$Downloaded\ from\ UvA-DARE,\ the\ institutional\ repository\ of\ the\ University\ of\ Amsterdam\ (UvA)\ http://dare.uva.nl/document/159959$

File ID 159959 Filename List of figures

SOURCE (OR PART OF THE FOLLOWING SOURCE):

Type Dissertation

Title A method for valuing architecture-based business transformation and measuring the value of

solutions architecture

Author R.G. Slot

Faculty Faculty of Economics and Business

Year 2010 Pages xxii, 184

FULL BIBLIOGRAPHIC DETAILS:

http://dare.uva.nl/record/327269

Copyright

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other then for strictly personal, individual use.

List of Figures

List of Figures

FIGURE 2-1. BASIC TRANSFORMATION APPROACH	8
FIGURE 2-2. MAIN ELEMENTS OF STRATEGIC MANAGEMENT ACCORDING TO JOHNSON & SCHOLES	11
FIGURE 3-1. THE RELATIONSHIP BETWEEN IT EXPENDITURES AND ORGANIZATIONAL PERFORMANCE (FROM SOH AND	
Markus)	15
FIGURE 3-2. RELATIONSHIP BETWEEN ARCHITECTURE, TRANSFORMATION SCENARIO, SOLUTION ARCHITECTURE,	
TRANSFORMATION PROGRAM AND OPERATIONAL PROCESSES	16
FIGURE 4-1. DECISION TREE FOR BIG BANG SCENARIO EXAMPLE (M€)	22
FIGURE 4-2. DECISION TREE FOR PHASED SCENARIO EXAMPLE (M€)	23
FIGURE 4-3. PROBABILITY DENSITY FUNCTION OF AN EXAMPLE NORMAL DISTRIBUTION	30
FIGURE 4-4. CUMULATIVE PROBABILITY FUNCTION OF AN EXAMPLE NORMAL DISTRIBUTION	30
FIGURE 4-5. PROBABILITY DENSITY FUNCTION OF AN EXAMPLE LOGNORMAL DISTRIBUTION	32
FIGURE 4-6. CUMULATIVE PROBABILITY FUNCTION OF AN EXAMPLE LOGNORMAL DISTRIBUTION	32
FIGURE 4-7. EXAMPLE PROBABILITY DENSITY FUNCTION OF THE COST (LEFT), REVENUE (RIGHT) AND CASH FLOW(MIDD	LE).35
FIGURE 4-8. CUMULATIVE PROBABILITY FUNCTION OF CF(X)	38
FIGURE 5-1. OVERVIEW OF THE BUSINESS ARCHITECTURE FOR THE DOMAIN INPUT HANDLING (PICTURE COURTESY OF T	ГНЕ
CASE STUDY INSTITUTION)	44
FIGURE 5-2. PROBABILITY DISTRIBUTION FUNCTION FOR EXPECTED BENEFITS	52
FIGURE 5-3. OVERVIEW OF BUDGET OVERRUN FOR 70 IT PROJECTS	54
FIGURE 5-4. LOGNORMAL ANALYSIS FOR PROJECT BUDGET OVERRUN	54
FIGURE 5-5. LOGNORMAL DISTRIBUTION FOR PROJECT BUDGET OVERRUN	55
FIGURE 5-6. PROBABILITY DENSITY FUNCTION DESCRIBING THE COST OF THE BUSINESS ARCHITECTURE	57
FIGURE 5-7. PROBABILITY DISTRIBUTION FOR EXPECTED BENEFITS AFTER OPERATIONAL COSTS.	57
FIGURE 5-8. PDF'S OF COST, CASH FLOW AND REVENUE OF THE BUSINESS ARCHITECTURE	58
FIGURE 5-9. CUMULATIVE PROBABILITY FUNCTION OF THE CASH FLOW	58
FIGURE 5-10. SENSITIVITY ANALYSES FOR BENEFITS	59
FIGURE 5-11. RESULTS OF SENSITIVITY ANALYSIS FOR THE CASH FLOW FUNCTION	60
Figure 5-12. Comparing cash flows with and without contracting option. Example for fixed price of $\pmb{\varepsilon}$	4M.6
FIGURE 5-13. LIKELY AND EXPECTED VALUE OF THE STANDARD AND THE CONTRACT SCENARIO	62
Figure 5-14. Values of Sp and Fp as function of \emph{A} and \emph{T} .	64
Figure 5-15. Intersection line between Sp and Fp .	64
FIGURE 5-16. RELATIONSHIP BETWEEN OPTION VALUE AND FIXED-PRICE	66
FIGURE 5-17. COMPARISON OF STANDARD OPTION VERSUS THE CONTRACT OPTION	67
FIGURE 6-1. PROJECT AND SUCCESS VARIABLES (FROM WOHLIN)	73
FIGURE 6-2. VALUE OF THE CONFIDENCE INTERVAL MULTIPLIER FOR VARIOUS SAMPLE SIZES	82
FIGURE 7-1. CUSTOMER SATISFACTION AS FUNCTION OF BUDGET OVERRUN	96
FIGURE 7-2. CUSTOMER SATISFACTION AS FUNCTION OF TIME OVERRUN	97
FIGURE 7-3. ANALYSIS OF VARIANCE FOR PROJECT TIMEFRAME USING TWO PROJECT VARIABLES	102
Figure 7-4. Number of significant H_0 statement correlations for each project variable	106
FIGURE 7-5. PROJECT SUCCESS RATES (STANDISH CHAOS REPORT, 1999).	108
FIGURE 7-6. CORRELATION BETWEEN PROJECT COST AND MARGIN	108
FIGURE 7-7. COMPARISON OF NORMAL DISTRIBUTION BUDGET OVERRUN	111
FIGURE 9-1. BENEFITS OF REAL OPTIONS ANALYSIS (KODUKULA, ET AL., 2006).	119
FIGURE 1-1. COSTS FOR YEAR 1	140
FIGURE 1-2. BENEFITS, COSTS AND CASH FLOW FOR YEAR 2	140

Value of Architecture-Based Business Transformation

FIGURE 1-3. BENEFITS, COSTS AND CASH FLOW FOR YEAR 3	140
FIGURE 1-4. BENEFITS AND CASH FLOW FOR YEAR 4	141
FIGURE 1-5. ANNUAL CASH FLOW PDF'S	141
FIGURE 1-6. CASH FLOW CDF FROM LEFT TO RIGHT FOR YEAR 1 TO 4	141
FIGURE 1-7. OVERALL CASH FLOW PROBABILITY DENSITY FUNCTION	142
FIGURE 1-8. OVERALL CASH FLOW PROBABILITY DENSITY FUNCTION	142
FIGURE 3-1. HISTOGRAM OF PROJECT BUDGET SUCCESS VARIABLE	148
FIGURE 3-2. HISTOGRAM OF PROJECT BUDGET SUCCESS VARIABLE AFTER OUTLIER ELIMINATION	150
FIGURE 3-3. ANALYSIS OF PROJECT BUDGET SUCCESS VARIABLE FOR NORMAL DISTRIBUTION	150
FIGURE 3-4. ANALYSIS OF PROJECT BUDGET SUCCESS VARIABLE FOR LOGNORMAL DISTRIBUTION	151
FIGURE 3-5. HISTOGRAM FOR TRANSFORMED BUDGET SUCCESS VARIABLE	152
FIGURE 3-6. DISTRIBUTION ANALYSIS OF TIME OVERRUN	153
FIGURE 3-7. HISTOGRAM FOR TRANSFORMED TIME SUCCESS VARIABLE	153
FIGURE 3-8. HISTOGRAM OF CUSTOMER SATISFACTION SUCCESS VARIABLE	155
FIGURE 3-9. HISTOGRAM OF PERCENTAGE DELIVERED SUCCESS VARIABLE	155
FIGURE 3-10. HISTOGRAMS OF FUNCTIONAL AND TECHNICAL FIT	157
FIGURE 4-1. PROBABILITIES H ₀ STATEMENT I	158
FIGURE 4-2. DISTRIBUTIONS FOR PROJECT VARIABLE 8 SAMPLES	159
FIGURE 4-3. DISTRIBUTIONS FOR PROJECT VARIABLE 8 SAMPLES. ANSWER 1 AND 2 JOINED.	160
FIGURE 4-4. PROBABILITIES H ₀ STATEMENT II	160
FIGURE 4-5. DISTRIBUTIONS FOR PROJECT VARIABLE 1 SAMPLES. ANSWER 2 ELIMINATED	161
FIGURE 4-6. DISTRIBUTIONS FOR PROJECT VARIABLE 5 SAMPLES	162
FIGURE 4-7. DISTRIBUTIONS FOR PROJECT VARIABLE 5 SAMPLES. ANSWER 2 AND 3 JOINED.	163
FIGURE 4-8. PROBABILITIES H₀ STATEMENT III	163
FIGURE 4-9. DISTRIBUTIONS FOR PROJECT VARIABLE 5 SAMPLES. ANSWER 2 AND 3 JOINED.	164
FIGURE 4-10. DISTRIBUTIONS FOR PROJECT VARIABLE 6 SAMPLES	165
FIGURE 4-11. DISTRIBUTIONS FOR PROJECT VARIABLE 6 SAMPLES. ANSWER 2 AND 3 JOINED	165
FIGURE 4-12. DISTRIBUTIONS FOR PROJECT VARIABLE 7 SAMPLES	166
FIGURE 4-13. DISTRIBUTIONS FOR PROJECT VARIABLE 7 SAMPLES. ANSWER 2 AND 3 JOINED.	167
FIGURE 4-14. DISTRIBUTIONS FOR PROJECT VARIABLE 10 SAMPLES. ANSWER 1 ELIMINATED.	168
FIGURE 4-15. PROBABILITIES H₀ STATEMENT IV	168
FIGURE 4-16. PROBABILITIES H ₀ STATEMENT V	169
FIGURE 4-17. REGRESSION FOR PROJECT VARIABLE 3	170
FIGURE 4-18. REGRESSION FOR PROJECT VARIABLE 4	171
FIGURE 4-19. REGRESSION FOR PROJECT VARIABLE 5	171
FIGURE 4-20. REGRESSION FOR PROJECT VARIABLE 6	172
FIGURE 4-21. REGRESSION FOR PROJECT VARIABLE 7	173
FIGURE 4-22. PROBABILITIES H ₀ STATEMENT VI	174
FIGURE 4-23. REGRESSION FOR PROJECT VARIABLE 4	174
FIGURE 4-24. REGRESSION FOR PROJECT VARIABLE 5	175
Figure 4-25. Regression for project variable 6	176
FIGURE 4-26. REGRESSION FOR PROJECT VARIABLE 7	176
FIGURE 4-27. REGRESSION FOR PROJECT VARIABLE 8	177
FIGURE 4-28. PROBABILITIES H ₀ STATEMENT VII	178
FIGURE 4-29. PROBABILITIES H ₀ STATEMENT VIII	178
FIGURE 4-30. MEANS OF TECHNICAL FIT VERSUS PROJECT VARIABLE 5	178
FIGURE 1 30. IVICANO DE LECTIMICAL ELE VERSOS EROJECE VARIABLE S	1/3