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Chapter 4

Games and Large Cardinals

In this chapter, we investigate the upper bound of the consistency strength of the
existence of alternating chains with length w, which are essential objects proving
projective determinacy from Woodin cardinals.

4.1 The consistency strength of the existence of
alternating chains

In late 1980s, Martin and Steel [60] proved that if there are n Woodin cardi-
nals and a measurable above them, then every IT} | set of reals is determined for
each natural number n, where they introduced the notion of iterations trees which
originally comes from the development of the inner model theory for strong cardi-
nals. To build the inner model theory above one strong cardinal, one would have
to iterate premice not only linearly but in more complicated way which would
give us tree structures labeled with extenders that they call iteration trees. This
generalization gives us another difficulty when we iterate premice more than w
times: In a limit stage, there could be many cofinal branches in the tree we have
constructed and we have to choose one of them so that the direct limit through
that branch will be wellfounded. This problem occurs when we reach the region
of Woodin cardinals and Martin and Steel used this obstacle to prove projective
determinacy by coding one second-order existential quantifier by the existence of
cofinal wellfounded branch of suitable iteration trees (in their case, they arranged
the iteration trees in such a way that the wellfounded branch is always unique).
Alternating chains are the simplest iteration trees with this obstacle: They are
iteration trees with length w such that their tree structure is given as follows: For
all natural numbers n, m,

miIn <= m =0 or n— mis a positive even number.
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Figure 4.1: An alternating chain with length w

This is the simplest tree structure with two cofinal branches. Let us call
these two branches Even (= {2n | n € w}) and Odd (= {2n+1 | n € w} U
{0}). Since these two branches are completely symmetric with respect to the tree
structure, there is no canonical way to choose one of them so that the chosen one
is wellfounded. This gives us the basic idea of how to code certain information via
iteration trees. Actually, in the proof of projective determinacy, Martin and Steel
replaced the odd part by <“w and ensured that the branch Even is ill-founded
and that exactly one of the cofinal branches is wellfounded. This is how they
code a real via a wellfounded cofinal branch.

But the above argument works only when there is only one wellfounded co-
final branch in the iteration tree. So the question is: Is there any iteration tree
with length w with more than one wellfounded branches? Martin and Steel [61]
(independently by Woodin) proved that if there is a Woodin cardinal, then there
are a countable transitive model M of (a large enough fragment of) ZFC and
an alternating chain on M such that both branches are wellfounded. Conversely,
they proved that if there is an iteration tree with limit length and two cofinal well-
founded branches, then there is a transitive model of ZF which satisfies “There
is a Woodin cardinal”. Hence there is a tight connection between Woodin cardi-
nals and the existence of iteration trees with more than one cofinal wellfounded
branches. In fact, what they proved is stronger:

Theorem 4.1.1 (Martin and Steel). Suppose there is an iteration tree T' with
limit length and two cofinal branches b and c¢. Let § be the supremum of the
length of extenders used in 7" and a be an ordinal with @ > § and « is in the
wellfounded part of both M, and M, where M, and M, are the direct limit of
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models in T through b and ¢ respectively. Then L, (V;"") £ “5 is Woodin”.
Proof. See [62, Corollary 2.3]. O]

This theorem gives us more information: Note that 1/5M” = V(SMC and it is
always a subset of the wellfounded part of both models. Since every wellfounded
part of a model of KP is also a model of KP, we have the following: If one of M,
and M, is wellfounded and 6 is the least ordinal that is not in the wellfounded
part of one of M, and M, and 0 > &, then Ly(V;"®) E “KP + ¢ is Woodin”.
Hence we get the Woodin-in-the-next-admissibleness from the assumption, here
we say 0 is Woodin-in-the-next-admissible if there is an ordinal # > § such that
Ly(Vs) E “KP+4 is Woodin”. Andretta [2] proved the following stronger converse:

Theorem 4.1.2 (Andretta). Suppose ¢ is Woodin-in-the-next-admissible. Then
for any tree order on w with an infinite branch, there is an iteration tree such that
for any infinite branch b of the tree, ¢, is in the wellfounded part of M;, where
0, is the supremum of the length of extenders in the iteration tree.

Proof. See [2, Theorem 1.3]. O

Hence Woodin-in-the-next-admissible cardinals are intimately correlated to
iteration trees with more than one cofinal branches. The natural question would
be: What if we do not demand that ¢, is in the wellfounded part of M,? In this
section, we partially answer this question in the case of alternating chains. In fact,
we do not need Woodin-in-the-next-admissible cardinals to construct alternating
chains:

Theorem 4.1.3. Suppose ¢ is an ordinal such that § is ¥5-Woodin and Vy <5, V.
Then there is an alternating chain with length w.

The assumption of the above theorem (which we will explain later) is much
weaker than Woodin-in-the-next-admissibleness. Hence we do not need Woodin-
in-the-next-admissibleness just to construct alternating chains.

Let us prepare for introducing the notions in the above theorem. For a tran-
sitive model M of ZFC and an ordinal « in M, we write M|« for abbreviating
VM Furthermore, for a subset A of M, Thyp(M; €, A) denotes the I-theory of
M with parameters in A where I is 3, for some natural number n > 1. Also, for
a set A and an ordinal a, A [ a denotes A NV,,.

Let £ <  be ordinals and I" be ¥, for some natural number n > 1. We say
k is <0-T'-strong if it is <d-A-strong where A = Thy(V0; €, V|9), i.e., for any
ordinal o < ¢ there is a non-trivial elementary embedding j: V' — M with critical
point k where M is transitive such that V,, C M, j(k) > aand A | a = j(A4) | a.
If § is a limit of inaccessible cardinals, such an embedding can be easily coded by
an extender in V5. An ordinal ¢ is I'-Woodin if it is a limit of <¢-I'-strongs.

Note that if § is a limit of <d-strong cardinals, then § is 3;-Woodin and Vj
is a ¥ elementary substructure of V. Hence we cannot replace ¥y with ¥; in
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Theorem 4.1.3 because if we could, then we could run the argument in a mouse
below 07 with a cardinal § which is a limit of <d-strong cardinals, which is
impossible by [73, Lemma 2.4].

Also note that X,,-Woodinness for a natural number n is much weaker than
Woodin-in-the-next-admissibleness. In fact, if § is Woodin-in-the-next-admissible,
then for any natural number n > 1, § is a limit of <d-strong cardinals x such that
the set of <k-A,-strong cardinals is stationary in x where A, = Thyy (V|d;€
,V|9), which immediately gives us that the set of ¥,-Woodin cardinals §' with
Vs <x, Vi is stationary in k. Hence the assumption of Theorem 4.1.3 is much
weaker than Woodin-in-the-next-admissibleness.

Proof of Theorem 4.1.3. We will construct ((/-cn,En,Bn) | n < w) with the fol-
lowing properties:

(2), Kop is <d-Yg-strong in My,

(3)n Thyy, (M2n+1|5n+1 +1; €, Mony1|Kont1 + 1) = Thyy, (M2n|5 +1; €,
Moy |Kont1 + 1); and

(4)n Kont1 18 <Bpi1-Yg-strong in Mo, q,

where n—1 = max{n — 1,0}, My =V and M, ; = Ult(M,,-,, E,) for each n € w.
At the same time, we will arrange that x,.; is less than the strength and the
length of F,, for each n € w, which will ensure that each M, is well-founded by

the result of Martin and Steel [61, Theorem 3.7].

Also note that all the extenders we will use belong to Vj. Since ¢ is a limit of
inaccessible cardinals, § will not move under any embedding we will consider.

Let o = 0. Then (1) is true. Since § is Xy-Woodin in V', we can pick g < §
such that kg is <0-Ys-strong in V/, hence (2), is also true.

Suppose we have constructed (k; | i < 2n),(E; | i < 2n),(5; | ¢ < n) with the
properties (1), and (2),. We will find k9,11, Eon, Bni1, f2ns2 and Ea,yq with the
properties (3),, (4)n, (1)p11 and (2),41.

Since 0 = T 2,(0) is Xo-Woodin in My, we can pick Kopy1 > Kopn such that
Kont1 1s <0-Yg-strong in My,. By (2),, ko, is <0-3g-strong in My,. Hence we can
pick Es, € My, such that F,, is an extender with critical point ks, and length
and strength greater than xo, 1 + 3 in My, such that g, (4) | (kopt1 + 3) =
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A | (ons1 +3) in My, where A = Thy,, (M2n|6; e, M2n|6). Then

Thyy, (M2n+1 Ton1.2n41(Bn); € Mony1[Kont1 + 3)
=Ton"1,2n+1 <ThY22 (M2ni1|5n; €, M2n'1|f<32n>> [ Kons1 + 3

=TE,, <Thy22 <M2n|5; €, M2n|/f2n)> [ Kant1 +3

=Thys, (Man|65 €, Man |tz 1 +3).
Now the following is true in Ms, witnessed by 3 = :

(x) There is an ordinal 3 such that B = Thyy, <V|B + 1; €, V]koni1 + 1) and
Kony1 18 <[-Yo-strong and [ is ¥5-Woodin,

where B = Thys, (M2n|5+1; €, My, |Kon i1 —i—l). Note that this statement is ¥ in
M,;,, with parameters B and ko, because the statement “ko,,1 is <[-Xg-strong
and f is ¥o-Woodin” is definable in V|5 if § is a limit of inaccessibles, which is
also Y5 definable.

Since Vj is a Yo-elementary substructure of V', My, |0 = Ma,|mo2,(9) is a 3o-
elementary structure of Ms,,. Hence (x) is also true in My, |d. But by the previous
calculation, (x) is also true in Mopy 1|y, 1 004 1(6n)-

Let 3,41 be a witness for () in Moy 11|79, 904 1(Bn)- Then it follows that

Th}’z2 <M2n+1|5n+1 + 15 €, Mopy1|Kont1 + 1)

- ThYE2 <M2n|5 + 17 ea M2n|l{2n+l + 1)7

that is (3),. Also we have that (3,1 is ¥o-Woodin and kg, 11 is <f,41-Ye-strong
in My, 1, that is (4),. Since f,11 is Yo-Woodin in My, 11 and f,11 > Kopy1, We
can pick kopio < Bh41 large enough and such that koo is <foy11-Xo-strong in
M2n+1-

By (4)n, we can take Fy,.1 € My, such that Es,,; is an extender with
critical point kg, and length and strength greater than kg, 5+ 3 in My, | such

that TEspt1 (AI) r Kon42 +3 = A r Kon42 + 3, where A’ = T‘hyz2 (M2n+1|6n+1; €,
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M2n+1 |6n+1) . Then

Thyy, (M2n+2|5 + 15, € Mapyo|Konto + 1)
=Ton,2n+2 <ThYE2 (M2n|5 + 15 €, Moy |Kop1 + 1)) [ Kopyo + 1

=T gy <Thyg2 (M2n+1|5n+1 + 1€, Mopi1|kons1 + 1)) [ Kany2 + 1

=Thysy, (M2n+1|5n+1 + 15 €, Mopy1|Konta + 1),

and by this calculation, we obtain Thyy, <M2n+2|6; €, M2n+2|/<;2n+2> =

Thy22 (M2n+1|6n+1; €, M2n+1|H2n+2> and Kon+2 is <5—22—strong in M2n+2; which

are (1),41 and (2),,1 respectively, as desired. O

Note that in the above construction, we have arranged that f,41 < 7y, "1 911 (5n)
for each n € w. Hence Mpqq is always ill-founded.

4.2 Questions

We close this chapter with asking one question.

Question 4.2.1. What is the consistency strength of the existence of alternating
chains with length w?



