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Chapter 3 Games themselves
In this hapter, we ompare the stronger versions of determinay of Gale-Stewartgames and Blakwell games, i.e., the Axiom of Real Determinay ADR and theAxiom of Real Blakwell Determinay Bl-ADR. In x 3.1, we show that Bl-ADRimplies that R# exists and that the onsisteny of Bl-ADR is stritly stronger thanthat of AD. In x 3.2, we show that Bl-ADR implies that every set of reals is 1-Borel. From this, we an derive almost all the regularity properties for every setof reals. In x 3.3, we disuss the possibility of the equivalene between ADR andBl-ADR under ZF+DC. In x 3.4, we disuss the possibility of the equionsistenybetween ADR and Bl-ADR.Throughout this hapter, we use standard notations from set theory and as-sume familiarity with desriptive set theory. By reals, we mean elements of theCantor spae and we use R to denote the Cantor spae.3.1 Real Blakwell Determinay and R#In this setion, we prove that Bl-ADR implies that R# exists and that the on-sisteny of Bl-ADR is stritly stronger than that of AD.Solovay [77℄ proved that ADR implies that R# exists. Our plan is to mimiSolovay's proof using Blakwell games. In order to do so, we analyze his proofwhih has two main omponents:Theorem 3.1.1 (Solovay). The axiom ADR implies that there is a �ne normalmeasure on P!1(R), where P!1(R) is the set of all ountable subsets of R.Proof. See [77, Lemma 3.1℄.Theorem 3.1.2 (Solovay). Suppose there is a �ne normal measure on P!1(R)and every real has a sharp. Then R# exists.Proof. See [77, Lemma 4.1 & Theorem 4.4℄.71



72 Chapter 3. Games themselvesHene it suÆes to show that there is a �ne normal measure on P!1(R) fromBl-ADR beause Bl-ADR implies AD in L(R), whih implies that every real hasa sharp by the result of Harrington [31℄.Theorem 3.1.3. Assume Bl-ADR. Then there is a �ne normal measure onP!1(R).Let us �rst see what is a �ne normal measure. Let X be a set and � be anunountable ardinal. As usual, we denote by P�(X) the set of all subsets of Xwith ardinality less than �, i.e., subsets A of X suh that there are an � < �and a surjetion from � to A. Let U be a set of subsets of P�(X). We say that Uis �-omplete if U is losed under intersetions with <�-many elements; we say itis �ne if for any x 2 X, fa 2 P�(X) j x 2 ag 2 U ; we say that U is normal if forany family fAx 2 U j x 2 Xg, the diagonal intersetion 4x2XAx is in U (where4x2XAx = fa 2 P�(X) j (8x 2 a) a 2 Axg). We say that U is a �ne measure ifit is a �ne �-omplete ultra�lter, and we say that it is a �ne normal measure if itis a �ne normal �-omplete ultra�lter.Proof of Theorem 3.1.3. The following is the key point: A subset A of !R isrange-invariant if for any ~x and ~y in !R with ran(~x) = ran(~y), ~x 2 A if and onlyif ~y 2 A.Lemma 3.1.4. Assume Bl-ADR. Then every range-invariant subset of !R isdetermined.Proof of Lemma 3.1.4. Let A be a range-invariant subset of !R. We show thatif there is an optimal strategy for player I in A, then so is a winning strategy forplayer I in A. The ase for player II is similar and we will skip it.Let us �rst introdue some notations. Given a funtion f : <!R ! R, aountable set of reals a is losed under f if for any �nite sequene s of elementsin a, f(s) is in a. For a strategy � : REven ! R for player I, where REven is the setof all �nite sequenes of reals with even length, a ountable set of reals a is losedunder � if for any �nite sequene s of elements in a with even length, �(s) is ina. For a funtion F : <!R ! P!1(R), a ountable set of reals a is losed under Fif for any �nite sequene s of elements in a, F (s) is a subset of a.The following two laims are basi:Claim 3.1.5. There is a winning strategy for player I in A if and only if there isa funtion f : <!R ! R suh that if a is a ountable set of reals and losed underf , then any enumeration of a belongs to A.Proof of Claim 3.1.5. We �rst show the diretion from left to right. Given awinning strategy � for player I in A, let f be suh that if a is losed under f ,then a is losed under �. (Sine � is a funtion from REven to R, any funtionfrom <!R to R extending � will do.) We see this f works for our purpose. Leta be a ountable set of reals losed under f . Then sine a is losed under � and



D. Ikegami, Games in Set Theory and Logi 73ountable, there is a run x of the game following � suh that its range is equalto a. Sine � is winning for player I, x is in A and by the range-invariane of A,any enumeration of a is also in A.We now show the diretion from right to left. Given suh an f , we an arrangea strategy � for player I suh that if x is a run of the game following �, thenthe range of x is losed under f : Given a �nite sequene of reals (a0; � � � ; a2n�1),onsider the set of all �nite sequenes s from elements of fa0; � � �a2n�1g and all thevalues f(s) from this set. What we should arrange is to hoose �(a0; � � � ; a2n�1)in suh a way that the range of any run of the game via � will over all suhvalues f(s) when (a0; � � � ; a2n�1) is a �nite initial segment of the run for any nin ! moves. But this is possible by a standard book-keeping argument. By theproperty of f , this implies that x is in A and hene � is winning for player I.� (Claim 3.1.5)Claim 3.1.6. There is a funtion f : <!R ! R suh that if a is a ountable setof reals and losed under f , then any enumeration of a belongs to A if and onlyif there is a funtion F : <!R ! P!1(R) suh that if a is a ountable set of realsand losed under F , then any enumeration of a belongs to A.Proof of Claim 3.1.6. We �rst show the diretion from left to right: Given suhan f , let F (s) = ff(s)g. Then it is easy to hek that this F works.We show the diretion from right to left: Given suh an F , it suÆes to showthat there is an f suh that if a is losed under f then a is also losed underF . We may assume that F (s) 6= for eah s. Fix a bijetion � : R ! !R. Letg : <!R ! R be suh that ran��(g(s))�= F (s) for eah s (this is possible beauseevery relation on the reals an be uniformized by a funtion by Theorem 1.14.9).Let h : <!R ! R be suh that h(s) = ��s(0)�(lh(s)�1), where lh(s) is the lengthof s when s 6= ;, if s = ; let h(s) be an arbitrary real.It is easy to see that if a is losed under g and h, then so is under F : Fixa �nite sequene s of reals in a. We have to show that eah x in F (s) is in a.Consider g(s). By the losure under g, g(s) is in a. By hoie of g, we knowthat ran(�(g(s))) = F (s), so it is enough to show that x is in a for any x inran(�(g(s)). Suppose x is the nth bit of �(g(s)). Consider the �nite sequene t =�g(s); :::; g(s)� of length n + 1. Then h(t) = �(t(0))(lh(t)� 1) = �(g(s))(n) = x.But g(s) is in a and a was losed under h, so x is in a.Now it is easy to onstrut an f suh that if a is losed under f , then so isunder g and h. � (Claim 3.1.6)By the above two laims, it suÆes to show that there is a funtion F : <!R !P!1(R) suh that if a is a ountable set of reals and losed under F , then anyenumeration of a belongs to A.



74 Chapter 3. Games themselvesLet � be an optimal strategy for player I in A. Let F be as follows:F (s) = (; if lh(s) is odd,fy 2 R j �(s)(y) 6= 0g otherwise.Then F is as desired: If a is losed under F , then enumerate a to be han j n 2!i and let player I follow � and let player II play the Dira measure for an at hernth move. Then the probability of the set fx 2 !R j ran(x) = ag is 1 and sine� is optimal for player I in A, there is an x suh that the range of x is a and xis in A. But by the range-invariane of A, any enumeration of a belongs to A.� (Lemma 3.1.4)We shall be losely following Solovay's original idea. We de�ne a family U �P(P!1(R)) as follows: Fix A � P!1(R) and onsider the following game ~GA:Players alternately play reals; say that they produe an in�nite sequene ~x =(xi j i 2 !). Then player II wins the game ~GA if ran(~x) 2 A, otherwise player Iwins. Sine the payo� set of this game is range-invariant as a Gale-Stewart game,by Lemma 3.1.4, it is determined.We say that A 2 U if and only if player II has a winning strategy in ~GA. Weshall show that it is a �ne normal measure under the assumption of Bl-ADR, thus�nishing the proof of Theorem 3.1.3.A few properties of U are obvious: For instane, we see readily that ; =2 Uand that P!1(R) 2 U , as well as the fat that U is losed under taking supersets.In order to see that U is a �ne family, �x a real x, and let player II play x in her�rst move: This is a winning strategy for player II in ~Gfajx2ag.We next show that for any set A � P!1(R), either A or the omplement of A isin U . Given any suh set A, suppose A is not in U . We show that the omplementof A is in U . Sine the game ~GA is determined, by the assumption, there is awinning strategy � for I in ~GA. Setting �(s) = ��s�(lh(s) � 1)� for s 2 ROdd , itis easy to see that � is a winning strategy for player II in the game ~GA.We show that U is losed under �nite intersetions. Let A1 and A2 be inU . Sine the payo� sets in the games ~GA1 and ~GA2 are range-invariant, by theanalogue of Claim 3.1.5, there are funtions f1 : <!R ! R and f2 : <!R ! R suhthat if a is losed under fi, then a is in Ai for i = 1; 2. Then it is easy to �ndan f : <!R ! R suh that if a is losed under f , then a is losed under both f1and f2. By the analogue of Claim 3.1.5 again, this f witnesses the existene of awinning strategy for player II in the game ~GA1\A2 .We have shown that U is an ultra�lter on subsets of P!1(R). We show the!1-ompleteness of U as follows: By Theorem 1.14.8, every set of reals is Lebesguemeasurable assuming Bl-AD. If there is a non-prinipal ultra�lter on !, then thereis a set of reals whih is not Lebesgue measurable. Hene there is no non-prinipalultra�lter on !, whih implies that any ultra�lter is !1-omplete. In partiular,U is !1-omplete.



D. Ikegami, Games in Set Theory and Logi 75The last to show is that U is normal. Let fAx j x 2 Rg be a family of setsin U . We show that 4x2RAx is in U . Consider the following game ~G: PlayerI moves x, then player II passes. After that, they play the game ~GAx. This isBlakwell determined and player II has an optimal strategy � sine eah Ax is inU . Let F : <!R ! P!1(R) be as follows:F (s) = (; if lh(s) is even,fy 2 R j �(s)(y) 6= 0g otherwise.We laim that if a is losed under F , then a is in 4x2RAx. Then, by the analoguesof Claim 3.1.5 and Claim 3.1.6, F will witness the existene of a winning strategyfor player II in the game ~G4x2RAx and we will have proved that 4x2RAx 2 U .Suppose a is losed under F . We show that a 2 Ax for eah x 2 a. Fix an xin a and enumerate a to be (xn j n 2 !). In the game ~G, let player I �rst movex and then they play the game ~GAx. Let player II follow � and player I play theDira measure onentrating on xn at the nth move. Then the probability of theset f~x 2 !R j x0 = x and ran(~x) = ag is 1 and sine � is optimal for player II inthe game ~G, there is an ~x suh that the range of ~x is a and ~x is a winning runfor player II in ~G, hene a is in Ax. � (Theorem 3.1.3)Corollary 3.1.7. The onsisteny of Bl-ADR is stritly stronger than that ofAD.Proof. Sine Bl-ADR implies Bl-AD by the �rst item of Proposition 1.14.2 andBl-AD implies ADL(R) by Corollary 1.14.7, Bl-ADR implies ADL(R). By Theo-rem 3.1.3, Bl-ADR also implies the existene of R# . By the property of R# ,one an onstrut a set-size elementary substruture of L(R). Hene ADL(R) andthe existene of R# imply the onsisteny of AD. Therefore, Bl-ADR implies theonsisteny of AD and by G�odel's Inompleteness Theorem, the onsisteny ofBl-ADR is stritly stronger than that of AD.3.2 Real Blakwell Determinay and regularitypropertiesIn this setion, we show that Bl-ADR implies almost all the regularity propertiesfor every set of reals. Note that DCR follows from the uniformization for everyrelation on the reals. Hene by Theorem 1.14.9, Bl-ADR implies DCR. For therest of the setions in this hapter, we freely use DCR when we assume Bl-ADRand we �x a �ne normal measure U on P!1(R), whih exists by Theorem 3.1.3.We start with proving the perfet set property for every set of reals. Reallthat a set of reals A has the perfet set property if either A is ountable or Aontains a perfet subset, where a perfet set of reals is a losed set withoutisolated points.



76 Chapter 3. Games themselvesTheorem 3.2.1. Assume Bl-ADR. Then every set of reals has the perfet setproperty.Proof. The theorem follows from the following two lemmas:Lemma 3.2.2. Assume Bl-ADR. Then every relation on the reals an be uni-formized by a Borel funtion modulo a Lebesgue null set, i.e., for any relationR on the reals, there is a Borel funtion f suh that the set fx j (x; f(x)) 2R or there is no real y with (x; y) 2 Rg is of Lebesgue measure one.Proof of Lemma 3.2.2. The onlusion follows by a folklore argument from Lebesguemeasurability and uniformization for any relation on the reals both of whih areonsequenes of Bl-ADR by Theorem 1.14.8 and Theorem 1.14.9).Let R be an arbitrary relation on the reals. We may assume the domain of Ris the whole spae, i.e., for any real x, there is a real y suh that (x; y) 2 R. Wewill �nd a Borel funtion uniformizing R almost everywhere.By the uniformization priniple, there is a funtion g uniformizing R. Foreah �nite binary sequene s, the set g�1([s℄) is Lebesgue measurable by Theo-rem 1.14.8. Hene for eah s there is a Borel set Bs suh that g�1([s℄)4Bs isLebesgue null. Now de�ne f so that the following holds: For eah �nite binarysequene s, f(x) 2 [s℄ () x 2 Bs:Then by the property of Bs, f is de�ned almost everywhere, Borel, and is equal tog almost everywhere. Hene any Borel extension of f will be the one we desired.� (Lemma 3.2.2)Lemma 3.2.3 (Raisonnier and Stern). Suppose every relation on the reals anbe uniformized by a Borel funtion modulo a Lebesgue null set. Then every setof reals has the perfet set property.Proof of Lemma 3.2.3. See [70, Theorem 5℄. � (Theorem 3.2.1)Next, we show that Bl-ADR implies that every set of reals has the Baire prop-erty. We �rst introdue the Blakwell meager ideal as an analogue of the meagerideal. A set A of reals is Blakwell meager if player II has an optimal strategy inthe Banah-Mazur game G��(A). Let IBM denote the set of all Blakwell meagersets of reals.Lemma 3.2.4. Assume Bl-AD. Then any meager set is in IBM, [s℄ =2 IBM foreah �nite binary sequene s, and IBM is a �-ideal. Moreover, every set of realsis measurable with respet to IBM, i.e., for any set A of reals and �nite binarysequene s, there is a �nite binary sequene t extending s suh that either [t℄\Aor [t℄ n A is in IBM.



D. Ikegami, Games in Set Theory and Logi 77Proof. By Theorem 1.8.3, if a set A of reals is meager, then player II has awinning strategy in the Banah-Mazur game G��(A) and in partiular player IIhas an optimal strategy in G��(A) by Theorem 1.14.3. Hene A is Blakwellmeager.It is easy to see that [s℄ =2 IBM for eah �nite binary sequene s by lettingplayer I �rst play the Dira measure onentrating on s in the game G��([s℄).We show that IBM is a �-ideal. The losure of IBM under subsets is immediate.We prove that it is losed under ountable unions.In order to prove this, we need to develop the appropriate transfer tehnique(as disussed and applied in [55℄) for the present ontext. Let � � ! be anin�nite and o-in�nite set. We think of � as the set of rounds in whih playerI moves. We identify � with the inreasing enumeration of its members, i.e.,� = f�i j i 2 !g. Similarly, we write �� for the inreasing enumeration of !n�,i.e., !n� = f��i j i 2 !g. For notational ease, we all � a I-oding if no twoonseutive numbers are in � and 0 2 � (i.e., the �rst move is played by I). Weall � a II-oding if no two onseutive numbers are in !n� and 0 2 �.Fix A � !! and de�ne two variants of G��A with alternative orders of play asdetermined by �. If � is a I-oding, the game G���;IA is played as follows:I s�0 = s0 s�1 : : :II s�0+1; : : : ; s�0�1 s�1+1; : : : ; s�2�1 : : :If � is a II-oding, then the game G���;IIA is played as follows:I s0; : : : ; s��0�1 s��0+1; : : : ; s��1�1 : : :II s��0 s��1 : : :In both ases, player II wins the game if s_0 s_1 : : :_ s_n : : : =2 A. Obviously, wehave G��A = G��Even;IIAwhere Even is the set of even numbers.Lemma 3.2.5. Let A be a subset of the Baire spae and � be a I-oding. Thenthere is a translation � 7! �� of mixed strategies for player I suh that if � is anoptimal strategy for player I in G��A , then �� is an optimal strategy for player Iin G���;IA .Similarly, if � is a II-oding, there is a translation � 7! �� of mixed strategiesfor player II suh that if � is an optimal strategy for player II in G��A , then �� isan optimal strategy for player II in G���;IIA .Proof of Lemma 3.2.5. We prove only the lemma for the games G���;IA , the otherproof being similar. If ~s = hsi j i 2 !i is an in�nite sequene of �nite binarysequenes, we de�ne b~si = s_�i+1 : : :_ s�i+1�1:



78 Chapter 3. Games themselvesNote that in order to ompute b~si , we only need the �rst �i+1 bits of ~s. The ideais that now the G��A -run I s�0 s�1 s�2 : : :II b~s0 b~s1 b~s2 : : : (�)yields the same output in terms of the onatenation of all played �nite sets asthe run ~s in the game G���;IA . We an de�ne a map �� on in�nite sequenes of�nite binary sequenes by(��(~s))i = � s�k if i = 2k,b~sk if i = 2k + 1,and see that s_0 s_1 : : : = (��(~s))_0 (��(~s))_1 : : :.Now, given a mixed strategy � for player I in G��A and a run ~s of the gameG���;IA , we de�ne �� via �� as follows:��(s0; : : : ; s�m�1) = �(s�0; b~s0; : : : ; s�i; b~si ; : : : ; s�m�1; b~sm�1):Assume that � is an optimal strategy for player I in G��A and �x an arbitrarymixed strategy � in the game G���;IA . We show that the payo� set for A in G���;IAis ���;� -measurable and ��� ;�(A) = 1. In order to do so, we onstrut a mixedstrategy ���1 for player II in G��A so that the game played by �� and � is essentiallythe same as the game played by � and ���1 .Given a sequene ~b of moves in G��A , we need to unravel it into a sequene ofmoves in G���;IA in an inverse of the maps ~s 7! b~si aording to (�), i.e., b2i+1 = b~si .Thus, we de�ne A~b2i+1 = f~s j b~si = b2i+1g,A~b�2i+1 = \j�iA~b2j+1:Note that only a �nite fragment of ~s is needed to hek whether b~si = b2i+1,and thus we think of A~b�2i+1 as a set of (�i+1 � (i + 1))-tuples of �nite binarysequenes. In the following, when we quantify over all \~s 2 A~b�i", we think ofthis as a olletion of �nite strings of �nite binary sequenes. In order to pad themoves made in G���;IA , we de�ne the following notation: For in�nite sequenes ~sand ~b, we write x~s;~bi = (b2i; s�i+1; :::; s�i+1�1):Compare (�) to see that if ~s orresponds to moves in G���;IA and ~b to the moves inG��A , then these are exatly the �nite sequenes that player II will have to respondto in G���;IA . Moreover, for a given sequene ~z of �nite binary sequenes, we letP� (z0; :::; zn) = Yi�n;i=2� �(z0; :::; zi�1)(zi):



D. Ikegami, Games in Set Theory and Logi 79Fix a sequene ~b of �nite binary sequenes with even length and de�ne ���1as follows: ���1(b0; : : : ; b2m)(b2m+1) = P~s2A~b�2m+1 P� (x~s;~b0 a : : :a x~s;~bm )Qmi=1 ���1(b0; : : : ; b2i�2)(b2i�1) :Using the two operations � 7! �� and � 7! ���1 , sine the payo� set for G��A isinvariant under ��, it now suÆes to prove for all basi open sets [t℄ indued by a�nite sequene t = (b0; :::; blh(t)�1) that ��;���1 ([t℄) = ���;� ((��)�1([t℄)). We provethis by indution on the length of t, and have to onsider three di�erent ases:Case 1. lh(t) = 0. This is immediate.Case 2. lh(t) = 2m + 1 with m � 0. By indution hypothesis, we have thatX = ��;���1 ([b0; : : : ; b2m�1℄) = ��� ;�((��)�1([b0; : : : ; b2m�1℄)). Thus,��;���1 ([b0; : : : ; b2m℄) = X � �(b0; : : : ; b2m�1)(b2m)= ��� ;� ((��)�1([b0; : : : ; b2m℄)):Case 3. lh(t) = 2m+ 2 with m � 0.��;���1 (t) = mYi=0 �(b0; : : : ; b2i�1)(b2i) � X~s2A~b�2m+1 P� (x~s;~b0 a : : :a x~s;~bm )= ���;��(��)�1([b0; : : : ; b2m+1℄)�:This alulation �nishes the proof of this lemma. � (Lemma 3.2.5)We now show that IBM is losed under ountable unions. Let fAn j n 2 !gbe a family of sets in IBM. Take an optimal strategy �n in the game G��(An) foreah n. We prove that Sn2! An is also in IBM.Fix a bookkeeping bijetion � from !�! to ! suh that �(n;m) < �(n;m+1)and �(n; 0) � n. We are playing in�nitely many games in a diagram where the �rstoordinate is for the index of the game we are playing, and the seond oordinateis for the number of moves. Hene the pair (n;m) stands for \mth move in thenth game". De�ne a II-oding �n = !nf2�(n; i) + 1 j i 2 !g orresponding to thefollowing game diagram:I s0; : : : ; s2�(n;0) s2�(n;0)+2; : : : ; s2�(n;1) : : :II s2�(n;0)+1 s2�(n;1)+1 : : :By Lemma 3.2.5, we know that for eah n 2 !, we get an optimal strategy (�n)�nfor the game G���n;IIAn . Let � be the following mixed strategy�(s0; : : : ; s2�(n;m)) = (�n)�n(s0; : : : ; s2�(n;m)):



80 Chapter 3. Games themselvesThe properties of � make sure that this strategy is well-de�ned. We shall nowprove that � is an optimal strategy for player II in G��Sn2! An .Pik any mixed strategy � for player I in G��Sn2! An and de�ne strategies �n forG���n;IIAn . Let m = �(k; `), then�n(s0; : : : ; s2m�1) = �(s0; : : : ; s2m�1), and�n(s0; : : : ; s2m) = (�k)�k(s0; : : : ; s2m) (if k 6= n).Note that for eah n 2 !, ��;� = ��n;(�n)�n .The payo� set (for player II) in G��Sn2! An is A = f~s j s_0 s_1 : : : =2 Sn2! Ang.We show that ��;� (A) = 1. Sine A = Tn2! f~s j s_0 s_1 : : : =2 Ang, it suÆesto hek that the sets Bn = f~s j s_0 s_1 : : : =2 Ang has ��;� -measure 1. But��;� (Bn) = ��n;(�n)�n (Bn) = 1. Thus we have shown that IBM is a �-ideal.We �nally show that every set A of reals is measurable with respet to IBM,i.e., for any �nite binary sequene s, there is a �nite binary sequene t extendings suh that either [t℄ \ A or [t℄ n A is in IBM. Fix suh A and s. If [s℄ \ A isin IBM, we are done. So suppose not. Then player II does not have an optimalstrategy in the game G��([s℄ \ A). By Bl-AD, there is an optimal strategy � forplayer I in the game G��([s℄ \ A). Let t be any s0 with �(;)(s0) 6= 0. Then sine� is optimal, t extends s and the strategy � easily gives us an optimal strategyfor player II in the game G��([t℄nA). Hene [t℄nA is in IBM. � (Lemma 3.2.4)Reall the notions of Stone spae St(P) and P-Baireness for a partial order Pfrom hapter 2. The based set of St(P) was the set of all ultra�lters on BP whereBP is a ompletion of P. Without the Axiom of Choie, it might be empty if P isbig. But in this hapter, we only onsider partial orders P whih are elements ofH!1 in V , i.e., the transitive losure of P is ountable in V . If P is an element ofH!1 , then St(P) is essentially the same as St(C ) where C is Cohen foring, henethe Cantor spae !!Sine every meager set is Blakwell meager as we have seen in Lemma 3.2.4,if P is in H!1 , then one an onsider Blakwell meagerness for subsets of St(P)by identifying St(P) with the Cantor spae.We are now ready to prove the Baire property for every set of reals from Bl-ADR.Theorem 3.2.6. Assume Bl-ADR. Then every set of reals has the Baire property.Proof. Take any set A of reals. We show that A has the Baire property. LetA2A be the seond-order arithmeti struture with A as a unary prediate. Sineany relation on the reals an be uniformized by a funtion by Theorem 1.14.9,we an onstrut a Skolem funtion F for A2A and by a simple oding of �nitesequenes of reals and formulas via reals, we regard it as a funtion from thereals to themselves. Let �F = f(x; s) 2 R � <!2 j F (x) � sg. The followingare the key objets for the proof (they are alled term relations): Reall from



D. Ikegami, Games in Set Theory and Logi 81Lemma 2.1.2 that for a P-name � for a real, f� is the Baire measurable funtion(whih is ontinuous on a omeager set) orresponding to � .�A = f(P; p; �) 2 H!1 j � is a P-name for a real and�81G 2 St(P)� p 2 G =) f�(G) 2 Ag;�A = f(P; p; �) 2 H!1 j � is a P-name for a real and�81G 2 St(P)� p 2 G =) f�(G) 2 Ag;��F = f(P; p; �; s) 2 H!1 j � is a P-name for a real and�81G 2 St(P)� p 2 G =) �f�(G); s� 2 �Fg;��F  = f(P; p; �; s) 2 H!1 j � is a P-name for a real and�81G 2 St(P)� p 2 G =) �f�(G); s� 2 �F g;where �81G 2 St(P)� means \for all G modulo a Blakwell meager set inSt(P). . . ". Let M = HODL[�A;�A ;��F ;��F  ℄�A;�A ;��F ;��F  and for G 2 St(P), let AG = ff�(G) j(9p 2 G) (P; p; �) 2 �A\Mg. Note that for any ountable ordinal �, P(�)\M isountable: Sine M is a transitive model of ZFC, if P(�) \M was unountable,then there would be an unountable sequene of distint reals whih would on-tradit Lebesgue measurability for every set of reals. Hene for any P 2 H!1 \M ,the set of P-generi �lters over M is omeager, in partiular Blakwell omeager(i.e., its omplement is Blakwell meager). Therefore, when we disuss statementsstarting from �81G 2 St(P)�, we may assume that G is P-generi over M .Claim 3.2.7.1. Let P be a partial order inM . Then �81G 2 St(P)� AG = A\M [G℄ 2M [G℄and M [G℄ is losed under F .2. Let P = Coll(!; 2!)M , where Coll(!; 2!) is the foring ollapsing the ar-dinal 2! into ountable with �nite onditions. Then �81G 2 St(P)� AG has theBaire property in M [G℄.Proof. We �rst show that AG = A\M [G℄ for Blakwell omeager many G. SineIBM is a �-ideal, for Blakwell omeager many G, G is P-generi over M and if(P; p; �) 2 �A \M (resp., �A \M) and p 2 G, then f�(G) = �G 2 A (resp., A).We show that AG = A \M [G℄ for any suh G.Fix suh a G. We �rst prove that AG � A \ M [G℄. Take any real x inAG. Then there is a p 2 G and a � suh that (P; p; �) 2 �A \M and �G = x.Then by the property of G, x = �G = f�(G) 2 A, as desired. We show thatA \M [G℄ � AG. Let x be a real in M [G℄ whih is not in AG. We prove thatx is also not in A. Sine x is in M [G℄, there is a P-name � for a real in Msuh that �G = x. Sine A is measurable with respet to IBM by Lemma 3.2.4,the set fp 2 P j either (P; p; �) 2 �A \M or (P; p; �) 2 �A \Mg is dense andit is in M . Sine G is P-generi over M , there is a p 2 G suh that either(P; p; �) 2 �A or (P; p; �) 2 �A . But (P; p; �) 2 �A annot hold beause it would



82 Chapter 3. Games themselvesimply x = �G 2 AG. Hene (P; p; �) 2 �A and x = �G = f�(G) 2 A by theproperty of G, as desired.Let �A = f(�; p) j (P; p; �) 2 �A \Mg. Sine the omprehension axioms with�A as a unary prediate hold in M , �A is a P-name for a set of reals in M and�GA = AG 2 M [G℄. Hene AG = A \M [G℄ 2 M [G℄ for Blakwell omeager manyG, as desired.Next, we show that M [G℄ is losed under F for Blakwell omeager many G.We prove this for any G whih is P-generi over M suh that if (P; p; �; s) 2 ��F(resp., ��F ) and p is in G, then F (�G) � s (resp., F (�G) + s). Fix suh a G andlet x be a real in M [G℄. We show that F (x) is also in M [G℄. Sine x is in M [G℄,there is a P-name � for a real in M suh that �G = x. Sine every subset of St(P)is measurable with respet to IBM, the funtion G0 7! F �f�(G0)� is ontinuousmodulo a Blakwell meager set in St(P). Hene for any �nite binary sequene s,the set of all p 2 P suh that either �81G0 2 St(P)� p 2 G0 =) F �f�(G0)� � sor �81G0 2 St(P)� p 2 G0 =) F �f�(G0)� + s is dense and is in M . By thegeneriity and the property of G, for any s, there is a p 2 G suh that F (�G) � s ifand only if �81G0 2 St(P)� p 2 G0 =) F �f�(G0)� � s if and only if (P; p; �; s) 2��F \M . Hene F (x) = F (�G) = Sfs j (9p 2 G) (P; p; �; s) 2 ��f \Mg, whihis in M [G℄, as desired.Finally, we show that AG has the Baire property in M [G℄ for Blakwell omea-ger many G when P = Coll(!; 2!)M . Atually, we show that AG has the Baireproperty in M [G℄ for any P-generi G over M . Let s be a �nite binary sequene.We show that there is a t extending s suh that either [t℄ \ AG or [t℄ n AG ismeager in M [G℄. Let _ be a anonial name for a Cohen real. Sine one anembed Cohen foring into Coll(!; 2!)M in a natural way in M , we may regard _as a P-name for a Cohen real. Sine 2! in M is ountable in M [G℄, the set ofCohen reals over M is omeager in M [G℄. Take any Cohen real  over M withs �  in M [G℄. We may assume  is in AG (the ase  =2 AG an be dealt within the same way). Reall that �G = AG and hene by the foring theorem, thereis a p 2 G and a � suh that M � p  \ _ = � � �s" and (P; p; �) 2 �A \M ,whih implies (P; p; _) 2 �A \M , namely ( _; p) 2 �A. But the value of _ will bedeided within Cohen foring and by the de�nition of �A, we may assume thatp is a ondition of Cohen foring extending s. Hene for any Cohen real 0 overM with p �  in M [G℄,  is in AG. Sine the set of all Cohen reals over M isomeager in M [G℄, this is what we desired. � (Claim 3.2.7)We now �nish the proof of Theorem 3.2.6 by showing that A has the Baireproperty. Let G be suh that the onlusions of Claim 3.2.7 hold. By the �rst itemof Claim 3.2.7, the struture (!; !!\M [G℄; app;+; �;=; 0; 1; AG) is an elementarysubstruture of A2A. Sine the Baire property for A an be desribed in thestruture A2A in this language and AG has the Baire property in M [G℄, A alsohas the Baire property, as desired. � (Theorem 3.2.6)Next, we show that every set of reals is 1-Borel assuming Bl-ADR. For that



D. Ikegami, Games in Set Theory and Logi 83purpose, we introdue the Vop�enka algebra and its variant, whih is a main toolfor our argument. The original motivation for the Vop�enka algebra is to makeevery set to be generi over HOD, the lass of all the hereditarily ordinal de�nablesets, i.e., any element of the transitive losure of a given set is ordinal de�nable.HOD is an important inner model of ZFC ontaining all the (possible) importantinner models with large ardinals and it is lose to V in the sense that any set inV an be generi over HOD via the Vop�enka algebra.We de�ne the Vop�enka algebra and its variant for HODX , where X is anarbitrary set, ODX is the lass of all sets ordinal de�nable with a parameter X,and HODX is the lass of sets a where any element of the transitive losure of ais in ODX .Take any arbitrary set X and �x an ordinal de�nable injetion iX : ODX !HODX . Then onsider the Vop�enka algebra PV;X in HODX as follows: PV;X =fiX(A) j A 2 ODX and A � P(!)g. For p; q 2 PV;X , p � q if i�1X (p) � i�1X (q).It is easy to see that the de�nition of PV;X does not depend on the hoie of iX ,i.e., if there are two suh injetions, then the orresponding two partial ordersare isomorphi in HODX . Vop�enka [87℄ proved that PV;; is a omplete Booleanalgebra in HOD (when X = ;) and eah real in V an be seen as a PV;;-generi�lter over HOD in the following way: For eah real x in V , the set Gx = fp 2PV;; j x 2 i�1; (p)g is a PV;;-generi �lter over HOD and HOD[x℄ = HOD[Gx℄.Conversely, if G is a PV;;-generi �lter over HOD, then the set Tfi�1; (p) j p 2 Ggis a singleton. We all the element of the singleton a Vop�enka real over HOD anddenote it yG. Then yGx = x for eah real x in V . The analogue of the aboveresults holds for HODX for arbitrary set X.We now introdue a variant of the Vop�enka algebra, namely the Vop�enka alge-bra with 1-Borel odes. Given a set X, onsider the following partial order P�V;Xin HODX : Conditions of P�V;X are 1-Borel odes in HODX where the ordinalsused in their trees are below � in HODX and for �;  in P�V;X , � �  if B� � B .1Then we an prove the analogue of Vop�enka's theorem in exatly the same way:Theorem 3.2.8 (ZF). (Folklore) Let X be an arbitrary set.1. P�V;X is a omplete Boolean algebra in HODX .2. For eah real x in V , the set Gx = f� 2 P�V;X j x 2 B�g is P�V;X -generiover HODX and HODX [x℄ = HODX [Gx℄. Conversely, if G is a P�V;X -generi �lterover HODX , then the set TfB� j � 2 Gg is a singleton and we all the real inthe singleton a Vop�enka real over HODX and denote it yG. Then HODX [yG℄ =HODX [G℄ and yGx = x for eah G and x.Proof. The proof is exatly the same as for the Vop�enka algebra whih an befound, e.g., in Jeh's textbook [37, Theorem 15.46℄.1For any 1-Borel ode � in HODX , there is an 1-Borel ode  where the ordinals used inthe tree of  is less than � in HODX suh that � �  and  � �. Hene the restrition ofordinals for 1-Borel odes will not a�et the struture of this partial order.



84 Chapter 3. Games themselvesThe di�erene between PV;X and P�V;X is that yG might not reover G fromHODX for PV;X while HODX [yG℄ = HODX [G℄ for P�V;X . This is beause theinjetion iX is not in HODX in general while the de�nition of P�V;X does not referto OD. For our purpose, we will use P�V;X .Theorem 3.2.9. Assume Bl-ADR. Then every set of reals is 1-Borel.Proof. We modify the argument for the following theorem by Woodin:Theorem 3.2.10 (Woodin). Assume AD and that every relation on the realsan be uniformized. Then every set of reals is 1-Borel.Let A be an arbitrary set of reals. We show that A is 1-Borel.By Theorem 3.2.6, every set of reals has the Baire property. Hene everysubset of St(P) has the Baire property for any P 2 H!1 . We freely use this fatlater. We �x a simple oding of elements of H!1 by reals and if we say \a real xodes: : :", then we refer to this oding.Let �A and RA be as follows:�A = f(P; p; �) 2 H!1 j � is a P-name for a real and�81G 2 St(P)� p 2 G =) f�(G) 2 Ag;RA = f(x; y) j if x odes a (P; p; �) 2 �A, then y odes a (Di j i < !)suh that (8i) Di is dense in P and�8G 2 St(P)� �p 2 G; (8i) G \Di 6= ; =) f�(G) 2 A�g;where \�81G 2 St(P)� : : : " means \For omeager many G in St(P) : : :". Notethat the term relation �A de�ned here is di�erent from the one in Theorem 3.2.6 inthe sense that now we use omeagerness for the quanti�er 81 instead of Blakwellomeagerness.Let FA uniformize RA and �A be the graph of FA, i.e., �A = f(x; s) j s 2<!!; FA(x) � sg. De�ne ��A as follows:��A = f(P; p; �; s) 2 H!1 j � is a P-name for a real and�81G 2 St(P)� p 2 G =) �f�(G); s� 2 �Ag;here we also use omeagerness for the quanti�er 81.Let A be the omplement of A and de�ne and onstrut �A ; RA; FA ;�A,and ��A as above.The following is the key point:Claim 3.2.11 (Woodin). Let M be a transitive subset of H!1 and (M;2; �A; ��A)is a model of ZFC.2 Let (P; p; �) 2M \ �A. Then for every P-generi �lter G overM , if p is in G, then �G 2 A. The same holds for A.2Here it satis�es Comprehension sheme and Replaement sheme for formulas in the lan-guage of set theory with prediates for �A and ��A .



D. Ikegami, Games in Set Theory and Logi 85Proof of Claim 3.2.11. Let Q = Coll�!;TC(P)�, where Coll�!;TC(P)� is thestandard foring ollapsing TC(P) into a ountable set with �nite sets as ondi-tions. Sine P; p; � are ountable in MQ , there is a Q -name �0 for a real in Moding the triple (P; p; �).Sublaim 3.2.12. There is a Q -name � for a real in M suh that in V , foromeager many H in St(Q), f�(H) = FA(f�0(H)).Proof of Sublaim 3.2.12. First note that the map f : H 7! FA�f�0(H)� is on-tinuous on a omeager set in St(Q), i.e., Baire measurable. This is beause everysubset of St(Q ) has the Baire property in St(Q ) and we an do the same argumentas the one in Proposition 3.2.2 to uniformize a relation almost everywhere (sinewe use open sets in St(Q ) to approximate subsets in St(Q) in this ase, we get aontinuous funtion instead of a Borel funtion).Let � = �f where the notation �f is from Lemma 2.1.2. Then � is a Q -namefor a real beause the map f is Baire measurable as we observed. Moreover, � isin M beause((m;n)�; q) 2 � () (9s 2 <!2) �s(m) = n and �Q ; q; (�; s)� 2 ��A�and the right hand side of the equivalene is de�nable in (M; �A; ��A), whih is amodel of ZFC by assumption. Finally, by Lemma 2.1.2, it is easy to see that foromeager many H in St(Q), f�(H) = FA(f�0(H)). � (Sublaim 3.2.12)Now let G be a P-generi �lter over M with p 2 G. We show that f�(G) 2 A.Take a Q -generi �lter H over M [G℄ with �H = FA(�0H). This is possible bySublaim 3.2.12 and that M [G℄ � H!1 . Then G is also a P-generi �lter overM [H℄ and FA(�0H) = �H 2 M [H℄. But by the de�nition of FA, FA(�0H) odes asequene (Di j i 2 !) suh that Di is a dense subset of P in M [H℄ for eah i 2 !and for any G0 in St(P), if G0 \ Di 6= for eah i, then f�(G0) 2 A. But G is aP-generi �lter over M [H℄ and eah Di is in M [H℄. Hene G \ Di 6= ; for eahi 2 ! and f�(G) 2 A, as desired. � (Claim 3.2.11)Let X = (A; �A; ��A; �A ; ��A ). Reall that U is the �ne normal measureon P!1 we �xed at the beginning of this setion. Let M = L(X;R)[U ℄. Sinethe statement \a real is in the deode of an 1-Borel ode" is absolute betweentransitive models of ZF as in x 1.13 and M ontains all the reals, if A is 1-Borelin M , so is in V .From now on, we work in M and prove that A is 1-Borel in M , whihompletes the proof of this theorem. The bene�t of working in M is that we haveDC in M beause DCR implies DC in M while DC might fail in V in general.Note that U \ M is a �ne normal measure on P!1(R) in M and we use U todenote U \M from now on.We �nd a set of ordinals S and a formula � suh that for any real x,x 2 A () L[S; x℄ � �(x): (3.1)



86 Chapter 3. Games themselvesBy Fat 1.13.2, this implies that A is 1-Borel.For a in P!1(R), let Ma;Q �a , and ba be as follows:Ma = HODL!1 [X℄(a)X ;Q �a =P�V;X in Ma;ba = sup fq 2 Q �a j (Q �a ; q; _yG) 2 �Ag in Ma;where _yG is a anonial Q �a -name for a Vop�enka real given in Theorem 3.2.8.Note that Ma is a transitive subset ofH!1 and (Ma; �A; ��A) and (Ma; �A; ��A )are models of ZFC beause L!1[X℄(a) is a transitive model of ZF (to hek thepower set axiom, we use the ondition that there is no unountable sequene ofdistint reals ensured by Lebesgue measurability). Note also that ba is well-de�nedbeause Q �a is a omplete Boolean algebra in Ma by Theorem 3.2.8.Then we laim that for eah a 2 P!1(R) and real x whih indues the �lter Gxthat is P�V;X -generi �lter over Ma, x 2 A () ba 2 Gx. Fix a and x. Assumeba 2 Gx. We show that x 2 A. If we apply Claim 3.2.11 to M = Ma; (P; p; �) =(Q �a ; ba; _yG), and G = Gx, then we get x 2 A beause yGx = x as in Theorem 3.2.8.For the onverse, we assume ba is not in Gx and prove that x is not in A. Let ba0be the one orresponding to ba for A instead of for A, i.e.,ba0 = sup fq 2 Q �a j (Q �a ; q; _yG) 2 �Ag:Then ba _ ba 0 = 1. This is beause f�1_yG (A) has the Baire property in St(Q �a).Sine ba =2 Gx and Gx is P�V;X -generi over Ma, ba0 is in Gx. Hene we an applyClaim 3.2.11 to Ma; A; (Q �a ; ba0; _yG), and Gx and we get x 2 A, i.e., x is not inA, as desired.Fix an a 2 P!1(R). Note that sine P�V;X is the Vop�enka algebra with 1-Borelodes de�ned in Ma, any real in L!1 [X℄(a) is P�V;X -generi over Ma. Hene forany real x in L!1[X℄(a), x 2 A () ba 2 Gx.Now we use this loal equivalene in L!1[X℄(a) to get the global equiva-lene (3.1) by taking the ultraprodut of Ma via U . Let M1;Q1 ; b1 be asfollows: M1 = YU Ma; Q1 = YU Q �a ; b1 = YU ba:Note that  Lo�s's theorem holds for M1 beause there is a anonial funtionmapping a to a well-order on Ma.3 By DC (in M), M1 is wellfounded. So wemay assume M1 is transitive. Hene, M1 is a transitive model of ZFC, Q1 is apartial order onsisting of 1-Borel odes, and b1 2 Q1 .We laim that for eah real x, x 2 A () x 2 Bb1. This will establish theequivalene (3.1) beause the pair (Q1 ; b1) an be seen as a set of ordinals sinethey are objets in the transitive model M1 of ZFC.3  Lo�s's theorem fails for QU L!1 [X ℄(a). This is beause L!1 [X ℄(a) is not a model of ZFC foralmost all a and we annot assign a well-order on L!1 [X ℄(a) to eah a as we did for QU Ma.



D. Ikegami, Games in Set Theory and Logi 87Let us �x a real x. By the �neness of U , x 2 a for almost all a w.r.t. U . Thenx 2 A () ba 2 Gx for almost all a() x 2 Bba for almost all a() x 2 Bb1 ;where the �rst equivalene is by the loal equivalene we have seen and the thirdequivalene follows from  Lo�s's theorem forQUMa[x℄ (note that Ma[x℄ is a generiextension of Ma given by Gx and we an prove  Lo�s's theorem for QUMa[x℄ inthe same way as for QU Ma). This ompletes the proof.Together with the non-existene of unountable sequenes of distint reals,the 1-Borelness for every set of reals gives us almost all the regularity propertieswe introdued in hapter 2 for every set of reals. Reall that P-measurabilityfor a strongly arboreal foring P was the regularity property we introdued inDe�nition 2.1.7. Also reall that strongly proper forings are strengthening ofproper forings for projetive forings.Proposition 3.2.13. Assume that there is no unountable sequene of distintreals and every set of reals is 1-Borel. Then every set of reals is P-measurablefor any strongly arboreal, strongly proper foring P.Proof. The results for Cohen foring, random foring, and Mathias foring arewell-known and the proof is the same as the one in Case 1 in Theorem 2.4.2. Wejust replae L[a℄ in Theorem 2.4.2 with L[S℄, where S odes a given set of realsand a given partial order P. The fat that the set of all dense subsets of P in L[S℄is ountable follows from the non-existene of unountable sequenes of distintreals (beause L[S℄ is a ZFC model) and the fat that L[S℄ orretly omputesP follows from that S odes P. The rest is exatly the same as in Case 1 inTheorem 2.4.2.Corollary 3.2.14. Assume Bl-ADR. Then every set of reals is P-measurable forany strongly arboreal, strongly proper foring P.3.3 Toward ADR from Bl-ADRIn this setion, we disuss the following onjeture:Conjeture 3.3.1 (DC). ADR and Bl-ADR are equivalent.Sine ADR implies Bl-ADR by Theorem 1.14.3, the question is whether Bl-ADRimplies ADR in ZF+DC. Woodin proved the following:Theorem 3.3.2 (Woodin). Assume AD and DC. Then the following are equiv-alent:



88 Chapter 3. Games themselves1. Every set of reals is Suslin,2. The axiom ADR holds, and3. Every relation on the reals an be uniformized.Hene, to prove Conjeture 3.3.1, it suÆes to show that every set of realsis Suslin from Bl-ADR: If every set of reals is Suslin, then by Theorem 1.14.5,AD holds. Now by Theorem 3.3.2 and Theorem 1.14.9, ADR holds assumingBl-ADR and DC. Note that Martin's Conjeture (i.e., Bl-AD implies AD) impliesConjeture 3.3.1 by Theorem 3.3.2. Hene it is interesting to see whether this isConjeture is true or not.We try to mimi the arguments for the impliation from uniformization toSuslinness in Theorem 3.3.2 and redue Conjeture 3.3.1 to a small onjeture.Throughout this setion, we �x U as a �ne normal measure on P!1(R), whihexists by Theorem 3.1.3.First, we show that every set of reals is strong 1-Borel assuming Bl-ADR.Before giving a de�nition of strong 1-Borel odes, we start with a small lemma:Lemma 3.3.3. Assume Bl-ADR and DC. Let j : V ! Ult(V; U) be the ultrapowermap via U . Then j(!1) = �.Proof. We �rst show that j(!1) � �. Let � be an ordinal less than � and R bea prewellorder on the reals with length �. De�ne f : P!1(R) ! !1 be as follows:For a 2 P!1(R), f(a) is the length of the prewellorder R\ (a�a) on a. Sine a isountable, f(a) is also ountable. Hene f 2U !1, where 2U is the membershiprelation for Ult(V; U) and !1 is the onstant funtion on P!1(R) with value !1.We show that the struture ([f ℄U ;2) is isomorphi to (�;2) and hene [f ℄U =�, whih implies � < j(!1) beause f 2U !1. For any a 2 P!1(R), let �(a) bethe transitive ollapse of �a; R \ (a� a)� into �f(a);2�. Then by  Lo�s's Theoremfor simple formulas, [�℄U is an isomorphism between �[id℄U ; j(R)\ ([id℄U � [id℄U)�and ([f ℄U ;2), where id is the identity funtion on P!1(R).Claim 3.3.4. The identity funtion id represents R, i.e., [id℄U = R.Proof of Claim 3.3.4. By the �neness of U , for any real x, fa j x 2 ag 2 U .Hene [x℄U 2 [id℄U . By the ountable ompleteness of U , [x℄U = x and henex 2 [id℄U for any real x. Suppose f is a funtion on P!1(R) with f 2U id. Then bythe normality of U , there is a real x suh that fa j x = f(a)g 2 U , i.e., x =U f .Hene [f ℄U = x and [f ℄U is a real, whih �nishes the proof. � (Claim 3.3.4)By Claim 3.3.4, we have [id℄U = R and j(R) \ ([id℄U � [id℄U)� = R. Sine�[id℄U ; j(R)\([id℄U�[id℄U)� and ([f ℄U ;2) are isomorphi, ([f ℄U ;2) is isomorphi to(R; R), whih is isomorphi to (�;2), as desired. Hene � < j(!1) and j(!1) � �.Next, we show that j(!1) � �. Let f be a funtion from P!1(R) to !1. Weshow that [f ℄U < �. By uniformization for every set of reals, there is a funtion



D. Ikegami, Games in Set Theory and Logi 89e from the reals to themselves suh that if a real x odes an a 2 P!1(R), thene(x) odes f(a). Let S be an 1-Borel ode for the graph �e of e whih exists byTheorem 3.2.9.Claim 3.3.5. For all a 2 P!1(R), f(a) < �L[S℄(a).Proof of Claim 3.3.5. Note that P(x) \ L[S℄(a) is ountable in V for any x 2H!1 \ L[S℄(a). Hene there is a Coll(!; a)-generi g over L[S℄(a) in V . Fix suha g. Let xg be a real oding a from g. Then sine S is an 1-Borel ode for�e, one an ompute whether e(xg) � s for eah �nite binary sequene s or notin L[S℄(a; g), hene e(xg) 2 L[S℄(a; g). Therefore f(a) is ountable in L[S℄(a; g).But �L[S℄(a) stays an unountable ardinal in L[S℄(a; g). Hene f(a) < �L[S℄(a),as desired.By the normality of U , the following hoie priniple holds: For any funtionF : P!1(R) ! V suh that ; 6= F (a) 2 L[S℄(a) for almost a with respet to U ,then there is a funtion f : P!1(R) ! V suh that f(a) 2 F (a) for almost all awith respet to U . This implies  Lo�s's Theorem for the ultraprodut QU L[S℄(a).Let S� = j(S). Then �QU L[S℄(a);2U� is isomorphi to �L[S�℄(R);2� bylooking at the map g 7! j(g)(R). (Note that Ult(V; U) is wellfounded by DC.)Hene [f ℄U < [a 7! �L[S℄(a)℄U = �L[S�℄(R) � �V ;as desired.We now introdue strong 1-Borel odes. An 1-Borel ode S is strong if thetree of S is a tree on  for some  < � and for any f : <!R ! R and surjetion� : R ! , there is an a 2 P!1 suh that a is losed under f , S��[a℄ is an 1-Borel ode, and BS��[a℄ � BS. Note that the hoie of  does not depend on thede�nition of strong 1-Borel odes. A set of reals A is strong 1-Borel if A = BSfor some strong 1-Borel ode S. There is a �ner version of Fat 1.13.2 as follows:Fat 3.3.6.1. Let S be a strong 1-Borel ode and  < � be suh that S is a tree on �for some � <  and L[S; x℄ � \KP + �1-Separation" for any real x. Let �(S; x)be a �1-formula expressing \x 2 BS". Then for any funtion f : <!R ! R andsurjetion � : R ! , there is an a 2 P!1(R) suh that a is losed under f andfor any real x, if L�[ �S; x℄ � �( �S; x), then L [S; x℄ � �(S; x), where L� [ �S℄ is thetransitive ollapse of the Skolem hull of �[a℄ [ fSg in L[S℄.2. Let  be an ordinal with  < �, � be a �1-formula, and S be a boundedsubset of  suh that L[S; x℄ � \KP + �1-Separation" for any real x. Set A =fx 2 R j L[S; x℄ � �(S; x)g. Assume that for any funtion f : <!R ! R andsurjetion � : R ! , there is an a 2 P!1(R) suh that a is losed under f andfor any real x, if L�[ �S; x℄ � �( �S; x), then L [S; x℄ � �(S; x), where L� [ �S℄ is the



90 Chapter 3. Games themselvestransitive ollapse of the Skolem hull of �[a℄ [ fSg in L[S℄. Then A is strong1-Borel.Proof. This an be done by losely looking at the argument for Fat 1.13.2 in [80℄.Theorem 3.3.7. Assume Bl-ADR and DC. Then every set of reals is strong1-Borel.Proof. Fix a set of reals A. We show that A is strong 1-Borel. Let �(Ma;Q �a ; ba) ja 2 P!1(R)� and (M1;Q �1 ; b1) be as in the proof of Theorem 3.2.9, but weonstrut them in V , not in M . Sine we have DC now, we an prove the followingequivalenes in exatly the same way as in Theorem 3.2.9: For all a 2 P!1(R)and all real x induing the �lter Gx whih is Q �a -generi over Ma,x 2 A () ba 2 Gx (in Q �a):Also, (8x 2 R) x 2 A () b1 2 Gx (in Q �1):For any a, let Da be the set of all dense subsets of Q �a in Ma and let D1 = QU Da.Let � be a �1-formula suh that for all a,�(Q �a ; ba; Da; x) () x determines the �lter Gx � Q �a suh that(8D 2 Da) Gx \D 6= ; and ba 2 Gx,�(Q �1 ; b1; D1; x) () x determines the �lter Gx � Q �1suh that(8D 2 D1) Gx \D 6= ; and b1 2 Gx:Let Sa and S1 be sets of ordinals oding the two triples (Q �a ; ba; Da) and(Q �1 ; b1; D1) respetively. For an a 2 P!1(R), let �a be the least ordinal �suh that Sa is a bounded subset of � and for all x 2 a, L�[Sa; x℄ is a model ofKP+�1-Separation and let �1 be the least ordinal � suh that S1 is a boundedsubset of � and for all x 2 R, L�[S1; x℄ is a model of KP+�1-Separation. Notethat by  Lo�s's Theorem, (QU L�a[Sa; x℄;2U ) is isomorphi to (L�1 [S1; x℄;2) forevery real x. Sine eah �a is ountable, by Lemma 3.3.3, �1 < �. Also, by theabove equivalenes, for all a 2 P!1(R) and all reals x,x 2 A () L�a[Sa; x℄ � � (Sa; x)x 2 A () L�1[S1; x℄ � � (S1; x):By the seond item of Fat 3.3.6, it suÆes to show the following: For anyfuntion f : <!R ! R and surjetion � : R ! �1, there is an a 2 P!1(R) suhthat a is losed under f and for any real x, if L ��1[ �S1; x℄ � �( �S1; x), thenL�1[S1; x℄ � �(S1; x), where L ��1[ �S1℄ is the transitive ollapse of the Skolemhull of �[a℄ [ fS1g in L�1 [S1℄.Let us �x f : <!R ! R and � : R ! �1. Sine x 2 A () L�b [Sb; x℄ �� (Sb; x) for eah real x and b 2 P!1(R), the following laim ompletes the proof:



D. Ikegami, Games in Set Theory and Logi 91Claim 3.3.8. There are a and b in P!1(R) suh that a is losed under f and(Xa;2) is isomorphi to (L�b [Sb℄;2), where Xa is the Skolem hull of �[a℄ [ fS1gin L�1[S1℄.Proof of Claim 3.3.8. Let �f = f(x; s) 2 R � <!2 j f(x) � sg. For eah b,onsider the following game Ĝb in L[Sb; S1;�f ; �℄: In ! rounds,1. Player I and II produe a ountable elementary substruture X of L�b [Sb℄,2. Player II produes an a 2 P!1(R) whih is losed under f , and3. Player II tries to onstrut an isomorphism between (X;2) and (Xa;2),where Xa is the Skolem hull of �[a℄ [ fS1g in L�1[S1℄.Player II wins if she sueeds to onstrut an isomorphism between (X;2) and(Xa;2). This is an open game on some set of the form Tb � R where Tb iswellorderable. Hene by DCR, it is determined.Sublaim 3.3.9. There is a b 2 P!1(R) suh that player II has a winning strategyin the game Ĝb.Proof of Sublaim 3.3.9. To derive a ontradition, suppose there is no b suhthat player II has a winning strategy in the game Ĝb in L[Sb; S1;�f ; �℄. Bythe determinay of the game Ĝb, player I has a winning strategy in the gameĜb. Let j : V ! Ult(V; U) be the ultrapower map. Then by  Lo�s's Theo-rem, QU�L[Sb; S1;�f ; �℄;2U ;�f ; �� is isomorphi to �L[S1; j(S1);�f ; j(�)℄;2;�f ; j(�)�. Then the game Ĝ1 = QU Ĝb is an open game on some set of theform T1 � R where T1 is wellorderable in L[S1; j(S1);�f ; j(�)℄ suh that in !rounds,1. Players I and II produe a ountable elementary substruture Y of L�1 [S1℄,2. Player II produes an a 2 P!1(R) whih is losed under f , and3. Player II tries to onstrut an isomorphism between (Y;2) and (Ya;2),where Ya is the Skolem hull of j(�)[a℄ [ fj(S1)g in Lj(�1)[j(S1)℄.Player II wins if she sueeds to onstrut an isomorphism between Y and Ya.By  Lo�s's Theorem, player I has a winning strategy � in L[S1; j(S1);�f ; j(�)℄.By Theorem 1.12.6, � is also winning in V . In V , let player II move in suha way that she an arrange that a is losed under f , j[Y ℄ = Ya, and j�Y isthe andidate for the isomorphism. This is possible by a bookkeeping argument.But then player II wins beause j�Y is an isomorphism between Y and j[Y ℄ anddefeats the strategy �, ontradition! � (Sublaim 3.3.9)



92 Chapter 3. Games themselvesHene there is a b 2 P!1(R) suh that player II has a winning strategy �in the game Ĝb in L[Sb; S1;�f ; �℄. By Theorem 1.12.6, � is also winning in V .Sine L�b[Sb℄ is ountable in V , we an let player I move in suh a way thatX = L�b [Sb℄ and let player II follow � . Sine � is winning in V , there is ana 2 P!1(R) suh that a is losed under f and L�b [Sb℄ = X is isomorphi to Xa,as desired. � (Claim 3.3.8)We are now ready to prove the key statement toward Conjeture 3.3.1: Reallthat for a natural number n with n � 1 and a subset A of Rn+1 , 9RA = fx 2Rn j (9y 2 R) (x; y) 2 Ag.Theorem 3.3.10. Assume Bl-ADR and DC. Let A be a subset of R3 and assume9RA is a strit well-founded relation on a set of reals. Suppose A has a strong1-Borel ode S and let  be an ordinal less than � suh that the tree of S is on. Then the length of 9RA is less than +.Proof. Let A; S, and  be as in the assumptions. We show that the length of9RA is less than +. Fix a surjetion � : R ! . Let us start with the followinglemma:Lemma 3.3.11. There is a funtion f : <!R ! R suh that if a is losed underf , then S��[a℄ is an 1-Borel ode and BS��[a℄ � BS.Note that the assertion of the above lemma is the strengthening of the de�ni-tion of strong 1-Borel odes.Proof of Lemma 3.3.11. Let us onsider the following game: Player I and IIhoose reals one by one and produe an !-sequene x of reals. Setting a = ran(f),player I wins if S��[a℄ is an 1-Borel ode and BS��[a℄ � BS. Sine S is a strong1-Borel ode, player I an defeat any strategy for player II beause strategies anbe seen as funtions from <!R to R by Claim 3.1.5. Sine the payo� set of thisgame is range-invariant, by Lemma 3.1.4, this game is determined. Hene playerI has a winning strategy and by Claim 3.1.5, there is a funtion f as desired.� (Lemma 3.3.11)We �x an f0 satisfying the onlusion of Lemma 3.3.11 for the rest of this proof.Reall that U is the �ne normal measure on P!1(R) we �xed at the beginning ofthis setion. Using �, we an transfer this measure to a �ne normal measure onP!1() as follows: Let �� : P!1(R) ! P!1() be suh that ��(a) = �[a℄ for eaha 2 P!1(R). For A � P!1(), A 2 U� if ��1� (A) 2 U . It is easy to hek that U�is a �ne normal measure on P!1().We now prove the key lemma for this theorem:



D. Ikegami, Games in Set Theory and Logi 93Lemma 3.3.12. Let G be Coll(!; )-generi over V . Then in V [G℄, there is anelementary embedding j : L(R; S; f0 ; �) ! L�j(R); j(S); j(f0); j(�)� suh that allthe reals in V [G℄ are ontained in L�j(R); j(S); j(f0); j(�)�.Proof of Lemma 3.3.12. The argument is based on the result of Kehris andWoodin [47, Theorem 6.2℄. We �rst introdue the notion of weakly meager sets.A subset B of ! is weakly meager if there is an X 2 U� suh that (8b 2 X)!b\Bis meager in the spae !b. Sine b is ountable, the spae !b is homeomorphi tothe Baire spae in most ases. Note that if B is a meager set in the spae !,then it is weakly meager. A subset B of ! is weakly omeager if its omplementis weakly meager. Let I be the set of weakly meager sets.Sublemma 3.3.13.1. The ideal I is a �-ideal on !.2. For any s 2 <!, [s℄ is not weakly meager.3. If a subset B of ! is not weakly meager, then there is an s 2 <! suh that[s℄ nB is weakly meager.4. Let g be a funtion from ! to On. Then for any B whih is not weaklymeager, there is a B0 � B whih is not weakly meager suh that for all xand y in B0, if ran(x) = ran(y), then g(x) = g(y).Proof. The �rst statement follows from the �-ompleteness of U�. The seondstatement follows from the �neness of U�.For the third statement, suppose B is not weakly meager. Then sine U� isan ultra�lter, there is an X 2 U� suh that (8b 2 X) !b \B is not meager in !b.We may assume that eah b in X is in�nite beause the set of �nite subsets of is measure zero with respet to U� by the �neness of U�. Take any b in X. Sinethe spae !b is homeomorphi to the Baire spae, the set !b \ B has the Baireproperty in !b. Hene there is an sb 2 <!b suh that [sb℄ nB is meager in !b. Bynormality of U�, there is a Y 2 U� suh that Y � X and there is an s 2 <! suhthat sb = s for any b 2 Y . Hene [s℄ nB is weakly meager.For the last statement, let g be suh a funtion and B be not weakly meager.Then there is an X 2 U� suh that 8b 2 X, !b \ B is not meager in !b. Sine!b \ B has the Baire property in !b, there is an sb 2 <!b suh that [sb℄ n B ismeager in !b. By normality of U�, there are a Y � X and s0 2 <! suh thatY 2 U� and sb = s0 for every b 2 Y . We use the following fat:Fat 3.3.14 (Folklore). Assume every set of reals has the Baire property. Thenthe meager ideal in the Baire spae is losed under any wellordered union.



94 Chapter 3. Games themselvesTake any b 2 Y . Sine [s0℄ \ !b is homeomorphi to the Baire spae, wean apply Fat 3.3.14 to the spae [s0℄ \ !b and hene there is an �b suh that[s0℄ \ !b \ g�1(�b) is not meager in [s0℄ \ !b. Sine the set [s0℄ \ !b \ g�1(�b)has the Baire property in [s0℄ \ !b, there is an sb 2 <!b suh that sb � s0 and[sb℄ng�1(�b) is meager in !b. By normality of U�, there are a Z 2 U� with Z � Yand an s1 � s0 suh that [s1℄ n g�1(�b) is meager in !b for eah b 2 Z. ThenB0 = B \ [s1℄ \ fx j g(x) = �ran(x)g is as desired. � (Sublemma 3.3.13)Now we prove Lemma 3.3.12. Let G be Coll(!; )-generi over V . Considerthe Boolean algebra P(!)=I. Then it is naturally foring equivalent to Coll(!; ):In fat, for s 2 <!, let i(s) = [s℄=I. Then by the third item of Sublemma 3.3.13,i is a dense embedding from Coll(!; ) to P(!)=I n f0g. De�ne U 0 as follows:For a subset B of ! in V , B is in U 0 if there is a p 2 G suh that [p℄ n B isweakly meager. By the generiity of G and the third item of Sublemma 3.3.13,U 0 is an ultra�lter on (!)V and U 0 ontains all the weakly omeager sets. Takean ultrapower Ult�L(R; S; f0 ; �); U 0� = �(!)V L(R; S; f0 ; �) \ V �=U 0 and let j bethe ultrapower map. (Note that we onsider L(R; S; f0 ; �)-valued funtions in Vwhih are not neessarily in L(R; S; f0 ; �).)We show that j is the desired map. We �rst hek  Lo�s's Theorem for thisultrapower. It is enough to show that for any B 2 U 0 and a funtion F from B toL(R; S; f0 ; �) suh that all the values of F are nonempty, then there is a funtionf on B in V suh that f(x) 2 F (x) for all x in B0. Sine there is a surjetion fromR � On to L(R; S; f0 ; �), we may assume that the values of F are sets of reals.But then by uniformization for every relation on the reals by Theorem 1.14.9, weget the desired f .Next, we hek the well-foundedness of Ult�L(R; S; f0 ; �); U 0�. By DC, weknow that the ultrapower Ult(V; U�) is wellfounded. Hene it suÆes to showthe following: For a funtion f : P!1() ! On, let gf : ! ! On be as follows:gf(x) = f�ran(x)�.Sublemma 3.3.15. The map [f ℄U� 7! [gf ℄U 0 is an isomorphism from �(P!1 ()On\V )=U�;2U�� to �(!On \ V )=U 0;2U 0�.Proof of Sublemma 3.3.15. We �rst show that if f1 2U� f2, then gf1 2U 0 gf2 .Sine f1 2U� f2, there is an X 2 U� suh that for any b in X, f1(b) 2 f2(b). Fixa b in X. Sine the set fx 2 !b j ran(x) = bg \ !b is omeager in !b, the setfx 2 !b j f1�ran(x)� 2 f2�ran(x)�g is omeager in !b. Hene for every b 2 X, theset fx 2 !b j gf1(x) 2 gf2(x)�g is omeager in !b and the set fx 2 ! j gf1(x) 2gf2(x)g is weakly omeager and hene is in U 0. Therefore, gf1 2U 0 gf2. In thesame way, one an prove that if f1 =U� f2, then gf1 =U 0 gf2 .Next, we show that the map is surjetive. Take any funtion g : ! ! On inV . We show that there is an f : P!1() ! On in V suh that gf =U 0 g. By thelast item of Sublemma 3.3.13 and the generiity of G, there is an Y in U 0 suhthat if x and y are in Y with the same range, then g(x) = g(y). Sine Y is in U 0,



D. Ikegami, Games in Set Theory and Logi 95there is a p 2 G suh that [p℄nY is weakly meager, hene there is an X in U� suhthat for all b in X, ([p℄nY )\!b is meager in !b. This means that g is onstant ona omeager set in [p℄ \ !b for eah b 2 X. Let �b be the onstant value for eahb 2 X and f be suh that f(b) = �b if b is in Y and f(b) = 0 otherwise. Then itis easy to hek that gf =U 0 g, as desired. � (Sublemma 3.3.15)We have shown that j is elementary and we may assume that the targetmodel of j is transitive. Then j is an elementary embedding from L(R; S; f0 ; �)to L�j(R); j(S); j(f0); j(�)�. Let M = L�j(R); j(S); j(f0); j(�)�. We �nally hekthat all the reals in V [G℄ are in M . Let x be a real in V [G℄ and � be a P-namefor a real in V suh that �G = x. We laim that [f� ℄U 0 = x, where f� is theBaire measurable funtion from St�Coll(!; )� to the reals indued by � fromLemma 2.1.2, whih ompletes the proof.Take any natural number n and set m = x(n). We show that [f� ℄U 0(n) = m.Sine x(n) = m, there is a p 2 G suh that p  �(�n) = �m. By the de�nition off� , for any x 2 [p℄, f� (x)(n) = mg. Sine p is in G, by the de�nition of U 0, theset fx j f� (x)(n) = m is in U 0, as desired. � (Lemma 3.3.12)We now �nish the proof of Theorem 3.3.10. Let us keep using M to denoteL�j(R); j(S); j(f0); j(�)�. We �rst laim that S and j[S℄ are in M . Sine  isountable in V [G℄, there is a real x oding S in V [G℄. But by Lemma 3.3.12,suh an x is in M . Hene S is also in M . Sine  is ountable in V [G℄, there isan a 2 P!1(R) suh that �[a℄ = S and hene j(�)[a℄ = j[S℄ in V [G℄. But sinej(�) 2M and a 2M by Lemma 3.3.12, j[S℄ = j(�)[a℄ is also in M , as desired. ByLemma 3.3.11 and elementarity of j, the following is true in M : For any a losedunder j(f), j(S)�a is an 1-Borel ode and Bj(S)�a � Bj(S). Also, by elementarityof j, 9RBj(S) is a well-founded relation on a set of reals in M . Set a = j[S℄.Sine a is losed under j(f), in M , j(S)�a is an 1-Borel ode, Bj(S)�a � Bj(S),and 9RBj[S℄ is also a wellfounded relation on a set of reals in M . Sine j[S℄ isountable in M , the relation 9RBj[S℄ is �11 and hene by Kunen-Martin Theorem(see [66, 2G.2℄), its rank is less than !1 in M whih is the same as + in V .Finally, sine S and j[S℄ are equivalent as Borel odes, 9RBS has length less than!1 in M and sine M has more reals than V , �9RBS�V � �9RBS�M . Therefore,the length of �9RBS�V is less than !M1 = (+)V , as desired.Beker proved the following:Theorem 3.3.16 (Beker). Assume AD, DC, and the uniformization for everyrelation on the reals. Suppose that the onlusion of Theorem 3.3.10 holds, i.e.,let A be a subset of R3 and assume 9RA is a well-founded relation on a set ofreals. Suppose A has a strong 1-Borel ode S and let  be an ordinal less than� suh that the tree of S is on . Then the length of 9RA is less than +. Thenevery set of reals is Suslin.



96 Chapter 3. Games themselvesProof. See [9℄.We try to simulate Beker's argument, make a small onjeture, and redueConjeture 3.3.1 to the small onjeture.As preparation, we prove a weak version of Moshovakis' Coding Lemma. Letus introdue some notions for that. Let A be a set of reals. Let IND(A) be theset of all pos�1n(A)-indutive sets of reals for some natural number n � 1. Forthe de�nition of pos�1n(A)-indutive sets, see [66, 7C℄. All we need is as follows:Fat 3.3.17. For any set of reals A, IND(A) is the smallest Spetor pointlassontaining A and losed under 9R and 8R.Proof. The argument is the same as [66, 7C.3℄.Theorem 3.3.18 (Weak version of Moshovakis' Coding Lemma). Assume Bl-AD.Let < be a strit wellfounded relation on a set A of reals with rank funtion� : A !  onto and let � be a Spetor pointlass ontaining < and losed under9R and 8R. Then for any subset S of , there is a set of reals C 2 � suh that�[C℄ = S.By Fat 3.3.17, IND(<) satis�es the onditions for �.Proof. The argument is based on Moshovakis' original argument [66, 7D.5℄.Let S be a subset of . We show that for any � � , there is a set of realsC� 2 � with �[C�℄ = S \ � by indution on �.It is trivial when � = 0 and it is also easy when � is a suessor ordinalbeause � is a boldfae pointlass. So assume � is a limit ordinal and the abovelaim holds for eah � < �. We show that there is a C 2 � with �[C℄ = S \ �.Sine � is !-parametrized and losed under reursive substitutions, we havefGn � R � Rn j n � 1g given in Lemma 1.7.1. Let G2a = fx 2 R j (a; x) 2 G2gfor eah real a. For a real a, we say G2a odes a subset S 0 of S if G2a � A and�[G2a℄ = S 0.Let us onsider the following game G�: Player I and II hoose 0 or 1 one byone and they produe reals a and b separately and respetively. Player II wins ifeither (G2a does not ode S \ � for any � < �) or (G2a odes S \ � for some � < �and G2b odes S \ � for some � < � with � > �). By Bl-AD, one of the playershas an optimal strategy in this game.Case 1: Player I has an optimal strategy � in G�.For a real b, let �b be the mixed strategy for player II suh that player IIprodues b with probability 1 no matter how player I plays. Sine � is optimalfor player I, for eah real b, for ��;�b-measure one many reals a, G2a odes S \ �for some � < �. Fix a real b. We use the following fat analogous to Fat 3.3.14:Fat 3.3.19 (Folklore). Let � be a Borel probability measure on the Baire spaeand assume every set of reals is �-measurable. Then the set of �-null sets is losedunder wellordered unions.



D. Ikegami, Games in Set Theory and Logi 97Sine every set of reals is Lebesgue measurable by Theorem 1.14.8, every setof reals is ��;�b-measurable. By Fat 3.3.19, there is a unique �b < � suh thatfor ��;�b-positive measure many reals a, G2a odes S \ �b and the set of reals asuh that G2a odes S \ � for some � < �b is ��;�b-measure zero. Let C be thefollowing: A real x is in C if there is a real b suh that for ��;�b-positive measuremany reals a, they ode the same subset S 0 of , and no proper subsets of S 0 anbe oded by ��;�b-positive measure many reals, and x 2 G2a for some real a suhthat G2a odes S 0. Sine � is losed under 9R and 8R, C is in �(�). By indutionhypothesis, for any � < �, there is a real b suh that G2b odes S \ �. Sine � isoptimal, C odes S \ �, as desired.Case 2: Player II has an optimal strategy � in G�.Let (a; x) 7! fag(x) be the partial funtion from R�R to R whih is universalfor all the partial funtions from R to itself that are �-reursive on their domain.For reals a and w, de�ne a set of reals Aa;w as follows: a real x is in Aa;w if thereexists z < w suh that fag(z) is de�ned and �fag(z); x� 2 G2. It is easy to seethat Aa;w is in �. By Lemma 1.7.1, there is a �-reursive funtion � : R�R ! Rsuh that Aa;w = G2�(a;w) for eah a and w.For eah real a and w, de�ne a set of reals Ca;w as follows: A real x is in Ca;wif for ���(a;w);� -positive measure many b, they ode the same subset S 0 of , noproper subsets of S 0 an be oded by ��;�b-positive measure many reals, and x isin G2b for some real b suh that G2b odes S 0. It is easy to see that Ca;w is in �.Hene by Lemma 1.7.1, there is a �-reursive funtion �0 : R � R ! R suh thatCa;w = G2�0(a;w) for eah a and w.Sine the funtion (a; w) 7! �0(a; w) is �-reursive in � and total, by ReursionTheorem 1.7.3, we an �nd a �xed a� suh that for all w, fa�g(w) = �0(a�; w).Let g(w) = fa�g(w).Claim 3.3.20. For eah w 2 A with �(w) < �, there is some �(w) < � with�(w) < �(w) suh that G2g(w) odes S \ �(w).Proof of Claim 3.3.20. We show the laim by indution on w. Suppose it is donefor all x < w. Then Aa�;w odes S \ � where � = supf�(x) j x < wg � �(w).Sine � is optimal for II, Ca�;w odes S \ � for some � > �. Sine G2g(w) = Ca�;w,setting �(w) = �, �(w) > �(w) and G2g(w) odes S \ �(w). � (Claim 3.3.20)Let C = Sw2A;�(w)<�G2g(w). Then by Claim 3.3.20, C odes S \ � and C is in�, as desired.We also need a weak version of Wadge's Lemma: Let A be a set of reals. Fora natural number n � 1, a set of reals B is �1n in A if B is de�nable by a �1nformula in the struture A2A that is the seond order struture with A as an unaryprediate with a parameter x for some real x. A set of reals B is projetive in Aif B is �1n(A) for some n � 1.



98 Chapter 3. Games themselvesLemma 3.3.21 (Weak version of Wadge's Lemma). Assume Bl-AD. Then forany two sets of reals A and B, either A is �12 in B or B is �12 in A.Proof. Reall the Wadge game GW(A;B) from x 1.15. By Bl-AD, one of theplayers has an optimal strategy in GW(A;B). Assume player II has an optimalstrategy � in GW(A;B). Then for any real x,x 2 A () ��x;��f(x0; y) j x0 = x and y 2 Bg� = 1:It is easy to see that the right hand side of the equivalene is �12 in B. If playerI has an optimal strategy in GW(A;B), then one an prove that B is �12 in A inthe same way and hene B is �12 in A.For the rest of this setion, we assume Bl-ADR and DC. We �x a set of realsA and give a senario to prove that A is Suslin. We �x a simple surjetion � fromthe reals to f0; 1g, e.g., x 7! x(0).Claim 3.3.22. There is a sequene �(�n; <n; n; ) j n < !� suh that for all n,1. �n is a Spetor pointlass losed under 9R and 8R, �n � �n+1, and A 2 �0,2. every relation on the reals whih is projetive in a set in �n an be uni-formized by a funtion in �n+1,3. <n is in �n and a strit wellfounded relation on the reals with length n andevery set of reals whih is projetive in a set in �n has a strong 1-Borelode whose tree is on n+1.Proof of Claim 3.3.22. We onstrut them by indution on n. For n = 0, let �0be any Spetor pointlass losed under 9R and 8R ontaining A whih exists byFat 3.3.17, and <0 be any strit wellfounded relation on the reals in �0. Thenthey satisfy all the items above.Suppose we have onstruted (�n; <n; n) with the above properties. We on-strut �n+1; <n+1, and n+1 . First note that there is a set Bn of reals whihis not projetive in any set in �n by uniformization for every relation on thereals. Then by Lemma 3.3.21, every set projetive in a set in �n is �12 in Bn.Let Hn and H 0n be universal sets for �12(Bn) sets of reals and �12(Bn) subsets ofR2 , respetively. By uniformization, there is a funtion fn uniformizing H 0n. ByTheorem 3.3.7, there is a  < � suh that Hn has a strong 1-ode whose tree ison . Let n+1 = , <n+1 be a strit wellfounded relation on the reals with lengthn+1, and let �n+1 be a Spetor pointlass losed under 9R and 8R ontaining�n [ fHn; H 0n; fn; <n+1g. We show that they satisfy all the items above for n+ 1.The �rst item is trivial. The seond item is easy by noting that if fn uniformizesH 0n then (fn)a uniformizes (H 0n)a for any real a. The third item follows from thatif Hn has a strong 1-ode whose tree is on n+1, then (Hn)a has a strong 1-odewhose tree is on n+1for every real a. � (Claim 3.3.22)



D. Ikegami, Games in Set Theory and Logi 99Note that in the proof of Claim 3.3.22, we have essentially used DC.We �x �(�n; <n; n) j n < !� as above and let �In = �2n;�IIn = �2n+1; <In beindued by �, <IIn=<2n+1, In = ! and IIn = 2n+1, Let �In = � and �IIn be thesurjetion between the reals onto n2n+1 indued by <2n+1. Let �IIn be the funtiona 7! �IIn [Gna ℄ where Gn is a universal set for �IIn sets of reals (we do not use �In).Then by Theorem 3.3.18, �IIn is a surjetion from the reals onto nIIn . Considerthe following game ĜA: Player I plays 0 or 1 and player II plays reals one by onein turn and they produe a real z and a sequene t 2 !R, respetively. SettingTn = �IIn �t(n)�, player II wins if for all n < m, Tn+1�n � Tn, Tn+1�n = Tm�n, andz 2 A () Sn2! Tn+1�n is illfounded, where Tm�n = fs�n j s 2 Tmg. This isan integer-real game in the sense player I hooses integers and player II hoosesreals.We introdue an integer-integer game ~GA simulating the game ĜA. In thegame ~GA, players hoose pairs of 0 or 1 one by one and produe a pair of re-als (x0; y0) and (a0; b0) in ! rounds respetively. From (x0; y0) and (a0; b0), we\deode" a real z and an !-sequene of reals t respetively as follows: For eahpointlass � above, we �x a set U� universal for relations in �. Setting F0 = U�I0x0 ,F0 is a funtion from the reals to perfet sets of reals (or odes of them) (other-wise player I loses). Let Px0 = F (x0). Then y0 is an element of Px0 (otherwiseplayer I loses) and is identi�ed with a triple (u0; x1; y1) of reals by looking at aanonial homeomorphism between Px0 and R3 . Then setting F1 = U�I1x1 , F1 is afuntion from the reals to perfet trees on 2 (or odes of trees) (otherwise playerI loses). Let Px1 = F (x1). Then y1 is an element of Px1 (otherwise player I loses)and is identi�ed with a triple (u1; x2; y2) of reals by looking at a anonial homeo-morphism between Px1 and R3 . Continuing this proess, one an unwrap (xn; yn)and obtain (un; xn+1; yn+1) for eah n and get an !-sequene (un j n < !). Letz(n) = �(un). In the same way, one an obtain an !-sequene (tn j n < !) of realsfrom (a0; b0). Setting Tn = �IIn �t(n)�, player II wins if for all n < m, Tn+1�n � Tn,Tn+1�n = Tm�n, and z 2 A () Sn2! Tn+1�n is illfounded.Beker proved the following:Lemma 3.3.23.1. If player I has a winning strategy in the game ~GA, then player I has awinning strategy � in the game ĜA suh that � is a ountable union of setsin �IIn for some n as a set of reals.2. If player II has a winning strategy in the game ~GA, then player II has awinning strategy in the game ĜA.Proof. See [9, Lemma A & B℄.We show and onjeture the following: Let B � !R. A mixed strategy � forplayer I is weakly optimal in B if for any s 2 REven , the set fx j �(s)(x) 6= 0g is



100 Chapter 3. Games themselves�nite and for any !-sequene y of reals, ��;�y(B) > 1=2. One an introdue theweak optimality for mixed strategies for player II in the same way. Note that ifplayer I has an optimal strategy in some payo� set, then player I has a weaklyoptimal strategy in the same payo� set. The same holds for player II.Lemma 3.3.24. If player I has an optimal strategy in the game ~GA, then playerI has a weakly optimal strategy � in the game ĜA suh that � is a ountableunion of sets in �IIn for some n as a set of reals.Conjeture 3.3.25. If player II has an optimal strategy in the game ~GA, thenplayer II has a weakly optimal strategy in the game ĜA.Proof of Lemma 3.3.24. We �rst topologize the set Prob(R) of all Borel proba-bilities on the reals. Consider the following map � : Prob(R) ! <!2[0; 1℄: Given aBorel probability � on the reals, for any �nite binary sequene s, �(�)(s) = �([s℄).We topologize <!2[0; 1℄ by the produt topology where eah oordinate [0; 1℄ isequipped with the relative topology of the real line and we identify Prob(R) withits image via � and topologize it with the relative topology of <!2[0; 1℄. Then thespae Prob(R) is ompat.Claim 3.3.26. For any set B of reals, the map � 7! �(B) is a ontinuous mapfrom Prob(R) to [0; 1℄.Proof of Claim 3.3.26. This is easy when B is losed or open. In general, itfollows from the following equations: For any � 2 Prob(R),�(B) = supf�(C) j C � B and C is losedg= inff�(O) j O � B and O is openg: � (Claim 3.3.26)Next, we introdue a omplete metri d on Prob(R) ompatible with thetopology we onsider. Let (sn j n 2 !) be an injetive enumeration of �nite binarysequenes. For � and �0 in Prob(R), d(�; �0) = Pn2! j�([sn℄) � �0([sn℄)j=2n+1.Then d is a omplete metri ompatible with our topology. Sine Prob(R) isompat, the map � 7! �(A) is uniformly ontinuous with the metri d. Henethere is an � > 0 suh that if d(�; �0) < �, then j�(A)� �0(A)j < 1=2. Let us �x asequene (�n j n 2 !) of positive real numbers suh that Pn2! �n=2n+1 < �. Forany �nite binary sequene s0, let ns0 be the natural number suh that sn0s = s0.Let � be an optimal strategy for player I in the game ~GA. We show thatthere is a weakly optimal strategy ~� for player I in the game ĜA. Given a reala. Consider the funtion F 0a : R ! 2[0; 1℄ as follows: Given a real b, F 0a (b)(i) =��;�(a;b)�f(x0; y0) j �(u0) = ig� for i = 0; 1, where y0 is identi�ed with (u0; x1; y1)as disussed. Sine every set of reals has the Baire property, F 0a is ontinuous ona omeager set. Then there is a perfet set P of reals suh that for any b and b0



D. Ikegami, Games in Set Theory and Logi 101in P , jF 0a (b)(i)� F 0a (b0)(i)j < �n(i) . Sine the set X0 = f(a; P ) j (8b; b0 2 P ) (8i <2) jF 0a (b)(i)�F 0a (b0)(i)j < �n(i)g is projetive in �I0, there is a real a0 suh that thefuntion f0 = U�II0a0 uniformizes X0. Let ~�(;)(0) = maxfF 0a0(b)(0) j b 2 f0(a0)gand ~�(;)(1) = 1� ~�(;)(0). We have spei�ed ~� for the �rst round.Next, suppose player II played a real t0 for her �rst round. We deide theprobability ~�(t0) on 2. Let a be a real. Consider the funtion F 1a : R ! 2[0; 1℄ asfollows: For a real b, F 1a (b)(i) = ��;�(a0;(t0;a;b))�f(x0; y0) j �(u1) = ig� for i = 0; 1,where y1 = (t1; x2; y2) as disussed. Then the funtion F 1a is ontinuous on aomeager set. Then there is a perfet set P of reals suh that for any b and b0in P , jF 1a (b)(i) � F 1a (b0)(i)j < minf�ns_hii j s 2 12g for i = 0; 1. Sine the setX1 = f(a; P ) j (8b; b0 2 P ) (8i < 2) jF 1a (b)(i)�F 1a (b0)(i)j < minf�ns_hii j s 2 12ggis projetive in �I1 , there is a real a1 suh that the funtion f1 = U�II1a1 uniformizesX1. Let ~�(t0)(0) = max fF 1a1(b)(i) j b 2 f1(a1)g and ~�(t0)(1) = 1� ~�(t0)(0).Continuing this proess, we an speify ~� with the following property: Forany natural number m and m-tuple reals (t0; : : : ; tm�1), j~�(t0; : : : ; tm�1)(i) �Fmam(b)(i)j < minf�ns_hii j s 2 m2g for eah b 2 fm(am). Also we have spei-�ed the reals am and bm for all m < !.We show that ~� is weakly optimal in the game ĜA. Let (tn j n < !) be an!-sequene of reals suh that the tree Sn<! Tn+1�n is illfounded. We show thatthe probability of the payo� set via �~�;�(tnjn<!) is greater than 1=2. (The asewhen the tree is wellfounded is dealt with in the same way.)First note that together with (tn j n < !), ~� produes a Borel probability �on the reals suh that for any �nite binary sequene s, �([s℄) = Qi<m ~�(tj j j <i)�s(j)�, where m is the length of s. Sine the tree from (tn j n < !) is illfounded,it suÆes to show that �(A) > 1=2. On the other hand, the measure ��;�(a0;b0)indues a Borel probability measure � on the reals as follows: For a �nite binarysequene s, �([s℄) = ��;�(a0;b0)�f(x0; y0) j (8i < m) �(ti) = s(i)g�, where m isthe length of s. By the property of ~�, d(�; �) < �. Hene j�(A) � �(A)j < 1=2.Sine � is optimal for player I in the game ~GA and the tree from (tn j n < !) isillfounded, �(A) = 1. Therefore, �(A) > 1=2, as desired.From Lemma 3.3.24 together with Theorem 3.3.10, one an onlude the fol-lowing:Lemma 3.3.27. There is no optimal strategy for player I in the game ~GA.Proof. To derive a ontradition, suppose player I has an optimal strategy in thegame ~GA. Then by Lemma 3.3.24, player I has a weakly optimal strategy � inthe game ĜA suh that � is in a ountable union of sets in �In for some n as a setof reals.Consider the following set:X = f(t; s) 2 !R � <!R j ��;�t�f(z; t0) j t0 = t and z 2 Ag� > 1=2 and(8i < s) �js(0)j<II0 ; : : : ; js(i)j<IIi � 2 Ti+1�ig;



102 Chapter 3. Games themselveswhere js(i)j<IIi is the rank of s(i) with respet to the wellfounded relation <IIi andTi = �IIi �t(i)�. For (t; s) and (t0; s0) in X, (t; s) < (t0; s0) if t and t0 ode the sametree T and s odes a node in T extending a node oded by s0. Note that forany (t; s) in X, if T is the tree oded by t, T is wellfounded beause � is weaklyoptimal in the game ĜA. Hene (X;<) is a strit wellfounded relation on X. Let! = supfIIn j n 2 !g. By DC, the o�nality of � is greater than !. Hene! < �. Note that for any ordinal � < +! , there is a wellfounded tree T odedby some real t as in the de�nition of X suh that the length of T is �. Hene thelength of (X;<) is +! .Sine � is a ountable union of sets in �In for some n as a set of reals, the set< on X is in 9RV!W!Sn2! �In, i.e., it is a projetion of a ountable intersetionof ountable unions of sets in �In for some n. Sine every set in �In has a strong1-Borel ode whose tree is on IIn for every n, every set in V!W!Sn2! �In hasa strong 1-Borel ode whose tree is on +! . By Theorem 3.3.10, the lengthof < must be less than +! , whih is not possible beause it was equal to +! .Contradition!We lose this setion by proving that Conjeture 3.3.25 implies Conjeture 3.3.1.Proof of Conjeture 3.3.1 from Conjeture 3.3.25. By Lemma 3.3.27, player I doesnot have an optimal strategy in the game ~GA. Hene by Bl-AD, player II hasan optimal strategy in the game ~GA. By Conjeture 3.3.25, player II has aweakly optimal strategy � in the game ĜA. Note that � an be seen as areal beause eah measure on the reals given by � is with �nite support bythe weak optimality of � . For eah �nite binary sequene s with length n, letts = fu 2 nR j (8i < n) ��(s�i)��u�(i�1)���s(i)� 6= 0g, where (s�i)��u�(i�1)�is the onatenation of s�i and u�(i � 1) bit by bit. For eah �nite binary se-quene s, we identify ts with a set of n-tuples of natural numbers via a map �sby using the isomorphisms between (a;<R) and (n;2) for a �nite set of reals aand a natural number, where <R is a standard total order on the reals. For anyreal x, tx = Sn2! tx�n is a tree on natural numbers and (�s j s 2 <!!) indues ahomeomorphism �x between [tx℄ and [ft0 2 <!R j ��x;� ([t0℄) 6= 0g℄. Consider thefollowing tree:T = f(s; t; u) 2 [n2!(n2� n! � n!) j t 2 �s(ts) and �8i < lh(s)� u(i) = jxij<IIi g;where xi is the t(i)th real of the set of suessors of (xj j j < i) in ts�i. Thenby the weak optimality of � , the following holds: Setting B = f(x; y) 2 R � !! j(9f 2 !!) (x; y; f) 2 [T ℄g, for any real x,x 2 A () ��x;���x[Bx℄� > 1=2() (9T 0 : a tree on 2) [T 0℄ � Bx and ��x;���x�[T 0℄�� > 1=2:



D. Ikegami, Games in Set Theory and Logi 103Sine B is Suslin, the set f(x; T 0) j [T 0℄ � Bxg is also Suslin. Hene A isSuslin, as desired.We have shown that every set of reals is Suslin. Then by Theorem 1.14.5, ADholds. Now by Theorem 3.3.2 and Theorem 1.14.9, ADR holds.3.4 Toward the equionsisteny between ADRand Bl-ADRIn the last setion, we have disussed the possibility of the equivalene betweenADR and Bl-ADR under AD+DC. Solovay proved the following:Theorem 3.4.1 (Solovay). If we have ADR and DC, then we an prove theonsisteny of ADR. Hene the onsisteny of ADR+DC is stritly stronger thanthat of ADR.Proof. See [78℄.Hene assuming DC to see the equivalene between ADR and Bl-ADR is notoptimal. One an ask whether they are equivalent without DC. So far we do nothave any senario to answer this question. Instead, one ould ask the equion-sisteny between ADR and Bl-ADR. In this setion, we disuss the followingonjeture:Conjeture 3.4.2. ADR and Bl-ADR are equionsistent.Woodin onjetured the following:Conjeture 3.4.3 (Woodin). Assume the following:1. The priniple DCR holds,2. Every Suslin & o-Suslin set of reals is determined, and3. There is a �ne normal measure on P!1(R).Then either there is an inner model of ADR or there is an inner model M of AD+suh that M ontains all the reals and �M = �V .We show that Conjeture 3.4.3 implies Conjeture 3.4.2.Proof of Conjeture 3.4.2 from Conjeture 3.4.3. First note that the assumptionsin Conjeture 3.4.3 hold if we assume Bl-ADR. Hene by Conjeture 3.4.3, thereis an inner model of ADR or there is an inner model M of AD+ suh that Montains all the reals and �M = �V . If there is an inner model of ADR, then weare done. Hene we assume that there is an inner model M of AD+ suh that Montains all the reals and �M = �V .



104 Chapter 3. Games themselvesWe show that ADR holds in V . First we laim that M ontains all the setsof reals. Suppose not. Then there is a set of reals A whih is not in M . Thenby Lemma 3.3.21, every set of reals in M is �12(A). Then �M must be less than�V beause one an ode all the prewellorderings by reals using A in V , whihontradits the ondition of M . Hene every set of reals is in M . Sine we haveuniformization for every relation on the reals in V , it is also true in M . We usethe following fat:Fat 3.4.4. Assume AD+. Then the following are equivalent:1. The axiom ADR holds, and2. Every relation on the reals an be uniformized.By Fat 3.4.4, sine every relation on the reals an be uniformized in M , Msatis�es ADR. Sine P(R) \M = P(R), ADR holds in V , as desired.3.5 QuestionsWe lose this hapter by raising questions.The equivalene between ADR and Bl-ADR under ZF+DC As disussedin x 3.3, it is enough to show Conjeture 3.3.25 to prove the equivalene betweenADR and Bl-ADR. In the proof of Lemma 3.3.24, in eah round, we shrank the re-als into a perfet set suÆiently enough so that the strategy we onstruted givesus a measure on the reals whih is lose enough to the measure derived from agiven optimal strategy and the opponent's moves, whih yields the weak optimal-ity of the strategy. But the same argument does not work for Conjeture 3.3.25beause one annot shrink the reals into a perfet set to get the ontinuity of agiven funtion from R to R[0; 1℄. Nonetheless, we an proeed the similar argu-ment to the oded spae Qn2! P(nIIn ) from the spae !R by using the fat thatthe meager ideal on the reals is losed under any wellordered union and deidingthe probability on the spae Qn2! P(nIIn ) is enough to determine the probabilityof the payo� set. Although the details of the argument seem ompliated and itis not yet done, we believe it is possible and it is not so diÆult.The equionsisteny between ADR and Bl-ADR By the argument in x 3.4,it is enough to show Conjeture 3.4.3 to prove the equionsisteny between ADRand Bl-ADR. It seems possible beause Bl-ADR gives us a generi embeddingsimilar to the one obtained by an !1-dense ideal on !1, CH and \The restritionof the generi embedding given by the ideal to On is de�nable in V ". Let us seemore details. If one takes a generi �lter G of the partial order <!R ordered byreverse inlusion, then this �lter generates an ultra�lter U 0 extending the dual



D. Ikegami, Games in Set Theory and Logi 105�lter of the meager ideal in !R in the same way as we have seen in Lemma 3.3.12.If one takes the generi ultrapower of V via U 0 and lets M be the target modelof the ultrapower embedding j, then  Lo�s's Theorem holds for M if the o�nalityof � is !, the reals in V belongs to M as an element (as a real), M ontains allthe reals in V [G℄ and j�On is de�nable in V (the last statement is ensured by theexistene of a �ne normal measure U in Theorem 3.1.2, in fat, the ultrapowerembedding via U 0 agrees with j on ordinals as we have seen). In general, M isnot well-founded (in the ase of(�) = !). But � is always in the well-foundedpart of M . Together with the determinay of Suslin & o-Suslin sets of reals, thisseems enough to proeed the Core Model Indution up to � = �!, i.e., a minimalmodel of ADR.A stronger weak Moshovakis' Lemma As we have seen in x 3.3, a weak ver-sion of Moshovakis's Lemma 3.3.18 holds assuming Bl-AD. One an ask whetherone an prove a stronger version of Moshovakis's Lemma formulated in [66,7D.5℄ from Bl-AD. If this is possible, it would be plausible to show that the setof strong partition ardinals is unbounded in � and that every Suslin set of realsis determined from Bl-AD.


