
Schema Matching and Integration for Data
Sharing Among Collaborating Organizations

Ozgul Unal
University of Amsterdam, The Netherlands

Email: O.Unal@uva.nl

Hamideh Afsarmanesh
University of Amsterdam, The Netherlands

Email: H.Afsarmanesh@uva.nl

Abstract-Schema matching and schema integration are
important components of the data sharing infrastructure in
Collaborative Networks. In order to achieve more accurate
matching and integration results and enhance efficiency, it
is required to provide some mechanisms to carry out these
processes as automatically as possible. This paper addresses
the problems and challenges related to schema matching
and schema integration and introduces the Semi-Automatic
Schema Matching and INTegration (SASMINT) system to
automate these processes. Other systems aiming at database
interoperability typically focus either on schema matching
or on schema integration. On the other hand, the SASMINT
system combines them and uses the results of schema
matching for semi-automatic schema integration. SASMINT
follows a composite approach in schema matching, which
means it combines the results of variety of algorithms,
making it a generic tool applicable for different types of
schemas. It also proposes a Sampler component for helping
the user to assign the weights to algorithms. Furthermore,
SASMINT uses an XML-based derivation language to save
the results of schema matching and schema integration, and
also to define the components of integrated schemas, in
order to further support automated query processing
against integrated sources.

Index Terms-Schema matching, schema integration,
collaborative networks

I. INTRODUCTION

With the advances of Internet, the number of information
sources accessible through the Web is increasing.
However, these advances create new challenges. For
example, there is a huge amount of related data made
available by distributed providers. Rather than accessing
and manipulating single database systems in isolation,
research is needed to make it possible to simultaneously
access and manipulate different remote databases. In
addition to being distributed, the voluminous data are
exposed by various data providers (e.g. institutions,
organizations, companies, etc.), which have their own
proprietary data models resulting in heterogeneity among
databases. In order to provide transparent access to such
remote data and enable the sharing of information among

heterogeneous and autonomous databases, their schema
heterogeneity needs to be identified and resolved.
Proposing a solution for such problems is more
challenging for environments whose members shall
collaborate, while they pose a number of heterogeneities
that need to be addressed by the infrastructure. For
example, when a number of organizations are members
of collaborative networks, the proposed infrastructure
must support them with sharing and exchange of their
information.

More and more organizations understand the need to
work together in order to better achieve their common
goals. The importance of collaboration has been well
understood in different domains, resulting in a rise in the
number of collaborating organizations. A Collaborative
Network (CN) is formed by variety of autonomous,
geographically distributed, and heterogeneous
organizations that collaborate to better achieve common
or compatible goals [1]. Several forms of collaborative
networks are evolving in parallel. Among the promising
types of CNs, one can mention Virtual Organizations or
Virtual Enterprises, Virtual Communities, and Virtual
Laboratories.

It is important to provide an infrastructure enabling
database interoperability, especially considering that
collaborative networks need to be formed quickly [2].
Heterogeneity is the most important obstacle facing the
collaboration. Since data sharing constitutes the main
type of collaboration, the collaboration infrastructure has
to consider such differences for providing effective
mechanisms to integrate or inter-link and homogeneously
access heterogeneous databases. However, automatic
resolution of schema heterogeneity still remains a major
bottleneck for provision of integrated data access/sharing
among autonomous, heterogeneous, and distributed
databases. In order to provide transparent access to such
remote data and enable the sharing of information among
databases, their schema heterogeneity needs to be
identified and resolved and then the correspondences
among schemas need to be identified. This process is
called as schema matching. After schema matching,
schemas might need to be also integrated, depending on
the needs of the CNs. It is clear to see that schema

 1

248 JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009

© 2009 ACADEMY PUBLISHER

matching and schema integration constitute the key
processes in information and communication
technologies (ICT) infrastructures supporting
collaboration. Tools that enable semi-automatic matching
and integration are among the most important
components of such infrastructures.

Both schema matching and schema integration are
challenging, especially considering the naming and
structural differences among schemas. In most previous
approaches reported in literature, there is a great amount
of manual work involved in schema matching and
integration. Although there is some research focusing on
semi-automatic schema matching (as later addressed in
the related research section), it is not interlinked with the
automation of schema integration. There is still need for
clever and flexible user interfaces to display match
results. Another limitation of the previous approaches is
that they typically do not combine different match
algorithms in a flexible way. Taking these limitations into
account, we propose the SASMINT (Semi Automatic
Schema Matching and INTegration) system and approach
[3-5]. SASMINT proposes a solution to automate the
processes related to interlinking of heterogeneous
relational databases, particularly focused on schema
matching and schema integration in collaborative
environments including different forms of collaborative
networks. Compared to other approaches in the literature,
SASMINT combines a number of algorithms for semi-
automatic schema matching and uses the result of
matching for semi-automatic schema integration, needed
for providing access to distributed, heterogeneous, and
autonomous databases.

The rest of this paper is organized as follows: Section
II introduces different types of information management
systems aiming at providing access to distributed and
heterogeneous databases. This section also summarizes
different types of information related heterogeneities.
Section III provides a background review of schema
matching and schema integration. Section IV addresses
the related work and open issues. Section V introduces
the SASMINT system. Sections VI, VII, and VIII
describe the Configuration, Schema Matching, and
Schema Integration steps of SASMINT respectively.
Section IX provides some discussions about the
application of SASMINT through a small example.

Finally, Section X summarizes the main conclusions of
the paper.

II. INTEGRATED INFORMATION MANAGEMENT AND
HETEROGENEITY

Enabling interoperability among distributed and
heterogeneous databases has been a significant issue in
different domains, including CNs. Different architectures
have been proposed in the literature, concerning the
management and sharing of data provided by distributed
and possibly heterogeneous and autonomous databases.
Many terms have been used to describe these
architectures, such as multidatabase systems, federated
and non-federated database systems, whereas there is no
consensus of terminology in the database community. In
order to provide our understanding of the terms, we
provide a classification for such systems that we call as
Integrated Information Management Systems, as shown
in Fig. 1.

By following the definition of [6], we mention two
types of integrated information management systems:
distributed database systems and multidatabase systems.
Based on the classification of [7], we divide the
multidatabase systems as federated information
management systems and non-federated information
management systems.

Federated information management systems consist of
nodes, which autonomously decide which part of their
data to share with others. These systems can follow a
fully federated schema or a global federated schema
approach. As illustrated in Fig. 2, a fully federated
schema approach constructs an integrated schema at each
node by merging the local schema of that node with the
schemas imported from other nodes. Import schemas
represent the information that other nodes make available
to this node. A global federated schema approach on the
other hand, generates a global schema by integrating the
export schemas (represent the shared part of information)
from nodes into a single schema, as shown in Fig. 3.

Nodes of non-federated information management
systems are not autonomous. Two approaches can be
mentioned here: 1-to-1 schema mapping and common
schema adaptation mapping. In 1-to-1 schema mapping
approach, mappings between the schemas of nodes are

In te g r a te d In fo rm a tio n M a n a g e m e n t S y s te m

M u l t id a ta b a s e
S y s te m

D is t r ib u te d
D a ta b a s e S y s te m

F e d e r a te d In f . M a n a g e m e n t
S y s te m

N o n -F e d e ra te d In f .
M a n a g e m e n t S y s te m

F u ll y F e d e ra t e d S c h e m a
(lo o s e ly c o u p le d)

G lo b a l F e d e ra t e d S c h e m a
(tig h t ly c o u p le d)

1 - to - 1 s c h e m a
m a p p in g

(l o o s e l y c o u p le d)

C o m m o n s c h e m a
a d a p t a ti o n m a p p in g

(t ig h tl y c o u p le d)

Figure1. Integrated Information Management System

 2

JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009 249

© 2009 ACADEMY PUBLISHER

Export
Schema n

Export
Schema n

Local
Schema

A

Integrated
Schema

A

Export
Schema n

Export
Schema nExport

Schema ..
Export

Schema ..Export
Schema A1

Export
Schema A1

Export
Schema n

Export
Schema nExport

Schema ..
Export

Schema ..Import
Schema B1

Import
Schema B1

Node A

Export
Schema ..

Export
Schema ..Export

Schema B1
Export

Schema B1

Export
Schema n

Export
Schema nExport

Schema ..
Export

Schema ..Import
Schema A1

Import
Schema A1

Node B

Local
Schema B

Integrated
Schema B

Figure 2. Fully Federated Schema

Local
Schema A

Node A

Export
Schema n

Export
Schema nExport

Schema ..
Export

Schema ..Mapping BMapping B

Local
Schema B

Node B

Export
Schema n

Export
Schema nExport

Schema ..
Export

Schema ..Mapping AMapping A

Local
Schema N

Node N

Export
Schema n

Export
Schema nExport

Schema ..
Export

Schema ..Mapping AMapping A

Mapping

M
ap

pi
ng

M
ap

pi
ng

M
ap

pin
g M

apping

Mapping

Figure 4. 1-to-1 Schema Mapping

Node A

Common
Schema
Common
Schema

Mapping

Mapping

Mappings AMappings A

Local
Schema B

Node B

Mappings BMappings B

Local
Schema N

Node N

Mappings NMappings N

Map
pin

g

Local
Schema A

Figure 5. Common Schema Adaptation Mapping

Export
Schema A

Node A

Export
Schema B

Node B

Export
Schema N

Node N

Global Federated
Schema

Global Federated
Schema

…

Figure 3. Global Federated Schema

identified in a pair-wise manner. For instance, as
represented in Fig. 4, mappings between the schema of
Node A and schemas of each other nodes are defined.
Whereas in common schema adaptation mapping
approach, mappings between the common schema and
the local schema of each node are specified, as depicted
in Fig. 5.

No matter which of the Integrated Information
Management System approach is used in a network of
collaborating organizations, heterogeneity is the main
challenge to deal with. Heterogeneity exists at different
levels, such as there might be differences in operating
systems and in database management systems used, as
well as in data definitions.

A number of classifications of heterogeneity have been
proposed in the literature and there are many overlaps
and discrepancies among these classifications.
Considering the goals of SASMINT, introduced in this
paper, we focus only on information related
heterogeneities. Especially considering the differences in
database schemas, we can mention the following types of
heterogeneity:

1. Structural Heterogeneity: Different structural
primitives are provided by different data models. For
example, object-oriented data models support
inheritance while relational data models do not (data
model heterogeneity). Even if the data model is the
same, similar information content may be
represented differently in different schemas
(schematic heterogeneity).
Following types are mentioned by [8] among the

structural conflicts:
• Type Conflicts: These conflicts arise from

using different modeling constructs (for example
entity vs. attribute) for representing the same
concept.

• Dependency Conflicts: These types of conflicts
arise when concepts are related among
themselves with different dependencies in
different schemas, such as with 1-to-1
relationship in one schema, while 1-to-m
relationship in another schema.

• Key Conflicts: This case arises when different
keys are assigned to the same concept in
different schemas.

2. Syntactic Heterogeneity: This type of heterogeneity
is related to different formats used in the names of

 3

250 JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009

© 2009 ACADEMY PUBLISHER

the same concepts, such as using abbreviated vs.
extended names.

3. Semantic Heterogeneity: This type is related to
differences in meaning, dependent on the vocabulary
and terminology used to express the information and
the contexts in which it is interpreted.
There are two types of semantic relationships among

the names used:
• Homonyms: The same name is used for two

different concepts.
• Synonyms: The same concept is described by

different names.
As it is clear from the existence of a large number of

classifications, heterogeneity has been one of the
fundamental problems in information systems. Among
different types of heterogeneities mentioned in the
literature, SASMINT system considers heterogeneities
listed above. By combining the syntactic and semantic
heterogeneity under the name linguistic heterogeneity,
the research explained in this paper focuses on structural
and linguistic schema conflicts. Especially structural
conflicts are complex cases and cause difficulties for
schema matching and integration algorithms. Since it is
difficult to handle these cases automatically, user input is
required.

III. SCHEMA MATCHING AND SCHEMA INTEGRATION

Integrated information management systems, introduced
in the previous section, need to tackle different types of
heterogeneities in order to identify the correspondences
among schemas, which is the aim of schema matching
and integration. As a result, schema matching and
schema integration have become two main processes in
such systems.

Schema matching can be defined as finding
correspondences between elements of two schemas. It
plays an important role in several application domains,
such as schema integration, data warehouses, query
processing, Semantic Web, and e-business [9] [10]. The
simplest type of matching is the 1-1 matching. For two
schemas A and B, this type of matching identifies for
each element of A the most similar element of schema B.
In addition to 1-1 matches, complex matches also
frequently occur among schemas. Complex matching
finds out mappings between each element or a group of
elements of schema A and a group of elements of schema
B. Groups of elements are combined with a formula.

Schema Matching takes a variety of inputs and
produces some outputs depending on the matching
approach that it follows. Varieties of inputs consist of the
schema information, a linguistic dictionary, a number of
linguistic and structural similarity measures, and the user
input. Output of matching is the similarity scores for each
mapping identified.

The problem of schema integration in the context of
distributed information systems is a relatively old
problem. In different approaches for enabling access to
distributed and heterogeneous data, different levels of
integration might be required. In database research,
schema integration is typically used to refer to both view

integration and database integration [8]. View integration
aims at producing an integrated schema of users’ views
and is performed during the database design process,
whereas database integration derives a new schema from
existing specification. As identified in [11], view
integration methodologies work with views based on the
same data model, but database integration technologies
work with schemas that are usually defined using
heterogeneous data models. Considering the goals of the
research work explained in this thesis, database
integration is the one being focused on and whenever
schema integration is mentioned, database integration is
meant.

Three steps are involved in schema integration: 1) Pre-
integration, 2) Matching, and 3) Integration. The Pre-
integration step consists of a number of preparations
before the integration, such as identifying schemas to be
integrated, preferences to be considered in the integration
process, and amount of user input, as [8] mentioned. The
Matching step, also called as the Investigation step by
[11], identifies the correspondences among schemas by
resolving the conflicts. The Integration step is
responsible for integrating schemas based on the
correspondences identified in the matching step.

IV. RELATED WORK AND OPEN ISSUES

Varieties of approaches for providing integrated data
access/sharing among distributed, heterogeneous, and
autonomous databases have been proposed in the
literature. For example, the PEER is a generic object-
oriented federated information management system
enabling information sharing among autonomous and
heterogeneous nodes [12]. There is an integrated schema
for each node generated by integrating the local schema
of the node and the schemas representing data that other
nodes make available to this node. However, no
automation is provided for generating this schema. In
another project called SIMS (Services and Information
Management for decision Systems) [13], in order to
provide access to heterogeneous and distributed
databases, first a common domain model is created using
the Loom knowledge representation language. When an
information source decides to join to the SIMS system,
first its contents are modeled and then the concepts in
information source model are related to the
corresponding concepts of the domain model. Again, no
automation is provided for this process. Similar to the
PEER and SIMS systems, other efforts in this typically
involve a large amount of manual work. They usually
ignore the step of semi-automatic schema matching.

While interoperability has been an important topic in
the database research, schema matching has been usually
considered as a separate problem. A great deal of effort
has been put into the study of increasing the degree of
automation of schema matching. One such schema
matching approach is proposed in the SEMINT
(SEMantic INTegrator) system [14] that utilizes both
schema and instance information. However, no Graphical
User Interface (GUI) is provided. Cupid system [15]
exploits a combination of name and structure matcher.

 4

JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009 251

© 2009 ACADEMY PUBLISHER

However, the name matcher uses only one string
similarity metric and no GUI is provided. Similarity
Flooding [16] converts diverse models into directed
labeled graphs and then identifies the initial maps
between elements of two graphs using only a simple
string matcher. These initial maps are then used by a
structure matcher. However, Similarity Flooding (SF)
neither has the knowledge of edge and node semantics,
nor it provides a GUI. Clio [17] generates alternative
mappings as SQL view definitions based on the value
correspondences that are defined by the user. No
linguistic matching techniques are used and much manual
work is required. S-Match [18] exploits a number of
element and structure level match techniques. Result of
schema matching is represented using the terms of
equivalence, more general, less general, mismatch, and
overlapping and no GUI is provided. COMA++ [19],
which is a successor of COMA [20], provides a library of
different types of matches and also a sophisticated GUI,
making it more comprehensive than other systems.
However, it is sometimes difficult for users to decide on
the best combination of matchers.

As for schema integration, a number of systems or
approaches have been introduced in the database
literature. MOMIS (Mediator EnvirOnment for Multiple
Information Sources) [21] has a component responsible
for schema integration. However, it requires a database
specialist to assists the integration process at each phase
of integration. For example, it is necessary that all
elements of schemas are annotated by the database
designer manually using the appropriate meanings in the
WordNet lexical database. COMA++, introduced above
among the schema matching systems, provides
functionality for schema merging, but since schema
matching is the main focus of COMA++, schema
merging is primitive and it is not possible to see how the
elements of merged schema are derived from the local
schemas and no mappings are defined between the
merged schema and the local schemas. PORSCHE
(Performance ORiented SCHEema mediation) [22] aims
at creating a mediated schema from a set of large XML
Schemas and identifying mappings from the source
schemas to the mediated schema. It accepts a set of
schema trees. PORSCHE has a linguistic matcher
component, which uses tokenization, abbreviations, and
synonyms. Abbreviation and synonym tables are
generated by users. There is no GUI provided by
PORSCHE and it is not clear how the results of
integration are stored.

To summarize, although schema matching and schema
integration have been the focus of large numbers of
efforts in the literature, there are a number of issues,
which are not sufficiently addressed yet and thus require
further investigation:
• Using a Combination of Match Algorithms:

Efforts in the schema matching research typically use
a limited number of algorithms. However, in order to
achieve high match accuracy, it is necessary to
combine different types of algorithms, considering
syntactic, semantic, as well as structural differences

among schemas. Furthermore, in order to combine
different algorithms, a weight needs to be identified
for each of them. Identifying an appropriate weight
for each algorithm is also an essential part of a
system.

• Graphical User Interface: Developing algorithms
for automatic schema matching is not sufficient
alone. User interaction is another important topic to
be considered when developing a schema matching
and schema integration system. Especially
considering that it is not possible to identify all
matches automatically, a simple but effective user
interface is required both for setting some
parameters, such as the threshold and the weights for
the metrics, and also for correcting and validating the
match and integration results. Unfortunately, most
prototypes developed so far offer no or only a
rudimentary user interface, except COMA [20],
COMA++ [19], and Clio [17] systems. However,
COMA, COMA++ and Clio have some limitations as
well as addresses above.

• Use of Match Results for Schema Integration and
Providing a Comprehensive System: Efforts in the
literature are typically about algorithms and they do
not consider developing complete systems for
enabling interoperability. These algorithms are
useful as being the base for schema matching and
integration systems, but they require a large amount
of manual input. Furthermore, none of these efforts
considers how to use the result of schema matching
for semi-automatic schema integration. Providing a
system with only schema matching capabilities and
not considering schema integration is not enough and
limits the applicability of the system only to specific
cases.

V. THE SASMINT SYSTEM

Considering the limitations of the previous work as
addressed in Section IV, a system, called Semi-
Automatic Schema Matching and INTegration
(SASMINT), is proposed, capable of automatically
resolving naming, structural, and semantic conflicts and
semi-automatically integrating relational database
schemas [3]. Since user input is required after the schema
matching and schema integration, it is aimed to be used
by database administrators or users who have sufficient
knowledge about the domain as well as database
schemas.

 The main components of SASMINT are shown in
Fig. 6. The Sampler Component helps the user to identify
the appropriate weight for each metric and algorithm used
in the schema matching. The Graph Representation
Component of SASMINT is responsible for representing
schemas in the graph format. It uses JGraph [23] for
graph visualization and JGraphT [24] for its Java graph
libraries. Users interact with the system by means of the
GUI Component. The Schema Matching Component
matches input schemas, which are called as recipient and
donor schemas, using a combination of Linguistic and
Structural Matching techniques. Linguistic Matching

 5

252 JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009

© 2009 ACADEMY PUBLISHER

benefits from the WordNet, a lexical dictionary [25].
SASMINT uses Java WordNet Library (JWNL) [26] for
connecting to the WordNet. The Schema Integration
Component integrates schemas using the results of
schema matching and a number of pre-defined rules and
represents the integrated schema in a derivation language,
as explained in Section VIII.

SASMINT has three main processing steps:
Configuration, Schema Matching, and Schema
Integration. Details of these steps are provided in the
next three sections. The main flow of information in the
system is as follows: First, the user assigns weights for
each metric or algorithm either manually or with the help
of the Sampler component. If nothing is set by the user,
default is the equal weight distribution. Secondly, the
user specifies a threshold value and the selection strategy.
Then, he loads the recipient and donor schemas which are
converted into the graph format before being displayed.
After that, the user can run the Match option, which
identifies similarities between two schemas. After
modifying, validating, and saving the match results, the
user may continue with the schema integration. The result
of schema integration is shown in both graph and
derivation language format and requires the final user
validation.

SASMINT can be used in different types of
application domains with different purposes. In all types
of the integrated information management system
introduced in Section II, schema matching and/or schema
integration is required. Fully federated schema and global
federated schema approaches involve schema integration,
which also necessitates schema matching as an internal
step. On the other hand, 1-to-1 schema mapping and
common schema adaptation mapping approaches require
schema matching in order to identify the mappings.
Helping users with the automation of both schema
matching and schema integration is very crucial for rapid
formation of collaboration among organizations.

VI. CONFIGURATION STEP OF SASMINT

Configuration step is responsible for identifying the
selection strategy for the results of schema matching as
well as assigning weights to the metrics and algorithms
used by the linguistic and structural matching

components of SASMINT. The process of identifying the
strategy to be used for selecting the results of schema
matching has the following flow of events:

GUI
-JGraph-

Graph
Representation

-JGraphT-

Schema Integration
•Rules

•Derivation Language

Schema Matching
•Linguistic
•Structural

WordNet
JWNL

Integrated
Schema in
Derivation
Language

Integration
Rules

Sampler
weights

Figure 6. Components of SASMINT

1) Setting up of a threshold value by user: The user is
asked to provide a match threshold value which is used
subsequently in the process. If no threshold is specified
by the user, a value of 0.5 is defaulted.

2) Getting user’s preference (i.e. input) on match results
selection strategy: The user is asked to choose a
strategy between:

a. Selecting all matching pairs with similarity
above the threshold (called as “select all
above threshold”)

b. Selecting the ones with the highest similarity
if there is more than one element matching
another element (called as “select max above
threshold”).

As for the second responsibility of the configuration
step, which is the assignment of weights, currently there
are three ways supported by SASMINT:
1) User can use the SAMPLER component to identify the

appropriate weights for Linguistic Matching metrics.
The details of this process are given in the following
paragraphs.

2) Users can manually assign weights.
3) In case neither (1) nor (2) are opted for, SASMINT

assumes an equal weight distribution. Needless to say,
this might lead to imprecise mapping results.
SASMINT implements a composite matching

technique. In this approach, the Linguistic Matching
process utilizes a number of metrics, combining them by
means of a weighted summation. The reason behind
using different metrics is due to the variety of the element
names that are compared. Certain metrics perform better
than others depending on the element names being
matched.

Accurate matching is important in order to reduce the
amount of user input and we consider appropriate
distribution of weights to be a pre-requisite for accurate
matching. However, assigning these weights manually is
not an easy task and assistance to the user is required. For
this reason, SASMINT provides a component called
Sampler, whose function is to guide the user in assigning
weights to the metrics used in Linguistic Matching. In
Fig. 7, the operation of the Sampler Component is
illustrated.

The Sampler component can work with up to five
known sample pairs. Through the GUI, shown in Fig.8,
provided by the Sampler component, the user has the
freedom to put in a) syntactically similar pairs in case

Figure 7. Operation of Sampler

 6

JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009 253

© 2009 ACADEMY PUBLISHER

he/she would like the system to compute the weights of
syntactic matching metrics, or b) semantically similar
pairs in case it is required to compute the weights of
metrics for semantic matching.

The user is expected to input these pairs into the
Sampler component from his schema domain. For
instance, the user might want to see how syntactic
similarity metrics would perform for the pair P:
["course_credit", "credit_of_course"]. On the other hand,
he might want to see how semantic similarity metrics
would perform for the pair P: [“person”, “individual”].

Figure 8. Use of Sampler

For a given set of pairs S: {P1, P2, … , PN}, Sampler
runs syntactic or semantic metrics for each given pair P in
S, and determines their calculated similarities. The
outcome of the calculated similarity for a Pair P is a value
between 0 and 1. After the computation of the similarity
values, the Sampler measures the accuracy level of each
metric using F-measure. F-measure is a combination of
precision and recall from the information retrieval
domain [27] and used in different areas for calculating
the accuracy. Using the following formula, the Sampler
calculates the weight for each metric; where ∑
represents the sum of F-measure values resulted for all
metrics used, and represents the F-measure value
calculated for metric ‘m’.

F

mF

mm F

F
w *1

∑
= (1)

As the last step of the weight computation and
assignment process, the calculated weights of metrics are
presented to the user. The user has the option of
accepting and directly using the proposed weights, or
modifying them and feeding them back to the system for
usage. An example of the usage of the Sampler
component is given in Fig. 8:

VII. SCHEMA MATCHING STEP OF SASMINT

Schema matching aims at finding all correspondences
between elements of two schemas. SASMINT focuses on
the schema level matching, utilizing element and
structure level information. Furthermore, SASMINT
exploits a combination of automatic schema matching
techniques for resolving syntactic, semantic, and
structural heterogeneities. Considering a single criterion
(e.g., name matching) is unlikely to be successful for
achieving high match accuracy for a large variety of
schemas. As a consequence, it is necessary to combine
and utilize multiple techniques at the same time. For this
purpose, SASMINT combines the results of several
independently executed linguistic and structure match
algorithms.

Schema matching in SASMINT consists of the
preparation, comparison, and result generation and
validation steps, as detailed below. Fig. 9 shows an
overall view of the steps of schema matching.

A. Preparation Step of Schema Matching
The Preparation step deals with the translation of source
schemas defined in the typical Data Definition Language
(DDL) of its Database Management System (DBMS) into
a common representation format. The Directed Acyclic
Graph (DAG) format with labeled edges has been chosen
for this purpose, considering that it provides a balanced
format among other alternatives supporting the
representation of a relational schema, an object-oriented
schema, etc. as a graph.

Schema
Matching

Preparation

Comparison
Result
Generation and
Validation

Linguistic
Matching

Structure
Matching

Syntactic
Matching
Semantic
Matching

2.1.1
2.1

2.2

1

2

3

2.1.2

Figure 9. Steps of Schema Matching

 7

254 JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009

© 2009 ACADEMY PUBLISHER

Preparation step of SASMINT, shown in Fig. 10,
works as follows: User can load the recipient schema
from a database or from previously persisted XML files,
in case of which schemas are already in graph format. He
can load the donor schema from a database. When he
chooses to load the schemas from a database, the system
connects to the database using the related Java Database
Connectivity (JDBC) driver, gets the metadata
information (e.g. tables and columns in relational
databases), represents the metadata in graph format by
means of JGraphT, and finally using JGraph visualizes
and displays the graphs corresponding to the schemas.

B. Comparison Step of Schema Matching
A key step of SASMINT in the schema matching process
is the Comparison step, which identifies the likely
matches between two schemas by resolving syntactic,
semantic, and structural heterogeneities. SASMINT uses
a number of algorithms from the Natural Language
Processing (NLP) and Graph Theory. The Comparison
step consists of two types of matching: Linguistic and
Structure, detailed below.

Most of the time, element names are represented
differently in different schemas, and thus before the
matching process, they need to be brought into a common
representation. This sub-step of SASMINT called pre-
processing and involves the operations shown in Fig. 11.
In tokenization and word separation operation, strings
containing multiple words are split into list of words. For
instance, “First Name” is split into “First” and “Name”.
Stop words, such as “of” and “the” as well as some
special characters, such as “/” and “-” are removed from
names. Furthermore, abbreviations are expanded and
lemmatization is used to bring different forms of the
same word into a common form.

1) Linguistic Matching

Linguistic matching considers only the names of schema
elements and results in a value between 0 and 1, for pairs
of element names from the two schemas. Variety of
algorithms or metrics from the NLP research field is
applied to identify the syntactic and semantic similarities.

In order to compare element names from two schemas,
node names from the graph representation of these
schemas are put into two separate lists. After
preprocessing names, syntactic and semantic match
algorithms are applied to each pair and then the results
are combined for the final value of Linguistic Matching.

Tokenization & Word Separation
Elimination of Stop Words

Elimination of Special Characters
Abbreviation Expansion

Lemmatization

Figure 11. Pre-processing operations

Syntactic Similarity
There are large numbers of string distance and similarity
algorithms (also called here as metric) from the Natural
Language Processing communities.

Unlike other approaches to schema matching, which
use only one metric for syntactic similarity, SASMINT
uses a combination of several main syntactic similarity
metrics for comparing two character strings syntactically.
These metrics can be classified as string-based and token-
based. String-based metrics consider strings as adjacent
sequences and do not divide multi-word strings into a set
of single strings. However, token-based metrics view
strings as unordered sets of tokens. As for the string-
based metric, SASMINT uses Levenshtein Distance (Edit
Distance) [28], Monge-Elkan Distance [29], Jaro [30],
and Longest Common Substring (LCS) metrics. As for
the token-based metric, it utilizes TF*IDF (Term
Frequency*Inverse Document Frequency) [31] and
Jaccard Similarity [32] metrics. Considering that each
metric is suitable for a different type of string, SASMINT
can be used for more types of strings than previous
approaches.

SASMINT uses a combination of these metrics to
obtain more accurate results. Metrics are combined by
means of a weighted summation using the following
formula:
simW(a,b)=wlv*smlv(a,b)+wme*smme(a,b)+wjr*smjr(a,b)+wjc*smjc(a,b)+

wtf *smtf (a,b)+wlc*smlc(a,b)
 (2)

Schema to Graph

Vertices: Schema,
Table, Column
Edges: Schema <-> Table,
Table <-> Column

JGraphT
JGraph

RDBMS

MySql,
Postgress, etc

XML

Figure 10. Preparation Step

where ‘lv’ stands for Levenstein, ‘me’ for Monge-Elkan,
‘jr’ for Jaro, ‘jc’ for Jaccard, ‘tf’ for TF-IDF, and ‘lc’ for
Longest Common Substring.

Another contribution of SASMINT is its recursive
weighted metric. This metric is aimed for element names
containing more than one token. Depending on whether
the names contain one or more tokens, the user can
choose between the weighted and recursive weighted
metric. Given two strings a and b that are tokenized into

lsssa ,.., 21= and mtttb ,..., 21= , the recursive weighted
metric is calculated as follows:

∑
= =

+∑
= =

=
m

j
jbiaWsim

l

im

l

i
jbiaWsim

m

jl
basim

1
),(

1
max

2
1

1
),(

1
max

2
1),((3)

 8

JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009 255

© 2009 ACADEMY PUBLISHER

Semantic Similarity

Identifying the semantic similarity between two words or
concepts has been the subject of many applications in
NLP, information retrieval, and some other areas. The
semantic similarity measures use variety of knowledge
resources, such as WordNet [25]. WordNet is partitioned
into nouns, verbs, adjectives, and adverbs, which are
organized into synonym sets, each representing one
underlying lexical concept. Synonym sets, called also as
synset, are interlinked by different relations, such as
hypernymy, hyponymy, antonymy, meronymy,
holonymy, etc.

Semantic similarity algorithms from the NLP domain
that SASMINT uses can be classified as path-based and
gloss-based measures. Path-based measures use the path
between the concepts in taxonomy of concepts.
SASMINT exploits the measure of Wu and Palmer [33],
which is based on the idea of calculating the shortest path
between the concepts in the IS-A hierarchy of WordNet.
As the base for its gloss-based measure, SASMINT uses
the measure of Lesk [34]. SASMINT benefits from the
gloss information provided in WordNet for calculating
the gloss-based similarity.

The result of semantic similarity in SASMINT is the
weighted sum of the two semantic similarity measures
addressed above. Following formula is used for
computing the result of semantic similarity:

),(*),(*),(baglosssmglosswbawupsmwupwbaWSemanticsim += (4)

where ‘wup’ stands for Wu and Palmer’s measure and
‘gloss’ for the gloss-based similarity.

2) Structure Matching
In addition to linguistic differences, other types of
differences that frequently occur among database schema
definitions are structural differences. Structural
differences are more difficult to resolve than Linguistic
differences, typically requiring user input. The second
activity of comparison in SASMINT is structure
matching, which uses the result of linguistic matching to
identify the structural similarity of two schemas
represented as graphs. For the purpose of structure
matching in SASMINT, a variety of graph similarity and
matching algorithms from the Graph Theory and other
areas like Web searching and schema matching were
considered.

The first approach that structure matching in
SASMINT uses is the one proposed by [35]. It is an
iterative algorithm from the graph similarity research
field. This algorithm is based on the idea that nodes of
two graphs are similar if the neighbors of these nodes are
also similar.

As the second algorithm for structure matching,
SASMINT uses the structure similarity algorithm of
Similarity Flooding [16]. Similarity Flooding is based on
a fix point computation to calculate the structural
similarity. It uses an iterative algorithm and the similarity
of two elements is propagated to their adjacent elements
at each iteration.

Similar to the method followed in linguistic matching,
structure matching uses the weighted sum of these two
structural similarity algorithms, as shown in the formula
below:

),(*),(*),(basfsmsfwbablondelsmblondelwbaWStructuresim += (5)

where ‘blondel’ stands for the algorithm of [35] and ‘sf
for the algorithm of Similarity Flooding.

C. Result Generation and Validation Step of Schema
Matching
Results of the comparison step are displayed to the user
by means of a GUI in order for him to modify and save
them. Previous systems typically provide either a
primitive or no GUI. However, a clever and flexible GUI
is an indispensable part of a matching system, both
because it is not possible to determine all possible
matches automatically and also not all the identified
matches may be correct, especially considering the
existence of large amount of semantics involved in
schema descriptions. An example case, for which the user
input is essential, occurs for complex matches, such as 1-
to-n (one column in one schema matches one or more
columns in the other schema). For this case, it is not
possible to automatically decide whether a column in the
first schema is a combination of n columns in the second
schema and if so, it may not be known how to combine
these n columns, such as using concatenation, sum, etc.
In order to be more specific, suppose that schema
matching system has identified a match between the
“rNum” element in one schema and “roomNo” and
“telNum” elements in the second schema. In this case,
user is supposed to delete the match between “rNum” and
“telNum” as one refers to the room number and the other
refers to the telephone number. As another example,
suppose that the system has identified a match between
the “name” element in one schema and “fname” and
“lname” elements in the second schema. In this case, user
is supposed to specify that “name” is the concatenation of
“fname” and “lname”.

Considering the requirements addressed above, a GUI
is implemented as a part of SASMINT, a screenshot of
which is shown in Fig. 12. Using this GUI, user can load
the recipient schema from a database or from a file (in
XML-based Graph format, called SASMINT Derivation
Markup Language-SDML as introduced below) and
donor schema from a database, as shown in two windows
titled “Recipient Schema” and “Donor Schema” in Fig.
12. After loading the schemas, he can run the match
option. Results of matching are displayed in graph
format, as shown in the window titled “Schema Match”.
The window titled “Metric Results” shows similarity
results that each metric has identified for all matching
pairs. User can delete incorrect matches and introduce
new ones and specify which kind of operation to use for
combining n columns in 1-to-n or n-to-1 matches, using
the window titled “Integration Customizations”. User can
either store schema matching results or continue with the
schema integration. If he chooses to save the results, an
XML-based SDML format is used to persist the results in

 9

256 JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009

© 2009 ACADEMY PUBLISHER

Figure 12. Screenshot of SASMINT GUI

a file. SDML is designed as a part of the SASMINT
system and further explanations about it will be given in
a forthcoming paper. This format is similar to other
existing XML-based graph formats, such as Graph
eXchange Language (GXL) [36] and GraphML [37], but
it is extended to store the results of both match and
integration. SDML uses a number of derivation elements,
base constructs of which are explained in the following
section. These derivation elements consist of
tableRenameDerivation, tableUnionDerivation,
tableSubtractDerivation, tableRestrictDerivation,
columnRenameDerivation, columnUnionDerivation, and
columnStringAdditionDerivation for storing the
derivation results of schema integration. The
‘columnStringAdditionDerivation’ element is also used at
the end of schema matching to define the special
mapping rule, which means that a column in one schema
is represented by the concatenation of some columns in
the second schema. Content of an example XML file
produced as a result of a schema matching is shown in
Fig. 13. As it can be seen in the figure, a match is
identified between the “fname” column of the “person”
table in the first schema and the “name” column of the
“employee” table in the second schema.

VIII. SCHEMA INTEGRATION STEP OF SASMINT

Schema integration is a key process in many database
applications. It is required in different types of integrated
information management system approaches, introduced
in Section II.

SASMINT facilitates schema integration by providing
some semi-automatic means. After the schema matching
step, users can continue with the schema integration to

integrate two schemas that have been matched.
SASMINT automatically generates an integrated schema,
which needs the final user validation, as it is not possible
to resolve all types of structural conflicts. Among
different possibilities for the results of schema matching,
following cases are the ones automatically handled by the
schema integration component of SASMINT:
• ColumnX (1 1) ColumnY: ColumnX in the first

schema matches ColumnY in the second schema.
• ColumnX (1 n) Column: ColumnX in the first

schema matches n columns of the second schema.
• Column X (1 1) Table A: ColumnX in the first

schema matches Table A in the second schema.
• Column (m 1) ColumnY: m columns of the first

schema match ColumnY in the second schema.
• Column (m 1) Table B: m columns of the first

schema match Table B in the second schema.
• TableA (1 1) TableB: TableA in the first schema

matches TableB in the second schema.
• TableA (1 n) Table: TableA in the first schema

matches n tables of the second schema.
• Table A (1 1) Column Y: Table A in the first

schema matches Column Y in the second schema.
• Table A (1 n) Column: Table A in the first schema

matches n columns of the second schema.
• Table (m 1) TableB: m tables of the first schema

match TableB in the second schema.
• Table (m n) Table: m tables of the first schema

match n tables of the second schema
Considering different conflicts to be resolved, a

number of rules for integrating relational schemas have
been defined for SASMINT. In order to detect integration
points automatically, these rules operate on the types of

 10

JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009 257

© 2009 ACADEMY PUBLISHER

<graph:sgraph xmlns:grap=”http://namespaces.sasmint.org/2007/04/GraphModel”>
<graph:snode grap:id=”urn:sasmint:schema:schema1” grap:name=”schema1” grap:type=”SCHEMA”/>
<graph:snode grap:id=”urn:sasmint:table:schema1:person” grap:name=”person”

grap:schema=”schema1” grap:type=”TABLE”/>
<graph:snode grap:id=”urn:sasmint:column:schema1:person:fname” grap:name=”fname”

grap:schema=”schema1” grap:table=”person” grap:type=”COLUMN”/>
<graph:snode grap:id=”urn:sasmint:schema:schema2” grap:name=”schema2” grap:type=”SCHEMA”/>
<graph:snode grap:id=”urn:sasmint:table:schema2:employee” grap:name=”employee”

grap:schema=”schema2” grap:type=”TABLE”/>
<graph:snode grap:id=”urn:sasmint:column:schema2:employee:name” grap:name=”name”

grap:schema=”schema2” grap:table=”employee” grap:type=”COLUMN”/>
<graph:sedge grap:id=”urn:sasmint:hastable:1” grap:sourceNodeId=”urn:sasmint:schema:schema1”

grap:targetNodeId=”urn:sasmint:table:schema1:person” grap:type=”HASTABLE”/>
<graph:sedge grap:id=”urn:sasmint:hascolumn:2”

grap:sourceNodeId=”urn:sasmint:table:schema1:person“
grap:targetNodeId=”urn:sasmint:column:schema1:person:fname” grap:type=”HASCOLUMN”/>

<graph:sedge grap:id="urn:sasmint:hastable:3" grap:sourceNodeId="urn:sasmint:schema:schema2“
grap:targetNodeId="urn:sasmint:table:schema2:employee" grap:type="HASTABLE"/>

<graph:sedge grap:id="urn:sasmint:hascolumn:4"
grap:sourceNodeId="urn:sasmint:table:schema2:employee"
grap:targetNodeId="urn:sasmint:column:schema2:employee:name" grap:type="HASCOLUMN"/>

<graph:sedge grap:id="urn:sasmint:similarTo:abacfd16-a04f-45ed-a3ef-98d795afce11"
grap:sourceNodeId="urn:sasmint:column:schema1:person:fname"
grap:targetNodeId="urn:sasmint:column:schema2:employee:name" grap:type="SIMILARTO">
<graph:similarity>0.567814192677258</grap:similarity>

</grap:sedge>

<graph:sgraph xmlns:grap=”http://namespaces.sasmint.org/2007/04/GraphModel”>
<graph:snode grap:id=”urn:sasmint:schema:schema1” grap:name=”schema1” grap:type=”SCHEMA”/>
<graph:snode grap:id=”urn:sasmint:table:schema1:person” grap:name=”person”

grap:schema=”schema1” grap:type=”TABLE”/>
<graph:snode grap:id=”urn:sasmint:column:schema1:person:fname” grap:name=”fname”

grap:schema=”schema1” grap:table=”person” grap:type=”COLUMN”/>
<graph:snode grap:id=”urn:sasmint:schema:schema2” grap:name=”schema2” grap:type=”SCHEMA”/>
<graph:snode grap:id=”urn:sasmint:table:schema2:employee” grap:name=”employee”

grap:schema=”schema2” grap:type=”TABLE”/>
<graph:snode grap:id=”urn:sasmint:column:schema2:employee:name” grap:name=”name”

grap:schema=”schema2” grap:table=”employee” grap:type=”COLUMN”/>
<graph:sedge grap:id=”urn:sasmint:hastable:1” grap:sourceNodeId=”urn:sasmint:schema:schema1”

grap:targetNodeId=”urn:sasmint:table:schema1:person” grap:type=”HASTABLE”/>
<graph:sedge grap:id=”urn:sasmint:hascolumn:2”

grap:sourceNodeId=”urn:sasmint:table:schema1:person“
grap:targetNodeId=”urn:sasmint:column:schema1:person:fname” grap:type=”HASCOLUMN”/>

<graph:sedge grap:id="urn:sasmint:hastable:3" grap:sourceNodeId="urn:sasmint:schema:schema2“
grap:targetNodeId="urn:sasmint:table:schema2:employee" grap:type="HASTABLE"/>

<graph:sedge grap:id="urn:sasmint:hascolumn:4"
grap:sourceNodeId="urn:sasmint:table:schema2:employee"
grap:targetNodeId="urn:sasmint:column:schema2:employee:name" grap:type="HASCOLUMN"/>

<graph:sedge grap:id="urn:sasmint:similarTo:abacfd16-a04f-45ed-a3ef-98d795afce11"
grap:sourceNodeId="urn:sasmint:column:schema1:person:fname"
grap:targetNodeId="urn:sasmint:column:schema2:employee:name" grap:type="SIMILARTO">
<graph:similarity>0.567814192677258</grap:similarity>

</grap:sedge>

Figure 13. Result of Schema Matching in XML format

match results listed above. The rules identify which
tables and columns need to be inserted in the resulting
schema and how they need to be combined in order to
generate an integrated schema that can represent all the
elements of participating schemas. If SASMINT is
extended to work with types of schemas other than
relational, similar rules can be defined for these types
also. Details about these rules are the subject of a
forthcoming paper and thus we will not give further
information about them.

The Schema Integration component of SASMINT uses
a derivation language for representing integrated
schemas. A formal representation of the derivation
language constructs, a variation of PEER derivation
language [38], is given in [3]. There are two types of
derivation for relational schemas: Table and Column
Derivation. Table derivation consists of derivations of
type “Table Rename”, “Table Union”, “Table Subtract”,
and “Table Restrict”. On the other hand, column
derivation comprises the derivations of type “Column
Rename”, “Column Union”, and “Column Extraction”.
Table Rename, Table Union, Column Rename, Column
Union, and Column Extraction are the ones typically used
by SASMINT. Brief explanations about all derivation
types are provided below:
• Table Rename derivation is used when a new table is

generated in the integrated schema by renaming a
table in one of the input schemas (recipient and
donor schemas).
Example: FacultyMember@IntSchema =
Faculty@S1.

• Table Union derivation is used to state that a newly
generated table in the integrated schema is the union
of two or more tables from the input schemas.
Example: Department@IntSchema = union
(Department@S1 , Department@S2).

• Table Subtract derivation is used to specify that a
table in the integrated schema is constructed by

subtracting a table from another table in one of the
input schemas.
Example: EngineeringDepartments@IntSchema =
subtract(Departments@S1,
NonEngineeringDepartments@S1).

• Table Restrict derivation is used to specify that a
table in the integrated schema is generated by
applying a restriction to a table in one of the input
schemas.
Example: SuccessfulStudents@IntSchema = restrict
(Students@S1,[gpa > 2.0]).

• Column Rename derivation is used when a new
column is generated in the integrated schema by
renaming a column in one of the input schemas.
Example: start@Time@IntSchema =
start@Time@S2.

• Column Union derivation is used to specify that a
newly generated column of the integrated schema is
the union of two or more columns of the input
schemas.
Example: dptname@Department@IntSchema =
{dname@Department@S1,
dname@Department@S2}.

• Column Extraction derivation is used to specify that
a column of one of the input schemas equals to two
or more columns of the other input schema,
combined by an operator, such as arithmetic and
string operator. Currently,
columnStringAdditionDerivation is supported, which
is used to specify that a column in one schema equals
to the concatenation of two or more columns in the
other schema.
Example: name@Student@IntSchema =
fname@Student@S1 + lname@Student@S1.

Using the automatic schema integration rules, an
integrated schema is proposed to the user. User can
modify/save the result, which is stored in XML format

 11

258 JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009

© 2009 ACADEMY PUBLISHER

using the SDML. SDML uses the derivation constructs
defined above as the base.

False negatives
university academic_institution
university_id@university
academic_institution_id@academic_institution
university_name@university
academic_institution_name@academic_institution

False positives
university university_student
university_name@university name@university_student)

Figure 15. Missed or Incorrectly Identified Matches

IX. EXAMPLE CASE OF SASMINT

SASMINT is a generic system and can be applied to
different types of Integrated Information Management
Systems as introduced in Section II, for the purpose of
semi-automatic schema matching and/or schema
integration. We provide in this section through a small
example some discussions over the application of
SASMINT.

Fig. 14 shows parts of two university schemas that also
include some foreign keys (FK). In order to match and
then integrate these two schemas, we ran SASMINT with
the threshold value of 0.5 and selection criteria set as
“select max above threshold”.

SASMINT could identify all the following similar
pairs correctly, namely (course, academic_course),
(course_id, academic_course_id), (course_provider,
academic_course_provider), (department, department),
(department_id, department_id), and (dept_name,
dept_name) from Shema-1 and Schema-2 are matched
correctly, except for those shown in Fig. 15 that were not
identified correctly but that for example a human
database expert may discover through investigation of
these two schemas. The element pairs shown in Fig. 15
are of two categories: either those that SASMINT missed
to identify (thus representing the false negative), or those
that SASMINT found as similar while actually they were
not (thus representing the false positives). These cases
could not be correctly identified by SASMINT, mostly
due to the fact that SASMINT system currently lacks
some semantic relationships. For example, the semantic
similarity of “university” and “academic_institution”
could not be identified through the WordNet in the
current processing done by SASMINT. Furthermore,
although they have different meanings, the “university”
and “university_student” were identified as similar, due
to their partial overlap in names, as well as their structure,
while they are not correct matches.

Especially considering such semantic issues, this
example indicates that a fully automatic schema matching
system is not the right approach for integration of
heterogeneous schemas, rather the semi-automated
approach of SASMINT is suitable, that is accompanied
by a sophisticated GUI to support users with their
modification of the match results. Furthermore, after
saving the modified matched results of the two schemas,
the schema integration process of SASMINT can be
started by user.

Without showing the details about the derivation (for
simplicity reasons), Fig. 16 represents the integrated
schema generated by SASMINT for this example case.
This integrated schema is complete and almost minimal.
In other words, this schema covers all elements of the
two schemas, while containing no redundancy except for
the “university_ref” column of the “department” table,
which is not incorrect, but not required in a minimal
integrated schema.

We have carried out many similar experiments using
different schemas in order to evaluate the performance of
both the schema matching and the schema integration
processes of SASMINT, of which the results are the
subject of a forthcoming paper. The results of all these
experiments have shown that SASMINT can achieve
high percentage of accuracy, (about 75 to 85 %) with its
schema matching process, and can generate complete and
about 99% minimal schemas with its schema integration
process. At present, the most important difficulty is in
identifying some semantics involved in each schema.
Currently, as a generic tool, SASMINT uses the domain
independent WordNet for identifying semantic
similarities. Nevertheless, WordNet does not contain
domain specific semantic relationships. As a future work,
in addition to using the WordNet, domain specific
ontology will also be integrated to the SASMINT system,
so that more types of semantic relationships can be
identified, and thus the automated process of SASMINT
can generate more accurate results.

Current experiments have also shown that
SASMINT’s GUI is very useful and makes the
interaction of domain experts with the system
straightforward and effective. Furthermore, the SDML
format used for saving the results of both matching and
integration is valuable. This format enables results to be
interpreted and used by other systems for further
processes, for example for the purpose of federated query
processing. Moreover, it has a human-readable format
that makes it very easy for the user to understand and
modify the results.

Schema-1
course (course_id, course_name, course_provider (FK))
department (department_id, dept_name, faculty_ref (FK))
faculty (faculty_id, faculty_name, university_ref (FK))
university (university_id, university_name)
Schema-2
academic_course (academic_course_id, academic_course_crdt,
academic_course_provider (FK))
department (deptartment_id, dept_name, university_ref (FK))
university_student (university_student_id, name)
academic_institution (academic_institution_id, academic_institution_name)

Figure 14. Schemas from University Domain

Integrated Schema
course (course_id, course_name, academic_course_crdt,
course_provider (FK))
department (department_id, dept_name, faculty_ref (FK),
university_ref (FK))
faculty (faculty_id, faculty_name, university_ref (FK))
university (university_id, university_name)
university_student (university_student_id, name)

Figure 16. Resulting Integrated Schema

 12

JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009 259

© 2009 ACADEMY PUBLISHER

X. CONCLUSION

With the increasing number of Collaborative Networks,
the need for an infrastructure supporting data sharing in
such networks has become clear. Schema matching and
integration correspond to the key components of this
infrastructure. Since carrying out these tasks manually is
error-prone and time consuming, some automatic
mechanisms are required. This paper introduces the
SASMINT system, which enables semi-automatic
schema matching and integration by combining a number
of syntactic, semantic, and structural similarity
algorithms from the NLP and Graph Theory domains.
SAMINT uses a weighted sum of different metrics or
algorithms in order to be applicable for different types of
strings. It is possible to semi-automatically identify the
appropriate weight for each metric by means of
SASMINT’s Sampler tool. SASMINT provides an
effective GUI for users to modify and accept match and
integration results. Furthermore, utilizing the result of
schema matching for schema integration and defining a
set of rules for automatic integration as well as a
derivation language for representing the results of both
matching and integration are other contributions of the
SASMINT system.

REFERENCES

[1] L.M. Camarinha-Matos, H. Afsarmanesh, and M. Ollus,
"ECOLEAD: A Holistic Approach to Creation and
Management of Dynamic Virtual Organizations", Proc. of
PRO-VE’05, 2005.

[2] H. Afsarmanesh and L.M. Camarinha-Matos, "A
Framework for Management of Virtual Organizations
Breeding Environments", Proc. of PRO-VE’05, 2005.

[3] O. Unal and H. Afsarmanesh, "SASMINT System for
Database Interoperability in Collaborative Networks",
Lecture Notes in Computer Science, 2006. 4275/2006, pp.
91-108.

[4] O. Unal and H. Afsarmanesh, "Using Linguistic
Techniques for Schema Matching", Proc. of International
Conference on Software and Data Technologies, 2006,
Setubal, Portugal.

[5] O. Unal and H. Afsarmanesh, "Interoperability in
Collaborative Network of Biodiversity Organizations",
Proc. of PRO-VE'06, 2006, Helsinki, Finland: Springer.

[6] T. Ozsu and P. Valduriez, Principles of Distributed
Database Systems. 2 ed. 1999, New Jersey: Prentice Hall.

[7] A. Sheth and J. Larson, "Federated Database Systems for
Managing Distributed, Heterogeneous, and Autonomous
Databases", ACM Computing Surveys, 1990. 22 (3), pp.
183-236.

[8] C. Batini, M. Lenzerini, and S. Navathe, "A comparative
analysis of methodologies for database schema integration."

ACM Computing Surveys, 1986. 18 (4), pp. 323-364.
[9] E. Rahm and P.A. Bernstein, "A survey of approaches to

automatic schema matching", VLDB Journal, 2001. 10 (4),
pp. 334-350.

[10] H.H. Do, S. Melnik, and E. Rahm, "Comparison of
Schema Matching Evaluations", Proc. of Web, Web-
Services, and Database Systems 2002, 2002.

[11] S. Spaccapietra, C. Parent, and Y. Dupont, "Model
Independent Assertions for Integration of Heterogeneous
Schemas", VLDB Journal, 1992. 1 (1), pp. 81-126.

[12] F. Tuijnman and H. Afsarmanesh, "Management of Shared
Data in Federated Cooperative PEER Environment",
International Journal of Intelligent and Cooperative
Information Systems (IJICIS), 1993. 2 (4), pp. 451-473.

[13] Y. Arens, C.A. Knoblock, and W.-M. Shen, "Query
Reformulation for Dynamic Information Integration",
Journal of Intelligent Information Systems, 1996. 6 (2/3),
pp. 99-130.

[14] W. Li and C. Clifton, "SEMINT: A tool for identifying
attribute correspondence in heterogeneous databases using
neural networks", Journal of Data and Knowledge
Engineering, 2000. 33 (1), pp. 49-84.

[15] J. Madhavan, P.A. Bernstein, and E. Rahm, "Generic
Schema Matching with Cupid", Proc. of Very Large Data
Bases, 2001.

[16] S. Melnik, H. Garcia-Molina, and E. Rahm, "Similarity
Flooding: A Versatile Graph Matching Algorithm and its
Application to Schema Matching", Proc. of International
Conference on Data Engineering, 2002.

[17] R.J. Miller, L.M. Haas, and M.A. Hernandez, "Schema
Mapping as Query Discovery", Proc. of Very Large Data
Bases, 2000.

[18] F. Giunchiglia, P. Shvaiko, and M. Yatskevich, "S-match:
an algorithm and an implementation of semantic
matching", Proc. of ESWS, 2004.

[19] D. Aumueller, H.H. Do, S. Massmann, and E. Rahm,
"Schema and ontology matching with COMA++", Proc. of
SIGMOD, 2005.

[20] H.H. Do and E. Rahm, "COMA - A System for Flexible
Combination of Schema Matching Approaches", Proc. of
Very Large Data Bases, 2002.

[21] D. Beneventano and S. Bergamaschi, "The MOMIS
methodology for integrating heterogeneous data sources",
Proc. of IFIP Congress Topical Sessions, 2004.

[22] K. Saleem, Z. Bellahsene, and E. Hunt, "PORSCHE:
Performance ORiented SCHEma mediation", Accepted for
publication in Information Systems Journal (Elsevier),
2008.

[23] JGraph, http://www.jgraph.com/, 2008.
[24] JGraphT, http://jgrapht.sourceforge.net/, 2008.
[25] C. Fellbaum, An Electronic Lexical Database. 1998,

Cambridge: MIT press.
[26] JWNL, http://jwordnet.sourceforge.net/, 2008.
[27] C.J.v. Rijsbergen, Information Retrieval. 1979:

Butterworth.
[28] V.I. Levenshtein, "Binary codes capable of correcting

deletions, insertions, and reversals", Cybernetics and
Control Theory, 1966. 10 (8), pp. 707-710.

[29] A.E. Monge and C. Elkan, "The Field Matching Problem:
Algorithms and Applications." Proc. of Second
International Conference on Knowledge Discovery and
Data Mining, 1996.

[30] M.A. Jaro, "Probabilistic Linkage of Large Public Health
Data Files", Statistics in Medicine, 1995. 14, pp. 491-498.

[31] G. Salton and C.S. Yang, "On the specification of term
values in automatic indexing." Journal of Documentation,
1973. 29, pp. 351-372.

[32] P. Jaccard, "The distribution of flora in the alpine zone",
The New Phytologist, 1912. 11 (2), pp. 37-50.

[33] Z. Wu and M. Palmer, "Verb Semantics and Lexical
Selection", Proc. of 32nd Annual Meeting of the
Association for Computational Linguistics., 1994.

[34] M. Lesk, "Automatic Sense Disambiguation Using
Machine Readable Dictionaries: How to Tell a Pine

Code from an Ice Cream Cone", Proc. of 5th International
Conference on Systems Documentation, 1986, Toronto,
Ontario, Canada.

 13

260 JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009

© 2009 ACADEMY PUBLISHER

http://www.jgraph.com/
http://jgrapht.sourceforge.net/
http://jwordnet.sourceforge.net/

[35] V.D. Blondel, A. Gajardo, M. Heymans, P. Senellart, and
P.V. Dooren, "A Measure of Similarity between Graph
Vertices: Applications to Synonym Extraction and Web
Searching." SIAM Review, 2004. 46 (4), pp. 647-666.

[36] Graph eXchange Language (GXL),
http://www.gupro.de/GXL/, 2008.

[37] GraphML, http://graphml.graphdrawing.org/, 2008.
[38] H. Afsarmanesh, M. Wiedijk, F. Tuijnman, M. Bergman,

and P. Trenning., The PEER Information Management
Language User Manual. 1994, Dept. of Computer Systems,
University of Amsterdam.

Mrs. Ozgul Unal received her Bachelors degree from the
Department of Computer Engineering at Middle East Technical
University in Turkey and a Masters degree from the Department
of Information Systems at the same university. Since September
2002, she is a PhD student at the Computer Science Department
of the Faculty of Science of the University of Amsterdam, in the
Netherlands. She has been involved in several European and
Dutch national research projects, focusing on the analysis,
design and implementation of the Federated Information
Management Systems in the domain of Bio-Sciences. Her
current research areas include resolution of syntactic, semantic,
and structural heterogeneities among database schemas in order
to support (semi-) automatic schema matching and integration.

Dr. Hamideh Afsarmanesh is an associate professor at the

Computer Science Department of the faculty of Science of the
University of Amsterdam in the Netherlands. At this faculty,
she is also the director of the COLNET (Collaborative
Network) group. She has received her PhD in Computer
Science from the University of Southern California (USC) in
1985, and her MSc degree also in Computer Science from the
University of California, Los Angeles (UCLA) in 1980. Her
current research focuses on the areas of Federated /Distributed
Cooperative Databases, Virtual Organizations /Virtual
Laboratories /Virtual Communities, Integration of Autonomous
and Heterogeneous Databases, and the design and development
of specialized Web-based Applications for a wide variety of
domains such as Biodiversity, Manufacturing, Tele-assistance,
and Distributed Control Engineering. She has directed research
in more than fifteen National, European, and International
projects. She has been involved in the organization and has
initiated / chaired several International conferences and
workshops. She has published more than 150 articles in
journals, books, and refereed conference proceedings in
computer science research. She has co-edited more than ten
books and various issues of international Journals. She is the
Dutch representative at the IFIP TC5, and a member of the IFIP
WG5.3 and WG5.5.

 14

JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009 261

© 2009 ACADEMY PUBLISHER

http://www.gupro.de/GXL/
http://graphml.graphdrawing.org/

