1
B

∑B
j=1 s j(t) and σsi =

√
1

B−1
∑B

t=1
(
si(t)

)2 − 〈si〉2.
The pairwise cell activity correlation matrix is then ob-
tained as

C = 1
B

QQT (3)

The elements of the correlation matrix, Cij, are
the Pearson correlation coefficients between the spike
count series for neurons i and j. To disambiguate the
contribution of each pattern in the resulting correlation

coefficients, we perform a PCA on the Q matrix, that is,
an eigenvector decomposition of the correlation matrix.
This yields a set of N eigenvectors pl, l = 1..N, each
associated to an eigenvalue λl. The patterns will be
associated to the projectors of the correlation matrix,
noted P(l), which are the outer products of all eigenvec-
tors with themselves, providing the following represen-
tation of the correlation matrix:

C =
∑

l

λl(p(l))T p(l) =
∑

l

λlP(l) (4)

This form highlights the fact that the ensemble cor-
relation matrix can be seen as the superimposition of
several co-activation patterns, whose importance is
measured by the eigenvalue λl. PCA allows to distin-
guish these patterns which can, in turn, be compared
with the instantaneous cell activity during different
epochs. In order to do that though, we also need to
establish which patterns are likely to reflect underly-
ing information encoding processes and which are the
result of noise fluctuations. This problem is addressed
below.

2.4 Time course of template matching

Let us consider two epochs, TEMPLATE and
MATCH. The general idea is to compare the instan-
taneous co-activations of neurons during the MATCH
epoch with the patterns identified during TEMPLATE,
following the method proposed above.

To begin, we could just compare the epoch-wide cor-
relation matrices for the two epochs. One such measure
of similarity, computed from the two epochs, would be:

MMA−T E =
∑

i, j:i< j

CT EMPLAT E
ij CMATCH

ij (5)

= 1
2

Tr
((

CMATCH − I
)T (

CT EMPLAT E − I
))

(6)

where the superscript MA − T E stands for MATCH-
TEMPLATE. This measure is strongly positive in the
case of high similarity and is strongly negative in the
case where correlations change sign (from positive to
negative and vice versa) from the TEMPLATE to the
MATCH epoch.

In substance, this is the approach used in studies such
as Wilson and McNaughton (1994), Kudrimoti et al.
(1999), which gave an overall assessment of the amount
of replay in the whole MATCH epoch (in their case,
the sleep epoch). Further mathematical manipulation
yields a prescription to measure the exact time course
of the replay: MMA−T E can be expressed as a sum over
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a time series defined for each time bin during the POST
(or PRE) epoch (by using Eq. (3)):

MMA−T E = 1
2

∑
i, j:i �= j

CMATCH
ij CT EMPLAT E

ij (7)

= 1
2BMATCH

×
BMATCH∑

t=1

∑
i, j:i �= j

QMATCH
it CT EMPLAT E

ij QMATCH
jt

(8)

= 1
2BMATCH

BMATCH∑
t=1

RMA−T E
0 (t) (9)

where BMATCH is the number of bins in the MATCH
epoch, and

RMA−T E
0 (t) =

∑
i, j:i �= j

QMATCH
it CT EMPLAT E

ij QMATCH
jt .

Thus, CT EMPLAT E
ij can be seen as a quadratic form,

applied to the vector of multi-cell spike counts
QMATCH

it , at each time t during the rest epochs, to pro-
duce the time series RMA−T E

0 (t). RMA−T E
0 (t) represents

a decomposition of the epoch-wide correlation simi-
larity into its instantaneous contributions, i.e. the sim-
ilarity between the current population vector at time
t and the general pattern of co-activation during the
TEMPLATE epoch. Therefore, it contains information
on exactly when during the MATCH epochs occur
patterns of co-activation similar to those that occurred
in TEMPLATE. However, this measure can still com-
bine together factors from several different patterns
which may co-activate independently. The obtained
time course may therefore be the result of averaging
over these distinct patterns, which may in fact behave
quite differently from one another. The neural patterns
are extracted from CT EMPLAT E:

CT EMPLAT E =
∑

l

λlP(l) (10)

from Eqs. (8) and (9), RMA−T E
0 (t) can now be expressed

as:

RMA−T E
0 (t) =

∑
l

λl

∑
i, j:i �= j

QMATCH
it P(l)

ij QMATCH
jt (11)

=
∑

l

λl RMA−T E
l (t) (12)

where

RMA−T E
l (t) =

∑
i, j:i �= j

QMATCH
it P(l)

ij QMATCH
jt (13)

The time series RMA−T E
l (t) measures the instantaneous

match of the l-th co-activation template and the on-
going activity. The exclusion of the diagonal terms
in Eq. (13) reduces the sensitivity of the reactiva-
tion strength measure to fluctuations in the instan-
taneous firing rates. The mean reactivation measure,
MMATCH−T EMPLAT E is therefore a weighted sum of the
time-averaged value of pattern similarity:

MMATCH−T EMPLAT E = 1
2

N∑
l=1

λl

〈
RMA−T E

l

〉
t

(14)

where 〈.〉t denotes the average over time.

3 Results

3.1 Significance of principal components

To determine the significance of the patterns extracted
by PCA, we need to consider, for comparison, the null
hypothesis in which the spike trains are independent
random variables. Following the seminal work from
Wigner (1955) on the spectra of random matrices,
the distribution of singular values (root square of the
eigenvalues of the correlation matrix) of random N-
dimensional data sets has been shown to follow the
so-called Marc̆enko-Pastur distribution (Marčenko and
Pastur 1967; Sengupta and Mitra 1999). In the limit
B → ∞ and N → ∞, with q = B/N ≥ 1 fixed,

ρ (λ) = q
2πσ 2

√
(λmax − λ) (λ − λmin)

λ
(15)

where

λmin < λ < λmax and λmax
min = σ 2

(
1 ± √

1/q
)2

σ 2 is the variance of the elements of the random
matrix, which in our case is 1, because the Q matrix is z-
transformed. Equation (15) shows that the distribution
vanishes for λ greater than an upper limit λmax. Under
the null hypothesis of a random matrix Q, the corre-
lations between spike trains are determined only by
random fluctuations, and the eigenvalues of C must lie
between λmin and λmax. Eigenvalues greater than λmax

are therefore a sign of non-random effects in the matrix,
and for this reason we call principal components asso-
ciated to those eigenvalues signal components, while
those associated to eigenvalues between λmin and λmax

are defined as non-signal components. However, the
finite size of data sets implies that eigenvalue distribu-
tion borders are not as sharp as the theoretical bounds
described by Eq. (15). The highest eigenvalue of any
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correlation matrix is drawn from the Tracy-Widom
distribution (Tracy and Widom 1994) in the case of
normal, or close to normal, variables. Thus, the highest
eigenvalue lies around λmax with a standard deviation
of order N−2/3 (which assumes a value of ∼ 0.1 for
N = 30, typical for our recordings). We also use the
value λmax to normalize uniformly eigenvalues across
different section, defining the normalized encoding
strength as

Φ = λ

λmax
. (16)

Figure 1(a) shows the distribution of the eigenval-
ues of three different ensembles. The Marc̆enko-Pastur

upper-bound is marked as a black dotted line and the
expected distribution in case of random fluctuation is
depicted on the right plots of the figure. The upper
bound (i.e. λtw ∼ λmax + N−2/3) of the expected fluctu-
ation for the highest eigenvalue given by Tracy-Widom
is shown as a red line. It can be observed that the
first eigenvalues are largely above the expected upper
bound (at least 4 or 5 times the width of the Tracy-
Widom distribution above λmax) hence allowing rejec-
tion the null hypothesis of independent spike count
series. To check whether any other irregularities (i.e.
normality violation) in the distribution of binned spike
trains could affect the eigenvalues of the correlation
matrix (see for example Biroli et al. 2007), each row
of Q was randomly permuted. The resulting shuffled

Fig. 1 Evidence for signal
components in the data sets.
(a) Distribution of the
eigenvalues for three example
sessions (left) to be compared
with the Marc̆enko-Pastur
theoretical distribution
(right). The upper bound of
this theoretical distribution is
indicated in the left panel
with black dotted lines. The
red dotted line indicates the
upper bound derived from
Tracy-Widom distribution for
the highest eigenvalues in
case of finite data sets (see
text). (b) Histograms of the
spectra of all the eigenvalues
for each of the same 3 data
sets as for panels in A after
shuffling. The empirical
distribution was in good
agreement with the
Marc̆enko-Pastur
distribution, even without
taking the Tracy-Widom
correction into account. In
particular, all computed
eigenvalues remained within
the theoretical bounds
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Fig. 2 Example of reactivation strength time course (bins of
100 ms) for one principal component extracted from awake
activity during two sleep sessions. Shaded areas denote periods
of identified Slow Wave Sleep (SWS). POST SWS is dominated

by brief, sharp increases in the reactivation strength, indicating
strong similarity between instantaneous coactivations and the
correlation pattern of the awake principal component

matrix is composed of rows whose individual distrib-
utions are preserved but whose temporal interactions
are lost. The spectra of their correlation matrix are
shown in Fig. 1(b). All eigenvalues remain within the
bounds of the Marc̆enko-Pastur distribution (red curve,
equivalent to the ones presented in Fig. 1(a), right).
Thus, we argue that the observed signal eigenvalues are
an effect of the correlation between spike trains, and

not simply an effect of the non-normality of each cell’s
binned spike count.

3.2 Average reactivation

For sake of simplicity, let us first compute reactiva-
tion strengths using the TEMPLATE epoch as the
MATCH epoch as well. In this case, at a time t,
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Fig. 3 Eigenvectors from AWAKE better match activity in sleep
POST than in PRE. (a) Eigenvalues from the AWAKE cor-
relation matrix (x-axis) plotted against the average reactivation
strength represented by the very same vectors during sleep PRE
(left) and POST (right) for signal components only (Φ > 1).
Each dot represents one of the 323 signal components identified
from 63 datasets (four rats). Correlation values (r) and slopes
(s) are indicated for the two distributions. The two measures

were more strongly correlated during POST, and the slope of the
linear regression line was steeper too (p < 10−6). (b) Average
reactivation strength from POST versus PRE. Encoding strength
is color coded. The points tend to lie above the line represent-
ing the identity function, showing that mean reactivation was
stronger during POST. This effect was stronger for components
with higher encoding strength
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the standardized population vector is written Qt =
[Q1t, . . . , Qit, . . . , QNt]T . Let Wt be defined as Wt =
QT

t Qt. Wt can be decomposed in a diagonal matrix WD
t

and the remaining matrix WR
t , therefore:

RT E−T E
l (t) = (

pl)T
WR

t pl (17)

whence,

〈
RT E−T E

l

〉
t = (

pl)T 〈
WR

t

〉
t pl (18)

By definition, 〈W〉t = C and thus
〈
WR

〉
t = C − I which

thus gives:

〈
RT E−T E

l

〉
t = λl − 1 (19)

In the case where the MATCH epoch is different from
the TEMPLATE, we have:
〈
RMA−T E

l

〉
t
= γ MATCH

l − 1 where

γ MATCH
l = (

pl)T
CMATCH pl (20)

As mentioned above, memory trace reactivation
studies aim at comparing awake activity (the TEM-
PLATE epoch here is the AWAKE epoch) with the
subsequent sleep epoch (POST epoch, taking the role
of the MATCH epoch). In Fig. 2 the epoch-wide time
course of R for an example principal component from a
recording of an ensemble of mPFC neurons is displayed
for the PRE and POST epochs. Transient peaks can
be observed that are much stronger in POST, and con-
centrated in the periods of identified slow wave sleep
(SWS) (Peyrache et al. 2009). However, the baseline
level is comparable between PRE and POST epochs.
For this reason, from this point on, sleep epochs will
always refer to SWS only. The SWS preceding the
AWAKE epoch is taken as a control (PRE epoch).
The variable γ PRE

l (resp. γ POST
l ) quantifies the amount

of variance that a given eigenvector from AWAKE
could explain during the PRE epoch (resp. POST).
The empirical distribution of γ PRE

l (resp. γ POST
l ) as a

function of λl is shown in Fig. 3(a). During POST, γl was
more correlated to λl than in PRE, indicating that the
correlation structure is more similar to that measured
during AWAKE than it is in PRE. Note that, if it held
that CPOST = CAW AKE, then γ POST

l = λl for all l. In
general, this is not the case, for example, because the
sleep correlation structure includes patterns that are
characteristic of that behavioral phase, and these do
not appear during the AWAKE epoch. In any event,
during POST the regression line between λl and the
corresponding values of γl has a steeper (and closer to
1) slope, indicating that the POST correlation matrix

�Fig. 4 Distribution of the R measure during the TEMPLATE
epochs (RT E−T E). Data are from the same three sessions as
in Fig. 1 (AWAKE). (a) Distribution of R across all time bins
for the first principal component of each of the three sessions
(representative of the dataset, the respective encoding strength
Φ = λ/λmax are displayed on top of the distributions). Real data
(black), theoretical expectation (red) derived from a Monte-
Carlo sampling of Eq. (32) (n = 105), and a numerical simulation
using normal multivariate data with the same correlation matrix
as the actual data (blue). (b) Same plots as A but in log-log scale.
(c) Distribution of the α and β terms from Eq. (32). High encod-
ing strength eigenvectors (e.g. one at bottom) tend to exhibit a
clear power-law distribution of their R measure distribution

is more similar to its AWAKE analog than the one
computed for PRE. Figure 3(b) shows an eigenvector-
by-eigenvector (combined across sessions) comparison
of the reactivation strengths during PRE and POST.
While it is apparent that some reactivation strengths
appear during PRE as well, most eigenvectors showed
a larger value for POST, especially for eigenvectors as-
sociated to large eigenvalues. During PRE, reactivation
strengths were nevertheless still important. This could
be due, as mentioned above, to structural correlations,
as well as to neural processes reflecting anticipation of
the upcoming task (or perhaps lingering reactivations
of yet earlier experiences).

3.3 Distribution of R

In exploring the time course of the reactivation mea-
sure R, one interesting question that emerges is the na-
ture of its variability. One possibility is that R fluctuates
steadily around an average value (possibly different
for each epoch), as would be the case, for example,
if the underlying spike trains were a gaussian process.
Alternatively, power-law behavior for the distribution
of R values would indicate that the temporal evolution
of R is dominated by strong transients, as it would
result, for example, from “avalanche” dynamics (Beggs
and Plenz 2003, 2004; Levina et al. 2007). In fact, if spike
trains are multivariate normally distributed variables,
the distribution of R can be computed and compared
with experimental data. Let us consider the case in
which the TEMPLATE activity is considered fixed,
and we shall compute the distribution of R when the
columns of the QMATCH matrix are drawn from a
multivariate normal distribution with covariance matrix
C, QMATCH

t ∼ N (0, C).
In this case, for m different time bins, Q is a m × N

matrix and W = QTQ is a N × N matrix drawn from
the so-called Wishart distribution with m degrees of



J Comput Neurosci (2010) 29:309–325 317

–5 0 5 10 15 20 25 30 35 40

Actual Data
Theoretical Distribution

α

β

–10 0 10 20 30 40 50 60 70

10
–4

10
–3

10
–2

10
–1

10
0

α

β

–10 0 10 20 30 40 50 60

α

β

10
–4

10
–3

10
–2

10
–1

10
0

10
–4

10
–3

10
–2

10
–1

10
0

10
–4

10
–3

10
–2

10
–1

10
0

 100  101  102

 100  101  102

 100  101  102

10
–4

10
–3

10
–2

10
–1

10
0

Reactivation strength

10
–4

10
–3

10
–2

10
–1

10

L
o

g
 P

ro
b

ab
ili

ty
L

o
g

 P
ro

b
ab

ili
ty

L
o

g
 P

ro
b

ab
ili

ty

Reactivation strength

Reactivation strength

Reactivation strength

Reactivation strength

 100  101  102

 100  101  102

100

10-3

10-2

10-1

100

10-3

10-2

10-1

 100  101  102

100

10-3

10-2

10-1

 100  101  102

100

10-3

10-2

10-1

 100  101  102

100

10-3

10-2

10-1

 100  101  102

100

10-3

10-2

10-1

Reactivation strength

φ  = 1.6

φ  = 1.9

φ = 1.3

0

Simulated Data

(a) (b) (c)

freedom, W ∼ WN (C, m). It can be shown that, for any
given N-dimensional vector z:

∀z ∈ �N, zTWz ∼ σ 2
z χ2

m (21)

where σ 2
z = zTCz In particular, if z = pl, and C =

CT EMPLAT E it leads to:

(
pl)T

Wpl ∼ λlχ
2
m (22)
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Let assume that for the population vector Qt =
[Q1t, . . . , Qit, . . . , QNt]T the Qit are drawn from a
multivariate normal distribution: where C is the co-
variance matrix of the multivariate distribution (as the
columns of Q are by definition z-transformed, C is also
the correlation matrix). From Eq. (13), Rl could be
written as:

Rl(t) = QT
t P(l) Qt − QT

t D(l)Qt (23)

where D is a diagonal matrix whose elements are{(
pl

i

)2
}

i=1..N
The two terms on the right side of Eq. (23)

should be considered separately: α(t) = QT
t P(l) Qt and

β(t) = QT
t D(l)Qt. First, α(t) is easily deduced from

Eq. (22)

α(t) = QT
t P(l) Qt (24)

= (
pl)T

Qt QT
t .pl (25)

= (
pl)T

Wt pl (26)

where Wt = Qt Q
T
t follows a Wishart distribution with

a degree of freedom of 1 such that α ∼ λlχ
2
1 in the case

C = CT EMPLAT E.
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Fig. 5 Distribution of the R measure during the MATCH epochs
(PRE and POST). Data are from the same three principal
components as in Fig. 4 (AWAKE). (a) Distribution of R for
PRE (left) and POST (right) sleep of the real data (black) and
the theoretical expectation (red) derived from a Monte-Carlo
sampling of Eq. (33) (n = 105). (b) Same plots as (a) but in log-
log scale showing a clear power law decay in sleep POST for

high encoding strength components (second and third rows). (c)
Bar plot of average of the distributions of actual data shown
in (a) and (b) for PRE (left) and POST (right). Note that the
average reactivation strength is equal to γ − 1. The difference in
the means seemed to be related to the difference in the tails of
the distributions
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The “auto correlation” term β(t) is a weight-
ed sum of χ2 distributed variables whose number of
degrees of freedom is not known a priori:

β(t) = QT
t D(l) Qt (27)

=
∑

i

(
pl

i

)2
Q2

it (28)

A common approximation (Imhof 1961) of a
weighted sum of chi-squares is a gamma distribution
whose first two moments are the same as those of the
sum. For a gamma distribution Γk,θ of shape parameter
k and scale parameter θ , this gives (with the superscript
of pl omitted):

kθ =
∑

p2
i and k

θ2

2
=

∑
p4

i (29)
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Fig. 6 Effect of instantaneous global fluctuations of firing rate
on the reactivation strength measure. (a) For one principal com-
ponent recorded during one session (third example of Figs. 1,
4 and 5), the scatterplots show the dependence between the
instantaneous activation (expressed as the instantaneous z-score
averaged over all recorded cells) and the corresponding reacti-
vation strength. In black, the actual data are shown, vs. the 99th
percentile of the shuffled control. The data pertain to the PRE
epoch (left) and the POST epoch (right). In POST, but not in
PRE, a larger number (3.4%) of points than expected by chance
is above the 99th percentile, showing that reactivation effects
are not likely to be the product of activity fluctuations alone.
Meanwhile, 4.5% of POST bins were above the 99th percentile of
the PRE distribution. Right inset: Distribution of the averaged z-
score, measuring the degree of instantaneous population activity,

for all time bins in PRE (blue) and POST (red) sleep. The two
distributions are not different. (b) Pooled data of the number of
POST bins exceeding the 99th percentile of PRE distributions.
Signal components were grouped according to their encoding
strength. The percentages were significantly over 1% for the
three groups (p < 0.05, t-test) and, individually, percentages
were correlated with encoding strengths (r = 0.39, p < 10−12).
(c) Pooled data from all principal components computed from all
available recording sessions comparing the reactivation measure
average for sleep PRE and POST with shuffled measures for
the two same epochs. The difference between PRE and POST
sleep epochs was significant for the three signal groups (p < 0.05,
paired t-test), but not for shuffled measures. Furthermore, the
averages for shuffled data were one order of magnitude less than
actual measures
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which leads to (recalling that
∑

p2
i = 1):

k = θ−1 = 1
2

(∑
p4

i

)−1
(30)

hence, β is equivalent to1

β ∼ Γm,m−1 where m = 1
2

(∑
p4

i

)−1
(31)

Finally, if α and β are assumed independent, the
theoretical distributions of RT E−T E

l and RMA−T E
l are:

RT E−T E
l ∼ λlχ

2
1 − Γm,m−1 (32)

RMA−T E
l ∼ γ MATCH

l χ2
1 − Γm,m−1 (33)

This result leads to an important conclusion: even
if α and β were correlated, the tail of the distribution
could not be “heavier” or more skewed than an ex-
ponential distribution. Nevertheless, as we shall see in
the following section, experimental evidence shows that
those distributions are actually power-laws. The distri-
bution of RT E−T E for the first eigenvectors of the 3 data
sets presented in Fig. 1 are plotted in Fig. 4(a), against
the theoretical curve (red) and the result from multi-
variate normal data simulations (blue). The very same
distributions are shown in log-log scales in Fig. 4(b)
to highlight the power-law tails of the distributions.
The higher the encoding strength (λ/λmax), the better
the tail is fitted with a power-law (in other words the
tail is linear in log-log plots). Figure 4(c) shows the
theoretical (under the multivariate normal hypothesis)
and empirical distribution for the individual terms α

and β.

3.4 Reactivation is a rare event

The significant increase of the average of reactivation
measures from PRE sleep to POST sleep (Fig. 3(c),
see also Peyrache et al. 2009) might not be the most
relevant parameter which changes with learning. In-
deed, as shown in Fig. 2, the reactivation measure
shows prominent transient ‘spikes’ during POST sleep
associated with a simultaneous increase in firing of the
cells associated with the highest weights in the principal
component. During POST, reactivation strength distri-
butions deviate strongly from the multivariate normal
case, and their tail can be well fit with a power law
(Fig. 5). Such deviation from the theoretical distribu-
tion is less marked during PRE, despite some hints of
power law behavior.

1Note that β ∼ (2m)−1χ2
2m such that β follows a normalized χ2

distribution whose degree of freedom is
(∑

p4
i

)−1
.

In principle, the heavier tail of the reactivation
strength distribution during POST observed in Fig. 5
could result from an increase in variability over the
global population instantaneous firing rate. The stan-
dardization of the binned spike trains for each cell
(corresponding to the rows of the Q matrix), does
not prevent the instantaneous firing rate from varying
considerably, for example because of UP/DOWN states
bistability dominating cortical activity during sleep
(Steriade 2006). In order to control for this possibil-
ity, we computed the reactivation strength from shuf-
fled data where, for each time bin, the identity of
the cells was randomly permuted. This shuffling pro-
cedure preserves the instantaneous global firing rate
(and its fluctuations), but it destroys the patterns of co-
activation. In Fig. 6(a), from the same session presented
in Fig. 2, the reactivation measure was computed for
one principal component while the eigenvector weights
(or equivalently, the identities of the cells in the multi-
unit spike train ) were shuffled 1000 times. The 99th
percentile of the resulting distribution, for each time
bin, is shown as the grey curve superimposed upon
actual reactivation measure data (black dots). Those
points are plotted as a function of the average firing
rate (in z-score) which represent the global activation of
the cell population. There is a relation between instan-
taneous global activation and the upper bound of the
distribution of shuffled measures (the 99th percentile)
which is similar in PRE and POST sleep. Nevertheless,
while the actual reactivation measure remained within
the expected bounds in PRE sleep (only 1% of the bins
exceeded the shuffled measure), the actual reactivation
measure largely exceeded this confidence interval in
POST sleep (3.4% of the bins were above the 99th
percentile). To check whether this could be due to a
difference in global population activation, the PRE and
POST sleep distribution of average z-score were com-
pared (right inset) and, indeed, showed no difference
(Kolmogorov-Smirnov test, p = 0.11).

This difference in the tail of the distribution is very
important for the excess reactivation strength in POST
with respect to PRE which we take as evidence for
memory replay. In the example of Fig. 6(a), 4.5% of
the bins from POST exceeded the 99th percentile of the
PRE distribution. Hence, the difference in tails of PRE
and POST distributions (as in the examples in Fig. 5)
resulted in a higher probability for reactivation strength
values from POST sleep to exceed the 99th percentile
of the PRE reactivation strength distribution than the
expected 1% (Fig. 6(b)) in an encoding strength de-
pendent manner: the percentage of “outliers” is signif-
icantly above chance for all groups of components and
it increases with encoding strength. Whereas average
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Fig. 7 Cumulative average computed with Eq. (34) for compo-
nents of the whole data sets separated in the same four groups as
in Fig. 6. Black diamonds display the 99th percentile of the POST
distribution. This shows that for the highest encoding strength,
half of the difference between PRE and POST (represented by
the asymptotic value of each curve) is explained by only 1% of
the bins of POST sleep

actual reactivation strength differences between PRE
and POST (Fig. 6(c), significant for all groups, p < 0.05,
t-test) show the same profile as the increased number
of outliers in POST sleep (Fig. 6(b)), there was no dif-
ference in mean of the shuffled reactivation strengths.
Furthermore, reactivation strengths for shuffled data
were on average one order of magnitude smaller than
reactivation strengths computed from actual data.

These brief, sharp increases in the reactivation
strength time course (Fig. 2, or similarly the outliers
in the distribution from POST) accounted for a large
part of the difference between the average reactivation
strengths. This can be seen in the cumulative contribu-
tions:

〈R〉r
−∞ =

∫ r

−∞
uP(u)du (34)

whose difference between POST sleep and PRE sleep
is shown in Fig. 7. The patterns were grouped according

�Fig. 8 Interaction between two simultaneous reactivation
strengths. (a) Example of reactivation strength timecourse for
two signal components from the same session during SWS (top)
with the simultaneous cell activity (raster plot, bottom; each row
represents the spike train from one cell). The red and green
rasters (respective to the colored reactivation strength traces)
show the spike activity of the six cells associated with the highest
weights in each component (i.e. with the highest contribution,
see below). Other spike trains (in black) are displayed in random
order. Each peak of the reactivation strengths is associated with
a transient increase of firing rates of the cells with the highest
weights in the respective component. (b) Cross-correlogram of
the reactivation strengths for the two components during SWS
showing marked negativity at 0 lag
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Fig. 9 Contribution of individual spike trains to the overall reac-
tivation strength. (a) Contribution of all the cells recorded during
one session to the average of R1 (or R2), the reactivation strength
of the first (or second) component, as a function of PC weights

for the first (resp. the second) principal components p1 (or p2).
(b) Scatter plot of the contributions to R1 (x-axis) and R2 shows
that the sets of high-contribution cells for the two components
are virtually disjoint

to encoding strength (Φ = λ/λmax). For distributions
P(u) with an exponential tail, this function will reach
an asymptotic value, indicating that large values con-
tribute little to the overall average. Diverging values of
〈R〉r−∞ (e.g. ∝ log(r)), are indicative of a P(u) with a
tail decaying with a power law. This function converges
asymptotically to a value equal to the difference of the
average reactivation strength between POST and PRE
(also equal to γ POST − γ PRE). The black diamonds
indicate the 99th percentile of the distribution of POST
sleep reactivation distribution. Hence, up to half of the
difference (for the highest encoding strength) between
POST and PRE sleep average of reactivation strength
is due to one percent of the time bins from POST
sleep, that is, the bins in which the transient reactivation
events took place.

3.5 Interactions between different cell assemblies

Different principal components, referring to the same
data, tend to activate at different times, and their
activation is concomitant with the firing of indepen-
dent cell groups (Fig. 8(a)). Interestingly, as shown in
Fig. 8(b), the time courses of R for the two principal
components show a trough for zero-lag in the cross-
correlation, showing that the simultaneous activation
of the two components was less likely than in the case
of uncorrelated time course. This effect was observed
for all pairs of principal components compute from the
same sessions (Peyrache et al. 2009).

Peaks of R correspond to transient synchronization,
or co-firing, of cells with same-signed weights in the

principal vector. Nevertheless, each spike train partici-
pates differently to any particular reactivation strength,
likely depending on its associated weight in the princi-
pal component. To quantify the contribution of the kth
cell, the reactivation strength R−k

l was computed with
∀t, Qkt = 0 , or by removing the terms depending on
Qkt in Eq. (13):

R−k
l (t) =

∑
i, j:i �= j

i �=k, j�=k

QitP
(l)
ij Q jt (35)

then the contribution was defined as:

Ik
l = 1

2

(
1 − 〈R−k

l 〉t

〈Rl〉t

)
(36)

the normalization factor 1/2 has been derived from
simple calculation so that
∑

k

Ik
l = 1 (37)

Figure 9(a) shows an example of the distribution
of the contribution for two signal components in a
single day. The joint distribution of individual cells’
contributions to those two patterns (Fig. 9(b)) indicates
no overlap between identities of highly influential cells.

4 Discussion

This study shows that a simple and linear pattern
separation method such as PCA can be powerful in the
identification and characterization of cell assemblies
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in brain recordings. This is an important part of the
study of the replay phenomenon, where two epochs
must be compared, one in which assemblies would be
encoded, and another one, in which the same assem-
blies might be replayed again. By construction, our
method is a simple extension of the seminal work
of Bruce McNaughton and co-workers (Wilson and
McNaughton 1994; Kudrimoti et al. 1999), offering two
important new features: first, a detailed time course for
replay is obtained, at the scale of the chosen temporal
bin (100 ms in the present study). The resulting resolu-
tion is much finer than what can be achieved if replay is
only measured from the similarity between the epoch-
wide correlation matrices. This has important conse-
quences for the study of the physiology of replay. In
particular, we have found that replay takes place for the
most part in discrete, transient events (see e.g. Figs. 2
and 5), which correspond to the coordinated activation
of subgroups of cells. In fact, such transients mostly
take place during UP states characteristic of slow-wave
sleep. These are periods of elevated, relatively steady
activation, when measured at the level of the global
neuronal population. However, a very different time
course is uncovered when we consider the dynamics
of subgroups of cells, defined by co-activations mea-
sured during wakefulness: a avalanche-like dynamics
(Beggs and Plenz 2003, 2004; Levina et al. 2007), which
is embedded in a generally more regular population
dynamics. Moreover, a detailed view of temporal evolu-
tion of replay has allowed to explore the links between
this phenomenon on one hand and hippocampal sharp
waves (crucial for hippocampal replay (Kudrimoti et al.
1999)) and UP-DOWN state transitions on the other,
showing how replay is an integral part of hippocampal-
cortical interactions and sleep physiology (Peyrache
et al. 2009).

Second, PCA allows to tease apart the dynamics
of different cell assemblies, corresponding to different
principal components. Interestingly, distinct subgroups
tend to seldom reactivate at the same instant, suggest-
ing that some sort of pattern separation mechanism
may take place during sleep. Because the time courses
of the different principal components are un- (or
anti-)correlated (Fig. 8), separating them allows to re-
veal details of the temporal evolution which would
be otherwise averaged out, for example, the transients
discussed above.

This measure also lends itself to rigorous mathemat-
ical analysis, making some inroads towards precisely
defined null hypotheses to be tested against the experi-
mental results. The known eigenvalue spectrum of cor-
relation matrices from purely random data (Marčenko
and Pastur 1967; Sengupta and Mitra 1999) allows

determination of which of the principal components
in a given data set are likely to carry meaningful in-
formation; in the data considered here, up to 5 or 6
PCs can be found in a simultaneous recording of 30–
50 neurons (Fig. 1). This could be seen as a generaliza-
tion in N dimensions of the classical Pearson test for
pairwise correlations. The boundaries of the support of
the theoretical distribution for the eigenvalues, λmin and
λmax, can be taken as the critical value for the rejec-
tion of the null hypothesis. In the range of parameters
corresponding to our practical experimental situation
(number of variables, N ∼ 50, number of time bins, b ∼
104 for a bin size of 100 ms) these boundaries are sharp,
as demonstrated by the Tracy-Widom estimate of the
variance of the distribution of the largest eigenvalue
(Tracy and Widom 1994). Thus, an analysis procedure
that considers as ‘signal’ the principal components as-
sociated to an eigenvalue larger than λmax is justified
from the theoretical point of view. This allows us to
identify certain principal components as signal-carrying
cell assemblies.

In the next stage of the analysis, the R measure is
computed, measuring the time course of replay during
the PRE and the POST epoch. In principle, replay
could be the result of a continuous process, for example
one that modified the probability of co-activation of
cell pairs, as a consequence of synaptic modification.
In this case, one would expect an exponentially tailed
distribution for the R values. This was indeed verified
analytically, under the hypothesis of multivariate, nor-
mally distributed data.

Reactivation strengths are greater than chance lev-
els both in PRE and POST sleep. This could be due
to structural correlations, pre-encoded in the synaptic
matrix. Such correlations would be present in ensemble
activity at all times, both in spontaneous and in behav-
iorally evoked activity, and would not have to encode
any task-relevant information. It is also possible that,
during PRE sleep, the prefrontal cortex is already en-
gaged in processes anticipatory of the task. This could
explain the similarities between the activity in the PRE
and AWAKE epochs.

Nevertheless, POST sleep shows a significantly
greater degree of replay. This can be observed by em-
pirically comparing the R distributions for PRE and
POST. Interestingly, most of the difference between
PRE and POST is accounted for by the very large data
points in the tail of the distribution, so that, for the
principal components associated to the largest eigen-
values, up to 50% of the difference is accounted for by
only the largest 1% of the points. It seems therefore
likely that the large transients in the replay measure
are at least in part a consequence of replay. Moreover,
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it is possible that during experience, synaptic plasticity
operates by modifying and strengthening existing cell
assemblies (during gradual learning for example), as
opposed to creating new ones from scratch. This would
also contribute to explain why reactivation strength for
the same eigenvectors may be high both in PRE and
POST (albeit stronger in POST).

Our method, in its current version, has some lim-
itations. For one, it does not provide a way to di-
rectly discount structural correlation patterns present
in the PRE epoch from the templates extracted by
the AWAKE epoch, which would obviate the need
for a comparison of the empirical PRE and POST
distributions. Also, it would be important to compute
analytical bounds for quantities under null hypotheses
less stringent than that of multivariate normal spike
trains. Still this technique has already led to scientific
results of relevance (Peyrache et al. 2009): as another
example of use of this technique, as mentioned above,
the sleep epoch can serve as a template for detecting
matches in the awake epoch: we extracted patterns
from PCA applied to the POST epoch, and matched
them on the activity during the AWAKE epoch. This
allowed us to assess which behavioral phases of the task
were represented the most in the sleep activity (and
possibly, be preferentially consolidated). We concluded
that this coincided with activity at the “choice point” of
the maze, i.e. the fork of the Y-maze where the animal
had to commit to a potentially costly choice. Also,
the effect depended upon learning: sleep-derived ac-
tivity patterns were more concentrated at the decision
point after the rat acquired the rule governing reward
(Peyrache et al. 2009). These initial results provide
hope that this method, for its relative simplicity and
ease of approach with mathematical tools, may spur
further experimental and analytical work.
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