
Downloaded from UvA-DARE, the institutional repository of the University of Amsterdam (UvA)
http://dare.uva.nl/document/168219

File ID 168219
Filename Chapter 2: Related work

SOURCE (OR PART OF THE FOLLOWING SOURCE):
Type Dissertation
Title End-user support for access to heterogeneous linked data
Author M. Hildebrand
Faculty Faculty of Science
Year 2010
Pages vi, 172

FULL BIBLIOGRAPHIC DETAILS:
  http://dare.uva.nl/record/334809

Copyright
 
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or
copyright holder(s), other than for strictly personal, individual use.
 
 
UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

http://dare.uva.nl/document/168219
http://dare.uva.nl/record/334809
http://dare.uva.nl


Chapter 2

Related work

In this chapter we identify different types of user-oriented search func-
tionality and presentation methods to access Semantic Web data. We
summarise our literature study of Semantic Web applications for search
and browsing. The basic terminology is introduced and the different
features found in the literature are analysed in the form of a survey.
From this analysis, we identify a number of problems with user-oriented
support for accessing Semantic Web data. Some of these are explored
in the case studies in Chapters 3, 4 and 5, where we design and evaluate
support for a number of the specific features discussed.

This chapter is based on a survey conducted in May 2007 and will
appear as the chapter “The role of explicit semantics in search and
browsing” in the book Multimedia Semantics: Metadata, Analysis and
Interaction (Hildebrand et al. 2010). It is co-authored by Jacco van
Ossenbruggen and Lynda Hardman. Since the original survey, the area
of semantic search has grown and Web companies are starting to in-
tegrate semantic technologies into their search engines (Hendler 2010).
In particular, advances have been made in the extraction of semantic
relations using natural-language processing. This is, however, outside
the scope of this thesis. In addition, we observe the uptake of semantic
relations to improve the presentation of the search results, e.g. to pro-
vide more informative results and/or organise the results. Several of
these strategies were already investigated in the prototypes discussed
in this chapter.

2.1 Introduction

In recent years several Semantic Web applications have been developed that sup-
port some form of search. These applications provide different types of search



12 Chapter 2

Figure 2.1: High level overview of text-based query search: (a) query
construction, (b) search algorithm of the system, (c) presentation of
the results. Dashed lines represent user feedback. Image based on
http://www-nlpir.nist.gov/projects/tv2007/.

functionality and make use of the explicit semantics present in the data in various
ways. The goal of this chapter is to give an overview of the semantic search func-
tionalities provided by the current state of the art in Semantic Web applications.
Excluding search based on structured query languages such as SPARQL (W3C
2006), we focus on queries based on simple textual entry forms and queries con-
structed by navigation (e.g. faceted browsing). We provide a systematic under-
standing of the different design dimensions that play a role in supporting search
on Semantic Web data.

The next section establishes the basic search terminology used throughout
the chapter. Section 2.3 provides an in-depth analysis of the different types of
search functionality based on a survey of 35 Semantic Web applications. We ar-
gue that search is far from trivial, and list the different roles semantics currently
play throughout the various phases of the search process. We discuss the main
conclusions in section 2.4.

2.2 Basic Search Terminology

We introduce the basic definitions used throughout the chapter.

Search process We follow the TRECVID 2007 Evaluation Guide-
lines (TRECVID organizers 2007) and divide the search process into
three different phases: query construction, execution of the core search
algorithm and presentation and organisation of the results. We also take into
account user feedback on the query and on the results (see also Figure 2.1).

Semantic search We use the term semantic search when semantics are used dur-
ing any of the phases in the search process.

Type of results Traditional search engines on the web typically assume the re-
sult of a search to be a set of web objects, e.g. text documents, images or
video. This also holds for some Semantic Web applications. Others, however,
return sets of matching URIs, sets of matching triples (an RDF sub-graph)

http://www-nlpir.nist.gov/projects/tv2007/


Related work 13

or a combination of these. Often the behaviour of a system depends on the
type of result it assumes, so we make this explicit wherever this is relevant.

Overview pages and surrogates We refer to presentation of the (k first) results
as the overview page, which typically represent results using surrogates. For
example, resulting HTML pages can be represented by their title and a text
snippet, while image or video results are often represented by thumbnails.

Local view page Surrogates typically provide links to the full presentation of
the result they represent. The latter is either the full presentation of an
information object (e.g. the full HTML page that is linked from the snippet
presented on the overview page), some human readable representation of
metadata associated with the result, or a human readable representation of
a resulting sub-graph. Following (Rutledge et al. 2005), we refer to the latter
presentation as a local view page.

Syntactic matching Syntactic search matches the query against the textual con-
tent of the objects (if applicable), the literals in the RDF metadata, the URIs
in the system, or a combination of these.

Semantic matching We use the term semantic matching for those algorithms
that in addition to syntactic matching also use the graph structure of the
RDF metadata and/or its semantics to find results.

2.3 Analysis of semantic search

We systematically scanned all proceedings of the International and European Se-
mantic Web Conference series as well as the Journal of Web Semantics, to compile
a list of end-user applications described or referred to. For each system we collected
basic characteristics such as the intended purpose, intended users, the scope, the
triple store and the technique or software that is used for literal indexing. The
resulting document was made available online1 and announced on three public
mailing-lists2. Additionally, we sent personal emails to the authors of papers and
developers of all included systems. This resulted in an updated version of the
online document. This update was based on 15 email threads, in which additional
information was provided for 11 systems and 6 additional systems within the scope
of the survey were recommended, giving a total of 35 systems.

Based on the data resulting from the survey we performed a more thorough
analysis of the three individual phases in the search process of Figure 2.1. For
each of these we consider the underlying functionality and the features of the cor-
responding user interface. The results of this analysis are summarised in Table 2.3,

1http://swuiwiki.webscience.org/index.php/Semantic Search Survey
2public-xg-mmsem@w3.org, semantic-web@w3.org, public-semweb-ui@w3.org

http://swuiwiki.webscience.org/index.php/Semantic_Search_Survey
public-xg-mmsem@w3.org
semantic-web@w3.org
public-semweb-ui@w3.org


14 Chapter 2

Query construction

Feature : Functionality Interface Components

Free text input: Keywords, natural language Single text entry, property-
specific fields

Operators : Boolean constructs, syntactic
disambiguation, semantic con-
straints on input/output

Application-specific syntax

Controlled
terms

: Disambiguate input, restrict
output, select predefined queries

Value lists, faceted browser,
graph

User feedback : Pre-query disambiguation Autocompletion

Search algorithm

Syntactic
matching

: Exact, prefix or substring
match, minimal edit distance,
stemming

Not applicable

Semantic
matching

: graph traversal, query expan-
sion, spread activation, RDF-
S/OWL reasoning

Not applicable

Result presentation

Data selection : Selected property values,
class-specific template, display
vocabularies

Visualised by text, graph, tag-
cloud, map, timeline, calendar

Ordering : Content and link structure based
ranking

Ordered list

Organisation : Clustering by property, by result
path or dynamic

Tree, nested box structure, clus-
termap

User feedback : Post-query disambiguation, rec-
ommendation of related objects

Facets, tagcloud, value list

Table 2.1: Functionality and interface support in the three phases of semantic search.

and the table also provides the structure of the remainder of this section. We dis-
cuss query construction in section 2.3.1, the search algorithms in 2.3.2 and the
presentation of the results in 2.3.3. Note that the examples and references merely
serve as illustrations, the full analysis with references is available in the online
survey.



Related work 15

2.3.1 Query Construction.

The search process starts with the user constructing a query that reflects his or her
information needs. We describe the functionality for this process as provided by
the systems in the survey and how this functionality is supported at the interface.

Functionality Constructing a query in free text requires little knowledge of the
system and the data structure. The price users have to pay is ambiguity: words can
have multiple meanings (lexical ambiguity) and a complex expression can have mul-
tiple underlying structures (structural ambiguity). Ambiguous input often leads
to irrelevant search results. To reduce ambiguity several systems allow additional
query constructs beyond free text input: structural and semantic operators and
controlled terms. We describe free text input and the additional query constructs
and the role of user feedback in the process of matching free text with controlled
terms.

Free text input is supported in existing systems in three ways. First, full text
search allows the user to find all objects with matching textual content or metadata.
In many semantic search engines full text search is the main entry point into the
system (Ding et al. 2005; Schreiber et al. 2006; Celino et al. 2006; Guha et al.
2003; DERI 2007). Second, free text input can be restricted to match a value of
a specific property. In faceted browsers this is the case when searching for a value
within a particular facet (SIMILE 2005; m.c. schraefel et al. 2005; Hildebrand
et al. 2006). Finally, systems such as Aqualog (Lopez et al. 2005) and Ginseng
(Bernstein et al. 2006) support free text input in the form of natural language
expressions.

Syntactic operators explicitly define the interpretation of complex search terms.
Well known examples are the boolean operators AND and OR. Several applications
employ third party search libraries such as Apache Lucene, which typically provide
an extensive collection of syntactic control structures3.

Semantic operators add explicit meaning to a query. In SemSearch, for exam-
ple, the user specifies to which RDFS or OWL class a result should belong. The
authors illustrate this with the example article:motta for which the system re-
trieves all objects that are of type article and match the search term motta (Lei
et al. 2006).

Controlled terms provide the use of predefined concepts. In QuizRDF (Davies
and Weeks 2004) the user selects an RDF class to determine the type of the search
term. Other systems provide autocompletion to support users with keyboard-based
input of controlled terms (SIMILE 2005; m.c. schraefel et al. 2005; Hildebrand
et al. 2006; Kiryakov et al. 2004; Hyvönen and Mäkelä 2006). A different approach
is seen in DBin (Tummarello et al. 2006) and Haystack (Quan and Karger 2004),
which allows the user to select predefined queries.

3http://lucene.apache.org/java/2 3 2/queryparsersyntax.html

http://lucene.apache.org/java/2_3_2/queryparsersyntax.html


16 Chapter 2

User feedback on the input is useful when there are multiple controlled terms
that match with the free text input. Several systems allow the user to select
the intended term before it is processed by the search algorithm (Celino et al.
2006; Hildebrand et al. 2006; Hyvönen and Mäkelä 2006). This form of user
feedback allows pre-query disambiguation. In contrast, post-query disambiguation
is performed on the results of the search algorithm.

Interface The basic interface components to enter or construct a query are text
entry boxes and value selection lists. These components are used in various de-
signs, of which we mention three. If applicable, we describe the link from the
interface components to the underlying data structure. Furthermore, we describe
the interface aspects of user feedback on the input and several proposals for more
advanced query construction.

A single text entry field is sufficient for free text input, e.g. Google and several
systems that we analysed (Schreiber et al. 2006; Celino et al. 2006; Guha et al.
2003; Davies and Weeks 2004; Ding et al. 2004). Additional features included by
some systems are selectable result types (Ding et al. 2004) and options for the
search algorithm or presentation of the results (Davies and Weeks 2004).

Property-specific search fields support query construction guided by a specific
set of possible search values (Kiryakov et al. 2004; Mika 2006; Heflin and Hendler
2000; Metaweb 2007). The value sets are typically defined by the range of the
corresponding RDF property.

Faceted browsing allows the user to constrain the set of results within a particu-
lar facet. Typically, facets are directly mapped to properties in RDF. Alternatively,
the mapping is made by projection rules. The advantage of an indirect mapping
is that this allows the developer to define facets that match the user’s needs while
keeping the data structure unchanged (Suominen et al. 2007a). Faceted browsing
is applied to Semantic Web data by (SIMILE 2005; m.c. schraefel et al. 2005;
Hildebrand et al. 2006; Suominen et al. 2007a; Fluit et al. 2003a; Hyvönen
et al. 2005; Oren et al. 2006) as well as by the company Siderean in the Seamark
Navigator4.

User Feedback is typically provided after the query has been entered, or dynam-
ically during the construction of the query as a form of semantic autocompletion.
The former method is used in Squiggle (Celino et al. 2006) and MuseumFinland
(Hyvönen et al. 2005) where the disambiguation of the matching query terms is
presented after submitting the query. In semantic autocompletion the system sug-
gests controlled terms with a label prefix that matches the text typed in already.
Hyvönen and others describe the idea of semantic autocompletion and several
implementations in (Hyvönen and Mäkelä 2006). In faceted interfaces autocom-
pletion is often used within a single facet (SIMILE 2005; m.c. schraefel et al. 2005;
Hildebrand et al. 2006; Kiryakov et al. 2004).

4http://www.siderean.com/

http://www.siderean.com/


Related work 17

In general there is a clear need for simple interfaces, such as the single text entry
field. On the other hand, interface designs that support more complex interaction
styles potentially give the user more control, which is useful for the formulation of
more precise information needs.

2.3.2 Search algorithm

All text-based search involves some form of syntactic matching of the query
against textual content and/or metadata, an aspect well covered in Information
Retrieval (Baeza-Yates and Ribeiro-Neto 1999). Semantic matching can extend
syntactic matching by exploiting the typed links in the semantic graph. Before we
describe semantic matching we briefly describe syntactic matching, focusing on the
indexing functionality and the support that is already provided by the low level
software on which various systems are built.

Syntactic matching All systems in our study index the textual data in their
collection for performance reasons. Which textual data is indexed, e.g. the con-
tent, the metadata or the URIs, is important for the search functionality of the
system. In an ontology search engine such as Swoogle, users might want to search
on URIs (Ding et al. 2005). In annotated image collections the metadata forms
the primary source for indexing (Schreiber et al. 2006; Celino et al. 2006; Hyvönen
et al. 2005). For images that occur in web pages the contextual text provide an
alternative source (Celino et al. 2006; Group 2006). Indices can be based on the
complete word or on a stemmed version. Some interface functionalities require ad-
ditional features. Autocompletion interfaces, for example, require efficient support
for prefix matching. Some triple stores provide built-in support for literal index-
ing, for example, OpenLink Virtuoso5 and SWI Prolog’s Semantic Web library6.
Alternatively, a search engine, such as Lucene7, can be used together with a triple
store.

Semantic matching After syntactic matching, the structure and formal seman-
tics of the metadata can be used to extend, constrain or modify the result set. Note
that in a connected RDF graph, any two nodes are connected by a path in this
graph. Naive approaches to semantic search are computationally too expensive
and increase the number of results dramatically. Systems thus need to find a way
to reduce the search space and to determine which semantically related objects are
really relevant.

Inspired by the semantic continuum described by Ushold (Uschold 2003), we
distinguish three levels of semantic matching: graph traversal, explicit use of the-

5http://www.openlinksw.com/
6http://www.swi-prolog.org/packages/semweb.html
7http://lucene.apache.org/

http://www.openlinksw.com/
http://www.swi-prolog.org/packages/semweb.html
http://lucene.apache.org/


18 Chapter 2

sauri relations and inferencing based on the formal semantics of RDF, RDFS and
OWL.

Graph traversal takes only the structure of the graph into account. Several
techniques are in use to constrain graph search algorithms. In Tap, constraints
define which relations to traverse for the instances of a particular class (Guha et al.
2003). Alternatively, a weighted graph search algorithm may constrain the possible
path structures and path length. Such an algorithm requires the assignment of
weights to the edges in the graph, where the weights reflect the importance of the
corresponding RDF relations. In e-Culture, weights are manually assigned to RDF
relations (Schreiber et al. 2006). SemRank automatically computes weights based
on statistics derived from the graph structure (Anyanwu et al. 2005). Spread
activation (Rocha et al. 2004) is another computationally attractive technique for
graph traversal, which can incorporate weights as well as the number of incoming
links.

Thesaurus relations are sometimes used for query expansion. With the accep-
tance of SKOS (W3C 2005) as a standard representation for thesauri, semantic
matching with hierarchical broader term (BT) and narrower term (NT) and the
associative related term (RT) can be implemented in a generic way. The Squig-
gle framework is an example in which this is done (Celino et al. 2006). Facet
browsers typically rely on hierarchical thesauri relations to restrict their result sets
(Hildebrand et al. 2006; Hyvönen et al. 2005). Within the FACET project the
integration of thesauri in the search process is studied extensively. This resulted
in a demonstrator as well as a proposal for a semantic expansion service (Binding
and Tudhope 2004a), which in turn formed the basis for the experimental SKOS
API8.

RDFS/OWL reasoning can also influence the search results. Several systems
support RDFS subsumption once an RDF class is selected in the interface (Lei
et al. 2006; Tummarello et al. 2006; Auer et al. 2006; Duke et al. 2007). In Dose,
specialisation and generalisation over the subclass hierarchy is used dynamically
according to the number of search results (Bonino et al. 2004). Some systems
support partial OWL reasoning, and process, for example, only the OWL identity
relations. In Flink (Mika 2005) and SWSE (DERI 2007) these are extensively used
to model the identity between extracted entities.

2.3.3 Presentation of Results

We describe how explicit semantics are used to extend the baseline functionality in
the presentation of search results, and the techniques that are used to visualise the
results in the interface. As a baseline we consider the presentation of search results
by popular search engines such as Google: the selected information for presentation
is the URI or label of the result, surrogates of the content (e.g. text snippets or

8http://www.w3.org/2001/sw/Europe/reports/thes/skosapi.html

http://www.w3.org/2001/sw/Europe/reports/thes/skosapi.html


Related work 19

image thumbnails) and, optionally, additional information such as the file size. The
results are typically organised in a plain list and ordered by relevance. We describe,
for each aspect, how additional semantics are used to extend this baseline.

Functionality We consider three aspects of the presentation: selecting what
data to present, organising the results and ordering the results. In addition, we
discuss the function of user feedback on the results.

Selecting what to present — This issue is tightly bound to the question what
the search engine considers to be a “result”. If the result is a Web page or other
information object, traditional surrogates are typically used. When the search
result is a set of URIs referring to nodes in an RDF graph, or a set of RDF
triples, systems need to invent new ways to represent the results in their overview
page. In most systems we studied, the decision on what (meta)data is used for the
surrogates is hardwired into the system. QuizRDF supports template definitions
for each RDF class (Davies and Weeks 2004). Dbin (Tummarello et al. 2006)
create templates for specific user tasks and domains. Display vocabularies such
as Fresnel (Bizer et al. 2005), as used by Longwell (SIMILE 2005), provide full
control over what data to select for presentation and how to present it.

Organising the results — Semantics can also play a role in grouping semantically
similar results together in the presentation, a feature commonly referred to as
clustering. Assuming that users are interested in the results of only one cluster,
clustering can also be considered as a form of post-query disambiguation. In our
study we found several forms of clustering. In many systems, the values of a
particular property are used to group the result set on common characteristics
within a particular dimension. In (Guha et al. 2003) results with similar types
are clustered together. In faceted browsers similar behaviour is found, systems
described in (SIMILE 2005; Hildebrand et al. 2006; Hyvönen et al. 2005) all
support clustering on the values of a particular facet. Noadster uses concept lattices
to determine dynamically which properties to use for a given result set (Rutledge
et al. 2005). In e-Culture (Schreiber et al. 2006), the RDF path between the
literal that is syntactically matching the query and the result may span more than
one property. Clustering the results on these paths illustrate the interpretations
of the query.

Ordering of results — The order of the search results can determined with
different techniques. Ranking of results based on relevance is a well covered topic
in Information Retrieval (Baeza-Yates and Ribeiro-Neto 1999). Numerous algo-
rithms have been developed, evaluated and applied in successful applications. Term
frequency-inverse document frequency (tf-idf) is an often used syntactic measure
to determine the importance of a word based on the number of occurrences in a
document relative to the number of occurrences in the entire collection. Many sys-
tems in our study use Lucene, which provides ranking based on tf-idf. In addition
to textual content, the link structure is another source for ranking. Swoogle uses



20 Chapter 2

a variant of PageRank (Page et al. 1998) to measure the relevance of RDF docu-
ments. PageRank was adapted to compensate for different types of relations that
link RDF documents and terms (Ding et al. 2005). In SWSE (Hogan et al. 2006)
a variant of PageRank based on the principle of focussed subgraphs (Kleinberg
1999) is used.

User Feedback — In our study, we did not encounter typical IR user feedback
where the matching and ranking algorithms is influenced by the user’s feedback.
We mainly encountered user feedback to disambiguate, specialise, generalise or
expand the result set. Most systems support expansion of a query by adding a
keyword or by selecting a value from a property field or facet. In several systems,
post-query disambiguation of free text input is supported through the selection
of an RDF type (DERI 2007; Davies and Weeks 2004; Duke et al. 2007; Berlin
2007). Alternatively, queries can be specialised or generalised with concepts from
narrower or broader thesaurus relations (Celino et al. 2006; Hildebrand et al. 2006;
Hyvönen et al. 2005). An unwanted side effect of query refinement is the risk of
ending up with no results. This can be avoided by restricting the user beforehand
to use only those terms that lead to results. This is one of the principles behind
faceted browsing interfaces (Yee et al. 2003).

We observed that domain-specific applications use the semantics to organise
the search results into clusters. Domain-independent search engines typically rely
on ranking techniques for effective presentation of the search results.

Interface Most systems provide a straight-forward interface that directly reflects
the structure of the selected data and how it is organised. Typical examples include
numbered lists for a linearly ranked set of results or visual grouping of clustered
results in nested box layout structures. Since RDF is represented as a graph,
visualising the data as a graph may seem a straightforward choice. However, from
a user interface perspective, “‘big fat graphs” quickly become unmanageable (m.c.
schraefel and Karger 2006), with only a few exceptions including the visualisation of
social networks between small groups of people (Mika 2005). We discuss some other
visualisation techniques (see (Geroimenko and Chen 2003) for a more extensive
overview) we encountered.

Tagclouds indicate the importance of textual metadata with variations in the
font size. OpenAcademia (Mika 2006) visualises the concepts related to research
publications and search. DBpedia.org (Berlin 2007) presents the available RDF
types of the search results.

Clustermaps visualise the overlap between classes of instances, without needing
an explicit concept representing this overlap (Fluit et al. 2003b). For example in
AutoFocus a clustermap visualises the results of individual constraints as well as
result sets that satisfy multiple constraints (Fluit et al. 2003a).

Data type-specific visualisations are used in several systems to present space and



Related work 21

time on a geographical map, timeline or calendar. The Simile timeline9, several
map visualisation tools and Google Calendar can be used through publicly available
APIs. Hence, we do not list the individual systems that make use of these.

Local view pages provide a detailed presentation of the metadata associated
with single URI. Systems such as Tabulator (Berners-Lee et al. 2006) and Disco
(Bizer and Gauß 2007) are based on the notion of a concise bounded descriptionor
CBD10 and present the statements where the current focus URI is a subject. Oth-
ers systems’ local view pages may contain all statements in which the URI occurs
either as a subject or object. Sesame’s URI explorer pages11Noadster (Rutledge
et al. 2005) and E-culture (Schreiber et al. 2006) also include statements where
the URI plays the role of the property.

2.4 Discussion

In a survey we investigated the search functionality and result presentation of 35
Semantic Web applications. We conclude that the applications support a wide
variety of different types of tasks and provide access to different types of data
sets. In addition, they provide different types of support for the three stages of
the search process: query formulation, search algorithm and result presentation.
It, however, remains unclear how well these technologies improve support for end-
users. With a few notable exceptions (Ding et al. 2004; Sure and Iosif 2000),
the search algorithms analysed in this study are not or only briefly evaluated on
the quality of their search results for end-users. A similar argument applies to
the interface components found in our study. For none of the systems we could
find user evaluations that would stand the criteria commonly found in the HCI
community.

In Information Retrieval, there is a long tradition of evaluating the quality of
retrieval systems. Conference series such as TREC and INEX contribute to an
(evolving) community consensus about which dimensions to evaluate, and how to
measure a system’s performance on that dimension. It is safe to say that within the
Semantic Web community, we have not yet developed a similar consensus about the
use of explicit semantics to improve search, and how to evaluate and to compare
semantic search systems.

We conclude that given a specific domain and search task it is difficult to deter-
mine how the semantically-rich graph structure should be used to benefit the end
user. In the following three chapters we, therefore, investigate support for spe-
cific tasks and use qualitative evaluations to gather insights in the requirements to
support end-user access to semantically-rich linked data.

9http://simile.mit.edu/timeline/
10http://www.w3.org/Submission/CBD/
11http://www.openrdf.org/

http://simile.mit.edu/timeline/
http://www.w3.org/Submission/CBD/
http://www.openrdf.org/

