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Chapter 3 Games themselves
In this 
hapter, we 
ompare the stronger versions of determina
y of Gale-Stewartgames and Bla
kwell games, i.e., the Axiom of Real Determina
y ADR and theAxiom of Real Bla
kwell Determina
y Bl-ADR. In x 3.1, we show that Bl-ADRimplies that R# exists and that the 
onsisten
y of Bl-ADR is stri
tly stronger thanthat of AD. In x 3.2, we show that Bl-ADR implies that every set of reals is 1-Borel. From this, we 
an derive almost all the regularity properties for every setof reals. In x 3.3, we dis
uss the possibility of the equivalen
e between ADR andBl-ADR under ZF+DC. In x 3.4, we dis
uss the possibility of the equi
onsisten
ybetween ADR and Bl-ADR.Throughout this 
hapter, we use standard notations from set theory and as-sume familiarity with des
riptive set theory. By reals, we mean elements of theCantor spa
e and we use R to denote the Cantor spa
e.3.1 Real Bla
kwell Determina
y and R#In this se
tion, we prove that Bl-ADR implies that R# exists and that the 
on-sisten
y of Bl-ADR is stri
tly stronger than that of AD.Solovay [77℄ proved that ADR implies that R# exists. Our plan is to mimi
Solovay's proof using Bla
kwell games. In order to do so, we analyze his proofwhi
h has two main 
omponents:Theorem 3.1.1 (Solovay). The axiom ADR implies that there is a �ne normalmeasure on P!1(R), where P!1(R) is the set of all 
ountable subsets of R.Proof. See [77, Lemma 3.1℄.Theorem 3.1.2 (Solovay). Suppose there is a �ne normal measure on P!1(R)and every real has a sharp. Then R# exists.Proof. See [77, Lemma 4.1 & Theorem 4.4℄.71



72 Chapter 3. Games themselvesHen
e it suÆ
es to show that there is a �ne normal measure on P!1(R) fromBl-ADR be
ause Bl-ADR implies AD in L(R), whi
h implies that every real hasa sharp by the result of Harrington [31℄.Theorem 3.1.3. Assume Bl-ADR. Then there is a �ne normal measure onP!1(R).Let us �rst see what is a �ne normal measure. Let X be a set and � be anun
ountable 
ardinal. As usual, we denote by P�(X) the set of all subsets of Xwith 
ardinality less than �, i.e., subsets A of X su
h that there are an � < �and a surje
tion from � to A. Let U be a set of subsets of P�(X). We say that Uis �-
omplete if U is 
losed under interse
tions with <�-many elements; we say itis �ne if for any x 2 X, fa 2 P�(X) j x 2 ag 2 U ; we say that U is normal if forany family fAx 2 U j x 2 Xg, the diagonal interse
tion 4x2XAx is in U (where4x2XAx = fa 2 P�(X) j (8x 2 a) a 2 Axg). We say that U is a �ne measure ifit is a �ne �-
omplete ultra�lter, and we say that it is a �ne normal measure if itis a �ne normal �-
omplete ultra�lter.Proof of Theorem 3.1.3. The following is the key point: A subset A of !R isrange-invariant if for any ~x and ~y in !R with ran(~x) = ran(~y), ~x 2 A if and onlyif ~y 2 A.Lemma 3.1.4. Assume Bl-ADR. Then every range-invariant subset of !R isdetermined.Proof of Lemma 3.1.4. Let A be a range-invariant subset of !R. We show thatif there is an optimal strategy for player I in A, then so is a winning strategy forplayer I in A. The 
ase for player II is similar and we will skip it.Let us �rst introdu
e some notations. Given a fun
tion f : <!R ! R, a
ountable set of reals a is 
losed under f if for any �nite sequen
e s of elementsin a, f(s) is in a. For a strategy � : REven ! R for player I, where REven is the setof all �nite sequen
es of reals with even length, a 
ountable set of reals a is 
losedunder � if for any �nite sequen
e s of elements in a with even length, �(s) is ina. For a fun
tion F : <!R ! P!1(R), a 
ountable set of reals a is 
losed under Fif for any �nite sequen
e s of elements in a, F (s) is a subset of a.The following two 
laims are basi
:Claim 3.1.5. There is a winning strategy for player I in A if and only if there isa fun
tion f : <!R ! R su
h that if a is a 
ountable set of reals and 
losed underf , then any enumeration of a belongs to A.Proof of Claim 3.1.5. We �rst show the dire
tion from left to right. Given awinning strategy � for player I in A, let f be su
h that if a is 
losed under f ,then a is 
losed under �. (Sin
e � is a fun
tion from REven to R, any fun
tionfrom <!R to R extending � will do.) We see this f works for our purpose. Leta be a 
ountable set of reals 
losed under f . Then sin
e a is 
losed under � and
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ountable, there is a run x of the game following � su
h that its range is equalto a. Sin
e � is winning for player I, x is in A and by the range-invarian
e of A,any enumeration of a is also in A.We now show the dire
tion from right to left. Given su
h an f , we 
an arrangea strategy � for player I su
h that if x is a run of the game following �, thenthe range of x is 
losed under f : Given a �nite sequen
e of reals (a0; � � � ; a2n�1),
onsider the set of all �nite sequen
es s from elements of fa0; � � �a2n�1g and all thevalues f(s) from this set. What we should arrange is to 
hoose �(a0; � � � ; a2n�1)in su
h a way that the range of any run of the game via � will 
over all su
hvalues f(s) when (a0; � � � ; a2n�1) is a �nite initial segment of the run for any nin ! moves. But this is possible by a standard book-keeping argument. By theproperty of f , this implies that x is in A and hen
e � is winning for player I.� (Claim 3.1.5)Claim 3.1.6. There is a fun
tion f : <!R ! R su
h that if a is a 
ountable setof reals and 
losed under f , then any enumeration of a belongs to A if and onlyif there is a fun
tion F : <!R ! P!1(R) su
h that if a is a 
ountable set of realsand 
losed under F , then any enumeration of a belongs to A.Proof of Claim 3.1.6. We �rst show the dire
tion from left to right: Given su
han f , let F (s) = ff(s)g. Then it is easy to 
he
k that this F works.We show the dire
tion from right to left: Given su
h an F , it suÆ
es to showthat there is an f su
h that if a is 
losed under f then a is also 
losed underF . We may assume that F (s) 6= for ea
h s. Fix a bije
tion � : R ! !R. Letg : <!R ! R be su
h that ran��(g(s))�= F (s) for ea
h s (this is possible be
auseevery relation on the reals 
an be uniformized by a fun
tion by Theorem 1.14.9).Let h : <!R ! R be su
h that h(s) = ��s(0)�(lh(s)�1), where lh(s) is the lengthof s when s 6= ;, if s = ; let h(s) be an arbitrary real.It is easy to see that if a is 
losed under g and h, then so is under F : Fixa �nite sequen
e s of reals in a. We have to show that ea
h x in F (s) is in a.Consider g(s). By the 
losure under g, g(s) is in a. By 
hoi
e of g, we knowthat ran(�(g(s))) = F (s), so it is enough to show that x is in a for any x inran(�(g(s)). Suppose x is the nth bit of �(g(s)). Consider the �nite sequen
e t =�g(s); :::; g(s)� of length n + 1. Then h(t) = �(t(0))(lh(t)� 1) = �(g(s))(n) = x.But g(s) is in a and a was 
losed under h, so x is in a.Now it is easy to 
onstru
t an f su
h that if a is 
losed under f , then so isunder g and h. � (Claim 3.1.6)By the above two 
laims, it suÆ
es to show that there is a fun
tion F : <!R !P!1(R) su
h that if a is a 
ountable set of reals and 
losed under F , then anyenumeration of a belongs to A.



74 Chapter 3. Games themselvesLet � be an optimal strategy for player I in A. Let F be as follows:F (s) = (; if lh(s) is odd,fy 2 R j �(s)(y) 6= 0g otherwise.Then F is as desired: If a is 
losed under F , then enumerate a to be han j n 2!i and let player I follow � and let player II play the Dira
 measure for an at hernth move. Then the probability of the set fx 2 !R j ran(x) = ag is 1 and sin
e� is optimal for player I in A, there is an x su
h that the range of x is a and xis in A. But by the range-invarian
e of A, any enumeration of a belongs to A.� (Lemma 3.1.4)We shall be 
losely following Solovay's original idea. We de�ne a family U �P(P!1(R)) as follows: Fix A � P!1(R) and 
onsider the following game ~GA:Players alternately play reals; say that they produ
e an in�nite sequen
e ~x =(xi j i 2 !). Then player II wins the game ~GA if ran(~x) 2 A, otherwise player Iwins. Sin
e the payo� set of this game is range-invariant as a Gale-Stewart game,by Lemma 3.1.4, it is determined.We say that A 2 U if and only if player II has a winning strategy in ~GA. Weshall show that it is a �ne normal measure under the assumption of Bl-ADR, thus�nishing the proof of Theorem 3.1.3.A few properties of U are obvious: For instan
e, we see readily that ; =2 Uand that P!1(R) 2 U , as well as the fa
t that U is 
losed under taking supersets.In order to see that U is a �ne family, �x a real x, and let player II play x in her�rst move: This is a winning strategy for player II in ~Gfajx2ag.We next show that for any set A � P!1(R), either A or the 
omplement of A isin U . Given any su
h set A, suppose A is not in U . We show that the 
omplementof A is in U . Sin
e the game ~GA is determined, by the assumption, there is awinning strategy � for I in ~GA. Setting �(s) = ��s�(lh(s) � 1)� for s 2 ROdd , itis easy to see that � is a winning strategy for player II in the game ~GA
.We show that U is 
losed under �nite interse
tions. Let A1 and A2 be inU . Sin
e the payo� sets in the games ~GA1 and ~GA2 are range-invariant, by theanalogue of Claim 3.1.5, there are fun
tions f1 : <!R ! R and f2 : <!R ! R su
hthat if a is 
losed under fi, then a is in Ai for i = 1; 2. Then it is easy to �ndan f : <!R ! R su
h that if a is 
losed under f , then a is 
losed under both f1and f2. By the analogue of Claim 3.1.5 again, this f witnesses the existen
e of awinning strategy for player II in the game ~GA1\A2 .We have shown that U is an ultra�lter on subsets of P!1(R). We show the!1-
ompleteness of U as follows: By Theorem 1.14.8, every set of reals is Lebesguemeasurable assuming Bl-AD. If there is a non-prin
ipal ultra�lter on !, then thereis a set of reals whi
h is not Lebesgue measurable. Hen
e there is no non-prin
ipalultra�lter on !, whi
h implies that any ultra�lter is !1-
omplete. In parti
ular,U is !1-
omplete.
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 75The last to show is that U is normal. Let fAx j x 2 Rg be a family of setsin U . We show that 4x2RAx is in U . Consider the following game ~G: PlayerI moves x, then player II passes. After that, they play the game ~GAx. This isBla
kwell determined and player II has an optimal strategy � sin
e ea
h Ax is inU . Let F : <!R ! P!1(R) be as follows:F (s) = (; if lh(s) is even,fy 2 R j �(s)(y) 6= 0g otherwise.We 
laim that if a is 
losed under F , then a is in 4x2RAx. Then, by the analoguesof Claim 3.1.5 and Claim 3.1.6, F will witness the existen
e of a winning strategyfor player II in the game ~G4x2RAx and we will have proved that 4x2RAx 2 U .Suppose a is 
losed under F . We show that a 2 Ax for ea
h x 2 a. Fix an xin a and enumerate a to be (xn j n 2 !). In the game ~G, let player I �rst movex and then they play the game ~GAx. Let player II follow � and player I play theDira
 measure 
on
entrating on xn at the nth move. Then the probability of theset f~x 2 !R j x0 = x and ran(~x) = ag is 1 and sin
e � is optimal for player II inthe game ~G, there is an ~x su
h that the range of ~x is a and ~x is a winning runfor player II in ~G, hen
e a is in Ax. � (Theorem 3.1.3)Corollary 3.1.7. The 
onsisten
y of Bl-ADR is stri
tly stronger than that ofAD.Proof. Sin
e Bl-ADR implies Bl-AD by the �rst item of Proposition 1.14.2 andBl-AD implies ADL(R) by Corollary 1.14.7, Bl-ADR implies ADL(R). By Theo-rem 3.1.3, Bl-ADR also implies the existen
e of R# . By the property of R# ,one 
an 
onstru
t a set-size elementary substru
ture of L(R). Hen
e ADL(R) andthe existen
e of R# imply the 
onsisten
y of AD. Therefore, Bl-ADR implies the
onsisten
y of AD and by G�odel's In
ompleteness Theorem, the 
onsisten
y ofBl-ADR is stri
tly stronger than that of AD.3.2 Real Bla
kwell Determina
y and regularitypropertiesIn this se
tion, we show that Bl-ADR implies almost all the regularity propertiesfor every set of reals. Note that DCR follows from the uniformization for everyrelation on the reals. Hen
e by Theorem 1.14.9, Bl-ADR implies DCR. For therest of the se
tions in this 
hapter, we freely use DCR when we assume Bl-ADRand we �x a �ne normal measure U on P!1(R), whi
h exists by Theorem 3.1.3.We start with proving the perfe
t set property for every set of reals. Re
allthat a set of reals A has the perfe
t set property if either A is 
ountable or A
ontains a perfe
t subset, where a perfe
t set of reals is a 
losed set withoutisolated points.



76 Chapter 3. Games themselvesTheorem 3.2.1. Assume Bl-ADR. Then every set of reals has the perfe
t setproperty.Proof. The theorem follows from the following two lemmas:Lemma 3.2.2. Assume Bl-ADR. Then every relation on the reals 
an be uni-formized by a Borel fun
tion modulo a Lebesgue null set, i.e., for any relationR on the reals, there is a Borel fun
tion f su
h that the set fx j (x; f(x)) 2R or there is no real y with (x; y) 2 Rg is of Lebesgue measure one.Proof of Lemma 3.2.2. The 
on
lusion follows by a folklore argument from Lebesguemeasurability and uniformization for any relation on the reals both of whi
h are
onsequen
es of Bl-ADR by Theorem 1.14.8 and Theorem 1.14.9).Let R be an arbitrary relation on the reals. We may assume the domain of Ris the whole spa
e, i.e., for any real x, there is a real y su
h that (x; y) 2 R. Wewill �nd a Borel fun
tion uniformizing R almost everywhere.By the uniformization prin
iple, there is a fun
tion g uniformizing R. Forea
h �nite binary sequen
e s, the set g�1([s℄) is Lebesgue measurable by Theo-rem 1.14.8. Hen
e for ea
h s there is a Borel set Bs su
h that g�1([s℄)4Bs isLebesgue null. Now de�ne f so that the following holds: For ea
h �nite binarysequen
e s, f(x) 2 [s℄ () x 2 Bs:Then by the property of Bs, f is de�ned almost everywhere, Borel, and is equal tog almost everywhere. Hen
e any Borel extension of f will be the one we desired.� (Lemma 3.2.2)Lemma 3.2.3 (Raisonnier and Stern). Suppose every relation on the reals 
anbe uniformized by a Borel fun
tion modulo a Lebesgue null set. Then every setof reals has the perfe
t set property.Proof of Lemma 3.2.3. See [70, Theorem 5℄. � (Theorem 3.2.1)Next, we show that Bl-ADR implies that every set of reals has the Baire prop-erty. We �rst introdu
e the Bla
kwell meager ideal as an analogue of the meagerideal. A set A of reals is Bla
kwell meager if player II has an optimal strategy inthe Bana
h-Mazur game G��(A). Let IBM denote the set of all Bla
kwell meagersets of reals.Lemma 3.2.4. Assume Bl-AD. Then any meager set is in IBM, [s℄ =2 IBM forea
h �nite binary sequen
e s, and IBM is a �-ideal. Moreover, every set of realsis measurable with respe
t to IBM, i.e., for any set A of reals and �nite binarysequen
e s, there is a �nite binary sequen
e t extending s su
h that either [t℄\Aor [t℄ n A is in IBM.
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 77Proof. By Theorem 1.8.3, if a set A of reals is meager, then player II has awinning strategy in the Bana
h-Mazur game G��(A) and in parti
ular player IIhas an optimal strategy in G��(A) by Theorem 1.14.3. Hen
e A is Bla
kwellmeager.It is easy to see that [s℄ =2 IBM for ea
h �nite binary sequen
e s by lettingplayer I �rst play the Dira
 measure 
on
entrating on s in the game G��([s℄).We show that IBM is a �-ideal. The 
losure of IBM under subsets is immediate.We prove that it is 
losed under 
ountable unions.In order to prove this, we need to develop the appropriate transfer te
hnique(as dis
ussed and applied in [55℄) for the present 
ontext. Let � � ! be anin�nite and 
o-in�nite set. We think of � as the set of rounds in whi
h playerI moves. We identify � with the in
reasing enumeration of its members, i.e.,� = f�i j i 2 !g. Similarly, we write �� for the in
reasing enumeration of !n�,i.e., !n� = f��i j i 2 !g. For notational ease, we 
all � a I-
oding if no two
onse
utive numbers are in � and 0 2 � (i.e., the �rst move is played by I). We
all � a II-
oding if no two 
onse
utive numbers are in !n� and 0 2 �.Fix A � !! and de�ne two variants of G��A with alternative orders of play asdetermined by �. If � is a I-
oding, the game G���;IA is played as follows:I s�0 = s0 s�1 : : :II s�0+1; : : : ; s�0�1 s�1+1; : : : ; s�2�1 : : :If � is a II-
oding, then the game G���;IIA is played as follows:I s0; : : : ; s��0�1 s��0+1; : : : ; s��1�1 : : :II s��0 s��1 : : :In both 
ases, player II wins the game if s_0 s_1 : : :_ s_n : : : =2 A. Obviously, wehave G��A = G��Even;IIAwhere Even is the set of even numbers.Lemma 3.2.5. Let A be a subset of the Baire spa
e and � be a I-
oding. Thenthere is a translation � 7! �� of mixed strategies for player I su
h that if � is anoptimal strategy for player I in G��A , then �� is an optimal strategy for player Iin G���;IA .Similarly, if � is a II-
oding, there is a translation � 7! �� of mixed strategiesfor player II su
h that if � is an optimal strategy for player II in G��A , then �� isan optimal strategy for player II in G���;IIA .Proof of Lemma 3.2.5. We prove only the lemma for the games G���;IA , the otherproof being similar. If ~s = hsi j i 2 !i is an in�nite sequen
e of �nite binarysequen
es, we de�ne b~si = s_�i+1 : : :_ s�i+1�1:



78 Chapter 3. Games themselvesNote that in order to 
ompute b~si , we only need the �rst �i+1 bits of ~s. The ideais that now the G��A -run I s�0 s�1 s�2 : : :II b~s0 b~s1 b~s2 : : : (�)yields the same output in terms of the 
on
atenation of all played �nite sets asthe run ~s in the game G���;IA . We 
an de�ne a map �� on in�nite sequen
es of�nite binary sequen
es by(��(~s))i = � s�k if i = 2k,b~sk if i = 2k + 1,and see that s_0 s_1 : : : = (��(~s))_0 (��(~s))_1 : : :.Now, given a mixed strategy � for player I in G��A and a run ~s of the gameG���;IA , we de�ne �� via �� as follows:��(s0; : : : ; s�m�1) = �(s�0; b~s0; : : : ; s�i; b~si ; : : : ; s�m�1; b~sm�1):Assume that � is an optimal strategy for player I in G��A and �x an arbitrarymixed strategy � in the game G���;IA . We show that the payo� set for A in G���;IAis ���;� -measurable and ��� ;�(A) = 1. In order to do so, we 
onstru
t a mixedstrategy ���1 for player II in G��A so that the game played by �� and � is essentiallythe same as the game played by � and ���1 .Given a sequen
e ~b of moves in G��A , we need to unravel it into a sequen
e ofmoves in G���;IA in an inverse of the maps ~s 7! b~si a

ording to (�), i.e., b2i+1 = b~si .Thus, we de�ne A~b2i+1 = f~s j b~si = b2i+1g,A~b�2i+1 = \j�iA~b2j+1:Note that only a �nite fragment of ~s is needed to 
he
k whether b~si = b2i+1,and thus we think of A~b�2i+1 as a set of (�i+1 � (i + 1))-tuples of �nite binarysequen
es. In the following, when we quantify over all \~s 2 A~b�i", we think ofthis as a 
olle
tion of �nite strings of �nite binary sequen
es. In order to pad themoves made in G���;IA , we de�ne the following notation: For in�nite sequen
es ~sand ~b, we write x~s;~bi = (b2i; s�i+1; :::; s�i+1�1):Compare (�) to see that if ~s 
orresponds to moves in G���;IA and ~b to the moves inG��A , then these are exa
tly the �nite sequen
es that player II will have to respondto in G���;IA . Moreover, for a given sequen
e ~z of �nite binary sequen
es, we letP� (z0; :::; zn) = Yi�n;i=2� �(z0; :::; zi�1)(zi):
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 79Fix a sequen
e ~b of �nite binary sequen
es with even length and de�ne ���1as follows: ���1(b0; : : : ; b2m)(b2m+1) = P~s2A~b�2m+1 P� (x~s;~b0 a : : :a x~s;~bm )Qmi=1 ���1(b0; : : : ; b2i�2)(b2i�1) :Using the two operations � 7! �� and � 7! ���1 , sin
e the payo� set for G��A isinvariant under ��, it now suÆ
es to prove for all basi
 open sets [t℄ indu
ed by a�nite sequen
e t = (b0; :::; blh(t)�1) that ��;���1 ([t℄) = ���;� ((��)�1([t℄)). We provethis by indu
tion on the length of t, and have to 
onsider three di�erent 
ases:Case 1. lh(t) = 0. This is immediate.Case 2. lh(t) = 2m + 1 with m � 0. By indu
tion hypothesis, we have thatX = ��;���1 ([b0; : : : ; b2m�1℄) = ��� ;�((��)�1([b0; : : : ; b2m�1℄)). Thus,��;���1 ([b0; : : : ; b2m℄) = X � �(b0; : : : ; b2m�1)(b2m)= ��� ;� ((��)�1([b0; : : : ; b2m℄)):Case 3. lh(t) = 2m+ 2 with m � 0.��;���1 (t) = mYi=0 �(b0; : : : ; b2i�1)(b2i) � X~s2A~b�2m+1 P� (x~s;~b0 a : : :a x~s;~bm )= ���;��(��)�1([b0; : : : ; b2m+1℄)�:This 
al
ulation �nishes the proof of this lemma. � (Lemma 3.2.5)We now show that IBM is 
losed under 
ountable unions. Let fAn j n 2 !gbe a family of sets in IBM. Take an optimal strategy �n in the game G��(An) forea
h n. We prove that Sn2! An is also in IBM.Fix a bookkeeping bije
tion � from !�! to ! su
h that �(n;m) < �(n;m+1)and �(n; 0) � n. We are playing in�nitely many games in a diagram where the �rst
oordinate is for the index of the game we are playing, and the se
ond 
oordinateis for the number of moves. Hen
e the pair (n;m) stands for \mth move in thenth game". De�ne a II-
oding �n = !nf2�(n; i) + 1 j i 2 !g 
orresponding to thefollowing game diagram:I s0; : : : ; s2�(n;0) s2�(n;0)+2; : : : ; s2�(n;1) : : :II s2�(n;0)+1 s2�(n;1)+1 : : :By Lemma 3.2.5, we know that for ea
h n 2 !, we get an optimal strategy (�n)�nfor the game G���n;IIAn . Let � be the following mixed strategy�(s0; : : : ; s2�(n;m)) = (�n)�n(s0; : : : ; s2�(n;m)):



80 Chapter 3. Games themselvesThe properties of � make sure that this strategy is well-de�ned. We shall nowprove that � is an optimal strategy for player II in G��Sn2! An .Pi
k any mixed strategy � for player I in G��Sn2! An and de�ne strategies �n forG���n;IIAn . Let m = �(k; `), then�n(s0; : : : ; s2m�1) = �(s0; : : : ; s2m�1), and�n(s0; : : : ; s2m) = (�k)�k(s0; : : : ; s2m) (if k 6= n).Note that for ea
h n 2 !, ��;� = ��n;(�n)�n .The payo� set (for player II) in G��Sn2! An is A = f~s j s_0 s_1 : : : =2 Sn2! Ang.We show that ��;� (A) = 1. Sin
e A = Tn2! f~s j s_0 s_1 : : : =2 Ang, it suÆ
esto 
he
k that the sets Bn = f~s j s_0 s_1 : : : =2 Ang has ��;� -measure 1. But��;� (Bn) = ��n;(�n)�n (Bn) = 1. Thus we have shown that IBM is a �-ideal.We �nally show that every set A of reals is measurable with respe
t to IBM,i.e., for any �nite binary sequen
e s, there is a �nite binary sequen
e t extendings su
h that either [t℄ \ A or [t℄ n A is in IBM. Fix su
h A and s. If [s℄ \ A isin IBM, we are done. So suppose not. Then player II does not have an optimalstrategy in the game G��([s℄ \ A). By Bl-AD, there is an optimal strategy � forplayer I in the game G��([s℄ \ A). Let t be any s0 with �(;)(s0) 6= 0. Then sin
e� is optimal, t extends s and the strategy � easily gives us an optimal strategyfor player II in the game G��([t℄nA). Hen
e [t℄nA is in IBM. � (Lemma 3.2.4)Re
all the notions of Stone spa
e St(P) and P-Baireness for a partial order Pfrom 
hapter 2. The based set of St(P) was the set of all ultra�lters on BP whereBP is a 
ompletion of P. Without the Axiom of Choi
e, it might be empty if P isbig. But in this 
hapter, we only 
onsider partial orders P whi
h are elements ofH!1 in V , i.e., the transitive 
losure of P is 
ountable in V . If P is an element ofH!1 , then St(P) is essentially the same as St(C ) where C is Cohen for
ing, hen
ethe Cantor spa
e !!Sin
e every meager set is Bla
kwell meager as we have seen in Lemma 3.2.4,if P is in H!1 , then one 
an 
onsider Bla
kwell meagerness for subsets of St(P)by identifying St(P) with the Cantor spa
e.We are now ready to prove the Baire property for every set of reals from Bl-ADR.Theorem 3.2.6. Assume Bl-ADR. Then every set of reals has the Baire property.Proof. Take any set A of reals. We show that A has the Baire property. LetA2A be the se
ond-order arithmeti
 stru
ture with A as a unary predi
ate. Sin
eany relation on the reals 
an be uniformized by a fun
tion by Theorem 1.14.9,we 
an 
onstru
t a Skolem fun
tion F for A2A and by a simple 
oding of �nitesequen
es of reals and formulas via reals, we regard it as a fun
tion from thereals to themselves. Let �F = f(x; s) 2 R � <!2 j F (x) � sg. The followingare the key obje
ts for the proof (they are 
alled term relations): Re
all from
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 81Lemma 2.1.2 that for a P-name � for a real, f� is the Baire measurable fun
tion(whi
h is 
ontinuous on a 
omeager set) 
orresponding to � .�A = f(P; p; �) 2 H!1 j � is a P-name for a real and�81G 2 St(P)� p 2 G =) f�(G) 2 Ag;�A
 = f(P; p; �) 2 H!1 j � is a P-name for a real and�81G 2 St(P)� p 2 G =) f�(G) 2 A
g;��F = f(P; p; �; s) 2 H!1 j � is a P-name for a real and�81G 2 St(P)� p 2 G =) �f�(G); s� 2 �Fg;��F 
 = f(P; p; �; s) 2 H!1 j � is a P-name for a real and�81G 2 St(P)� p 2 G =) �f�(G); s� 2 �F 
g;where �81G 2 St(P)� means \for all G modulo a Bla
kwell meager set inSt(P). . . ". Let M = HODL[�A;�A
 ;��F ;��F 
 ℄�A;�A
 ;��F ;��F 
 and for G 2 St(P), let AG = ff�(G) j(9p 2 G) (P; p; �) 2 �A\Mg. Note that for any 
ountable ordinal �, P(�)\M is
ountable: Sin
e M is a transitive model of ZFC, if P(�) \M was un
ountable,then there would be an un
ountable sequen
e of distin
t reals whi
h would 
on-tradi
t Lebesgue measurability for every set of reals. Hen
e for any P 2 H!1 \M ,the set of P-generi
 �lters over M is 
omeager, in parti
ular Bla
kwell 
omeager(i.e., its 
omplement is Bla
kwell meager). Therefore, when we dis
uss statementsstarting from �81G 2 St(P)�, we may assume that G is P-generi
 over M .Claim 3.2.7.1. Let P be a partial order inM . Then �81G 2 St(P)� AG = A\M [G℄ 2M [G℄and M [G℄ is 
losed under F .2. Let P = Coll(!; 2!)M , where Coll(!; 2!) is the for
ing 
ollapsing the 
ar-dinal 2! into 
ountable with �nite 
onditions. Then �81G 2 St(P)� AG has theBaire property in M [G℄.Proof. We �rst show that AG = A\M [G℄ for Bla
kwell 
omeager many G. Sin
eIBM is a �-ideal, for Bla
kwell 
omeager many G, G is P-generi
 over M and if(P; p; �) 2 �A \M (resp., �A
 \M) and p 2 G, then f�(G) = �G 2 A (resp., A
).We show that AG = A \M [G℄ for any su
h G.Fix su
h a G. We �rst prove that AG � A \ M [G℄. Take any real x inAG. Then there is a p 2 G and a � su
h that (P; p; �) 2 �A \M and �G = x.Then by the property of G, x = �G = f�(G) 2 A, as desired. We show thatA \M [G℄ � AG. Let x be a real in M [G℄ whi
h is not in AG. We prove thatx is also not in A. Sin
e x is in M [G℄, there is a P-name � for a real in Msu
h that �G = x. Sin
e A is measurable with respe
t to IBM by Lemma 3.2.4,the set fp 2 P j either (P; p; �) 2 �A \M or (P; p; �) 2 �A
 \Mg is dense andit is in M . Sin
e G is P-generi
 over M , there is a p 2 G su
h that either(P; p; �) 2 �A or (P; p; �) 2 �A
 . But (P; p; �) 2 �A 
annot hold be
ause it would
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e (P; p; �) 2 �A
 and x = �G = f�(G) 2 A
 by theproperty of G, as desired.Let �A = f(�; p) j (P; p; �) 2 �A \Mg. Sin
e the 
omprehension axioms with�A as a unary predi
ate hold in M , �A is a P-name for a set of reals in M and�GA = AG 2 M [G℄. Hen
e AG = A \M [G℄ 2 M [G℄ for Bla
kwell 
omeager manyG, as desired.Next, we show that M [G℄ is 
losed under F for Bla
kwell 
omeager many G.We prove this for any G whi
h is P-generi
 over M su
h that if (P; p; �; s) 2 ��F(resp., ��F
 ) and p is in G, then F (�G) � s (resp., F (�G) + s). Fix su
h a G andlet x be a real in M [G℄. We show that F (x) is also in M [G℄. Sin
e x is in M [G℄,there is a P-name � for a real in M su
h that �G = x. Sin
e every subset of St(P)is measurable with respe
t to IBM, the fun
tion G0 7! F �f�(G0)� is 
ontinuousmodulo a Bla
kwell meager set in St(P). Hen
e for any �nite binary sequen
e s,the set of all p 2 P su
h that either �81G0 2 St(P)� p 2 G0 =) F �f�(G0)� � sor �81G0 2 St(P)� p 2 G0 =) F �f�(G0)� + s is dense and is in M . By thegeneri
ity and the property of G, for any s, there is a p 2 G su
h that F (�G) � s ifand only if �81G0 2 St(P)� p 2 G0 =) F �f�(G0)� � s if and only if (P; p; �; s) 2��F \M . Hen
e F (x) = F (�G) = Sfs j (9p 2 G) (P; p; �; s) 2 ��f \Mg, whi
his in M [G℄, as desired.Finally, we show that AG has the Baire property in M [G℄ for Bla
kwell 
omea-ger many G when P = Coll(!; 2!)M . A
tually, we show that AG has the Baireproperty in M [G℄ for any P-generi
 G over M . Let s be a �nite binary sequen
e.We show that there is a t extending s su
h that either [t℄ \ AG or [t℄ n AG ismeager in M [G℄. Let _
 be a 
anoni
al name for a Cohen real. Sin
e one 
anembed Cohen for
ing into Coll(!; 2!)M in a natural way in M , we may regard _
as a P-name for a Cohen real. Sin
e 2! in M is 
ountable in M [G℄, the set ofCohen reals over M is 
omeager in M [G℄. Take any Cohen real 
 over M withs � 
 in M [G℄. We may assume 
 is in AG (the 
ase 
 =2 AG 
an be dealt within the same way). Re
all that �G = AG and hen
e by the for
ing theorem, thereis a p 2 G and a � su
h that M � p 
 \ _
 = � � �s" and (P; p; �) 2 �A \M ,whi
h implies (P; p; _
) 2 �A \M , namely ( _
; p) 2 �A. But the value of _
 will bede
ided within Cohen for
ing and by the de�nition of �A, we may assume thatp is a 
ondition of Cohen for
ing extending s. Hen
e for any Cohen real 
0 overM with p � 
 in M [G℄, 
 is in AG. Sin
e the set of all Cohen reals over M is
omeager in M [G℄, this is what we desired. � (Claim 3.2.7)We now �nish the proof of Theorem 3.2.6 by showing that A has the Baireproperty. Let G be su
h that the 
on
lusions of Claim 3.2.7 hold. By the �rst itemof Claim 3.2.7, the stru
ture (!; !!\M [G℄; app;+; �;=; 0; 1; AG) is an elementarysubstru
ture of A2A. Sin
e the Baire property for A 
an be des
ribed in thestru
ture A2A in this language and AG has the Baire property in M [G℄, A alsohas the Baire property, as desired. � (Theorem 3.2.6)Next, we show that every set of reals is 1-Borel assuming Bl-ADR. For that
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 83purpose, we introdu
e the Vop�enka algebra and its variant, whi
h is a main toolfor our argument. The original motivation for the Vop�enka algebra is to makeevery set to be generi
 over HOD, the 
lass of all the hereditarily ordinal de�nablesets, i.e., any element of the transitive 
losure of a given set is ordinal de�nable.HOD is an important inner model of ZFC 
ontaining all the (possible) importantinner models with large 
ardinals and it is 
lose to V in the sense that any set inV 
an be generi
 over HOD via the Vop�enka algebra.We de�ne the Vop�enka algebra and its variant for HODX , where X is anarbitrary set, ODX is the 
lass of all sets ordinal de�nable with a parameter X,and HODX is the 
lass of sets a where any element of the transitive 
losure of ais in ODX .Take any arbitrary set X and �x an ordinal de�nable inje
tion iX : ODX !HODX . Then 
onsider the Vop�enka algebra PV;X in HODX as follows: PV;X =fiX(A) j A 2 ODX and A � P(!)g. For p; q 2 PV;X , p � q if i�1X (p) � i�1X (q).It is easy to see that the de�nition of PV;X does not depend on the 
hoi
e of iX ,i.e., if there are two su
h inje
tions, then the 
orresponding two partial ordersare isomorphi
 in HODX . Vop�enka [87℄ proved that PV;; is a 
omplete Booleanalgebra in HOD (when X = ;) and ea
h real in V 
an be seen as a PV;;-generi
�lter over HOD in the following way: For ea
h real x in V , the set Gx = fp 2PV;; j x 2 i�1; (p)g is a PV;;-generi
 �lter over HOD and HOD[x℄ = HOD[Gx℄.Conversely, if G is a PV;;-generi
 �lter over HOD, then the set Tfi�1; (p) j p 2 Ggis a singleton. We 
all the element of the singleton a Vop�enka real over HOD anddenote it yG. Then yGx = x for ea
h real x in V . The analogue of the aboveresults holds for HODX for arbitrary set X.We now introdu
e a variant of the Vop�enka algebra, namely the Vop�enka alge-bra with 1-Borel 
odes. Given a set X, 
onsider the following partial order P�V;Xin HODX : Conditions of P�V;X are 1-Borel 
odes in HODX where the ordinalsused in their trees are below � in HODX and for �;  in P�V;X , � �  if B� � B .1Then we 
an prove the analogue of Vop�enka's theorem in exa
tly the same way:Theorem 3.2.8 (ZF). (Folklore) Let X be an arbitrary set.1. P�V;X is a 
omplete Boolean algebra in HODX .2. For ea
h real x in V , the set Gx = f� 2 P�V;X j x 2 B�g is P�V;X -generi
over HODX and HODX [x℄ = HODX [Gx℄. Conversely, if G is a P�V;X -generi
 �lterover HODX , then the set TfB� j � 2 Gg is a singleton and we 
all the real inthe singleton a Vop�enka real over HODX and denote it yG. Then HODX [yG℄ =HODX [G℄ and yGx = x for ea
h G and x.Proof. The proof is exa
tly the same as for the Vop�enka algebra whi
h 
an befound, e.g., in Je
h's textbook [37, Theorem 15.46℄.1For any 1-Borel 
ode � in HODX , there is an 1-Borel 
ode  where the ordinals used inthe tree of  is less than � in HODX su
h that � �  and  � �. Hen
e the restri
tion ofordinals for 1-Borel 
odes will not a�e
t the stru
ture of this partial order.



84 Chapter 3. Games themselvesThe di�eren
e between PV;X and P�V;X is that yG might not re
over G fromHODX for PV;X while HODX [yG℄ = HODX [G℄ for P�V;X . This is be
ause theinje
tion iX is not in HODX in general while the de�nition of P�V;X does not referto OD. For our purpose, we will use P�V;X .Theorem 3.2.9. Assume Bl-ADR. Then every set of reals is 1-Borel.Proof. We modify the argument for the following theorem by Woodin:Theorem 3.2.10 (Woodin). Assume AD and that every relation on the reals
an be uniformized. Then every set of reals is 1-Borel.Let A be an arbitrary set of reals. We show that A is 1-Borel.By Theorem 3.2.6, every set of reals has the Baire property. Hen
e everysubset of St(P) has the Baire property for any P 2 H!1 . We freely use this fa
tlater. We �x a simple 
oding of elements of H!1 by reals and if we say \a real x
odes: : :", then we refer to this 
oding.Let �A and RA be as follows:�A = f(P; p; �) 2 H!1 j � is a P-name for a real and�81G 2 St(P)� p 2 G =) f�(G) 2 Ag;RA = f(x; y) j if x 
odes a (P; p; �) 2 �A, then y 
odes a (Di j i < !)su
h that (8i) Di is dense in P and�8G 2 St(P)� �p 2 G; (8i) G \Di 6= ; =) f�(G) 2 A�g;where \�81G 2 St(P)� : : : " means \For 
omeager many G in St(P) : : :". Notethat the term relation �A de�ned here is di�erent from the one in Theorem 3.2.6 inthe sense that now we use 
omeagerness for the quanti�er 81 instead of Bla
kwell
omeagerness.Let FA uniformize RA and �A be the graph of FA, i.e., �A = f(x; s) j s 2<!!; FA(x) � sg. De�ne ��A as follows:��A = f(P; p; �; s) 2 H!1 j � is a P-name for a real and�81G 2 St(P)� p 2 G =) �f�(G); s� 2 �Ag;here we also use 
omeagerness for the quanti�er 81.Let A
 be the 
omplement of A and de�ne and 
onstru
t �A
 ; RA
; FA
 ;�A
,and ��A
 as above.The following is the key point:Claim 3.2.11 (Woodin). Let M be a transitive subset of H!1 and (M;2; �A; ��A)is a model of ZFC.2 Let (P; p; �) 2M \ �A. Then for every P-generi
 �lter G overM , if p is in G, then �G 2 A. The same holds for A
.2Here it satis�es Comprehension s
heme and Repla
ement s
heme for formulas in the lan-guage of set theory with predi
ates for �A and ��A .
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 85Proof of Claim 3.2.11. Let Q = Coll�!;TC(P)�, where Coll�!;TC(P)� is thestandard for
ing 
ollapsing TC(P) into a 
ountable set with �nite sets as 
ondi-tions. Sin
e P; p; � are 
ountable in MQ , there is a Q -name �0 for a real in M
oding the triple (P; p; �).Sub
laim 3.2.12. There is a Q -name � for a real in M su
h that in V , for
omeager many H in St(Q), f�(H) = FA(f�0(H)).Proof of Sub
laim 3.2.12. First note that the map f : H 7! FA�f�0(H)� is 
on-tinuous on a 
omeager set in St(Q), i.e., Baire measurable. This is be
ause everysubset of St(Q ) has the Baire property in St(Q ) and we 
an do the same argumentas the one in Proposition 3.2.2 to uniformize a relation almost everywhere (sin
ewe use open sets in St(Q ) to approximate subsets in St(Q) in this 
ase, we get a
ontinuous fun
tion instead of a Borel fun
tion).Let � = �f where the notation �f is from Lemma 2.1.2. Then � is a Q -namefor a real be
ause the map f is Baire measurable as we observed. Moreover, � isin M be
ause((m;n)�; q) 2 � () (9s 2 <!2) �s(m) = n and �Q ; q; (�; s)� 2 ��A�and the right hand side of the equivalen
e is de�nable in (M; �A; ��A), whi
h is amodel of ZFC by assumption. Finally, by Lemma 2.1.2, it is easy to see that for
omeager many H in St(Q), f�(H) = FA(f�0(H)). � (Sub
laim 3.2.12)Now let G be a P-generi
 �lter over M with p 2 G. We show that f�(G) 2 A.Take a Q -generi
 �lter H over M [G℄ with �H = FA(�0H). This is possible bySub
laim 3.2.12 and that M [G℄ � H!1 . Then G is also a P-generi
 �lter overM [H℄ and FA(�0H) = �H 2 M [H℄. But by the de�nition of FA, FA(�0H) 
odes asequen
e (Di j i 2 !) su
h that Di is a dense subset of P in M [H℄ for ea
h i 2 !and for any G0 in St(P), if G0 \ Di 6= for ea
h i, then f�(G0) 2 A. But G is aP-generi
 �lter over M [H℄ and ea
h Di is in M [H℄. Hen
e G \ Di 6= ; for ea
hi 2 ! and f�(G) 2 A, as desired. � (Claim 3.2.11)Let X = (A; �A; ��A; �A
 ; ��A
 ). Re
all that U is the �ne normal measureon P!1 we �xed at the beginning of this se
tion. Let M = L(X;R)[U ℄. Sin
ethe statement \a real is in the de
ode of an 1-Borel 
ode" is absolute betweentransitive models of ZF as in x 1.13 and M 
ontains all the reals, if A is 1-Borelin M , so is in V .From now on, we work in M and prove that A is 1-Borel in M , whi
h
ompletes the proof of this theorem. The bene�t of working in M is that we haveDC in M be
ause DCR implies DC in M while DC might fail in V in general.Note that U \ M is a �ne normal measure on P!1(R) in M and we use U todenote U \M from now on.We �nd a set of ordinals S and a formula � su
h that for any real x,x 2 A () L[S; x℄ � �(x): (3.1)
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t 1.13.2, this implies that A is 1-Borel.For a in P!1(R), let Ma;Q �a , and ba be as follows:Ma = HODL!1 [X℄(a)X ;Q �a =P�V;X in Ma;ba = sup fq 2 Q �a j (Q �a ; q; _yG) 2 �Ag in Ma;where _yG is a 
anoni
al Q �a -name for a Vop�enka real given in Theorem 3.2.8.Note that Ma is a transitive subset ofH!1 and (Ma; �A; ��A) and (Ma; �A
; ��A
 )are models of ZFC be
ause L!1[X℄(a) is a transitive model of ZF (to 
he
k thepower set axiom, we use the 
ondition that there is no un
ountable sequen
e ofdistin
t reals ensured by Lebesgue measurability). Note also that ba is well-de�nedbe
ause Q �a is a 
omplete Boolean algebra in Ma by Theorem 3.2.8.Then we 
laim that for ea
h a 2 P!1(R) and real x whi
h indu
es the �lter Gxthat is P�V;X -generi
 �lter over Ma, x 2 A () ba 2 Gx. Fix a and x. Assumeba 2 Gx. We show that x 2 A. If we apply Claim 3.2.11 to M = Ma; (P; p; �) =(Q �a ; ba; _yG), and G = Gx, then we get x 2 A be
ause yGx = x as in Theorem 3.2.8.For the 
onverse, we assume ba is not in Gx and prove that x is not in A. Let ba0be the one 
orresponding to ba for A
 instead of for A, i.e.,ba0 = sup fq 2 Q �a j (Q �a ; q; _yG) 2 �A
g:Then ba _ ba 0 = 1. This is be
ause f�1_yG (A) has the Baire property in St(Q �a).Sin
e ba =2 Gx and Gx is P�V;X -generi
 over Ma, ba0 is in Gx. Hen
e we 
an applyClaim 3.2.11 to Ma; A
; (Q �a ; ba0; _yG), and Gx and we get x 2 A
, i.e., x is not inA, as desired.Fix an a 2 P!1(R). Note that sin
e P�V;X is the Vop�enka algebra with 1-Borel
odes de�ned in Ma, any real in L!1 [X℄(a) is P�V;X -generi
 over Ma. Hen
e forany real x in L!1[X℄(a), x 2 A () ba 2 Gx.Now we use this lo
al equivalen
e in L!1[X℄(a) to get the global equiva-len
e (3.1) by taking the ultraprodu
t of Ma via U . Let M1;Q1 ; b1 be asfollows: M1 = YU Ma; Q1 = YU Q �a ; b1 = YU ba:Note that  Lo�s's theorem holds for M1 be
ause there is a 
anoni
al fun
tionmapping a to a well-order on Ma.3 By DC (in M), M1 is wellfounded. So wemay assume M1 is transitive. Hen
e, M1 is a transitive model of ZFC, Q1 is apartial order 
onsisting of 1-Borel 
odes, and b1 2 Q1 .We 
laim that for ea
h real x, x 2 A () x 2 Bb1. This will establish theequivalen
e (3.1) be
ause the pair (Q1 ; b1) 
an be seen as a set of ordinals sin
ethey are obje
ts in the transitive model M1 of ZFC.3  Lo�s's theorem fails for QU L!1 [X ℄(a). This is be
ause L!1 [X ℄(a) is not a model of ZFC foralmost all a and we 
annot assign a well-order on L!1 [X ℄(a) to ea
h a as we did for QU Ma.
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 87Let us �x a real x. By the �neness of U , x 2 a for almost all a w.r.t. U . Thenx 2 A () ba 2 Gx for almost all a() x 2 Bba for almost all a() x 2 Bb1 ;where the �rst equivalen
e is by the lo
al equivalen
e we have seen and the thirdequivalen
e follows from  Lo�s's theorem forQUMa[x℄ (note that Ma[x℄ is a generi
extension of Ma given by Gx and we 
an prove  Lo�s's theorem for QUMa[x℄ inthe same way as for QU Ma). This 
ompletes the proof.Together with the non-existen
e of un
ountable sequen
es of distin
t reals,the 1-Borelness for every set of reals gives us almost all the regularity propertieswe introdu
ed in 
hapter 2 for every set of reals. Re
all that P-measurabilityfor a strongly arboreal for
ing P was the regularity property we introdu
ed inDe�nition 2.1.7. Also re
all that strongly proper for
ings are strengthening ofproper for
ings for proje
tive for
ings.Proposition 3.2.13. Assume that there is no un
ountable sequen
e of distin
treals and every set of reals is 1-Borel. Then every set of reals is P-measurablefor any strongly arboreal, strongly proper for
ing P.Proof. The results for Cohen for
ing, random for
ing, and Mathias for
ing arewell-known and the proof is the same as the one in Case 1 in Theorem 2.4.2. Wejust repla
e L[a℄ in Theorem 2.4.2 with L[S℄, where S 
odes a given set of realsand a given partial order P. The fa
t that the set of all dense subsets of P in L[S℄is 
ountable follows from the non-existen
e of un
ountable sequen
es of distin
treals (be
ause L[S℄ is a ZFC model) and the fa
t that L[S℄ 
orre
tly 
omputesP follows from that S 
odes P. The rest is exa
tly the same as in Case 1 inTheorem 2.4.2.Corollary 3.2.14. Assume Bl-ADR. Then every set of reals is P-measurable forany strongly arboreal, strongly proper for
ing P.3.3 Toward ADR from Bl-ADRIn this se
tion, we dis
uss the following 
onje
ture:Conje
ture 3.3.1 (DC). ADR and Bl-ADR are equivalent.Sin
e ADR implies Bl-ADR by Theorem 1.14.3, the question is whether Bl-ADRimplies ADR in ZF+DC. Woodin proved the following:Theorem 3.3.2 (Woodin). Assume AD and DC. Then the following are equiv-alent:



88 Chapter 3. Games themselves1. Every set of reals is Suslin,2. The axiom ADR holds, and3. Every relation on the reals 
an be uniformized.Hen
e, to prove Conje
ture 3.3.1, it suÆ
es to show that every set of realsis Suslin from Bl-ADR: If every set of reals is Suslin, then by Theorem 1.14.5,AD holds. Now by Theorem 3.3.2 and Theorem 1.14.9, ADR holds assumingBl-ADR and DC. Note that Martin's Conje
ture (i.e., Bl-AD implies AD) impliesConje
ture 3.3.1 by Theorem 3.3.2. Hen
e it is interesting to see whether this isConje
ture is true or not.We try to mimi
 the arguments for the impli
ation from uniformization toSuslinness in Theorem 3.3.2 and redu
e Conje
ture 3.3.1 to a small 
onje
ture.Throughout this se
tion, we �x U as a �ne normal measure on P!1(R), whi
hexists by Theorem 3.1.3.First, we show that every set of reals is strong 1-Borel assuming Bl-ADR.Before giving a de�nition of strong 1-Borel 
odes, we start with a small lemma:Lemma 3.3.3. Assume Bl-ADR and DC. Let j : V ! Ult(V; U) be the ultrapowermap via U . Then j(!1) = �.Proof. We �rst show that j(!1) � �. Let � be an ordinal less than � and R bea prewellorder on the reals with length �. De�ne f : P!1(R) ! !1 be as follows:For a 2 P!1(R), f(a) is the length of the prewellorder R\ (a�a) on a. Sin
e a is
ountable, f(a) is also 
ountable. Hen
e f 2U 
!1, where 2U is the membershiprelation for Ult(V; U) and 
!1 is the 
onstant fun
tion on P!1(R) with value !1.We show that the stru
ture ([f ℄U ;2) is isomorphi
 to (�;2) and hen
e [f ℄U =�, whi
h implies � < j(!1) be
ause f 2U 
!1. For any a 2 P!1(R), let �(a) bethe transitive 
ollapse of �a; R \ (a� a)� into �f(a);2�. Then by  Lo�s's Theoremfor simple formulas, [�℄U is an isomorphism between �[id℄U ; j(R)\ ([id℄U � [id℄U)�and ([f ℄U ;2), where id is the identity fun
tion on P!1(R).Claim 3.3.4. The identity fun
tion id represents R, i.e., [id℄U = R.Proof of Claim 3.3.4. By the �neness of U , for any real x, fa j x 2 ag 2 U .Hen
e [
x℄U 2 [id℄U . By the 
ountable 
ompleteness of U , [
x℄U = x and hen
ex 2 [id℄U for any real x. Suppose f is a fun
tion on P!1(R) with f 2U id. Then bythe normality of U , there is a real x su
h that fa j x = f(a)g 2 U , i.e., 
x =U f .Hen
e [f ℄U = x and [f ℄U is a real, whi
h �nishes the proof. � (Claim 3.3.4)By Claim 3.3.4, we have [id℄U = R and j(R) \ ([id℄U � [id℄U)� = R. Sin
e�[id℄U ; j(R)\([id℄U�[id℄U)� and ([f ℄U ;2) are isomorphi
, ([f ℄U ;2) is isomorphi
 to(R; R), whi
h is isomorphi
 to (�;2), as desired. Hen
e � < j(!1) and j(!1) � �.Next, we show that j(!1) � �. Let f be a fun
tion from P!1(R) to !1. Weshow that [f ℄U < �. By uniformization for every set of reals, there is a fun
tion
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h that if a real x 
odes an a 2 P!1(R), thene(x) 
odes f(a). Let S be an 1-Borel 
ode for the graph �e of e whi
h exists byTheorem 3.2.9.Claim 3.3.5. For all a 2 P!1(R), f(a) < �L[S℄(a).Proof of Claim 3.3.5. Note that P(x) \ L[S℄(a) is 
ountable in V for any x 2H!1 \ L[S℄(a). Hen
e there is a Coll(!; a)-generi
 g over L[S℄(a) in V . Fix su
ha g. Let xg be a real 
oding a from g. Then sin
e S is an 1-Borel 
ode for�e, one 
an 
ompute whether e(xg) � s for ea
h �nite binary sequen
e s or notin L[S℄(a; g), hen
e e(xg) 2 L[S℄(a; g). Therefore f(a) is 
ountable in L[S℄(a; g).But �L[S℄(a) stays an un
ountable 
ardinal in L[S℄(a; g). Hen
e f(a) < �L[S℄(a),as desired.By the normality of U , the following 
hoi
e prin
iple holds: For any fun
tionF : P!1(R) ! V su
h that ; 6= F (a) 2 L[S℄(a) for almost a with respe
t to U ,then there is a fun
tion f : P!1(R) ! V su
h that f(a) 2 F (a) for almost all awith respe
t to U . This implies  Lo�s's Theorem for the ultraprodu
t QU L[S℄(a).Let S� = j(S). Then �QU L[S℄(a);2U� is isomorphi
 to �L[S�℄(R);2� bylooking at the map g 7! j(g)(R). (Note that Ult(V; U) is wellfounded by DC.)Hen
e [f ℄U < [a 7! �L[S℄(a)℄U = �L[S�℄(R) � �V ;as desired.We now introdu
e strong 1-Borel 
odes. An 1-Borel 
ode S is strong if thetree of S is a tree on 
 for some 
 < � and for any f : <!R ! R and surje
tion� : R ! 
, there is an a 2 P!1 su
h that a is 
losed under f , S��[a℄ is an 1-Borel 
ode, and BS��[a℄ � BS. Note that the 
hoi
e of 
 does not depend on thede�nition of strong 1-Borel 
odes. A set of reals A is strong 1-Borel if A = BSfor some strong 1-Borel 
ode S. There is a �ner version of Fa
t 1.13.2 as follows:Fa
t 3.3.6.1. Let S be a strong 1-Borel 
ode and 
 < � be su
h that S is a tree on �for some � < 
 and L
[S; x℄ � \KP + �1-Separation" for any real x. Let �(S; x)be a �1-formula expressing \x 2 BS". Then for any fun
tion f : <!R ! R andsurje
tion � : R ! 
, there is an a 2 P!1(R) su
h that a is 
losed under f andfor any real x, if L�
[ �S; x℄ � �( �S; x), then L
 [S; x℄ � �(S; x), where L�
 [ �S℄ is thetransitive 
ollapse of the Skolem hull of �[a℄ [ fSg in L
[S℄.2. Let 
 be an ordinal with 
 < �, � be a �1-formula, and S be a boundedsubset of 
 su
h that L
[S; x℄ � \KP + �1-Separation" for any real x. Set A =fx 2 R j L
[S; x℄ � �(S; x)g. Assume that for any fun
tion f : <!R ! R andsurje
tion � : R ! 
, there is an a 2 P!1(R) su
h that a is 
losed under f andfor any real x, if L�
[ �S; x℄ � �( �S; x), then L
 [S; x℄ � �(S; x), where L�
 [ �S℄ is the
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ollapse of the Skolem hull of �[a℄ [ fSg in L
[S℄. Then A is strong1-Borel.Proof. This 
an be done by 
losely looking at the argument for Fa
t 1.13.2 in [80℄.Theorem 3.3.7. Assume Bl-ADR and DC. Then every set of reals is strong1-Borel.Proof. Fix a set of reals A. We show that A is strong 1-Borel. Let �(Ma;Q �a ; ba) ja 2 P!1(R)� and (M1;Q �1 ; b1) be as in the proof of Theorem 3.2.9, but we
onstru
t them in V , not in M . Sin
e we have DC now, we 
an prove the followingequivalen
es in exa
tly the same way as in Theorem 3.2.9: For all a 2 P!1(R)and all real x indu
ing the �lter Gx whi
h is Q �a -generi
 over Ma,x 2 A () ba 2 Gx (in Q �a):Also, (8x 2 R) x 2 A () b1 2 Gx (in Q �1):For any a, let Da be the set of all dense subsets of Q �a in Ma and let D1 = QU Da.Let � be a �1-formula su
h that for all a,�(Q �a ; ba; Da; x) () x determines the �lter Gx � Q �a su
h that(8D 2 Da) Gx \D 6= ; and ba 2 Gx,�(Q �1 ; b1; D1; x) () x determines the �lter Gx � Q �1su
h that(8D 2 D1) Gx \D 6= ; and b1 2 Gx:Let Sa and S1 be sets of ordinals 
oding the two triples (Q �a ; ba; Da) and(Q �1 ; b1; D1) respe
tively. For an a 2 P!1(R), let �a be the least ordinal �su
h that Sa is a bounded subset of � and for all x 2 a, L�[Sa; x℄ is a model ofKP+�1-Separation and let �1 be the least ordinal � su
h that S1 is a boundedsubset of � and for all x 2 R, L�[S1; x℄ is a model of KP+�1-Separation. Notethat by  Lo�s's Theorem, (QU L�a[Sa; x℄;2U ) is isomorphi
 to (L�1 [S1; x℄;2) forevery real x. Sin
e ea
h �a is 
ountable, by Lemma 3.3.3, �1 < �. Also, by theabove equivalen
es, for all a 2 P!1(R) and all reals x,x 2 A () L�a[Sa; x℄ � � (Sa; x)x 2 A () L�1[S1; x℄ � � (S1; x):By the se
ond item of Fa
t 3.3.6, it suÆ
es to show the following: For anyfun
tion f : <!R ! R and surje
tion � : R ! �1, there is an a 2 P!1(R) su
hthat a is 
losed under f and for any real x, if L ��1[ �S1; x℄ � �( �S1; x), thenL�1[S1; x℄ � �(S1; x), where L ��1[ �S1℄ is the transitive 
ollapse of the Skolemhull of �[a℄ [ fS1g in L�1 [S1℄.Let us �x f : <!R ! R and � : R ! �1. Sin
e x 2 A () L�b [Sb; x℄ �� (Sb; x) for ea
h real x and b 2 P!1(R), the following 
laim 
ompletes the proof:
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h that a is 
losed under f and(Xa;2) is isomorphi
 to (L�b [Sb℄;2), where Xa is the Skolem hull of �[a℄ [ fS1gin L�1[S1℄.Proof of Claim 3.3.8. Let �f = f(x; s) 2 R � <!2 j f(x) � sg. For ea
h b,
onsider the following game Ĝb in L[Sb; S1;�f ; �℄: In ! rounds,1. Player I and II produ
e a 
ountable elementary substru
ture X of L�b [Sb℄,2. Player II produ
es an a 2 P!1(R) whi
h is 
losed under f , and3. Player II tries to 
onstru
t an isomorphism between (X;2) and (Xa;2),where Xa is the Skolem hull of �[a℄ [ fS1g in L�1[S1℄.Player II wins if she su

eeds to 
onstru
t an isomorphism between (X;2) and(Xa;2). This is an open game on some set of the form Tb � R where Tb iswellorderable. Hen
e by DCR, it is determined.Sub
laim 3.3.9. There is a b 2 P!1(R) su
h that player II has a winning strategyin the game Ĝb.Proof of Sub
laim 3.3.9. To derive a 
ontradi
tion, suppose there is no b su
hthat player II has a winning strategy in the game Ĝb in L[Sb; S1;�f ; �℄. Bythe determina
y of the game Ĝb, player I has a winning strategy in the gameĜb. Let j : V ! Ult(V; U) be the ultrapower map. Then by  Lo�s's Theo-rem, QU�L[Sb; S1;�f ; �℄;2U ;�f ; �� is isomorphi
 to �L[S1; j(S1);�f ; j(�)℄;2;�f ; j(�)�. Then the game Ĝ1 = QU Ĝb is an open game on some set of theform T1 � R where T1 is wellorderable in L[S1; j(S1);�f ; j(�)℄ su
h that in !rounds,1. Players I and II produ
e a 
ountable elementary substru
ture Y of L�1 [S1℄,2. Player II produ
es an a 2 P!1(R) whi
h is 
losed under f , and3. Player II tries to 
onstru
t an isomorphism between (Y;2) and (Ya;2),where Ya is the Skolem hull of j(�)[a℄ [ fj(S1)g in Lj(�1)[j(S1)℄.Player II wins if she su

eeds to 
onstru
t an isomorphism between Y and Ya.By  Lo�s's Theorem, player I has a winning strategy � in L[S1; j(S1);�f ; j(�)℄.By Theorem 1.12.6, � is also winning in V . In V , let player II move in su
ha way that she 
an arrange that a is 
losed under f , j[Y ℄ = Ya, and j�Y isthe 
andidate for the isomorphism. This is possible by a bookkeeping argument.But then player II wins be
ause j�Y is an isomorphism between Y and j[Y ℄ anddefeats the strategy �, 
ontradi
tion! � (Sub
laim 3.3.9)
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e there is a b 2 P!1(R) su
h that player II has a winning strategy �in the game Ĝb in L[Sb; S1;�f ; �℄. By Theorem 1.12.6, � is also winning in V .Sin
e L�b[Sb℄ is 
ountable in V , we 
an let player I move in su
h a way thatX = L�b [Sb℄ and let player II follow � . Sin
e � is winning in V , there is ana 2 P!1(R) su
h that a is 
losed under f and L�b [Sb℄ = X is isomorphi
 to Xa,as desired. � (Claim 3.3.8)We are now ready to prove the key statement toward Conje
ture 3.3.1: Re
allthat for a natural number n with n � 1 and a subset A of Rn+1 , 9RA = fx 2Rn j (9y 2 R) (x; y) 2 Ag.Theorem 3.3.10. Assume Bl-ADR and DC. Let A be a subset of R3 and assume9RA is a stri
t well-founded relation on a set of reals. Suppose A has a strong1-Borel 
ode S and let 
 be an ordinal less than � su
h that the tree of S is on
. Then the length of 9RA is less than 
+.Proof. Let A; S, and 
 be as in the assumptions. We show that the length of9RA is less than 
+. Fix a surje
tion � : R ! 
. Let us start with the followinglemma:Lemma 3.3.11. There is a fun
tion f : <!R ! R su
h that if a is 
losed underf , then S��[a℄ is an 1-Borel 
ode and BS��[a℄ � BS.Note that the assertion of the above lemma is the strengthening of the de�ni-tion of strong 1-Borel 
odes.Proof of Lemma 3.3.11. Let us 
onsider the following game: Player I and II
hoose reals one by one and produ
e an !-sequen
e x of reals. Setting a = ran(f),player I wins if S��[a℄ is an 1-Borel 
ode and BS��[a℄ � BS. Sin
e S is a strong1-Borel 
ode, player I 
an defeat any strategy for player II be
ause strategies 
anbe seen as fun
tions from <!R to R by Claim 3.1.5. Sin
e the payo� set of thisgame is range-invariant, by Lemma 3.1.4, this game is determined. Hen
e playerI has a winning strategy and by Claim 3.1.5, there is a fun
tion f as desired.� (Lemma 3.3.11)We �x an f0 satisfying the 
on
lusion of Lemma 3.3.11 for the rest of this proof.Re
all that U is the �ne normal measure on P!1(R) we �xed at the beginning ofthis se
tion. Using �, we 
an transfer this measure to a �ne normal measure onP!1(
) as follows: Let �� : P!1(R) ! P!1(
) be su
h that ��(a) = �[a℄ for ea
ha 2 P!1(R). For A � P!1(
), A 2 U� if ��1� (A) 2 U . It is easy to 
he
k that U�is a �ne normal measure on P!1(
).We now prove the key lemma for this theorem:
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)-generi
 over V . Then in V [G℄, there is anelementary embedding j : L(R; S; f0 ; �) ! L�j(R); j(S); j(f0); j(�)� su
h that allthe reals in V [G℄ are 
ontained in L�j(R); j(S); j(f0); j(�)�.Proof of Lemma 3.3.12. The argument is based on the result of Ke
hris andWoodin [47, Theorem 6.2℄. We �rst introdu
e the notion of weakly meager sets.A subset B of !
 is weakly meager if there is an X 2 U� su
h that (8b 2 X)!b\Bis meager in the spa
e !b. Sin
e b is 
ountable, the spa
e !b is homeomorphi
 tothe Baire spa
e in most 
ases. Note that if B is a meager set in the spa
e !
,then it is weakly meager. A subset B of !
 is weakly 
omeager if its 
omplementis weakly meager. Let I be the set of weakly meager sets.Sublemma 3.3.13.1. The ideal I is a �-ideal on !
.2. For any s 2 <!
, [s℄ is not weakly meager.3. If a subset B of !
 is not weakly meager, then there is an s 2 <!
 su
h that[s℄ nB is weakly meager.4. Let g be a fun
tion from !
 to On. Then for any B whi
h is not weaklymeager, there is a B0 � B whi
h is not weakly meager su
h that for all xand y in B0, if ran(x) = ran(y), then g(x) = g(y).Proof. The �rst statement follows from the �-
ompleteness of U�. The se
ondstatement follows from the �neness of U�.For the third statement, suppose B is not weakly meager. Then sin
e U� isan ultra�lter, there is an X 2 U� su
h that (8b 2 X) !b \B is not meager in !b.We may assume that ea
h b in X is in�nite be
ause the set of �nite subsets of 
is measure zero with respe
t to U� by the �neness of U�. Take any b in X. Sin
ethe spa
e !b is homeomorphi
 to the Baire spa
e, the set !b \ B has the Baireproperty in !b. Hen
e there is an sb 2 <!b su
h that [sb℄ nB is meager in !b. Bynormality of U�, there is a Y 2 U� su
h that Y � X and there is an s 2 <!
 su
hthat sb = s for any b 2 Y . Hen
e [s℄ nB is weakly meager.For the last statement, let g be su
h a fun
tion and B be not weakly meager.Then there is an X 2 U� su
h that 8b 2 X, !b \ B is not meager in !b. Sin
e!b \ B has the Baire property in !b, there is an sb 2 <!b su
h that [sb℄ n B ismeager in !b. By normality of U�, there are a Y � X and s0 2 <!
 su
h thatY 2 U� and sb = s0 for every b 2 Y . We use the following fa
t:Fa
t 3.3.14 (Folklore). Assume every set of reals has the Baire property. Thenthe meager ideal in the Baire spa
e is 
losed under any wellordered union.
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e [s0℄ \ !b is homeomorphi
 to the Baire spa
e, we
an apply Fa
t 3.3.14 to the spa
e [s0℄ \ !b and hen
e there is an �b su
h that[s0℄ \ !b \ g�1(�b) is not meager in [s0℄ \ !b. Sin
e the set [s0℄ \ !b \ g�1(�b)has the Baire property in [s0℄ \ !b, there is an sb 2 <!b su
h that sb � s0 and[sb℄ng�1(�b) is meager in !b. By normality of U�, there are a Z 2 U� with Z � Yand an s1 � s0 su
h that [s1℄ n g�1(�b) is meager in !b for ea
h b 2 Z. ThenB0 = B \ [s1℄ \ fx j g(x) = �ran(x)g is as desired. � (Sublemma 3.3.13)Now we prove Lemma 3.3.12. Let G be Coll(!; 
)-generi
 over V . Considerthe Boolean algebra P(!
)=I. Then it is naturally for
ing equivalent to Coll(!; 
):In fa
t, for s 2 <!
, let i(s) = [s℄=I. Then by the third item of Sublemma 3.3.13,i is a dense embedding from Coll(!; 
) to P(!
)=I n f0g. De�ne U 0 as follows:For a subset B of !
 in V , B is in U 0 if there is a p 2 G su
h that [p℄ n B isweakly meager. By the generi
ity of G and the third item of Sublemma 3.3.13,U 0 is an ultra�lter on (!
)V and U 0 
ontains all the weakly 
omeager sets. Takean ultrapower Ult�L(R; S; f0 ; �); U 0� = �(!
)V L(R; S; f0 ; �) \ V �=U 0 and let j bethe ultrapower map. (Note that we 
onsider L(R; S; f0 ; �)-valued fun
tions in Vwhi
h are not ne
essarily in L(R; S; f0 ; �).)We show that j is the desired map. We �rst 
he
k  Lo�s's Theorem for thisultrapower. It is enough to show that for any B 2 U 0 and a fun
tion F from B toL(R; S; f0 ; �) su
h that all the values of F are nonempty, then there is a fun
tionf on B in V su
h that f(x) 2 F (x) for all x in B0. Sin
e there is a surje
tion fromR � On to L(R; S; f0 ; �), we may assume that the values of F are sets of reals.But then by uniformization for every relation on the reals by Theorem 1.14.9, weget the desired f .Next, we 
he
k the well-foundedness of Ult�L(R; S; f0 ; �); U 0�. By DC, weknow that the ultrapower Ult(V; U�) is wellfounded. Hen
e it suÆ
es to showthe following: For a fun
tion f : P!1(
) ! On, let gf : !
 ! On be as follows:gf(x) = f�ran(x)�.Sublemma 3.3.15. The map [f ℄U� 7! [gf ℄U 0 is an isomorphism from �(P!1 (
)On\V )=U�;2U�� to �(!
On \ V )=U 0;2U 0�.Proof of Sublemma 3.3.15. We �rst show that if f1 2U� f2, then gf1 2U 0 gf2 .Sin
e f1 2U� f2, there is an X 2 U� su
h that for any b in X, f1(b) 2 f2(b). Fixa b in X. Sin
e the set fx 2 !b j ran(x) = bg \ !b is 
omeager in !b, the setfx 2 !b j f1�ran(x)� 2 f2�ran(x)�g is 
omeager in !b. Hen
e for every b 2 X, theset fx 2 !b j gf1(x) 2 gf2(x)�g is 
omeager in !b and the set fx 2 !
 j gf1(x) 2gf2(x)g is weakly 
omeager and hen
e is in U 0. Therefore, gf1 2U 0 gf2. In thesame way, one 
an prove that if f1 =U� f2, then gf1 =U 0 gf2 .Next, we show that the map is surje
tive. Take any fun
tion g : !
 ! On inV . We show that there is an f : P!1(
) ! On in V su
h that gf =U 0 g. By thelast item of Sublemma 3.3.13 and the generi
ity of G, there is an Y in U 0 su
hthat if x and y are in Y with the same range, then g(x) = g(y). Sin
e Y is in U 0,
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h that [p℄nY is weakly meager, hen
e there is an X in U� su
hthat for all b in X, ([p℄nY )\!b is meager in !b. This means that g is 
onstant ona 
omeager set in [p℄ \ !b for ea
h b 2 X. Let �b be the 
onstant value for ea
hb 2 X and f be su
h that f(b) = �b if b is in Y and f(b) = 0 otherwise. Then itis easy to 
he
k that gf =U 0 g, as desired. � (Sublemma 3.3.15)We have shown that j is elementary and we may assume that the targetmodel of j is transitive. Then j is an elementary embedding from L(R; S; f0 ; �)to L�j(R); j(S); j(f0); j(�)�. Let M = L�j(R); j(S); j(f0); j(�)�. We �nally 
he
kthat all the reals in V [G℄ are in M . Let x be a real in V [G℄ and � be a P-namefor a real in V su
h that �G = x. We 
laim that [f� ℄U 0 = x, where f� is theBaire measurable fun
tion from St�Coll(!; 
)� to the reals indu
ed by � fromLemma 2.1.2, whi
h 
ompletes the proof.Take any natural number n and set m = x(n). We show that [f� ℄U 0(n) = m.Sin
e x(n) = m, there is a p 2 G su
h that p 
 �(�n) = �m. By the de�nition off� , for any x 2 [p℄, f� (x)(n) = mg. Sin
e p is in G, by the de�nition of U 0, theset fx j f� (x)(n) = m is in U 0, as desired. � (Lemma 3.3.12)We now �nish the proof of Theorem 3.3.10. Let us keep using M to denoteL�j(R); j(S); j(f0); j(�)�. We �rst 
laim that S and j[S℄ are in M . Sin
e 
 is
ountable in V [G℄, there is a real x 
oding S in V [G℄. But by Lemma 3.3.12,su
h an x is in M . Hen
e S is also in M . Sin
e 
 is 
ountable in V [G℄, there isan a 2 P!1(R) su
h that �[a℄ = S and hen
e j(�)[a℄ = j[S℄ in V [G℄. But sin
ej(�) 2M and a 2M by Lemma 3.3.12, j[S℄ = j(�)[a℄ is also in M , as desired. ByLemma 3.3.11 and elementarity of j, the following is true in M : For any a 
losedunder j(f), j(S)�a is an 1-Borel 
ode and Bj(S)�a � Bj(S). Also, by elementarityof j, 9RBj(S) is a well-founded relation on a set of reals in M . Set a = j[S℄.Sin
e a is 
losed under j(f), in M , j(S)�a is an 1-Borel 
ode, Bj(S)�a � Bj(S),and 9RBj[S℄ is also a wellfounded relation on a set of reals in M . Sin
e j[S℄ is
ountable in M , the relation 9RBj[S℄ is �11 and hen
e by Kunen-Martin Theorem(see [66, 2G.2℄), its rank is less than !1 in M whi
h is the same as 
+ in V .Finally, sin
e S and j[S℄ are equivalent as Borel 
odes, 9RBS has length less than!1 in M and sin
e M has more reals than V , �9RBS�V � �9RBS�M . Therefore,the length of �9RBS�V is less than !M1 = (
+)V , as desired.Be
ker proved the following:Theorem 3.3.16 (Be
ker). Assume AD, DC, and the uniformization for everyrelation on the reals. Suppose that the 
on
lusion of Theorem 3.3.10 holds, i.e.,let A be a subset of R3 and assume 9RA is a well-founded relation on a set ofreals. Suppose A has a strong 1-Borel 
ode S and let 
 be an ordinal less than� su
h that the tree of S is on 
. Then the length of 9RA is less than 
+. Thenevery set of reals is Suslin.



96 Chapter 3. Games themselvesProof. See [9℄.We try to simulate Be
ker's argument, make a small 
onje
ture, and redu
eConje
ture 3.3.1 to the small 
onje
ture.As preparation, we prove a weak version of Mos
hovakis' Coding Lemma. Letus introdu
e some notions for that. Let A be a set of reals. Let IND(A) be theset of all pos�1n(A)-indu
tive sets of reals for some natural number n � 1. Forthe de�nition of pos�1n(A)-indu
tive sets, see [66, 7C℄. All we need is as follows:Fa
t 3.3.17. For any set of reals A, IND(A) is the smallest Spe
tor point
lass
ontaining A and 
losed under 9R and 8R.Proof. The argument is the same as [66, 7C.3℄.Theorem 3.3.18 (Weak version of Mos
hovakis' Coding Lemma). Assume Bl-AD.Let < be a stri
t wellfounded relation on a set A of reals with rank fun
tion� : A ! 
 onto and let � be a Spe
tor point
lass 
ontaining < and 
losed under9R and 8R. Then for any subset S of 
, there is a set of reals C 2 � su
h that�[C℄ = S.By Fa
t 3.3.17, IND(<) satis�es the 
onditions for �.Proof. The argument is based on Mos
hovakis' original argument [66, 7D.5℄.Let S be a subset of 
. We show that for any � � 
, there is a set of realsC� 2 � with �[C�℄ = S \ � by indu
tion on �.It is trivial when � = 0 and it is also easy when � is a su

essor ordinalbe
ause � is a boldfa
e point
lass. So assume � is a limit ordinal and the above
laim holds for ea
h � < �. We show that there is a C 2 � with �[C℄ = S \ �.Sin
e � is !-parametrized and 
losed under re
ursive substitutions, we havefGn � R � Rn j n � 1g given in Lemma 1.7.1. Let G2a = fx 2 R j (a; x) 2 G2gfor ea
h real a. For a real a, we say G2a 
odes a subset S 0 of S if G2a � A and�[G2a℄ = S 0.Let us 
onsider the following game G�: Player I and II 
hoose 0 or 1 one byone and they produ
e reals a and b separately and respe
tively. Player II wins ifeither (G2a does not 
ode S \ � for any � < �) or (G2a 
odes S \ � for some � < �and G2b 
odes S \ � for some � < � with � > �). By Bl-AD, one of the playershas an optimal strategy in this game.Case 1: Player I has an optimal strategy � in G�.For a real b, let �b be the mixed strategy for player II su
h that player IIprodu
es b with probability 1 no matter how player I plays. Sin
e � is optimalfor player I, for ea
h real b, for ��;�b-measure one many reals a, G2a 
odes S \ �for some � < �. Fix a real b. We use the following fa
t analogous to Fa
t 3.3.14:Fa
t 3.3.19 (Folklore). Let � be a Borel probability measure on the Baire spa
eand assume every set of reals is �-measurable. Then the set of �-null sets is 
losedunder wellordered unions.
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e every set of reals is Lebesgue measurable by Theorem 1.14.8, every setof reals is ��;�b-measurable. By Fa
t 3.3.19, there is a unique �b < � su
h thatfor ��;�b-positive measure many reals a, G2a 
odes S \ �b and the set of reals asu
h that G2a 
odes S \ � for some � < �b is ��;�b-measure zero. Let C be thefollowing: A real x is in C if there is a real b su
h that for ��;�b-positive measuremany reals a, they 
ode the same subset S 0 of 
, and no proper subsets of S 0 
anbe 
oded by ��;�b-positive measure many reals, and x 2 G2a for some real a su
hthat G2a 
odes S 0. Sin
e � is 
losed under 9R and 8R, C is in �(�). By indu
tionhypothesis, for any � < �, there is a real b su
h that G2b 
odes S \ �. Sin
e � isoptimal, C 
odes S \ �, as desired.Case 2: Player II has an optimal strategy � in G�.Let (a; x) 7! fag(x) be the partial fun
tion from R�R to R whi
h is universalfor all the partial fun
tions from R to itself that are �-re
ursive on their domain.For reals a and w, de�ne a set of reals Aa;w as follows: a real x is in Aa;w if thereexists z < w su
h that fag(z) is de�ned and �fag(z); x� 2 G2. It is easy to seethat Aa;w is in �. By Lemma 1.7.1, there is a �-re
ursive fun
tion � : R�R ! Rsu
h that Aa;w = G2�(a;w) for ea
h a and w.For ea
h real a and w, de�ne a set of reals Ca;w as follows: A real x is in Ca;wif for ���(a;w);� -positive measure many b, they 
ode the same subset S 0 of 
, noproper subsets of S 0 
an be 
oded by ��;�b-positive measure many reals, and x isin G2b for some real b su
h that G2b 
odes S 0. It is easy to see that Ca;w is in �.Hen
e by Lemma 1.7.1, there is a �-re
ursive fun
tion �0 : R � R ! R su
h thatCa;w = G2�0(a;w) for ea
h a and w.Sin
e the fun
tion (a; w) 7! �0(a; w) is �-re
ursive in � and total, by Re
ursionTheorem 1.7.3, we 
an �nd a �xed a� su
h that for all w, fa�g(w) = �0(a�; w).Let g(w) = fa�g(w).Claim 3.3.20. For ea
h w 2 A with �(w) < �, there is some �(w) < � with�(w) < �(w) su
h that G2g(w) 
odes S \ �(w).Proof of Claim 3.3.20. We show the 
laim by indu
tion on w. Suppose it is donefor all x < w. Then Aa�;w 
odes S \ � where � = supf�(x) j x < wg � �(w).Sin
e � is optimal for II, Ca�;w 
odes S \ � for some � > �. Sin
e G2g(w) = Ca�;w,setting �(w) = �, �(w) > �(w) and G2g(w) 
odes S \ �(w). � (Claim 3.3.20)Let C = Sw2A;�(w)<�G2g(w). Then by Claim 3.3.20, C 
odes S \ � and C is in�, as desired.We also need a weak version of Wadge's Lemma: Let A be a set of reals. Fora natural number n � 1, a set of reals B is �1n in A if B is de�nable by a �1nformula in the stru
ture A2A that is the se
ond order stru
ture with A as an unarypredi
ate with a parameter x for some real x. A set of reals B is proje
tive in Aif B is �1n(A) for some n � 1.



98 Chapter 3. Games themselvesLemma 3.3.21 (Weak version of Wadge's Lemma). Assume Bl-AD. Then forany two sets of reals A and B, either A is �12 in B or B is �12 in A.Proof. Re
all the Wadge game GW(A;B) from x 1.15. By Bl-AD, one of theplayers has an optimal strategy in GW(A;B). Assume player II has an optimalstrategy � in GW(A;B). Then for any real x,x 2 A () ��x;��f(x0; y) j x0 = x and y 2 Bg� = 1:It is easy to see that the right hand side of the equivalen
e is �12 in B. If playerI has an optimal strategy in GW(A;B), then one 
an prove that B is �12 in A
 inthe same way and hen
e B is �12 in A.For the rest of this se
tion, we assume Bl-ADR and DC. We �x a set of realsA and give a s
enario to prove that A is Suslin. We �x a simple surje
tion � fromthe reals to f0; 1g, e.g., x 7! x(0).Claim 3.3.22. There is a sequen
e �(�n; <n; 
n; ) j n < !� su
h that for all n,1. �n is a Spe
tor point
lass 
losed under 9R and 8R, �n � �n+1, and A 2 �0,2. every relation on the reals whi
h is proje
tive in a set in �n 
an be uni-formized by a fun
tion in �n+1,3. <n is in �n and a stri
t wellfounded relation on the reals with length 
n andevery set of reals whi
h is proje
tive in a set in �n has a strong 1-Borel
ode whose tree is on 
n+1.Proof of Claim 3.3.22. We 
onstru
t them by indu
tion on n. For n = 0, let �0be any Spe
tor point
lass 
losed under 9R and 8R 
ontaining A whi
h exists byFa
t 3.3.17, and <0 be any stri
t wellfounded relation on the reals in �0. Thenthey satisfy all the items above.Suppose we have 
onstru
ted (�n; <n; 
n) with the above properties. We 
on-stru
t �n+1; <n+1, and 
n+1 . First note that there is a set Bn of reals whi
his not proje
tive in any set in �n by uniformization for every relation on thereals. Then by Lemma 3.3.21, every set proje
tive in a set in �n is �12 in Bn.Let Hn and H 0n be universal sets for �12(Bn) sets of reals and �12(Bn) subsets ofR2 , respe
tively. By uniformization, there is a fun
tion fn uniformizing H 0n. ByTheorem 3.3.7, there is a 
 < � su
h that Hn has a strong 1-
ode whose tree ison 
. Let 
n+1 = 
, <n+1 be a stri
t wellfounded relation on the reals with length
n+1, and let �n+1 be a Spe
tor point
lass 
losed under 9R and 8R 
ontaining�n [ fHn; H 0n; fn; <n+1g. We show that they satisfy all the items above for n+ 1.The �rst item is trivial. The se
ond item is easy by noting that if fn uniformizesH 0n then (fn)a uniformizes (H 0n)a for any real a. The third item follows from thatif Hn has a strong 1-
ode whose tree is on 
n+1, then (Hn)a has a strong 1-
odewhose tree is on 
n+1for every real a. � (Claim 3.3.22)
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n) j n < !� as above and let �In = �2n;�IIn = �2n+1; <In beindu
ed by �, <IIn=<2n+1, 
In = ! and 
IIn = 
2n+1, Let �In = � and �IIn be thesurje
tion between the reals onto n
2n+1 indu
ed by <2n+1. Let �IIn be the fun
tiona 7! �IIn [Gna ℄ where Gn is a universal set for �IIn sets of reals (we do not use �In).Then by Theorem 3.3.18, �IIn is a surje
tion from the reals onto n
IIn . Considerthe following game ĜA: Player I plays 0 or 1 and player II plays reals one by onein turn and they produ
e a real z and a sequen
e t 2 !R, respe
tively. SettingTn = �IIn �t(n)�, player II wins if for all n < m, Tn+1�n � Tn, Tn+1�n = Tm�n, andz 2 A () Sn2! Tn+1�n is illfounded, where Tm�n = fs�n j s 2 Tmg. This isan integer-real game in the sense player I 
hooses integers and player II 
hoosesreals.We introdu
e an integer-integer game ~GA simulating the game ĜA. In thegame ~GA, players 
hoose pairs of 0 or 1 one by one and produ
e a pair of re-als (x0; y0) and (a0; b0) in ! rounds respe
tively. From (x0; y0) and (a0; b0), we\de
ode" a real z and an !-sequen
e of reals t respe
tively as follows: For ea
hpoint
lass � above, we �x a set U� universal for relations in �. Setting F0 = U�I0x0 ,F0 is a fun
tion from the reals to perfe
t sets of reals (or 
odes of them) (other-wise player I loses). Let Px0 = F (x0). Then y0 is an element of Px0 (otherwiseplayer I loses) and is identi�ed with a triple (u0; x1; y1) of reals by looking at a
anoni
al homeomorphism between Px0 and R3 . Then setting F1 = U�I1x1 , F1 is afun
tion from the reals to perfe
t trees on 2 (or 
odes of trees) (otherwise playerI loses). Let Px1 = F (x1). Then y1 is an element of Px1 (otherwise player I loses)and is identi�ed with a triple (u1; x2; y2) of reals by looking at a 
anoni
al homeo-morphism between Px1 and R3 . Continuing this pro
ess, one 
an unwrap (xn; yn)and obtain (un; xn+1; yn+1) for ea
h n and get an !-sequen
e (un j n < !). Letz(n) = �(un). In the same way, one 
an obtain an !-sequen
e (tn j n < !) of realsfrom (a0; b0). Setting Tn = �IIn �t(n)�, player II wins if for all n < m, Tn+1�n � Tn,Tn+1�n = Tm�n, and z 2 A () Sn2! Tn+1�n is illfounded.Be
ker proved the following:Lemma 3.3.23.1. If player I has a winning strategy in the game ~GA, then player I has awinning strategy � in the game ĜA su
h that � is a 
ountable union of setsin �IIn for some n as a set of reals.2. If player II has a winning strategy in the game ~GA, then player II has awinning strategy in the game ĜA.Proof. See [9, Lemma A & B℄.We show and 
onje
ture the following: Let B � !R. A mixed strategy � forplayer I is weakly optimal in B if for any s 2 REven , the set fx j �(s)(x) 6= 0g is
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e y of reals, ��;�y(B) > 1=2. One 
an introdu
e theweak optimality for mixed strategies for player II in the same way. Note that ifplayer I has an optimal strategy in some payo� set, then player I has a weaklyoptimal strategy in the same payo� set. The same holds for player II.Lemma 3.3.24. If player I has an optimal strategy in the game ~GA, then playerI has a weakly optimal strategy � in the game ĜA su
h that � is a 
ountableunion of sets in �IIn for some n as a set of reals.Conje
ture 3.3.25. If player II has an optimal strategy in the game ~GA, thenplayer II has a weakly optimal strategy in the game ĜA.Proof of Lemma 3.3.24. We �rst topologize the set Prob(R) of all Borel proba-bilities on the reals. Consider the following map � : Prob(R) ! <!2[0; 1℄: Given aBorel probability � on the reals, for any �nite binary sequen
e s, �(�)(s) = �([s℄).We topologize <!2[0; 1℄ by the produ
t topology where ea
h 
oordinate [0; 1℄ isequipped with the relative topology of the real line and we identify Prob(R) withits image via � and topologize it with the relative topology of <!2[0; 1℄. Then thespa
e Prob(R) is 
ompa
t.Claim 3.3.26. For any set B of reals, the map � 7! �(B) is a 
ontinuous mapfrom Prob(R) to [0; 1℄.Proof of Claim 3.3.26. This is easy when B is 
losed or open. In general, itfollows from the following equations: For any � 2 Prob(R),�(B) = supf�(C) j C � B and C is 
losedg= inff�(O) j O � B and O is openg: � (Claim 3.3.26)Next, we introdu
e a 
omplete metri
 d on Prob(R) 
ompatible with thetopology we 
onsider. Let (sn j n 2 !) be an inje
tive enumeration of �nite binarysequen
es. For � and �0 in Prob(R), d(�; �0) = Pn2! j�([sn℄) � �0([sn℄)j=2n+1.Then d is a 
omplete metri
 
ompatible with our topology. Sin
e Prob(R) is
ompa
t, the map � 7! �(A) is uniformly 
ontinuous with the metri
 d. Hen
ethere is an � > 0 su
h that if d(�; �0) < �, then j�(A)� �0(A)j < 1=2. Let us �x asequen
e (�n j n 2 !) of positive real numbers su
h that Pn2! �n=2n+1 < �. Forany �nite binary sequen
e s0, let ns0 be the natural number su
h that sn0s = s0.Let � be an optimal strategy for player I in the game ~GA. We show thatthere is a weakly optimal strategy ~� for player I in the game ĜA. Given a reala. Consider the fun
tion F 0a : R ! 2[0; 1℄ as follows: Given a real b, F 0a (b)(i) =��;�(a;b)�f(x0; y0) j �(u0) = ig� for i = 0; 1, where y0 is identi�ed with (u0; x1; y1)as dis
ussed. Sin
e every set of reals has the Baire property, F 0a is 
ontinuous ona 
omeager set. Then there is a perfe
t set P of reals su
h that for any b and b0
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 101in P , jF 0a (b)(i)� F 0a (b0)(i)j < �n(i) . Sin
e the set X0 = f(a; P ) j (8b; b0 2 P ) (8i <2) jF 0a (b)(i)�F 0a (b0)(i)j < �n(i)g is proje
tive in �I0, there is a real a0 su
h that thefun
tion f0 = U�II0a0 uniformizes X0. Let ~�(;)(0) = maxfF 0a0(b)(0) j b 2 f0(a0)gand ~�(;)(1) = 1� ~�(;)(0). We have spe
i�ed ~� for the �rst round.Next, suppose player II played a real t0 for her �rst round. We de
ide theprobability ~�(t0) on 2. Let a be a real. Consider the fun
tion F 1a : R ! 2[0; 1℄ asfollows: For a real b, F 1a (b)(i) = ��;�(a0;(t0;a;b))�f(x0; y0) j �(u1) = ig� for i = 0; 1,where y1 = (t1; x2; y2) as dis
ussed. Then the fun
tion F 1a is 
ontinuous on a
omeager set. Then there is a perfe
t set P of reals su
h that for any b and b0in P , jF 1a (b)(i) � F 1a (b0)(i)j < minf�ns_hii j s 2 12g for i = 0; 1. Sin
e the setX1 = f(a; P ) j (8b; b0 2 P ) (8i < 2) jF 1a (b)(i)�F 1a (b0)(i)j < minf�ns_hii j s 2 12ggis proje
tive in �I1 , there is a real a1 su
h that the fun
tion f1 = U�II1a1 uniformizesX1. Let ~�(t0)(0) = max fF 1a1(b)(i) j b 2 f1(a1)g and ~�(t0)(1) = 1� ~�(t0)(0).Continuing this pro
ess, we 
an spe
ify ~� with the following property: Forany natural number m and m-tuple reals (t0; : : : ; tm�1), j~�(t0; : : : ; tm�1)(i) �Fmam(b)(i)j < minf�ns_hii j s 2 m2g for ea
h b 2 fm(am). Also we have spe
i-�ed the reals am and bm for all m < !.We show that ~� is weakly optimal in the game ĜA. Let (tn j n < !) be an!-sequen
e of reals su
h that the tree Sn<! Tn+1�n is illfounded. We show thatthe probability of the payo� set via �~�;�(tnjn<!) is greater than 1=2. (The 
asewhen the tree is wellfounded is dealt with in the same way.)First note that together with (tn j n < !), ~� produ
es a Borel probability �on the reals su
h that for any �nite binary sequen
e s, �([s℄) = Qi<m ~�(tj j j <i)�s(j)�, where m is the length of s. Sin
e the tree from (tn j n < !) is illfounded,it suÆ
es to show that �(A) > 1=2. On the other hand, the measure ��;�(a0;b0)indu
es a Borel probability measure � on the reals as follows: For a �nite binarysequen
e s, �([s℄) = ��;�(a0;b0)�f(x0; y0) j (8i < m) �(ti) = s(i)g�, where m isthe length of s. By the property of ~�, d(�; �) < �. Hen
e j�(A) � �(A)j < 1=2.Sin
e � is optimal for player I in the game ~GA and the tree from (tn j n < !) isillfounded, �(A) = 1. Therefore, �(A) > 1=2, as desired.From Lemma 3.3.24 together with Theorem 3.3.10, one 
an 
on
lude the fol-lowing:Lemma 3.3.27. There is no optimal strategy for player I in the game ~GA.Proof. To derive a 
ontradi
tion, suppose player I has an optimal strategy in thegame ~GA. Then by Lemma 3.3.24, player I has a weakly optimal strategy � inthe game ĜA su
h that � is in a 
ountable union of sets in �In for some n as a setof reals.Consider the following set:X = f(t; s) 2 !R � <!R j ��;�t�f(z; t0) j t0 = t and z 2 Ag� > 1=2 and(8i < s) �js(0)j<II0 ; : : : ; js(i)j<IIi � 2 Ti+1�ig;



102 Chapter 3. Games themselveswhere js(i)j<IIi is the rank of s(i) with respe
t to the wellfounded relation <IIi andTi = �IIi �t(i)�. For (t; s) and (t0; s0) in X, (t; s) < (t0; s0) if t and t0 
ode the sametree T and s 
odes a node in T extending a node 
oded by s0. Note that forany (t; s) in X, if T is the tree 
oded by t, T is wellfounded be
ause � is weaklyoptimal in the game ĜA. Hen
e (X;<) is a stri
t wellfounded relation on X. Let
! = supf
IIn j n 2 !g. By DC, the 
o�nality of � is greater than !. Hen
e
! < �. Note that for any ordinal � < 
+! , there is a wellfounded tree T 
odedby some real t as in the de�nition of X su
h that the length of T is �. Hen
e thelength of (X;<) is 
+! .Sin
e � is a 
ountable union of sets in �In for some n as a set of reals, the set< on X is in 9RV!W!Sn2! �In, i.e., it is a proje
tion of a 
ountable interse
tionof 
ountable unions of sets in �In for some n. Sin
e every set in �In has a strong1-Borel 
ode whose tree is on 
IIn for every n, every set in V!W!Sn2! �In hasa strong 1-Borel 
ode whose tree is on 
+! . By Theorem 3.3.10, the lengthof < must be less than 
+! , whi
h is not possible be
ause it was equal to 
+! .Contradi
tion!We 
lose this se
tion by proving that Conje
ture 3.3.25 implies Conje
ture 3.3.1.Proof of Conje
ture 3.3.1 from Conje
ture 3.3.25. By Lemma 3.3.27, player I doesnot have an optimal strategy in the game ~GA. Hen
e by Bl-AD, player II hasan optimal strategy in the game ~GA. By Conje
ture 3.3.25, player II has aweakly optimal strategy � in the game ĜA. Note that � 
an be seen as areal be
ause ea
h measure on the reals given by � is with �nite support bythe weak optimality of � . For ea
h �nite binary sequen
e s with length n, letts = fu 2 nR j (8i < n) ��(s�i)��u�(i�1)���s(i)� 6= 0g, where (s�i)��u�(i�1)�is the 
on
atenation of s�i and u�(i � 1) bit by bit. For ea
h �nite binary se-quen
e s, we identify ts with a set of n-tuples of natural numbers via a map �sby using the isomorphisms between (a;<R) and (n;2) for a �nite set of reals aand a natural number, where <R is a standard total order on the reals. For anyreal x, tx = Sn2! tx�n is a tree on natural numbers and (�s j s 2 <!!) indu
es ahomeomorphism �x between [tx℄ and [ft0 2 <!R j ��x;� ([t0℄) 6= 0g℄. Consider thefollowing tree:T = f(s; t; u) 2 [n2!(n2� n! � n
!) j t 2 �s(ts) and �8i < lh(s)� u(i) = jxij<IIi g;where xi is the t(i)th real of the set of su

essors of (xj j j < i) in ts�i. Thenby the weak optimality of � , the following holds: Setting B = f(x; y) 2 R � !! j(9f 2 !
!) (x; y; f) 2 [T ℄g, for any real x,x 2 A () ��x;���x[Bx℄� > 1=2() (9T 0 : a tree on 2) [T 0℄ � Bx and ��x;���x�[T 0℄�� > 1=2:
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e B is Suslin, the set f(x; T 0) j [T 0℄ � Bxg is also Suslin. Hen
e A isSuslin, as desired.We have shown that every set of reals is Suslin. Then by Theorem 1.14.5, ADholds. Now by Theorem 3.3.2 and Theorem 1.14.9, ADR holds.3.4 Toward the equi
onsisten
y between ADRand Bl-ADRIn the last se
tion, we have dis
ussed the possibility of the equivalen
e betweenADR and Bl-ADR under AD+DC. Solovay proved the following:Theorem 3.4.1 (Solovay). If we have ADR and DC, then we 
an prove the
onsisten
y of ADR. Hen
e the 
onsisten
y of ADR+DC is stri
tly stronger thanthat of ADR.Proof. See [78℄.Hen
e assuming DC to see the equivalen
e between ADR and Bl-ADR is notoptimal. One 
an ask whether they are equivalent without DC. So far we do nothave any s
enario to answer this question. Instead, one 
ould ask the equi
on-sisten
y between ADR and Bl-ADR. In this se
tion, we dis
uss the following
onje
ture:Conje
ture 3.4.2. ADR and Bl-ADR are equi
onsistent.Woodin 
onje
tured the following:Conje
ture 3.4.3 (Woodin). Assume the following:1. The prin
iple DCR holds,2. Every Suslin & 
o-Suslin set of reals is determined, and3. There is a �ne normal measure on P!1(R).Then either there is an inner model of ADR or there is an inner model M of AD+su
h that M 
ontains all the reals and �M = �V .We show that Conje
ture 3.4.3 implies Conje
ture 3.4.2.Proof of Conje
ture 3.4.2 from Conje
ture 3.4.3. First note that the assumptionsin Conje
ture 3.4.3 hold if we assume Bl-ADR. Hen
e by Conje
ture 3.4.3, thereis an inner model of ADR or there is an inner model M of AD+ su
h that M
ontains all the reals and �M = �V . If there is an inner model of ADR, then weare done. Hen
e we assume that there is an inner model M of AD+ su
h that M
ontains all the reals and �M = �V .



104 Chapter 3. Games themselvesWe show that ADR holds in V . First we 
laim that M 
ontains all the setsof reals. Suppose not. Then there is a set of reals A whi
h is not in M . Thenby Lemma 3.3.21, every set of reals in M is �12(A). Then �M must be less than�V be
ause one 
an 
ode all the prewellorderings by reals using A in V , whi
h
ontradi
ts the 
ondition of M . Hen
e every set of reals is in M . Sin
e we haveuniformization for every relation on the reals in V , it is also true in M . We usethe following fa
t:Fa
t 3.4.4. Assume AD+. Then the following are equivalent:1. The axiom ADR holds, and2. Every relation on the reals 
an be uniformized.By Fa
t 3.4.4, sin
e every relation on the reals 
an be uniformized in M , Msatis�es ADR. Sin
e P(R) \M = P(R), ADR holds in V , as desired.3.5 QuestionsWe 
lose this 
hapter by raising questions.The equivalen
e between ADR and Bl-ADR under ZF+DC As dis
ussedin x 3.3, it is enough to show Conje
ture 3.3.25 to prove the equivalen
e betweenADR and Bl-ADR. In the proof of Lemma 3.3.24, in ea
h round, we shrank the re-als into a perfe
t set suÆ
iently enough so that the strategy we 
onstru
ted givesus a measure on the reals whi
h is 
lose enough to the measure derived from agiven optimal strategy and the opponent's moves, whi
h yields the weak optimal-ity of the strategy. But the same argument does not work for Conje
ture 3.3.25be
ause one 
annot shrink the reals into a perfe
t set to get the 
ontinuity of agiven fun
tion from R to R[0; 1℄. Nonetheless, we 
an pro
eed the similar argu-ment to the 
oded spa
e Qn2! P(n
IIn ) from the spa
e !R by using the fa
t thatthe meager ideal on the reals is 
losed under any wellordered union and de
idingthe probability on the spa
e Qn2! P(n
IIn ) is enough to determine the probabilityof the payo� set. Although the details of the argument seem 
ompli
ated and itis not yet done, we believe it is possible and it is not so diÆ
ult.The equi
onsisten
y between ADR and Bl-ADR By the argument in x 3.4,it is enough to show Conje
ture 3.4.3 to prove the equi
onsisten
y between ADRand Bl-ADR. It seems possible be
ause Bl-ADR gives us a generi
 embeddingsimilar to the one obtained by an !1-dense ideal on !1, CH and \The restri
tionof the generi
 embedding given by the ideal to On is de�nable in V ". Let us seemore details. If one takes a generi
 �lter G of the partial order <!R ordered byreverse in
lusion, then this �lter generates an ultra�lter U 0 extending the dual
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 105�lter of the meager ideal in !R in the same way as we have seen in Lemma 3.3.12.If one takes the generi
 ultrapower of V via U 0 and lets M be the target modelof the ultrapower embedding j, then  Lo�s's Theorem holds for M if the 
o�nalityof � is !, the reals in V belongs to M as an element (as a real), M 
ontains allthe reals in V [G℄ and j�On is de�nable in V (the last statement is ensured by theexisten
e of a �ne normal measure U in Theorem 3.1.2, in fa
t, the ultrapowerembedding via U 0 agrees with j on ordinals as we have seen). In general, M isnot well-founded (in the 
ase 
of(�) = !). But � is always in the well-foundedpart of M . Together with the determina
y of Suslin & 
o-Suslin sets of reals, thisseems enough to pro
eed the Core Model Indu
tion up to � = �!, i.e., a minimalmodel of ADR.A stronger weak Mos
hovakis' Lemma As we have seen in x 3.3, a weak ver-sion of Mos
hovakis's Lemma 3.3.18 holds assuming Bl-AD. One 
an ask whetherone 
an prove a stronger version of Mos
hovakis's Lemma formulated in [66,7D.5℄ from Bl-AD. If this is possible, it would be plausible to show that the setof strong partition 
ardinals is unbounded in � and that every Suslin set of realsis determined from Bl-AD.


