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Chapter 3

Games themselves

In this chapter, we compare the stronger versions of determinacy of Gale-Stewart
games and Blackwell games, i.e., the Axiom of Real Determinacy ADgr and the
Axiom of Real Blackwell Determinacy Bl-ADg. In §3.1, we show that BI-ADg
implies that R¥ exists and that the consistency of Bl-ADg is strictly stronger than
that of AD. In §3.2, we show that BI-ADg implies that every set of reals is co-
Borel. From this, we can derive almost all the regularity properties for every set
of reals. In §3.3, we discuss the possibility of the equivalence between ADr and
Bl-ADg under ZF+DC. In § 3.4, we discuss the possibility of the equiconsistency
between ADr and BI-ADg.

Throughout this chapter, we use standard notations from set theory and as-
sume familiarity with descriptive set theory. By reals, we mean elements of the
Cantor space and we use R to denote the Cantor space.

3.1 Real Blackwell Determinacy and R*

In this section, we prove that Bl-ADg implies that R# exists and that the con-
sistency of Bl-ADg is strictly stronger than that of AD.

Solovay [77] proved that ADg implies that R* exists. Our plan is to mimic
Solovay’s proof using Blackwell games. In order to do so, we analyze his proof
which has two main components:

Theorem 3.1.1 (Solovay). The axiom ADg implies that there is a fine normal
measure on P, (R), where P,, (R) is the set of all countable subsets of R.

Proof. See [77, Lemma 3.1]. O

Theorem 3.1.2 (Solovay). Suppose there is a fine normal measure on P,, (R)
and every real has a sharp. Then R¥ exists.

Proof. See [77, Lemma 4.1 & Theorem 4.4]. O
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72 Chapter 3. Games themselves

Hence it suffices to show that there is a fine normal measure on P,, (R) from
BI-ADg because BlI-ADg implies AD in L(R), which implies that every real has
a sharp by the result of Harrington [31].

Theorem 3.1.3. Assume Bl-ADgr. Then there is a fine normal measure on
P, (R).

Let us first see what is a fine normal measure. Let X be a set and x be an
uncountable cardinal. As usual, we denote by P.(X) the set of all subsets of X
with cardinality less than k, i.e., subsets A of X such that there are an o < &k
and a surjection from « to A. Let U be a set of subsets of P, (X). We say that U
is k-complete if U is closed under intersections with <x-many elements; we say it
is fine if for any z € X, {a € P.(X) | € a} € U; we say that U is normal if for
any family {A, € U | z € X}, the diagonal intersection A,cx A, is in U (where
NpexAzr = {a € Pu(X) | (Vx € a) a € A,}). We say that U is a fine measure if
it is a fine k-complete ultrafilter, and we say that it is a fine normal measure if it
is a fine normal k-complete ultrafilter.

Proof of Theorem 3.1.3. The following is the key point: A subset A of “R is
range-invariant if for any 7 and ¢ in “R with ran(Z) = ran(9), £ € A if and only
if y € A.

Lemma 3.1.4. Assume Bl-ADgr. Then every range-invariant subset of “R is
determined.

Proof of Lemma 3.1.4. Let A be a range-invariant subset of “R. We show that
if there is an optimal strategy for player I in A, then so is a winning strategy for
player I in A. The case for player II is similar and we will skip it.

Let us first introduce some notations. Given a function f: <“R — R, a
countable set of reals a is closed under f if for any finite sequence s of elements
in a, f(s) is in a. For a strategy o: R**" — R for player I, where R™" is the set
of all finite sequences of reals with even length, a countable set of reals a is closed
under o if for any finite sequence s of elements in a with even length, o(s) is in
a. For a function F': <“R — P,, (R), a countable set of reals a is closed under F
if for any finite sequence s of elements in a, F(s) is a subset of a.

The following two claims are basic:

Claim 3.1.5. There is a winning strategy for player I in A if and only if there is
a function f: <“R — R such that if a is a countable set of reals and closed under
f, then any enumeration of a belongs to A.

Proof of Claim 3.1.5. We first show the direction from left to right. Given a
winning strategy o for player I in A, let f be such that if a is closed under f,
then a is closed under o. (Since o is a function from R*¥" to R, any function
from <“R to R extending o will do.) We see this f works for our purpose. Let
a be a countable set of reals closed under f. Then since a is closed under o and
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countable, there is a run x of the game following ¢ such that its range is equal
to a. Since o is winning for player I, x is in A and by the range-invariance of A,
any enumeration of a is also in A.
We now show the direction from right to left. Given such an f, we can arrange
a strategy o for player I such that if x is a run of the game following o, then
the range of x is closed under f: Given a finite sequence of reals (ag, -+ ,as, 1),
consider the set of all finite sequences s from elements of {ay, - - - as, 1} and all the
values f(s) from this set. What we should arrange is to choose o(ag, - -, a2,—1)
in such a way that the range of any run of the game via o will cover all such
values f(s) when (ag,- - ,as,_1) is a finite initial segment of the run for any n
in w moves. But this is possible by a standard book-keeping argument. By the
property of f, this implies that x is in A and hence ¢ is winning for player I.
O (Claim 3.1.5)

Claim 3.1.6. There is a function f: <“R — R such that if a is a countable set
of reals and closed under f, then any enumeration of a belongs to A if and only
if there is a function F': <“R — P, (R) such that if a is a countable set of reals
and closed under F', then any enumeration of a belongs to A.

Proof of Claim 3.1.6. We first show the direction from left to right: Given such
an f, let F'(s) = {f(s)}. Then it is easy to check that this F' works.

We show the direction from right to left: Given such an F', it suffices to show
that there is an f such that if @ is closed under f then a is also closed under
F. We may assume that F(s) # for each s. Fix a bijection 7: R — “R. Let
g: <“R — R be such that ran(m(g(s)))= F(s) for each s (this is possible because
every relation on the reals can be uniformized by a function by Theorem 1.14.9).
Let h: <“R — R be such that h(s) = 7 (s(0)) (Ih(s) — 1), where lh(s) is the length
of s when s # (), if s = () let h(s) be an arbitrary real.

It is easy to see that if a is closed under g and h, then so is under F: Fix
a finite sequence s of reals in a. We have to show that each = in F(s) is in a.
Consider ¢(s). By the closure under g, g(s) is in a. By choice of g, we know
that ran(mw(g(s))) = F(s), so it is enough to show that x is in a for any z in
ran(m(g(s)). Suppose z is the nth bit of 7(g(s)). Consider the finite sequence ¢ =
(9(s),...,g(s)) of length n + 1. Then h(t) = «(¢(0))(1h(t) — 1) = 7 (g(s))(n) = z.
But g(s) is in a and a was closed under h, so x is in a.

Now it is easy to construct an f such that if a is closed under f, then so is
under ¢ and h. O (Claim 3.1.6)

By the above two claims, it suffices to show that there is a function F': <“R —
P, (R) such that if a is a countable set of reals and closed under F', then any
enumeration of a belongs to A.



74 Chapter 3. Games themselves

Let o be an optimal strategy for player I in A. Let F' be as follows:

F(s) = {@ it Ih(s) is odd,
{y e R|o(s)(y) #0} otherwise.

Then F is as desired: If a is closed under F', then enumerate a to be {(a, | n €

w) and let player I follow o and let player II play the Dirac measure for a,, at her
nth move. Then the probability of the set {x € “R | ran(z) = a} is 1 and since
o is optimal for player I in A, there is an x such that the range of x is ¢ and z
is in A. But by the range-invariance of A, any enumeration of a belongs to A.
O (Lemma 3.1.4)

We shall be closely following Solovay’s original idea. We define a family U C
P(P,, (R)) as follows: Fix A C P, (R) and consider the following game G 4:
Players alternately play reals; say that they produce an infinite sequence ¥ =
(z; | i € w). Then player IT wins the game G 4 if ran(%) € A, otherwise player T
wins. Since the payoff set of this game is range-invariant as a Gale-Stewart game,
by Lemma 3.1.4, it is determined.

We say that A € U if and only if player IT has a winning strategy in G 4. We
shall show that it is a fine normal measure under the assumption of Bl-ADg, thus
finishing the proof of Theorem 3.1.3.

A few properties of U are obvious: For instance, we see readily that () ¢ U
and that P, (R) € U, as well as the fact that U is closed under taking supersets.
In order to see that U is a fine family, fix a real z, and let player II play x in her
first move: This is a winning strategy for player IT in é{ak,;ea}.

We next show that for any set A C P,, (R), either A or the complement of A is
in U. Given any such set A, suppose A is not in U. We show that the complement
of Ais in U. Since the game G4 is determined, by the assumption, there is a
winning strategy o for I in G.a. Setting 7(s) = o (s[(Ih(s) — 1)) for s € RO it
is easy to see that 7 is a winning strategy for player II in the game G e.

We show that U is closed under finite intersections. Let A; and A, be in
U. Since the payoff sets in the games éAl and @A2 are range-invariant, by the
analogue of Claim 3.1.5, there are functions f;: <R — R and f5: <“R — R such
that if a is closed under f;, then a is in A; for ¢+ = 1,2. Then it is easy to find
an f: <“R — R such that if a is closed under f, then a is closed under both f;
and f,. By the analogue of Claim 3.1.5 again, this f witnesses the existence of a
winning strategy for player II in the game CNJAIM?

We have shown that U is an ultrafilter on subsets of P, (R). We show the
wi-completeness of U as follows: By Theorem 1.14.8, every set of reals is Lebesgue
measurable assuming BI-AD. If there is a non-principal ultrafilter on w, then there
is a set of reals which is not Lebesgue measurable. Hence there is no non-principal
ultrafilter on w, which implies that any ultrafilter is wi-complete. In particular,
U is wi-complete.
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The last to show is that U is normal. Let {A, | x € R} be a family of sets
in U. We show that A,erA, is in U. Consider the following game G: Player
I moves x, then player II passes. After that, they play the game CNJAI. This is
Blackwell determined and player II has an optimal strategy 7 since each A, is in
U. Let F: <“R — P,, (R) be as follows:

F(s) = 0 if Ih(s) is even,
{y e R|7(s)(y) #0} otherwise.

We claim that if a is closed under F', then a is in A crA,. Then, by the analogues
of Claim 3.1.5 and Claim 3.1.6, F' will witness the existence of a winning strategy
for player II in the game éAIeRAm and we will have proved that A, crA, € U.
Suppose a is closed under F'. We show that a € A, for each z € a. Fix an =
in a and enumerate a to be (z, | n € w). In the game G, let player I first move
x and then they play the game C?Az. Let player II follow 7 and player I play the
Dirac measure concentrating on x,, at the nth move. Then the probability of the
set {# € YR | xyp = x and ran(¥) = a} is 1 and since 7 is optimal for player II in
the game G, there is an # such that the range of # is @ and # is a winning run
for player I in G, hence a is in A,. O (Theorem 3.1.3)

Corollary 3.1.7. The consistency of BI-ADg is strictly stronger than that of
AD.

Proof. Since BlI-ADg implies BI-AD by the first item of Proposition 1.14.2 and
BI-AD implies AD"® by Corollary 1.14.7, BI-ADg implies AD"*® . By Theo-
rem 3.1.3, BI-ADg also implies the existence of R#. By the property of R¥,
one can construct a set-size elementary substructure of L(R). Hence AD*® and
the existence of R# imply the consistency of AD. Therefore, Bl-ADg implies the
consistency of AD and by Godel’s Incompleteness Theorem, the consistency of
BI-ADgy is strictly stronger than that of AD. O

3.2 Real Blackwell Determinacy and regularity
properties

In this section, we show that Bl-ADg implies almost all the regularity properties
for every set of reals. Note that DCg follows from the uniformization for every
relation on the reals. Hence by Theorem 1.14.9, BlI-ADg implies DCg. For the
rest of the sections in this chapter, we freely use DCg when we assume Bl-ADg
and we fix a fine normal measure U on P, (R), which exists by Theorem 3.1.3.

We start with proving the perfect set property for every set of reals. Recall
that a set of reals A has the perfect set property if either A is countable or A
contains a perfect subset, where a perfect set of reals is a closed set without
isolated points.
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Theorem 3.2.1. Assume Bl-ADgr. Then every set of reals has the perfect set
property.

Proof. The theorem follows from the following two lemmas:

Lemma 3.2.2. Assume Bl-ADgr. Then every relation on the reals can be uni-
formized by a Borel function modulo a Lebesgue null set, i.e., for any relation
R on the reals, there is a Borel function f such that the set {z | (z, f(z)) €
R or there is no real y with (z,y) € R} is of Lebesgue measure one.

Proof of Lemma 3.2.2. The conclusion follows by a folklore argument from Lebesgue
measurability and uniformization for any relation on the reals both of which are
consequences of BI-ADg by Theorem 1.14.8 and Theorem 1.14.9).

Let R be an arbitrary relation on the reals. We may assume the domain of R
is the whole space, i.e., for any real z, there is a real y such that (z,y) € R. We
will find a Borel function uniformizing R almost everywhere.

By the uniformization principle, there is a function ¢ uniformizing R. For
each finite binary sequence s, the set ¢~1([s]) is Lebesgue measurable by Theo-
rem 1.14.8. Hence for each s there is a Borel set B, such that ¢='([s])AB; is
Lebesgue null. Now define f so that the following holds: For each finite binary
sequence s,

f(z) € [s] = z € B,.

Then by the property of By, f is defined almost everywhere, Borel, and is equal to
g almost everywhere. Hence any Borel extension of f will be the one we desired.
O (Lemma 3.2.2)

Lemma 3.2.3 (Raisonnier and Stern). Suppose every relation on the reals can
be uniformized by a Borel function modulo a Lebesgue null set. Then every set
of reals has the perfect set property.

Proof of Lemma 3.2.3. See [70, Theorem 5]. O
O (Theorem 3.2.1)

Next, we show that Bl-ADgr implies that every set of reals has the Baire prop-
erty. We first introduce the Blackwell meager ideal as an analogue of the meager
ideal. A set A of reals is Blackwell meager if player II has an optimal strategy in
the Banach-Mazur game G**(A). Let Igy denote the set of all Blackwell meager
sets of reals.

Lemma 3.2.4. Assume BI-AD. Then any meager set is in Iy, [s] ¢ Ipy for
each finite binary sequence s, and Igy is a o-ideal. Moreover, every set of reals
is measurable with respect to Igwy, i.e., for any set A of reals and finite binary
sequence s, there is a finite binary sequence ¢ extending s such that either [t] N A
or [t] \A is in IBM-
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Proof. By Theorem 1.8.3, if a set A of reals is meager, then player II has a
winning strategy in the Banach-Mazur game G**(A) and in particular player 1T
has an optimal strategy in G**(A) by Theorem 1.14.3. Hence A is Blackwell
meager.

It is easy to see that [s] ¢ Igy for each finite binary sequence s by letting
player I first play the Dirac measure concentrating on s in the game G**([s]).

We show that Igyr is a o-ideal. The closure of Igy under subsets is immediate.
We prove that it is closed under countable unions.

In order to prove this, we need to develop the appropriate transfer technique
(as discussed and applied in [55]) for the present context. Let # C w be an
infinite and co-infinite set. We think of 7 as the set of rounds in which player
I moves. We identify m with the increasing enumeration of its members, i.e.,
m = {m | i € w}. Similarly, we write 7 for the increasing enumeration of w\m,
i.e., w\m = {7; | © € w}. For notational ease, we call 7 a I-coding if no two
consecutive numbers are in 7 and 0 € 7 (i.e., the first move is played by I). We
call 7 a II-coding if no two consecutive numbers are in w\7 and 0 € 7.

Fix A C “w and define two variants of G with alternative orders of play as
determined by 7. If 7 is a I-coding, the game G’X‘”’I is played as follows:

I sz =50 Smy

II Smot+ls -y Smo—1 Smi+ly -y Sma—1

sk, [T

If 7 is a II-coding, then the game G’y is played as follows:

[ S0y - -5 S7—1 Stotly -9 ST—1
IT S0 57,

In both cases, player II wins the game if s5s7 ... 7 s ... ¢ A. Obviously, we
have
G = G**Even,II
A =Gy

where Even is the set of even numbers.

Lemma 3.2.5. Let A be a subset of the Baire space and 7 be a I-coding. Then
there is a translation ¢ — o, of mixed strategies for player I such that if o is an
optimal strategy for player I in G, then o, is an optimal strategy for player I
in G,

Similarly, if 7 is a II-coding, there is a translation 7 — 7, of mixed strategies
for player II such that if 7 is an optimal strategy for player II in G, then 7 is
an optimal strategy for player IT in G,

Proof of Lemma 3.2.5. We prove only the lemma for the games G*™', the other
proof being similar. If § = (s; | i € w) is an infinite sequence of finite binary
sequences, we define

b; =85 41 Smipi-1-
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Note that in order to compute bf, we only need the first 7;,, bits of 5. The idea
is that now the G”’-run

I s, Sy Sy -

I b b b (+)
yields the same output in terms of the concatenation of all played finite sets as
the run § in the game G%™'. We can define a map 7* on infinite sequences of
finite binary sequences by

cioy _ ) Sm, iLi=2k,
(w (5))1_{ bi ifi=2k4+1,

and see that sgs7 ... = (7%(8))5 (7*(8))T - . ..
Now, given a mixed strategy o for player I in G and a run § of the game
G5 we define o, via 7* as follows:

_ 5 g §
(S0 -y Smm—1) = O(Sngs Oy - -+ Smiy Uiy ooy Sy 1 U0 1)-

Assume that o is an optimal strategy for player I in G and fix an arbitrary
mixed strategy 7 in the game G*™'. We show that the payoff set for A in G*™"'
iS fiy, --measurable and p,_ ,(A) = 1. In order to do so, we construct a mixed
strategy 7,-1 for player II in G so that the game played by o, and 7 is essentially
the same as the game played by ¢ and 7,-1.

Given a sequence b of moves in %, we need to unravel it into a sequence of
moves in G in an inverse of the maps §+— b} according to (%), i.e., byiyy = bi.
Thus, we define

ALy = (B0 = by},
AI;SZiJrl = mAng-
J<i
Note that only a finite #fragment of § is needed to check whether bf = by 4,
and thus we think of A%,;,, as a set of (w11 — (i 4+ 1))-tuples of finite binary

sequences. In the following, when we quantify over all “5 € Aggi”, we think of
this as a collection of finite strings of finite binary sequences. In order to pad the

*77, 1

moves made in G'y"", we define the following notation: For infinite sequences §
and b, we write

§b
Z;

== (b2i7 S7Ti+17 ey S7ri+171)-

Compare (%) to see that if § corresponds to moves in G*™" and b to the moves in
G*, then these are exactly the finite sequences that player IT will have to respond
to in G*™". Moreover, for a given sequence Z of finite binary sequences, we let

P (20, .0y 2n) = H T(20y -y 2ic1) (24)-

i<nyi¢n
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Fix a sequence b of finite binary sequences with even length and define 7,-1
as follows:

-

5b~ o~ 5
deAFSMHPT(xO’ S ay)

H;nzl Tw—l(bo, cee b2i—2)(b2z’—1) -

Using the two operations o — o, and 7+ 7,-1, since the payoff set for G is
invariant under 7*, it now suffices to prove for all basic open sets [¢] induced by a
finite sequence t = (bo, ..., bin(py—1) that pier _, ([t]) = pe, - ((7*) 7 ([t])). We prove
this by induction on the length of ¢, and have to consider three different cases:
Case 1. lh(¢) = 0. This is immediate.

Case 2. lh(t) = 2m + 1 with m > 0. By induction hypothesis, we have that
X = Hor 1 ([b07 SRR b2m71]) = /’l’(fﬂ—,T((Tr*)_l([bUJ SR b2m71]))- ThUS,

MU’Tﬂ_il([bo,...,me]) = X'O’(bo,...,bgm_l)(bgm)
= top (7)) ([bos - - bam]))-

Tr—1 (bg, RN me)(bgm+1)

Case 3. 1h(t) = 2m + 2 with m > 0.

m

fog (1) = H o(boy - b2i1)(b2) - Z Pz o 2t
=0 §6A22m+1
= ll’o'n—,‘l'((ﬂ-*)il([bm R b2m+1]))-
This calculation finishes the proof of this lemma. O (Lemma 3.2.5)

We now show that Iy is closed under countable unions. Let {4, | n € w}
be a family of sets in Igy. Take an optimal strategy 7, in the game G**(A4,,) for
each n. We prove that |, ., An is also in Iy

Fix a bookkeeping bijection p from w X w to w such that p(n,m) < p(n, m+1)
and p(n,0) > n. We are playing infinitely many games in a diagram where the first
coordinate is for the index of the game we are playing, and the second coordinate
is for the number of moves. Hence the pair (n,m) stands for “mth move in the
nth game”. Define a II-coding 7, = w\{2p(n,i)+1 | i € w} corresponding to the
following game diagram:

I so,..., S2p(n.,0) S2p(n,0)+25 - - + » S2p(n,1)
II 52p(n,0)+1 S2p(n,1)+1

By Lemma 3.2.5, we know that for each n € w, we get an optimal strategy (7,,),,

KKy,

for the game G’ I Let 7 be the following mixed strategy

7-(807 SRR 32p(n,m)) = (Tn)Trn (307 ) s2p(n,m))-
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The properties of p make sure that this strategy is well-defined. We shall now

ok

prove that 7 is an optimal strategy for player IT in GU o An
Pick any mixed strategy o for player I in G’G‘ e An and define strategies o, for

G ™. Let m = p(k, (), then

on(S0s- -y Som_1) = 0(Soy---,Som_1), and

0n(S0y- -y Som) = (Tk)m, (S0, -, Som) (if & # n).

Note that for each n € w, pior = lo,,(r0)n, -

The payoff set (for player II) in GG A, s A={5|s0s" ... & Upeo An}
We show that fi,,(A) = 1. Since A = (), o, 1515550 ... ¢ An}, it suffices
to check that the sets B, = {§ | sg’s7 ... ¢ A,} has p,,-measure 1. But
Lo (Bn) = Lo (ra)e, (Bn) = 1. Thus we have shown that Igy is a o-ideal.

We finally show that every set A of reals is measurable with respect to Iy,
i.e., for any finite binary sequence s, there is a finite binary sequence ¢ extending
s such that either [t} N A or [t] \ A is in Igy. Fix such A and s. If [s]N A is
in Igy, we are done. So suppose not. Then player II does not have an optimal
strategy in the game G**([s] N A). By BI-AD, there is an optimal strategy o for
player I in the game G**([s] N A). Let ¢ be any s’ with o(0)(s") # 0. Then since
o is optimal, ¢ extends s and the strategy o easily gives us an optimal strategy
for player I in the game G**([t]\ A). Hence [t]\ A isin Igy. O (Lemma 3.2.4)

Recall the notions of Stone space St(P) and P-Baireness for a partial order P
from chapter 2. The based set of St(P) was the set of all ultrafilters on Bp where
Bp is a completion of P. Without the Axiom of Choice, it might be empty if P is
big. But in this chapter, we only consider partial orders P which are elements of
H,, in V', i.e., the transitive closure of P is countable in V. If PP is an element of
H.,, then St(P) is essentially the same as St(C) where C is Cohen forcing, hence
the Cantor space “w

Since every meager set is Blackwell meager as we have seen in Lemma 3.2.4,
if P is in H,,, then one can consider Blackwell meagerness for subsets of St(P)
by identifying St(P) with the Cantor space.

We are now ready to prove the Baire property for every set of reals from Bl-ADxg.

Theorem 3.2.6. Assume Bl-ADg. Then every set of reals has the Baire property.

Proof. Take any set A of reals. We show that A has the Baire property. Let
A? be the second-order arithmetic structure with A as a unary predicate. Since
any relation on the reals can be uniformized by a function by Theorem 1.14.9,
we can construct a Skolem function F' for A% and by a simple coding of finite
sequences of reals and formulas via reals, we regard it as a function from the
reals to themselves. Let I'pr = {(z,s) € R x <2 | F(x) D s}. The following
are the key objects for the proof (they are called term relations): Recall from
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Lemma 2.1.2 that for a P-name 7 for a real, f, is the Baire measurable function
(which is continuous on a comeager set) corresponding to 7.

74 = {(P,p,0) € H,, | 0 is a P-name for a real and
(VG e St(P)) pe G = f,(G) € A},
Tae = {(P,p,0) € H,, | 0 is a P-name for a real and
(VG € St(P)) pe G = f,(G) € A%},
. ={(P,p,0,s) € H,, | 0 is a P-name for a real and
(V*G eSt(P)) pe G = (f+(G),s) €Tr},
Trpe = {(P,p,0,5) € Hy, | 0 is a P-name for a real and
(VG e St(P)) pe G = (f,(G),s) € Tpe},

where (VG € St(P)) means “for all G modulo a Blackwell meager set in

St(P)...”. Let M = HODry s = and for G € St(P), let Ag = {£,(G) |
(Ip € G) (P,p,0) € TaNM}. Note that for any countable ordinal a, P(a) N M is
countable: Since M is a transitive model of ZFC, if P(«) N M was uncountable,
then there would be an uncountable sequence of distinct reals which would con-
tradict Lebesgue measurability for every set of reals. Hence for any P € H,,, N M,
the set of P-generic filters over M is comeager, in particular Blackwell comeager
(i.e., its complement is Blackwell meager). Therefore, when we discuss statements
starting from (V>*G € St(PP)), we may assume that G is P-generic over M.

Claim 3.2.7.

1. Let P be a partial order in M. Then (VG € St(P)) A¢ = ANM[G] € M[G]
and M]G] is closed under F.

2. Let P = Coll(w, 2¢)™, where Coll(w, 2¢) is the forcing collapsing the car-
dinal 2 into countable with finite conditions. Then (VG € St(P)) Ag has the
Baire property in M[G].

Proof. We first show that A = AN M|G] for Blackwell comeager many G. Since
Igy is a o-ideal, for Blackwell comeager many G, G is P-generic over M and if
(P,p,0) € T4 N M (resp., Ta4c N M) and p € G, then f,(G) =% € A (resp., A°).
We show that Ag = AN M[G] for any such G.

Fix such a G. We first prove that As C A N M[G]. Take any real z in
Ag. Then there is a p € G and a o such that (P,p,0) € 74N M and 0% = z.
Then by the property of G, v = 0% = f,(G) € A, as desired. We show that
AN M[G] C Ag. Let x be a real in M[G] which is not in Ag. We prove that
x is also not in A. Since z is in M|[G], there is a P-name o for a real in M
such that 0% = z. Since A is measurable with respect to Igy by Lemma 3.2.4,
the set {p € P | either (P,p,0) € TAN M or (P,p,0) € T4c N M} is dense and
it is in M. Since G is P-generic over M, there is a p € G such that either
(P,p,0) € T4 or (P,p,0) € T4e. But (P,p,0) € 74 cannot hold because it would
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imply » = 0% € Ag. Hence (P,p,0) € T4c and = 0¥ = f,(G) € A° by the
property of GG, as desired.

Let pa = {(o,p) | (P,p,0) € Ta N M}. Since the comprehension axioms with
T4 as a unary predicate hold in M, p, is a P-name for a set of reals in M and
PS5 = Ag € M[G]. Hence Ag = AN M[G] € M|G] for Blackwell comeager many
GG, as desired.

Next, we show that M[G] is closed under F' for Blackwell comeager many G.
We prove this for any G' which is P-generic over M such that if (P, p, 0, s) € mr,
(resp., 7r,.) and p is in G, then F(c®) D s (resp., F(c“) 2 s). Fix such a G and
let & be a real in M[G]. We show that F'(z) is also in M[G]. Since z is in M[G],
there is a P-name o for a real in M such that 0% = z. Since every subset of St(P)
is measurable with respect to Igy, the function G’ — F(fg(G’)) is continuous
modulo a Blackwell meager set in St(P). Hence for any finite binary sequence s,
the set of all p € P such that either (V°G’ € St(P)) p € ¢' = F(f,(G")) D s
or (V°G' € St(P)) pe G = F(f,(G') 2 sis dense and is in M. By the
genericity and the property of G, for any s, there is ap € G such that F(c%) D s if
and only if (VOOG’ € St(IP’)) pelG — F(f(,(G’)) D sifand only if (P, p, 0, s) €
. N M. Hence F(z) = F(c%) =U{s | (3p € G) (P,p,0,s) € v, N M}, which
is in M[G], as desired.

Finally, we show that Ag has the Baire property in M[G] for Blackwell comea-
ger many G when P = Coll(w, 2*)™. Actually, we show that Ay has the Baire
property in M[G] for any P-generic G over M. Let s be a finite binary sequence.
We show that there is a ¢ extending s such that either [t] N Ag or [t] \ Ag is
meager in M[G]. Let ¢ be a canonical name for a Cohen real. Since one can
embed Cohen forcing into Coll(w,2%)™ in a natural way in M, we may regard ¢
as a P-name for a Cohen real. Since 2¥ in M is countable in M[G], the set of
Cohen reals over M is comeager in M[G]. Take any Cohen real ¢ over M with
s C cin M[G]. We may assume c is in Ag (the case ¢ ¢ Ag can be dealt with
in the same way). Recall that p“ = A and hence by the forcing theorem, there
isap e Gand a o such that M E p Ik “¢ =0 D & and (P,p,0) € TAN M,
which implies (P, p,¢) € 74 N M, namely (¢,p) € pa. But the value of ¢ will be
decided within Cohen forcing and by the definition of 74, we may assume that
p is a condition of Cohen forcing extending s. Hence for any Cohen real ¢’ over
M with p C ¢ in M[G], ¢ is in Ag. Since the set of all Cohen reals over M is
comeager in M|G], this is what we desired. O (Claim 3.2.7)

We now finish the proof of Theorem 3.2.6 by showing that A has the Baire
property. Let G be such that the conclusions of Claim 3.2.7 hold. By the first item
of Claim 3.2.7, the structure (w,“wNMI[G], app, +,+,=,0, 1, Ag) is an elementary
substructure of A%. Since the Baire property for A can be described in the
structure A% in this language and Ag has the Baire property in M[G], A also
has the Baire property, as desired. [0 (Theorem 3.2.6)

Next, we show that every set of reals is co-Borel assuming Bl-ADg. For that
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purpose, we introduce the Vopénka algebra and its variant, which is a main tool
for our argument. The original motivation for the Vopénka algebra is to make
every set to be generic over HOD, the class of all the hereditarily ordinal definable
sets, i.e., any element of the transitive closure of a given set is ordinal definable.
HOD is an important inner model of ZFC containing all the (possible) important
inner models with large cardinals and it is close to V' in the sense that any set in
V' can be generic over HOD via the Vopénka algebra.

We define the Vopénka algebra and its variant for HODy, where X is an
arbitrary set, ODx is the class of all sets ordinal definable with a parameter X,
and HODy is the class of sets a where any element of the transitive closure of a
isin ODx.

Take any arbitrary set X and fix an ordinal definable injection ix: ODx —
HODx. Then consider the Vopénka algebra Py x in HODx as follows: Py x =
{ix(A) | A € ODx and A C P(w)}. For p,q € Pyx, p < q if i (p) C ix (q).
It is easy to see that the definition of Py x does not depend on the choice of ix,
i.e., if there are two such injections, then the corresponding two partial orders
are isomorphic in HODy. Vopénka [87] proved that Py is a complete Boolean
algebra in HOD (when X = )) and each real in V' can be seen as a Py g-generic
filter over HOD in the following way: For each real z in V, the set G, = {p €
Pvo | © € i, (p)} is a Pyg-generic filter over HOD and HOD[z] = HODI[G,].
Conversely, if G is a Py,g-generic filter over HOD, then the set (\{i,"(p) | p € G}
is a singleton. We call the element of the singleton a Vopénka real over HOD and
denote it yg. Then yg, = z for each real z in V. The analogue of the above
results holds for HOD y for arbitrary set X.

We now introduce a variant of the Vopénka algebra, namely the Vopénka alge-
bra with oo-Borel codes. Given a set X, consider the following partial order Py,
in HODx: Conditions of IP’"{,,X are oo-Borel codes in HODx where the ordinals
used in their trees are below © in HODx and for ¢, ¢ in Py, v, ¢ < ¢ if B, C Byt
Then we can prove the analogue of Vopénka’s theorem in exactly the same way:

Theorem 3.2.8 (ZF). (Folklore) Let X be an arbitrary set.

1. Py, x is a complete Boolean algebra in HODx.

2. For each real v in V, the set G, = {¢ € Py, | © € By} is P}, y-generic
over HODx and HODx[z] = HODx[G,]. Conversely, if G is a P}, y-generic filter
over HODy, then the set (\{B, | ¢ € G} is a singleton and we call the real in
the singleton a Vopénka real over HODy and denote it yg. Then HODx[yq] =
HODx[G] and yg, = x for each G and z.

Proof. The proof is exactly the same as for the Vopénka algebra which can be
found, e.g., in Jech’s textbook [37, Theorem 15.46). O

!For any co-Borel code ¢ in HODx, there is an co-Borel code 1) where the ordinals used in
the tree of v is less than © in HODx such that ¢ < ¢ and ¥ < ¢. Hence the restriction of
ordinals for co-Borel codes will not affect the structure of this partial order.
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The difference between Py, x and Py,  is that yg might not recover GG from
HODy for Py x while HODx[ys] = HODx[G] for Py 5. This is because the
injection ix is not in HODx in general while the definition of Py, y does not refer
to OD. For our purpose, we will use Py, y.

Theorem 3.2.9. Assume Bl-ADg. Then every set of reals is oo-Borel.

Proof. We modify the argument for the following theorem by Woodin:

Theorem 3.2.10 (Woodin). Assume AD and that every relation on the reals
can be uniformized. Then every set of reals is co-Borel.

Let A be an arbitrary set of reals. We show that A is oo-Borel.

By Theorem 3.2.6, every set of reals has the Baire property. Hence every
subset of St(P) has the Baire property for any P € #,,. We freely use this fact
later. We fix a simple coding of elements of H,, by reals and if we say “a real x
codes. ..”, then we refer to this coding.

Let 74 and R4 be as follows:

74 = {(P,p,0) € H,, | 0 is a P-name for a real and
(VoG € St(P)) p e G = £,(G) € A},
Rs = {(z,y) | if z codes a (P,p,0) € T4, then y codes a (D; | i < w)
such that (Vi) D; is dense in P and
(VG € St(P)) (p€ G, (Vi) GND; # 0 = f,(G) € A)},

where “(V*°G € St(P))...” means “For comeager many G in St(P)...”. Note
that the term relation 74 defined here is different from the one in Theorem 3.2.6 in
the sense that now we use comeagerness for the quantifier V*° instead of Blackwell
comeagerness.

Let F4 uniformize R4 and T'4 be the graph of Fly, i.e., [y = {(x,s) | s €
<“w, Fa(x) 2 s}. Define 1, as follows:

={(P,p,0,5) € Hy, | 0 is a P-name for a real and
(VG eSt(P)) pe G = (f,(G),s) € Ta},

TFA

here we also use comeagerness for the quantifier V°°.

Let A° be the complement of A and define and construct 74c, Rac, Fac, [ 4c,
and . as above.

The following is the key point:

Claim 3.2.11 (Woodin). Let M be a transitive subset of H,,, and (M, €, 74,1 ,)
is a model of ZFC.% Let (P,p,0) € M N74. Then for every P-generic filter G over
M, if pisin G, then 0% € A. The same holds for A°.

2Here it satisfies Comprehension scheme and Replacement scheme for formulas in the lan-
guage of set theory with predicates for 74 and mr, .
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Proof of Claim 3.2.11. Let Q = Coll(w,TC(IP’)), where Coll(w,TC(]P’)) is the
standard forcing collapsing TC(PP) into a countable set with finite sets as condi-
tions. Since P,p,o are countable in M@, there is a Q-name ¢’ for a real in M
coding the triple (P, p, o).

Subclaim 3.2.12. There is a Q-name p for a real in M such that in V, for
comeager many H in St(Q), f,(H) = Fa(f»(H)).

Proof of Subclaim 3.2.12. First note that the map f: H — Fy (fg/(H)) is con-
tinuous on a comeager set in St(Q), i.e., Baire measurable. This is because every
subset of St(Q) has the Baire property in St(Q) and we can do the same argument
as the one in Proposition 3.2.2 to uniformize a relation almost everywhere (since
we use open sets in St(Q) to approximate subsets in St(Q) in this case, we get a
continuous function instead of a Borel function).

Let p = 7y where the notation 74 is from Lemma 2.1.2. Then p is a Q-name
for a real because the map f is Baire measurable as we observed. Moreover, p is
in M because

((m,n),q) € p <= (Is € 2) (s(m) =n and (Q,q, (0,5)) € 7r,)

and the right hand side of the equivalence is definable in (M, 74, mr,), which is a
model of ZFC by assumption. Finally, by Lemma 2.1.2, it is easy to see that for
comeager many H in St(Q), f,(H) = Fa(f»(H)). O (Subclaim 3.2.12)

Now let G be a P-generic filter over M with p € G. We show that f,(G) € A.
Take a Q-generic filter H over M[G] with p = F,(c’"). This is possible by
Subclaim 3.2.12 and that M[G] C H,,. Then G is also a P-generic filter over
M[H] and F4(co'") = pf € M[H]. But by the definition of F4, F(c'?) codes a
sequence (D; | i € w) such that D; is a dense subset of P in M[H] for each i € w
and for any G’ in St(P), if G' N D; # for each i, then f,(G') € A. But G is a
P-generic filter over M[H] and each D; is in M[H]. Hence G N D; # ) for each
i € wand f,(G) € A, as desired. O (Claim 3.2.11)

Let X = (A, 74,7, Tac, ). Recall that U is the fine normal measure
on P, we fixed at the beginning of this section. Let M = L(X,R)[U]. Since
the statement “a real is in the decode of an co-Borel code” is absolute between
transitive models of ZF as in §1.13 and M contains all the reals, if A is co-Borel
in M, soisin V.

From now on, we work in M and prove that A is oo-Borel in M, which
completes the proof of this theorem. The benefit of working in M is that we have
DC in M because DCg implies DC in M while DC might fail in V' in general.
Note that U N M is a fine normal measure on P,, (R) in M and we use U to
denote U N M from now on.

We find a set of ordinals S and a formula ¢ such that for any real z,

r €A = L[S, z] E ¢(x). (3.1)
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By Fact 1.13.2, this implies that A is co-Borel.
For a in P,, (R), let M,,Q:, and b, be as follows:

Loy [X](a)

M, =HOD%:¥1@)
Q* :P*{/,X in M(l)

a

bo =sup{q € Q | (Q,q,yq) € Ta} in M,,

where y¢; is a canonical (Q¥-name for a Vopénka real given in Theorem 3.2.8.

Note that M, is a transitive subset of H,, and (M,, 74, v, ) and (M, Tac, Tr . )
are models of ZFC because L, [X](a) is a transitive model of ZF (to check the
power set axiom, we use the condition that there is no uncountable sequence of
distinct reals ensured by Lebesgue measurability). Note also that b, is well-defined
because Q¢ is a complete Boolean algebra in A, by Theorem 3.2.8.

Then we claim that for each a € P,, (R) and real x which induces the filter G,
that is Py, y-generic filter over M,, v € A <= b, € G,. Fix a and x. Assume
bo € Gz. We show that = € A. If we apply Claim 3.2.11 to M = M,, (P,p,7) =
(Q¢, ba, yg), and G = G, then we get x € A because yg, = = as in Theorem 3.2.8.
For the converse, we assume b, is not in G, and prove that z is not in A. Let b,’
be the one corresponding to b, for A° instead of for A, i.e.,

b’ =sup {q € Q; | (Q;,q,9a) € Tac}.

Then b, V b,' = 1. This is because f;-;(A) has the Baire property in St(Q).
Since b, ¢ G, and G, is Py, x-generic over M,, b, is in G,. Hence we can apply
Claim 3.2.11 to M,, A¢, (Q¢, b, ,yc), and G, and we get x € AS, i.e., x is not in
A, as desired.

Fix an a € P, (R). Note that since P},  is the Vopénka algebra with oo-Borel
codes defined in M,, any real in L,,[X](a) is P}, y-generic over M,. Hence for
any real z in Ly, [X](a), z € A <= b, € G,.

Now we use this local equivalence in L, [X](a) to get the global equiva-
lence (3.1) by taking the ultraproduct of M, via U. Let My, Qu,bs be as
follows:

Moo :HMaa Qoo :HQ:” boo :Hba-
U U U

Note that Lo$’s theorem holds for M. because there is a canonical function
mapping a to a well-order on M,.*> By DC (in M), M, is wellfounded. So we
may assume M, is transitive. Hence, M, is a transitive model of ZFC, Q. is a
partial order consisting of co-Borel codes, and by € Q.

We claim that for each real z, x € A <= x € B,_. This will establish the
equivalence (3.1) because the pair (Qy, bs) can be seen as a set of ordinals since
they are objects in the transitive model M., of ZFC.

*Lo¢’s theorem fails for [];; Ly, [X](a). This is because Ly, [X](a) is not a model of ZFC for
almost all a and we cannot assign a well-order on L, [X](a) to each a as we did for [, M,.
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Let us fix a real z. By the fineness of U, x € a for almost all @ w.r.t. U. Then

r €A <—b, € G, for almost all a
<= z € By, for almost all a
< 1 € By,

where the first equivalence is by the local equivalence we have seen and the third
equivalence follows from Lo§’s theorem for [[,; M,[z] (note that M,[z] is a generic
extension of M, given by G, and we can prove Lo§’s theorem for [[,;; M,[z] in
the same way as for [[;; M,). This completes the proof. O

Together with the non-existence of uncountable sequences of distinct reals,
the co-Borelness for every set of reals gives us almost all the regularity properties
we introduced in chapter 2 for every set of reals. Recall that P-measurability
for a strongly arboreal forcing P was the regularity property we introduced in
Definition 2.1.7. Also recall that strongly proper forcings are strengthening of
proper forcings for projective forcings.

Proposition 3.2.13. Assume that there is no uncountable sequence of distinct
reals and every set of reals is co-Borel. Then every set of reals is P-measurable
for any strongly arboreal, strongly proper forcing P.

Proof. The results for Cohen forcing, random forcing, and Mathias forcing are
well-known and the proof is the same as the one in Case 1 in Theorem 2.4.2. We
just replace L[a] in Theorem 2.4.2 with L[S], where S codes a given set of reals
and a given partial order P. The fact that the set of all dense subsets of P in L[S]
is countable follows from the non-existence of uncountable sequences of distinct
reals (because L[S] is a ZFC model) and the fact that L[S] correctly computes
P follows from that S codes P. The rest is exactly the same as in Case 1 in
Theorem 2.4.2. O

Corollary 3.2.14. Assume BlI-ADg. Then every set of reals is P-measurable for
any strongly arboreal, strongly proper forcing P.

3.3 Toward ADg from BIl-ADg

In this section, we discuss the following conjecture:
Conjecture 3.3.1 (DC). ADg and BI-ADg are equivalent.

Since ADg implies BI-ADg by Theorem 1.14.3, the question is whether BI-ADg
implies ADg in ZF+DC. Woodin proved the following:

Theorem 3.3.2 (Woodin). Assume AD and DC. Then the following are equiv-
alent:
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1. Every set of reals is Suslin,
2. The axiom ADg holds, and
3. Every relation on the reals can be uniformized.

Hence, to prove Conjecture 3.3.1, it suffices to show that every set of reals
is Suslin from BI-ADg: If every set of reals is Suslin, then by Theorem 1.14.5,
AD holds. Now by Theorem 3.3.2 and Theorem 1.14.9, ADg holds assuming
BI-ADg and DC. Note that Martin’s Conjecture (i.e., BI-AD implies AD) implies
Conjecture 3.3.1 by Theorem 3.3.2. Hence it is interesting to see whether this is
Conjecture is true or not.

We try to mimic the arguments for the implication from uniformization to
Suslinness in Theorem 3.3.2 and reduce Conjecture 3.3.1 to a small conjecture.
Throughout this section, we fix U as a fine normal measure on P,, (R), which
exists by Theorem 3.1.3.

First, we show that every set of reals is strong oco-Borel assuming Bl-ADg.
Before giving a definition of strong oo-Borel codes, we start with a small lemma:

Lemma 3.3.3. Assume Bl-ADg and DC. Let j: V' — Ult(V, U) be the ultrapower
map via U. Then j(w;) = ©.

Proof. We first show that j(w;) > ©. Let a be an ordinal less than © and R be
a prewellorder on the reals with length . Define f: P, (R) — w; be as follows:
For a € P,, (R), f(a) is the length of the prewellorder RN (a x a) on a. Since a is
countable, f(a) is also countable. Hence f €y ¢,,, where €y is the membership
relation for Ult(V,U) and ¢, is the constant function on P,, (R) with value w;.

We show that the structure ([f]y, €) is isomorphic to («, €) and hence [f]y =
«, which implies @ < j(w;) because f €y ¢,,. For any a € P,, (R), let 7(a) be
the transitive collapse of (a, RnN(a x a)) into (f(a), e). Then by Lo$’s Theorem
for simple formulas, [r];; is an isomorphism between ([id]y, 7(R) N ([id]y x [id]r))
and ([f]u, €), where id is the identity function on P, (R).

Claim 3.3.4. The identity function id represents R, i.e., [id]y = R.

Proof of Claim 3.3.4. By the fineness of U, for any real z, {a | x € a} € U.
Hence [c;|y € [id]y. By the countable completeness of U, [c,;]y = = and hence
x € [id]y for any real z. Suppose f is a function on P,, (R) with f € id. Then by
the normality of U, there is a real x such that {a | x = f(a)} € U, i.e., ¢, =¢ f.
Hence [f]y = x and [f]y is a real, which finishes the proof. O (Claim 3.3.4)

By Claim 3.3.4, we have [id]y = R and j(R) N ([id]y x [id]y)) = R. Since
(lid]er, 5 (R)N([id]y x[id]i7)) and ([f], €) are isomorphic, ([f]i7, €) is isomorphic to
(R, R), which is isomorphic to («, €), as desired. Hence o < j(wy) and j(w;) > ©.

Next, we show that j(w;) < O. Let f be a function from P,, (R) to w;. We
show that [f]y < ©. By uniformization for every set of reals, there is a function
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e from the reals to themselves such that if a real z codes an a € P,, (R), then
e(x) codes f(a). Let S be an oo-Borel code for the graph I, of e which exists by
Theorem 3.2.9.

Claim 3.3.5. For all a € P, (R), f(a) < O"51@),

Proof of Claim 3.3.5. Note that P(x) N L[S](a) is countable in V for any = €
H.,, NL[S](a). Hence there is a Coll(w, a)-generic g over L[S](a) in V. Fix such
a g. Let z, be a real coding a from g. Then since S is an oco-Borel code for
I'c, one can compute whether e(x,) O s for each finite binary sequence s or not
in L[S](a, g), hence e(x,) € L[S](a, g). Therefore f(a) is countable in L[S](a, g).
But O stays an uncountable cardinal in L[S](a,g). Hence f(a) < @)@
as desired. O

By the normality of U, the following choice principle holds: For any function
F: P, (R) = V such that () # F(a) € L[S](a) for almost a with respect to U,
then there is a function f: P, (R) — V such that f(a) € F(a) for almost all a
with respect to U. This implies Lo§’s Theorem for the ultraproduct [[;; L[S](a).

Let S* = j(S). Then ([],L[S](a),€r) is isomorphic to (L[S*](R),€) by
looking at the map g — j(g)(R). (Note that Ult(V,U) is wellfounded by DC.)
Hence

[flo < [a — ©M81@)], = @US"I®) < gV
as desired. 0

We now introduce strong co-Borel codes. An oo-Borel code S is strong if the
tree of S is a tree on v for some v < © and for any f: <“R — R and surjection
m: R — 7, there is an a € P,, such that a is closed under f, S[r[a] is an oo-
Borel code, and Bgir,) € Bs. Note that the choice of v does not depend on the
definition of strong co-Borel codes. A set of reals A is strong oo-Borel if A = Bg
for some strong oo-Borel code S. There is a finer version of Fact 1.13.2 as follows:

Fact 3.3.6.

1. Let S be a strong oco-Borel code and v < © be such that S is a tree on (3
for some < v and L,[S, z] F “KP + ¥;-Separation” for any real z. Let ¢(S,z)
be a ¥;-formula expressing “r € Bg”. Then for any function f: <“R — R and
surjection 7: R — +, there is an a € P, (R) such that a is closed under f and
for any real z, if L;[S,z] £ ¢(S,z), then L,[S,z] E ¢(S, ), where L;[S] is the
transitive collapse of the Skolem hull of 7[a] U {S} in L,[S].

2. Let v be an ordinal with v < ©, ¢ be a ¥;-formula, and S be a bounded
subset of v such that L,[S,z] F “KP 4 X;-Separation” for any real x. Set A =
{r € R | L,[S,z] E ¢(S,x)}. Assume that for any function f: <R — R and
surjection 7: R — +, there is an a € P, (R) such that a is closed under f and
for any real z, if L;[S,z] & ¢(S,z), then L,[S,z] E ¢(S, ), where L,[S] is the
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transitive collapse of the Skolem hull of 7[a] U {S} in L,[S]. Then A is strong
oo-Borel.

Proof. This can be done by closely looking at the argument for Fact 1.13.2 in [80].
U

Theorem 3.3.7. Assume BI-ADr and DC. Then every set of reals is strong
oo-Borel.

Proof. Fix a set of reals A. We show that A is strong co-Borel. Let ((M,, Q% b,) |
a € P, (R)) and (M, Q% ,bx) be as in the proof of Theorem 3.2.9, but we
construct them in V', not in M. Since we have DC now, we can prove the following
equivalences in exactly the same way as in Theorem 3.2.9: For all a € P, (R)
and all real x inducing the filter G, which is Q-generic over M,,

r€e€A —=b, € G, (in Q).
Also,
(VreR) z € A < by € G, (in Q).

For any a, let D, be the set of all dense subsets of Q} in M, and let D, = [[; D,.
Let ¢ be a ¥;-formula such that for all a,

&(Q:, by, Dy, ) <= x determines the filter G, C Q such that
(VD € D,) G,N'D # (0 and b, € G,
O(Q,, boo, Doy ) <= 1z determines the filter G, C Q% such that
(VD € D) Go N D # 0 and by € G,

Let S, and S, be sets of ordinals coding the two triples (Q,b,, D,) and
(Q,, by Do) respectively. For an a € P, (R), let a, be the least ordinal «
such that S, is a bounded subset of o and for all = € a, L,[S,, ] is a model of
KP+3-Separation and let a,, be the least ordinal o such that S, is a bounded
subset of @ and for all z € R, L,[S«, x] is a model of KP+X;-Separation. Note
that by Lo§’s Theorem, ([[;; La, [Sa, 2], €r) is isomorphic to (La, [Ss, 2], €) for
every real x. Since each «, is countable, by Lemma 3.3.3, as, < ©. Also, by the
above equivalences, for all a € P, (R) and all reals z,

r €A <Ly I[Ss, 2] E o (S,, 1)
T €A <= Ly [0, %] F ¢ (S, ).

By the second item of Fact 3.3.6, it suffices to show the following: For any
function f: <R — R and surjection 7: R — ., there is an a € P, (R) such
that a is closed under f and for any real z, if Lo [Sw,2] F #(Ss, ), then
Law [Seos 7] B ¢(Sa, 1), where L,z [So] is the transitive collapse of the Skolem
hull of 7[a] U {Sx} in Ly, [Seol-

Let us fix f: <R — R and 7: R — ay. Since z € A <= L, [S,z] F
¢ (S, z) for each real x and b € P, (R), the following claim completes the proof:
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Claim 3.3.8. There are a and b in P,, (R) such that a is closed under f and
(X4, €) is isomorphic to (Lg, [Sp], €), where X, is the Skolem hull of 7[a] U {Sw}
in L, [Seol-

Proof of Claim 3.3.8. Let T'y = {(z,s) € R x <2 | f(x) 2 s}. For each b,
consider the following game G}, in L[S, Soo, T'f, 7]: In w rounds,

1. Player I and II produce a countable elementary substructure X of Ly, [Sh],
2. Player II produces an a € P, (R) which is closed under f, and

3. Player II tries to construct an isomorphism between (X, €) and (X,, €),
where X, is the Skolem hull of 7[a] U {S} in L, [Ss]-

Player IT wins if she succeeds to construct an isomorphism between (X, €) and
(X4, €). This is an open game on some set of the form 7, x R where T} is
wellorderable. Hence by DCg, it is determined.

Subclaim 3.3.9. Thereis a b € P,, (R) such that player II has a winning strategy
in the game Gy.

Proof of Subclaim 3.3.9. To derive a contradiction, suppose there is no b such
that player II has a winning strategy in the game G in L[Sy, Soo, I'f,m]. By
the determinacy of the game Gb, player I has a winning strategy in the game
Gy Let j:V — Ult(V,U) be the ultrapower map. Then by Los’s Theo-
rem, HU(L[Sb,SOO,Ff,ﬂ'],EU,Ff,ﬂ') is isomorphic to (L[Soo,j(Soo),Ff,j(ﬂ)],E
,Ff,j(ﬂ')). Then the game C?oo =11y éb is an open game on some set of the
form T, x R where T, is wellorderable in L[S, j(Sx), s, j(7)] such that in w
rounds,

1. Players I and IT produce a countable elementary substructure Y of L,__ [Swo],
2. Player II produces an a € P, (R) which is closed under f, and

3. Player II tries to construct an isomorphism between (Y, €) and (Y, €),
where Y, is the Skolem hull of j(7)[a] U {j(Ss)} in Lj(a.)[i(Ss)]-

Player II wins if she succeeds to construct an isomorphism between Y and Y,.
By Lo§’s Theorem, player I has a winning strategy o in L[S, j(Sx), s, j(7)].
By Theorem 1.12.6, ¢ is also winning in V. In V| let player II move in such
a way that she can arrange that a is closed under f, j[Y] = Y,, and j|Y is
the candidate for the isomorphism. This is possible by a bookkeeping argument.
But then player IT wins because j[Y is an isomorphism between Y and j[Y] and
defeats the strategy o, contradiction! O (Subclaim 3.3.9)
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Hence there is a b € P, (R) such that player IT has a winning strategy 7
in the game G, in L[Sy, Soo, [y, w]. By Theorem 1.12.6, 7 is also winning in V.
Since L, [Sp] is countable in V', we can let player I move in such a way that
X = L,,[Ss] and let player II follow 7. Since 7 is winning in V/, there is an
a € P,, (R) such that a is closed under f and L,,[S,] = X is isomorphic to X,
as desired. O (Claim 3.3.8)

O

We are now ready to prove the key statement toward Conjecture 3.3.1: Recall
that for a natural number n with n > 1 and a subset A of R**!, %A = {2 ¢
R* [ (Jy € R) (z,y) € A}.

Theorem 3.3.10. Assume Bl-ADy and DC. Let A be a subset of R? and assume
%A is a strict well-founded relation on a set of reals. Suppose A has a strong
oo-Borel code S and let v be an ordinal less than © such that the tree of S is on
7. Then the length of 3% A is less than 7.

Proof. Let A, S, and v be as in the assumptions. We show that the length of
F® A is less than v*. Fix a surjection 7: R — v. Let us start with the following
lemma:

Lemma 3.3.11. There is a function f: <“R — R such that if a is closed under
f, then Sirla] is an co-Borel code and Bgj.[q) C Bs.

Note that the assertion of the above lemma is the strengthening of the defini-
tion of strong oo-Borel codes.

Proof of Lemma 3.5.11. Let us consider the following game: Player 1 and II
choose reals one by one and produce an w-sequence x of reals. Setting a = ran(f),
player I wins if S[n[a] is an co-Borel code and Bgj.jq) C Bg. Since S is a strong
oo-Borel code, player I can defeat any strategy for player II because strategies can
be seen as functions from <“R to R by Claim 3.1.5. Since the payoff set of this
game is range-invariant, by Lemma 3.1.4, this game is determined. Hence player
I has a winning strategy and by Claim 3.1.5, there is a function f as desired.

O (Lemma 3.3.11)

We fix an fj satisfying the conclusion of Lemma 3.3.11 for the rest of this proof.
Recall that U is the fine normal measure on P,, (R) we fixed at the beginning of
this section. Using m, we can transfer this measure to a fine normal measure on
P, (7) as follows: Let m.: Py, (R) — Py, (7) be such that m,(a) = 7]a] for each
a € P,,(R). For AC P, (), A€ Uy if r;'(A) € U. Tt is easy to check that U,
is a fine normal measure on P, (7).

We now prove the key lemma for this theorem:
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Lemma 3.3.12. Let G be Coll(w, 7)-generic over V. Then in V[G] there is an
elementary embedding j: L(R, S, fo,m) = L(j(R),j(S),j(fo), j(r)) such that all
the reals in V[G] are contained in L(j(R), j(S),5(fo), j( ))

Proof of Lemma 3.5.12. The argument is based on the result of Kechris and
Woodin [47, Theorem 6.2]. We first introduce the notion of weakly meager sets.
A subset B of “v is weakly meager if there is an X € U, such that (Vb € X)“bNB
is meager in the space “b. Since b is countable, the space “b is homeomorphic to
the Baire space in most cases. Note that if B is a meager set in the space “7,
then it is weakly meager. A subset B of “~v is weakly comeager if its complement
is weakly meager. Let I be the set of weakly meager sets.

Sublemma 3.3.13.

1. The ideal I is a o-ideal on “7.
2. For any s € <“7, [s] is not weakly meager.

3. If a subset B of “v is not weakly meager, then there is an s € <“v such that
[s] \ B is weakly meager.

4. Let g be a function from “7y to On. Then for any B which is not weakly
meager, there is a B’ C B which is not weakly meager such that for all z
and y in B’, if ran(z) = ran(y), then g(z) = g(y).

Proof. The first statement follows from the o-completeness of U,. The second
statement follows from the fineness of U,.

For the third statement, suppose B is not weakly meager. Then since U; is
an ultrafilter, there is an X € U, such that (Vb € X) “bN B is not meager in “b.
We may assume that each b in X is infinite because the set of finite subsets of ~
is measure zero with respect to U, by the fineness of U,. Take any b in X. Since
the space “b is homeomorphic to the Baire space, the set “b N B has the Baire
property in “b. Hence there is an s, € <“b such that [sy] \ B is meager in “b. By
normality of Uy, there is a Y € U, such that Y C X and there is an s € <“~ such
that s, = s for any b € Y. Hence [s] \ B is weakly meager.

For the last statement, let g be such a function and B be not weakly meager.
Then there is an X € U, such that Vb € X, “bN B is not meager in “b. Since
“b N B has the Baire property in “b, there is an s, € <“b such that [s;] \ B is
meager in “b. By normality of U, there are a Y C X and s, € <“v such that
Y € U, and s, = sq for every b € Y. We use the following fact:

Fact 3.3.14 (Folklore). Assume every set of reals has the Baire property. Then
the meager ideal in the Baire space is closed under any wellordered union.
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Take any b € Y. Since [so] N “b is homeomorphic to the Baire space, we
can apply Fact 3.3.14 to the space [so] N “b and hence there is an «; such that
[so)] N“bN g1 (ap) is not meager in [so] N“b. Since the set [so] N “b N g ' (ay)
has the Baire property in [so] N “b, there is an s, € <“b such that s, O so and
[s5] \ ¢ ' () is meager in “b. By normality of Uy, there are a Z € U, with Z CY
and an s; D sy such that [s;] \ ¢7'(ay) is meager in “b for each b € Z. Then
B'=BnN[s)]N{z|g(x) = cvan(z)} is as desired. [0 (Sublemma 3.3.13)

Now we prove Lemma 3.3.12. Let G be Coll(w, v)-generic over V. Consider
the Boolean algebra P(“v)/I. Then it is naturally forcing equivalent to Coll(w, ):
In fact, for s € <“~, let i(s) = [s]/I. Then by the third item of Sublemma 3.3.13,
i is a dense embedding from Coll(w,v) to P(“v)/I \ {0}. Define U’ as follows:
For a subset B of Yy in V, B is in U’ if there is a p € G such that [p] \ B is
weakly meager. By the genericity of G and the third item of Sublemma 3.3.13,
U’ is an ultrafilter on (“v)" and U’ contains all the weakly comeager sets. Take
an ultrapower Ult(L(R, S, fo,7),U’) = ((w7)VL(R, S, fo,m) NV)/U" and let j be
the ultrapower map. (Note that we consider L(R, S, fy, 7)-valued functions in V’
which are not necessarily in L(R, S, fo, 7).)

We show that j is the desired map. We first check Lo$’s Theorem for this
ultrapower. It is enough to show that for any B € U’ and a function F' from B to
L(R, S, fo, ) such that all the values of F' are nonempty, then there is a function
fon Bin V such that f(x) € F(z) for all z in B’. Since there is a surjection from
R x On to L(R, S, fo, 7), we may assume that the values of F' are sets of reals.
But then by uniformization for every relation on the reals by Theorem 1.14.9, we
get the desired f.

Next, we check the well-foundedness of Ult(L(R, S, fo, ), U’). By DC, we
know that the ultrapower Ult(V,U,) is wellfounded. Hence it suffices to show
the following: For a function f: P, (v) — On, let gf: “y — On be as follows:

gs() = f(ran(z)).

Sublemma 3.3.15. The map [f]y, — [g/]r is an isomorphism from ((P<1(¥Onn
V)/Uﬂ—, GU”) to ((MVOH N V)/UI, GUI).

Proof of Sublemma 3.5.15. We first show that if f; €y, fo, then gy, € gy,.
Since fi; €y, fa, there is an X € U, such that for any b in X, f1(b) € fo(b). Fix
a bin X. Since the set {x € “b | ran(z) = b} N“b is comeager in “b, the set
{z €“b| fi(ran(z)) € fo(ran(z))} is comeager in “b. Hence for every b € X, the
set {z € “b| gy, () € gs,(x))} is comeager in “b and the set {z € “v | gz, (z) €
g7, (z)} is weakly comeager and hence is in U’. Therefore, g, €y gy,. In the
same way, one can prove that if f; =¢_ fo, then gy =p gy, .

Next, we show that the map is surjective. Take any function ¢g: “y — On in
V. We show that there is an f: P, (y) = On in V such that g; =¢ ¢g. By the
last item of Sublemma 3.3.13 and the genericity of G, there is an Y in U’ such
that if z and y are in Y with the same range, then g(z) = g(y). Since Y is in U’,
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there is a p € G such that [p]\Y is weakly meager, hence there is an X in U, such
that for all bin X, ([p]\Y)N“b is meager in “b. This means that ¢ is constant on
a comeager set in [p] N “b for each b € X. Let oy be the constant value for each
b€ X and f be such that f(b) = ap if bisin Y and f(b) = 0 otherwise. Then it
is easy to check that gy =¢ g, as desired. [0 (Sublemma 3.3.15)

We have shown that j is elementary and we may assume that the target
model of j is transitive. Then j is an elementary embedding from L(R, S, fo, 7)
tOL(J(R)vj(s)vj(fﬂ)vj(ﬂ-)) Let M = L(](R)aj(s)aj(fO)aj(ﬂ-)) We ﬁnally check
that all the reals in V[G] are in M. Let x be a real in V[G] and 7 be a P-name
for a real in V such that 7¢ = 2. We claim that [f,];» = z, where f, is the
Baire measurable function from St(Coll(w,v)) to the reals induced by 7 from
Lemma 2.1.2, which completes the proof.

Take any natural number n and set m = x(n). We show that [f.]p(n) = m.
Since x(n) = m, there is a p € G such that p IF 7(7) = m. By the definition of
fr, for any = € [p], fr(x)(n) = m}. Since p is in G, by the definition of U’, the
set {z | fr(z)(n) =m isin U’, as desired. O (Lemma 3.3.12)

We now finish the proof of Theorem 3.3.10. Let us keep using M to denote
L(j(R),5(S),5(fo),7(m)). We first claim that S and j[S] are in M. Since v is
countable in V[G], there is a real z coding S in V[G]. But by Lemma 3.3.12,
such an z is in M. Hence S is also in M. Since 7 is countable in V[G], there is
an a € P, (R) such that 7[a] = S and hence j(7)[a] = j[S] in V[G]. But since
j(m) € M and a € M by Lemma 3.3.12, j[S] = j(7)[a] is also in M, as desired. By
Lemma 3.3.11 and elementarity of j, the following is true in M: For any a closed
under j(f), 7(S)[a is an co-Borel code and Bjs)ja € Bjsy. Also, by elementarity
of j, 3Bjs) is a well-founded relation on a set of reals in M. Set a = j[S].
Since @ is closed under j(f), in M, j(S)[a is an co-Borel code, Bj(s)1a € Bj(s),
and 3¥Bjg) is also a wellfounded relation on a set of reals in M. Since j[S] is
countable in M, the relation 3*Bjg) is £} and hence by Kunen-Martin Theorem
(see [66, 2G.2]), its rank is less than wy in M which is the same as 4% in V.
Finally, since S and j[S] are equivalent as Borel codes, 3% Bg has length less than

wy in M and since M has more reals than V, (EIRBS)V C (EIRBS)M. Therefore,
the length of (EIRBS)V is less than w{’ = (y7)V, as desired. O

Becker proved the following:

Theorem 3.3.16 (Becker). Assume AD, DC, and the uniformization for every
relation on the reals. Suppose that the conclusion of Theorem 3.3.10 holds, i.e.,
let A be a subset of R?® and assume %A is a well-founded relation on a set of
reals. Suppose A has a strong oo-Borel code S and let v be an ordinal less than
© such that the tree of S is on . Then the length of 3% A is less than v*. Then
every set of reals is Suslin.
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Proof. See [9]. O

We try to simulate Becker’s argument, make a small conjecture, and reduce
Conjecture 3.3.1 to the small conjecture.

As preparation, we prove a weak version of Moschovakis’ Coding Lemma. Let
us introduce some notions for that. Let A be a set of reals. Let IND(A) be the
set of all posX! (A)-inductive sets of reals for some natural number n > 1. For
the definition of posX! (A)-inductive sets, see [66, 7C]. All we need is as follows:

Fact 3.3.17. For any set of reals A, IND(A) is the smallest Spector pointclass
containing A and closed under I* and V.

Proof. The argument is the same as [66, 7C.3]. O

Theorem 3.3.18 (Weak version of Moschovakis’ Coding Lemma). Assume Bl-AD.
Let < be a strict wellfounded relation on a set A of reals with rank function
p: A — v onto and let I be a Spector pointclass containing < and closed under
3% and V®. Then for any subset S of +, there is a set of reals C' € T such that
p[C] = S.

By Fact 3.3.17, IND(<) satisfies the conditions for T".

Proof. The argument is based on Moschovakis’ original argument [66, 7D.5].

Let S be a subset of v. We show that for any a < ~, there is a set of reals
C, € T with p[C,] = S N a by induction on «.

It is trivial when o = 0 and it is also easy when « is a successor ordinal
because I' is a boldface pointclass. So assume « is a limit ordinal and the above
claim holds for each £ < o. We show that there is a C' € T with p[C] = SN a.

Since T' is w-parametrized and closed under recursive substitutions, we have
{G" CRxR" | n > 1} given in Lemma 1.7.1. Let G2 = {z € R | (a,2) € G?*}
for each real a. For a real a, we say G2 codes a subset S' of S if G2 C A and
plG7] = 5"

Let us consider the following game G,: Player I and II choose 0 or 1 one by
one and they produce reals a and b separately and respectively. Player II wins if
either (G2 does not code SN ¢ for any € < ) or (G2 codes SN & for some € < «
and G7 codes S N7 for some n < a with n > ). By BI-AD, one of the players
has an optimal strategy in this game.

Case 1: Player I has an optimal strategy o in G,.

For a real b, let 7, be the mixed strategy for player II such that player II
produces b with probability 1 no matter how player I plays. Since ¢ is optimal
for player I, for each real b, for j, ,-measure one many reals a, G2 codes S N &
for some £ < a. Fix a real b. We use the following fact analogous to Fact 3.3.14:

Fact 3.3.19 (Folklore). Let u be a Borel probability measure on the Baire space
and assume every set of reals is y-measurable. Then the set of u-null sets is closed
under wellordered unions.
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Since every set of reals is Lebesgue measurable by Theorem 1.14.8, every set
of reals is p,-,-measurable. By Fact 3.3.19, there is a unique & < « such that
for p,,,-positive measure many reals a, G2 codes S N &, and the set of reals a
such that G2 codes S N ¢ for some & < & i8 p,,-measure zero. Let C' be the
following: A real x is in C' if there is a real b such that for p, ,,-positive measure
many reals a, they code the same subset S’ of v, and no proper subsets of S’ can
be coded by ji,,-positive measure many reals, and z € G2 for some real a such
that G2 codes S'. Since T is closed under F¥ and V¥, C' is in I'(s). By induction
hypothesis, for any £ < a, there is a real b such that G7 codes S N¢. Since o is
optimal, C' codes S N a, as desired.

Case 2: Player II has an optimal strategy 7 in G,.

Let (a,x) — {a}(x) be the partial function from Rx R to R which is universal
for all the partial functions from R to itself that are I'-recursive on their domain.
For reals a and w, define a set of reals A, ,, as follows: a real = is in A,,, if there
exists z < w such that {a}(2) is defined and ({a}(z),z) € G2. It is easy to see
that A,, isin I'. By Lemma 1.7.1, there is a I-recursive function 7: Rx R — R
such that A, ., = G?r(a,w) for each a and w.

For each real a and w, define a set of reals C, ,, as follows: A real z is in C, ,,
if for [0 oy, - POSIEIVE measure many b, they code the same subset S’ of v, no
proper subsets of S’ can be coded by (i, ,,-positive measure many reals, and z is
in G for some real b such that G? codes S'. It is easy to see that C,, is in T.
Hence by Lemma 1.7.1, there is a ['-recursive function 7’: R x R — R such that
Cow = Ggr’(a,w) for each a and w.

Since the function (a, w) — 7'(a, w) is T-recursive in 7 and total, by Recursion
Theorem 1.7.3, we can find a fixed a* such that for all w, {a*}(w) = 7'(a*, w).

Let g(w) = {a"}(w).

Claim 3.3.20. For each w € A with p(w) < «, there is some n(w) < « with
p(w) < n(w) such that G%, codes S N n(w).

Proof of Claim 3.3.20. We show the claim by induction on w. Suppose it is done
for all x < w. Then A, ,, codes SN & where & = sup{n(z) | x < w} > p(w).
Since 7 is optimal for II, Cy- ,, codes S N7 for some 1 > . Since Gi(w) = Co w)

setting n(w) = n, n(w) > p(w) and Gg(w) codes S N n(w). [0 (Claim 3.3.20)
Let C' = UweA’p(w)m Gs(w). Then by Claim 3.3.20, C' codes SN« and C' is in
T, as desired. 0

We also need a weak version of Wadge’s Lemma: Let A be a set of reals. For
a natural number n > 1, a set of reals B is 3} in A if B is definable by a %}
formula in the structure 4% that is the second order structure with A as an unary
predicate with a parameter = for some real x. A set of reals B is projective in A
if Bis X! (A) for some n > 1.
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Lemma 3.3.21 (Weak version of Wadge’s Lemma). Assume BI-AD. Then for
any two sets of reals A and B, either A is £} in B or B is ¥ in A.

Proof. Recall the Wadge game Gw(A, B) from §1.15. By BI-AD, one of the
players has an optimal strategy in Gw(A, B). Assume player II has an optimal
strategy 7 in Gw(A, B). Then for any real z,

reAd = p,.({(@y)|2 =zandyeB}) =1.

It is easy to see that the right hand side of the equivalence is 3J in B. If player
I has an optimal strategy in Gw (A, B), then one can prove that B is X} in A® in
the same way and hence B is X1 in A. O

For the rest of this section, we assume BI-ADg and DC. We fix a set of reals
A and give a scenario to prove that A is Suslin. We fix a simple surjection p from
the reals to {0,1}, e.g., x — z(0).

Claim 3.3.22. There is a sequence ((Fn, <nyYny ) | M < w) such that for all n,
1. ', is a Spector pointclass closed under I and V*, ', C ', 41, and A € Ty,

2. every relation on the reals which is projective in a set in I', can be uni-
formized by a function in T';, 1,

3. <pisin I, and a strict wellfounded relation on the reals with length ,, and
every set of reals which is projective in a set in I',, has a strong oo-Borel
code whose tree is on v,11.

Proof of Claim 3.3.22. We construct them by induction on n. For n = 0, let T’y
be any Spector pointclass closed under I* and V* containing A which exists by
Fact 3.3.17, and <y be any strict wellfounded relation on the reals in I'y. Then
they satisfy all the items above.

Suppose we have constructed (T, <,,¥,) with the above properties. We con-
struct ', 11, <p41, and 7,41 . First note that there is a set B, of reals which
is not projective in any set in I',, by uniformization for every relation on the
reals. Then by Lemma 3.3.21, every set projective in a set in T, is X} in B,.
Let H, and H! be universal sets for 3J(B,) sets of reals and 3}(B,) subsets of
R?, respectively. By uniformization, there is a function f, uniformizing H!. By
Theorem 3.3.7, there is a v < © such that H, has a strong oco-code whose tree is
on 7. Let v,41 = 7, <p11 be a strict wellfounded relation on the reals with length
Ynt1, and let T,y be a Spector pointclass closed under I and V* containing
[, U{H,, H), fn, <ni1}. We show that they satisfy all the items above for n + 1.
The first item is trivial. The second item is easy by noting that if f, uniformizes
H] then (f,), uniformizes (H} ), for any real a. The third item follows from that
if H, has a strong oo-code whose tree is on 7,1, then (H,), has a strong oco-code
whose tree is on 7, for every real a. O (Claim 3.3.22)
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Note that in the proof of Claim 3.3.22, we have essentially used DC.

We fix ((Fn, <n,Tn) | M < w) as above and let T =Ty, T =Ty, 1, <! be
induced by p, <M=<y,,1, 72 = w and Y = 45,41, Let p}, = p and pI be the
surjection between the reals onto "y, 1 induced by <s,1. Let 7l be the function
a — p[G"] where G™ is a universal set for Tl sets of reals (we do not use .).
Then by Theorem 3.3.18, 7!l is a surjection from the reals onto "y!'. Consider
the following game Ga: Player I plays 0 or 1 and player II plays reals one by one
in turn and they produce a real z and a sequence t € “R, respectively. Setting
T, = mlX(t(n)), player II wins if for all n < m, T,41[n C Ty, Tpy1In = Ty, 0, and
z€ A <= U,c, Tn1In is illfounded, where T),,[n = {sIn | s € T,}. This is
an integer-real game in the sense player I chooses integers and player IT chooses
reals.

We introduce an integer-integer game G4 simulating the game G4. In the
game Ga, players choose pairs of 0 or 1 one by one and produce a pair of re-
als (zg,y0) and (ag,by) in w rounds respectively. From (x¢, o) and (aq, by), we
“decode” a real z and an w-sequence of reals t respectively as follows: For each

pointclass I above, we fix a set U" universal for relations in '. Setting Fjy = U;Ej),
F, is a function from the reals to perfect sets of reals (or codes of them) (other-
wise player I loses). Let P,, = F(xg). Then yp is an element of P,, (otherwise
player T loses) and is identified with a triple (ug, 1, 1) of reals by looking at a

canonical homeomorphism between P,, and R®. Then setting F; = U;Il, Fiisa
function from the reals to perfect trees on 2 (or codes of trees) (otherwise player
I loses). Let P,, = F(x1). Then y; is an element of P,, (otherwise player I loses)
and is identified with a triple (u1, z9, y2) of reals by looking at a canonical homeo-
morphism between P,, and R3. Continuing this process, one can unwrap (z,,, yn)
and obtain (un, Tpi1,Yns1) for each n and get an w-sequence (u, | n < w). Let
z(n) = p(u,). In the same way, one can obtain an w-sequence (¢, | n < w) of reals
from (ao, by). Setting T}, = 7 (t(n)), player Il wins if for all n < m, T,41In C T,
ToiiIn=Tyn,and z € A <= J,,c, Tn+1In is illfounded.
Becker proved the following:

Lemma 3.3.23.

1. If player I has a winning strategy in the game G, then player I has a
winning strategy o in the game G4 such that o is a countable union of sets
in T} for some n as a set of reals.

2. If player II has a winning strategy in the game G 4, then player II has a
winning strategy in the game G 4.

Proof. See [9, Lemma A & B]. O

We show and conjecture the following: Let B C “R. A mixed strategy o for
player I is weakly optimal in B if for any s € REY" the set {z | o(s)(z) # 0} is



100 Chapter 3. Games themselves

finite and for any w-sequence y of reals, ji5, (B) > 1/2. One can introduce the
weak optimality for mixed strategies for player IT in the same way. Note that if
player I has an optimal strategy in some payoff set, then player I has a weakly
optimal strategy in the same payoff set. The same holds for player II.

Lemma 3.3.24. If player I has an optimal strategy in the game G 4, then player
I has a weakly optimal strategy o in the game G4 such that o is a countable
union of sets in Tl for some n as a set of reals.

Conjecture 3.3.25. If player IT has an optimal strategy in the game G 4, then
player IT has a weakly optimal strategy in the game G 4.

Proof of Lemma 3.3.24. We first topologize the set Prob(R) of all Borel proba-
bilities on the reals. Consider the following map ¢: Prob(R) — ~“2[0,1]: Given a
Borel probability p on the reals, for any finite binary sequence s, t(u)(s) = p([s])-
We topologize ““2[0,1] by the product topology where each coordinate [0, 1] is
equipped with the relative topology of the real line and we identify Prob(R) with
its image via + and topologize it with the relative topology of ““2[0,1]. Then the
space Prob(R) is compact.

Claim 3.3.26. For any set B of reals, the map u +— pu(B) is a continuous map
from Prob(R) to [0, 1].

Proof of Claim 3.3.26. This is easy when B is closed or open. In general, it
follows from the following equations: For any p € Prob(R),

pu(B) = sup{u(C) | C C B and C' is closed}
= inf{u(O) | O 2 B and O is open}.

[0 (Claim 3.3.26)

Next, we introduce a complete metric d on Prob(R) compatible with the
topology we consider. Let (s, | n € w) be an injective enumeration of finite binary
sequences. For p and g in Prob(R), d(u, ') = >, [n[sn]) — 1/ ([sa])] /271
Then d is a complete metric compatible with our topology. Since Prob(R) is
compact, the map p +— p(A) is uniformly continuous with the metric d. Hence
there is an € > 0 such that if d(u, 4') < ¢, then |p(A) — p'(A)| < 1/2. Let us fix a
sequence (€, | n € w) of positive real numbers such that Y., €,/2"" <e. For
any finite binary sequence s’, let ny be the natural number such that s, = s.

Let o be an optimal strategy for player I in the game G4. We show that
there is a weakly optimal strategy & for player I in the game G 4. Given a real
a. Consider the function FV: R — %[0, 1] as follows: Given a real b, F2(b)(i) =
Lm0 ) ({(z0,v0) | p(uo) = i}) for i = 0,1, where y, is identified with (ug,z1, 1)
as discussed. Since every set of reals has the Baire property, F? is continuous on
a comeager set. Then there is a perfect set P of reals such that for any b and b’
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in P, |F)(b)(i) — FY(V')(i)| < €n,,- Since the set Xo = {(a, P) | (V,b' € P) (Vi <
2) |[F7(b)(1) = FR(V')(i)] < €ng,, } is projective in Ty, there is a real ag such that the
function fo = UL® uniformizes Xo. Let &(0)(0) = max{F2 (b)(0) | b € fo(ao)}
and 5(0)(1) =1 —5(0)(0). We have specified & for the first round.

Next, suppose player II played a real ¢y for her first round. We decide the
probability 7(¢y) on 2. Let a be a real. Consider the function F!: R — 2[0,1] as
follows: For a real b, F,}(0)(i) = fio,roy (10 0y ({ (%0, %0) | p(ur) = i}) for i = 0,1,
where y; = (t1,%9,y2) as discussed. Then the function F! is continuous on a
comeager set. Then there is a perfect set P of reals such that for any b and b’
in P, |F;(b)(i) — F,;(0")(4)| < min{e, -, | s € "2} for i = 0,1. Since the set
X1 ={(a,P) | (Vb, 1 € P) (Vi < 2) |[F,(b)(i) — F, (V') (i) < min{ey -, |s€'2}}
is projective in ', there is a real a; such that the function f; = UarlIIl uniformizes
Xi. Let 6(tp)(0) = max {F} (b)(i) | b € fi(ar1)} and 6(to)(1) =1 — (o) (0).

Continuing this process, we can specify ¢ with the following property: For
any natural number m and m-tuple reals (to,...,tm 1), |0(to, .- tm-1)(7) —
Fr (0)(9)| < min{e,, ., | s € ™2} for each b € fi(am). Also we have speci-
fied the reals a,, and b,, for all m < w.

We show that & is weakly optimal in the game G 4. Let (£, | n < w) be an
w-sequence of reals such that the tree |J,_, Ths1[n is illfounded. We show that
the probability of the payoff set via yzr, ..., is greater than 1/2. (The case
when the tree is wellfounded is dealt with in the same way.)

First note that together with (¢, | n < w), & produces a Borel probability p
on the reals such that for any finite binary sequence s, u([s]) = [[,.,,7(t; | j <
i)(s(j)), where m is the length of s. Since the tree from (£, | n < w) is illfounded,
it suffices to show that u(A) > 1/2. On the other hand, the measure pgr,
induces a Borel probability measure v on the reals as follows: For a finite binary
sequence s, v([s]) = ,u(,,T(aO,bO)({(xg,yg) | (Vi < m) p(t;) = s(i)}), where m is
the length of s. By the property of &, d(u,v) < e. Hence |u(A) —v(A)| < 1/2.
Since ¢ is optimal for player I in the game G4 and the tree from (t, | n < w) is
illfounded, v(A) = 1. Therefore, p(A) > 1/2, as desired. O

From Lemma 3.3.24 together with Theorem 3.3.10, one can conclude the fol-
lowing:

Lemma 3.3.27. There is no optimal strategy for player I in the game G 4.

Proof. To derive a contradiction, suppose player I has an optimal strategy in the
game G 4. Then by Lemma 3.3.24, player I has a weakly optimal strategy o in
the game G 4 such that o is in a countable union of sets in T'% for some n as a set
of reals.

Consider the following set:

X ={(t,s) €“R X ““R| pto,({(z,¢') | ' =t and z € A}) > 1/2 and
(9 < 5) (15(0) g (i) ) € oo,
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where [s(i)| i is the rank of s(i) with respect to the wellfounded relation <" and
T; = pi'(t(i)). For (¢, s) and (¥, ') in X, (t,s) < (¢,s') if t and ¢’ code the same
tree T and s codes a node in T extending a node coded by s’. Note that for
any (¢,s) in X, if T is the tree coded by ¢, T is wellfounded because o is weakly
optimal in the game G'4. Hence (X, <) is a strict wellfounded relation on X. Let
Yo = sup{¥ | n € w}. By DC, the cofinality of © is greater than w. Hence
Y < ©. Note that for any ordinal o < 7, there is a wellfounded tree T coded
by some real ¢ as in the definition of X such that the length of T is a. Hence the
length of (X, <) is /.

Since o is a countable union of sets in 'l for some n as a set of reals, the set
<on X isin I¥ A”V/“ U, e, Ths i-e., it is a projection of a countable intersection
of countable unions of sets in T'}, for some n. Since every set in T'} has a strong
co-Borel code whose tree is on 4y for every n, every set in A“\/*“ U, c, I'» has
a strong oo-Borel code whose tree is on 7. By Theorem 3.3.10, the length
of < must be less than 7, which is not possible because it was equal to 1.
Contradiction! O

We close this section by proving that Conjecture 3.3.25 implies Conjecture 3.3.1.

Proof of Congecture 3.3.1 from Conjecture 3.3.25. By Lemma 3.3.27, player [ does
not have an optimal strategy in the game G4. Hence by BI-AD, player II has
an optimal strategy in the game G4. By Conjecture 3.3.25, player II has a
weakly optimal strategy 7 in the game Ga. Note that 7 can be seen as a
real because each measure on the reals given by 7 is with finite support by
the weak optimality of 7. For each finite binary sequence s with length n, let
t,={ue"R|(Vi<n) T((sm x (ul(i— 1))) (s(i)) # 0}, where (s}i)* (ul(i— 1))
is the concatenation of s[i and u[(i — 1) bit by bit. For each finite binary se-
quence s, we identify ¢, with a set of n-tuples of natural numbers via a map 7
by using the isomorphisms between (a,<g) and (n, €) for a finite set of reals a
and a natural number, where <p is a standard total order on the reals. For any
real z, t, = |U,c, ten is @ tree on natural numbers and (7, | s € <“w) induces a
homeomorphism 7, between [t,] and [{t' € ““R | u,, ~([t']) # 0}]. Consider the
following tree:

T ={(s,t,u) € U ("2 x "w x "y,) | t € m(ts) and (Vi < 1h(s)) u(i) = 73] cur},

new

where z; is the #(i)th real of the set of successors of (z; | j < @) in ¢,[i. Then
by the weak optimality of 7, the following holds: Setting B = {(z,y) € R X “w |
(3f € “1) (x,y, f) € [T]}, for any real z,

€A >y, (m[B,]) > 1/2
< (37" : atree on 2) [T'] C B, and p,, (7, [[T"]]) > 1/2.
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Since B is Suslin, the set {(z,7") | [T'] € B,} is also Suslin. Hence A is
Suslin, as desired.

We have shown that every set of reals is Suslin. Then by Theorem 1.14.5, AD
holds. Now by Theorem 3.3.2 and Theorem 1.14.9, ADg holds. O

3.4 Toward the equiconsistency between ADg
and Bl-ADg

In the last section, we have discussed the possibility of the equivalence between
ADg and BI-ADgr under AD+DC. Solovay proved the following:

Theorem 3.4.1 (Solovay). If we have ADg and DC, then we can prove the
consistency of ADg. Hence the consistency of ADr+DC is strictly stronger than
that of ADg.

Proof. See [78]. O

Hence assuming DC to see the equivalence between ADgr and Bl-ADg is not
optimal. One can ask whether they are equivalent without DC. So far we do not
have any scenario to answer this question. Instead, one could ask the equicon-
sistency between ADgy and BI-ADg. In this section, we discuss the following
conjecture:

Conjecture 3.4.2. ADgr and BI-ADg are equiconsistent.
Woodin conjectured the following:

Conjecture 3.4.3 (Woodin). Assume the following:
1. The principle DCg holds,
2. Every Suslin & co-Suslin set of reals is determined, and
3. There is a fine normal measure on P,, (R).

Then either there is an inner model of ADy or there is an inner model M of AD™
such that M contains all the reals and O = 0V

We show that Conjecture 3.4.3 implies Conjecture 3.4.2.

Proof of Conjecture 3.4.2 from Conjecture 3.4.3. First note that the assumptions
in Conjecture 3.4.3 hold if we assume BI-ADg. Hence by Conjecture 3.4.3, there
is an inner model of ADy or there is an inner model M of AD' such that M
contains all the reals and © = @V If there is an inner model of ADg, then we
are done. Hence we assume that there is an inner model M of AD™ such that M
contains all the reals and O = QY.
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We show that ADgr holds in V. First we claim that M contains all the sets
of reals. Suppose not. Then there is a set of reals A which is not in M. Then
by Lemma 3.3.21, every set of reals in M is $1(A). Then © must be less than
©V because one can code all the prewellorderings by reals using A in V, which
contradicts the condition of M. Hence every set of reals is in M. Since we have
uniformization for every relation on the reals in V, it is also true in M. We use
the following fact:

Fact 3.4.4. Assume AD". Then the following are equivalent:
1. The axiom ADg holds, and
2. Every relation on the reals can be uniformized.

By Fact 3.4.4, since every relation on the reals can be uniformized in M, M
satisfies ADg. Since P(R) N M = P(R), ADg holds in V, as desired. O

3.5 Questions

We close this chapter by raising questions.

The equivalence between ADyr and Bl-ADy under ZF4+DC As discussed
in § 3.3, it is enough to show Conjecture 3.3.25 to prove the equivalence between
ADg and Bl-ADg. In the proof of Lemma 3.3.24, in each round, we shrank the re-
als into a perfect set sufficiently enough so that the strategy we constructed gives
us a measure on the reals which is close enough to the measure derived from a
given optimal strategy and the opponent’s moves, which yields the weak optimal-
ity of the strategy. But the same argument does not work for Conjecture 3.3.25
because one cannot shrink the reals into a perfect set to get the continuity of a
given function from R to ®[0,1]. Nonetheless, we can proceed the similar argu-
ment to the coded space [],., P("v,) from the space “R by using the fact that
the meager ideal on the reals is closed under any wellordered union and deciding
the probability on the space [, ., P("7.) is enough to determine the probability
of the payoff set. Although the details of the argument seem complicated and it
is not yet done, we believe it is possible and it is not so difficult.

The equiconsistency between ADyr and BI-ADgr By the argument in § 3.4,
it is enough to show Conjecture 3.4.3 to prove the equiconsistency between ADg
and Bl-ADg. It seems possible because BI-ADg gives us a generic embedding
similar to the one obtained by an w;-dense ideal on w;, CH and “The restriction
of the generic embedding given by the ideal to On is definable in V. Let us see
more details. If one takes a generic filter G' of the partial order <“R ordered by
reverse inclusion, then this filter generates an ultrafilter U’ extending the dual



D. Ikegami, Games in Set Theory and Logic 105

filter of the meager ideal in “R in the same way as we have seen in Lemma 3.3.12.
If one takes the generic ultrapower of V' via U’ and lets M be the target model
of the ultrapower embedding j, then Los’s Theorem holds for M if the cofinality
of © is w, the reals in V' belongs to M as an element (as a real), M contains all
the reals in V[G] and j[On is definable in V' (the last statement is ensured by the
existence of a fine normal measure U in Theorem 3.1.2, in fact, the ultrapower
embedding via U’ agrees with j on ordinals as we have seen). In general, M is
not well-founded (in the case cof(©) = w). But O is always in the well-founded
part of M. Together with the determinacy of Suslin & co-Suslin sets of reals, this
seems enough to proceed the Core Model Induction up to © = ©,,, i.e., a minimal
model of ADg.

A stronger weak Moschovakis’ Lemma As we have seen in § 3.3, a weak ver-
sion of Moschovakis’s Lemma 3.3.18 holds assuming Bl-AD. One can ask whether
one can prove a stronger version of Moschovakis’s Lemma formulated in [66,
7D.5] from BI-AD. If this is possible, it would be plausible to show that the set
of strong partition cardinals is unbounded in © and that every Suslin set of reals
is determined from BI-AD.



