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NON PARAMETRIC POPULATION CLASSIFICATION

A.W.M., SMEULDERS

Department of Pathology, and the Department of Medical
Informatics, Free University, De Boelelaan 1117, 1081 HV
Amsterdam, The Netherlands

SUMMARY

Population classification is a set of statistical techniques to
classify populations on basis of observations of their
constituing members. This decision making involves a cascade of
classifiers: one for objects, and, based on the resulting
classifications, one for populations. Also a rule is to be given
how many objects should be analysed before ¢the population is
decidable. In search for a more integral view of the problem the
population function 1is introduced. Consideration of the
population function implies that rather then fixing the object
classifier a priori, it is more efficient and more accurate to
extend the clagsifier to a distinct range of the feature vector.
The concept of sequential classification 1is defined as well.

Population classification performance is favourably compared to
/1,2,3,5,6/.

1. INTRODUCTION

Population classification is the classification of a population
on basis of observations on 1its membhers., Population
classification deviates from usual decision making procedures 1n
the two step classification procedure that is employed. In the
first step, members of a population each are classified into one
of the member classes. After the analysis of a certain number of
members, in the second step the population 1itself is classified
into one of the population classes. Population classification 1is

a statistical technique with applications 1in many different
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fields such as industrial dinspection, quality control and
quality assessment of lots. For conceptual convenience, we will

adopt here the terminology from the cytology £field, where a

specimen may be conceived as a population of cells.
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Fig., 1. The two classifler cascade. ]
l In figure 1, the two step classification procedure 1is

depicted. Tt 1is crucial 4in this cascade of classifiers that the
accumulated outcome of the cell c¢lassification 1is the input of
the specimen classification. So, an alteration 1in the cell

clagssifier may influence the specimen classification result. In

t
i
[
E
%
:
;i} | the analysis of specimens, the prime interest is not in the
EZQ: performance o0f the cell ¢lasgssifier on {its own, but in its
i
E performance in respect to the specimen classification.

Let the cell of the T-th specimen be numbered by 1ndex 1

with &= 1,...,n1. A feature vector w; 1s computed per cell,

giving a list of n, observations. The cascade of classifiers 1is

composed of three tunable entities:

1+ The cell classifier (ﬁt) provides a set of rules to classify
a cell characterized by ﬁi. The cell is classified into one
or more cell classes k with k=l,...,m,
The cell classifications are accumulated 1in the cell class

cccupancy vector £. It should be noted, that in the results

of this paper will suggest that it may be profitably not to

use a cell eclagsifier,

2. The number rule (n¢) controls the wminimum number of cells to

be classified before classifying the specimen.

} .




3. The specimen classifier (fy) provides a set of rules to
classify a specimen based on f after the analysis of n

|
cells. The specimen is c¢classified 1in specimen class K with

K=1,¢04,M.
The objective of statistical population analysis 1is to design a
procedure such that the specimen classgsification error 1is
acceptable and the number of cells to classify is minimized Dby
controlling these three entities. It is 1mportant to note that a
specimen may either be erronenusly classified by the fact that
only a limited number of cells are analysed or by the fact that

the occupancy vector f,. of a specimen, when compared to ¢

leads to erroneous classification. The first errcr, the sample

»

error, 1s related to the system efficiency and may be avoided by
analysing more cells. The second error i1s related to accuracy of
the system and is intrinsic to the nature of the problem. For a
fixed %t and f , 1t cannot be cured by analysing more cells.

Castleman and White were the first to design a procedure for
cascaded c¢classificatilon. In a series of a papers, using a
simplified model, they have given guidelines how to address the
cell classifier /1/, how to address the specimen classifier [/2/,
and how the proportionality of different classes of cells
influences the performance of the specimen classifier /3/, once
the cell c¢classifier has been fixed. All references are
restricted to M=2 with K=1 : '"normal specimens' and K=?2 :
'abnormal specimens'. In /1/ and /3/, the number of cell classes
is restricted to m=2, In that case, we will c¢call cells
classified into class k=] 'non—-events', and c¢cells into c¢class
k=2, 'events'. In /2/ there is no restriction to the number of
cell classes.

The procedure of Castleman and White 1is discussed here,
without loss of generality, for m=2., They consider a previously
settled cell classifier such that a fraction (El) of normal
cells (k=1) 1s erroneously classified into <c¢class k=2, and
fraction (52) of abnormal cells erroneously into k=1. Secondly,
the presumption is made that specimens of the normal specimen
class (K=1) entirely consists of k=l-cells., Also, it 1is presumed
that abnormal specimens (K=2) all have the same, fixed, fraction

p of k=2~cells, and a fraction 1-p of k=1l-cells. Let qK for K =
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1,2 be the proportion of events from a specimen of class K, then
we have q,= €, and q2=E1+p(l“El—E2). Both q; and g5 are thus
constants for all specimens of elass K.

It should be noted that the discrimination of £, and €0 f rom
p 1s not necessary. The same result would have been obtained by
the presumption that the cell classifier produces a proportion
of qq events for normal specimens and q, events for abnormal
ONES .

Under these presumptions, the <classification procedure
reduces to the recognition whether an observed proportion 4§ of
an unknown specimen originates from a speciwmen with q1 or gy
events., As § 1s based on n cell, § is distributed binomially
around qp + The binomial distribution is, with a very good

approximation, replaced by a Gaussian distribution with mean 9k

and standard deviation Sy = vqkﬂl—qﬁ)/n. Let EE(x) be the errtor

Function

T
f (x) = — / e dt (la)
e Yon
q
L and EK’ K=1,2, be the tolerated fractions of specimens

classified wrong. Define A and B implicitly by:

E = f (B) and E = € (A). (1b)
1 e 2 e

The minimum number of cells to be analysed (nt) and the specimen

classification threshold (qt) may now be solved as follows:

- 1
. =(fﬁ2(1"qz) + BJql(l_ql)) 2

- — (2)
t 4, — 9,
q = - - 3 e e e (3)
t T R

Awa(l-ql) - Bqu(lﬂqz)

In summary, the proposed procedure is:

l. Select cell features w and a cell classifier ﬁt, see [1l].
2, Select a value for q; representative for normal specimens on

basis of experience with this cell classifier. Similarly, choose

2 q, Compute n_ and q. -
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3. In the operational phase, analyse n, cells for each specimen

t
and find §. If q<qt then decide "normal specimen' else ngt

decide "abnormal specimen®.
Although the procedure 13 attractive 1in the sense that 1t
provided a relationship between the cell clasifier and the
specimen classifier, the presumptions tend to oversimplify
reality. As a consequence all information 1n ﬁi is reduced two
parts above and below ﬁt' All other information in w is lost.
Secondly, in many practical cases, it is 1in confliect with
reallity to presume that a class of specimens can be represented
by a fixed proportion of events. Thirdly, it is not necessary to
select n a priori. Wald /4/ has demonstrated that nt 158 most
efficiently computed during the analysis of the specimen, as was
also recognised in /2/. Finally, chosing a cell classifier prior
to and separately from the establishment of the specimen

classifier is neot optimal, as will be demonstrated later on.

An alternative approach was followed by Tanaka /5/, acquiring
the values of one cell feature in a cumulative histogram §{(v).
The procedure that was used, was as follows:

l. One ¢cell feature, v, 1s selected.

2. In the learning phase, derive histograms qK(v) representing

the K-th specimen class.

1Lad
”

In the operational phase, establish after the analysis of n
cells, the specimen histogram QK(V), and apply the
non—-parametric KXolmogorov Smirnov test for the difference of

two histograms.

For K=1,2:

v.= vV where max | qn(v) - qK(v) | (4a)

Sy 2
(fKS(EK?)

P ——

(qn(vt) =

— (4Db)
2

Qp (v, )

if n > n, assign 1 to class X (4c)

else assign I not to a class.

8
In this decision rule %$(EK) is8 a factor bhased on the confidence

level B of the Kolmogorov Smirnov test. The values of f ,may be

KS
found in standard statistical tables /11/.

The analysis with a non-parametric test, only permits the

43

1
W
Eh
Hh
7
o
-
M
B
i
v
4
5
i
i
A
i
i

—

Tl Enntid A s )1 el e g

SR
Ao

v m ml e m o - armemt " A - e
PR TR P e UL e A ]

EHE
T
.......

'''''''

........

T S R R TR O
e,

e
.

I

—R

.
=

mam e

et T

S

v

- P

o A

R T
e |

R

___*‘-5

VT
h%
3 PR R SR .:-:}.'\-\.-\ﬂ'._

al®
— urr_\" T e et C )

o
ik
A R o T
R R R Lot R L ]

i
ALTHL

- EE N
::::::
JJJJJ

- ._1..".-\. e Rle—d =1
o 4 Ve L Lk Hoph
Ll
'-I-qh'al"_'ﬁ_- L =
I I [l

ol A » -
O T T W
e eyt e e

POy

Nl a L
i) M L el
P St

ar =" - BT o .
B A s SR T

Th
Yo idkh
i1

a e

lllll
......

in
,I',:'\..




Bl R T T T R T TR Pl Lo LT

— - T
B A L 0 i, = 2 M S0 T 0 T T 0 e

A it e i aram e a = B e ————L A e Pat e = =

use of a one dimensional cell feature. Non—-parametric tests on
the difference of two distributions, do not exist for more than
one dimension, as the more dimensional space cannot be uniquely

ordered.

More dimensional cell features (w) can be used still, by

using non-linear mapping (M) of the cell features onto what 1is

called the axis of cell atypia. The index (v)
v=M{w) (5)

winds through the feature space, e.g. according to /6/ or /[/7/.
In reference /6/, the axis 1s a result of a curve fitting
procedure through a number of ordered cell classes represented
by their covariance matrices, derived from a learning phase. The
ordering of the cell classes permits the definitlion of a scale,
called index of atypia, on the axis. De facto, this axis can be
regarded as a way to order the cell feature space and classes,
giving a meaning to the feature values in the context of the
classification problem. The 1ndex of atypicality is an ordinal
scale, and can on its own be regarded as a one dimensional cell
feature. In /6/, no hint is given how to use the index in a
specimen classification procedure.

A conceptually different way to reduce the more dimensional
cell feature space into a one dimensional cell scale, is making
use of a posteriori probability of a ecell classifier. Let M now
dencte a (set of) cell <classifier(s), and let v now denote the
resulting a posteriori probability of a ecell to belong.to cell
class k=1, then v also is specified by equation 5. The vector v
is an ordinal scale cell feature. For some problems, for M the
Mahalanobis distance to the <c¢lass of normal calls may be taken
as a measure for the deviation of the cell from the normal /9/.
In this concept and the previous one, a cell feature v is the
residue from the more dimensional Feature w by an operation M.

Ott /B8/ also applies a mapping from the more dimensional
cell space onto a triangulated «cell <class space. Specimen
features are defined on this cell class space as input to the

specimen classifier. No hints are, however, given how to
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generally define specimen features or how to relate the number

of cells to be analysed on a specimen to the clasgsification

error.

In the present paper, it is pointed out how the distribution
of v relates to the specimen c¢lassification error by the

introduction of the population function, see also f10/.

2. THE POPULATION FUMCTION

Consider an arbitrary specimen I of specimen class XK. For a one
dimensional cell feature v, which may be the result of a mapping
(v=M(w)), c¢call the prohability density function p(v). A

convenient form to consider ig the cumulative density function

1(v)= [ p(x)dx. (6)
v

1t is interesting to relate q{(v) to a cell classifier v' of the
following type, sece figure 2.

if vi<v‘ agssign cell 1 to class k=1, | (7)

else v;>v' assign cell i to class k=2.

In this context, g(v') denotes the fraction of cells that will
be classified into class k=2 (events), when v' would have beean
nsed as the cell classifier. The fraction non-events accordingly
is 1l-q(v'). When v' dis varied over the feature scale, q(v)
denotes the performance for any cell classifier v on the given
specimen.

For one cell classifier v', ¢the fraction of events may vary
from specimen to specimen, even within one class of specimen.
This fraction q(v') thus is a variable ditself, for which within
one class of specimens K, a pdf may be formed: Pr(q(v')). This
function i1ndicates the probability to observe a fraction q(v')
of events when analysing a specimen of «c¢lass K with <c¢ell
classifier v'. Obviously the shape of Py(q(v')) is completely
dependent on the nature of problem and i1s independent of g(v).
Variation of v' over the feature scale yields the result for any

feature: PK(V,q(V)). This is the population function, giving a
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1-g(V)

q(v)

Figure 2: The proportion of events (cells classified into k=2)
resulting from a cell classifier v' indicated by shading in the
graph of p(v) and the cumulative function q{(v).

relationship between v and q{v) for population K. The integral

form of Py over q:

q
Q (v,q(v)) = fP (v,x(v))dx (8)
K 0 K

relates an arbitrary cell classifier to the obtainable specimen
clagsgification error as follows. Consider a specimen classifier

q' such that:

if qy<q' assign specimen I to specimen class K=1, (9)

else gq;2q' assign specimen I to class K=2.

For a given cell classifier v' and a given specimen classifier
q', QK(v',q'(v')) denotes the probablility of a specimen to he
classified into class X=1. The function 1~Ql(v,q(v)) thus is the
specimen classification error function for K=l-specimens, and
the functionmn Qz(v,q(v)) is the specimen error-function for
K=2-specimens.

The population function caa be used in specimen
classification procedures by considering for specimen class
K=1,2, the population functions Py (v,q(v)) as illustrated in
figure 3a,b. For each value v' of v, the Baves-~rule implies that

the specimen clagssifier with smallest total error is g, (v') at

the point where Pl(v',q(v')) = Pz(v',q(v')). Varying v' again
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feature scale gives a curve qB(v), indicating for each
sociated best specimen classifier. The cumulative
. functlon is displayed in figure 3b. TFor each v',
wW 18 positioned at the location of maximum vertical
between Ql(v',q(v')) and Qz(v',q(v‘)). In figure 3e,
s ection of qB(v) with QK(V,q(V)) is indicated. The
specimen c¢lagsification error, 1s 1indicated by
Lv)) and Ql(v,q (v)). 1In the example of figure 3¢, for
er part of the feature vector v the population 1 1is

tlishable from population 2, and consequently on that

errorfunctions have a value .5.
Al conclusions may be drawn from figure 3c. Firstly,

be a part of the feature scale v where no or little
aAtion 1s possible between class-K=1l and class-K=2
- Secondly, for the part of the scale where
4 on 1s possible, in figure 3c denoted hy the region
e specimen classifiction error is 1-Qq(v,q (v)) for K=l
ad (v)) for K=2. This error is due to the nature of the
a2 expressed in the shapes of QKCv,q(v)) and can for
ture not be avoided. Thirdly, 1f desired, the single

classifier vV, can be selected by taking

nax | Ql(v,qB(v))"Qz(v,qB(v)) | . (10)
Vi, q

1 see lateronmn, it may still De advantageous not to

~ell classifier a priori.

JG PHASE

—ty

3 far, we have congsidered cell classifiers and specimen
rs for the true population functions. In principle, we
L spose of the true Py(v,q(v)). 1Instead we have to rely
Z1ons or simplifications, based on a limited series of
>ns g4y (v), I=1l,...,N, for K=1,2. These observations
a2 the learning set of specimens.

»rous simplification of the population function as used

’

has already been discussed in the introduction. The

i

two independent simplifications. First, one cell
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classifier is selected, reducing PK(v,q(v)) to a one dimensional
function. Secondly, as q(v) 1is assumed to be equal for all
Specimens of the same class, PK(v,q(v)) then further reduces to
a delta~pulsé. Especially' the second simplification 1s in
conflict with common classification problems. Note, that in the
context of this model no overlap occurs between the
approximations for the population functions. As a consequence,
there is no preference for a specimen classifier qt on basis of
the assumed properties of the two populations at hand other than
q1<9¢<q9. The expression for q. given in eq.(j)ﬁis derived on
basis of the finlte number of cells only; a subject we will come

to discuss in the next section.

A
P{v.q)

A

Pv,a)

!

%fﬁjf }

\ = \

x * =
Figure 3a,b: The population function PK(v,q(v)) shown left for
one specimen class. For the ease of display P(v,q{v)) has been
chosen here unimodal, Gaussian shaped for all cross-sections
over V. Note that, 1in general, not all cross—sections of
P{(v,q(v)) are necessarily Gaussian gshaped or even unimodal, nor
have a similar shape. On the right side a pair of Joint
probability functions PK(v,q(v)) is given. In the cross-section
at the front, the Bayes specimen classifier for that
cross-section is indicated by qB(v).

Another, much better estimation, %K(v,q(v)) for the population

function is the following Parzen-estimation procedure /10/:

_ ! (L_(v):ﬂlil.).) 2

1 1 2 3
P (v,q(v)) = — L = g I with (11)
R Ny 1eg SpV2ET
_ (v)(1l-q.(v))
sy = \/21t W (12)

Having established Pr(v,q(v)) at the end of the learning phase,

q.(v) can be determined as an estimarae for qB(v). q (v) is
. £
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implicitly defined by %1(v,qt(v))=%2(v,qt(v)). Analogously to
the cumulative population Ffunction, Q(v,q(v)) gives error
estimates for this specimen classifier. Tf EE is the tolerated
specimen classifier error fraction for class K due to overlap of

Py(v,q(v)) and P,(v,q(v)), then a region Vgt of v may be

saelected as follows:

: (13)

B
Ve aor = V where l—Ql(v,qt(v))<El .and. Qz(v,qt(v))<E?
If we could dispose o0of the cumulative probability density
function qI(v) of an unknown specimen I, we could classify the

specimen by comparing qt(v) to qI(v) for the regionvte%F. In
that case, the error may be expected to be bounded by Eg. In

reality, this sSpecimen c¢classification error 1is not the only

spource of error as shall be discussed in the next section.

4., SEQUENTIAL CLASSIFICATION

In the analysis of an unknown specimen I, a finite number n of
cells is analysed, resulting in a cumulative histogram of

feature values §_(v). The histogram is a sample of an unknown

quﬂ1

Oalv.q)x |

— =0

F:
\\‘ = "Qua)
AT w—
\\ = Q%W
Figure 3c,d: The cumulative population functions Q_ (v,q(v)) on

the left. The specimen classifier error as the intersection of
Qu(v,a(v)) with q (v) on the right.

distribution QI(V). A specimen 1s said to be undecidable when
qn(v) may be a sample of qt(v) over the region Vimer In order
to test the decidability a null hypothesis 1is formed stating

that q.(v) is a sample of qt(v). A hypotheslis test on the
difference of the two distributions is used. Two non—parametric

tests are considered here.
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The first to consider 1s the Kolmogorov Smirnov test. Let EK

be the tolerated specimen fraction to be classified wrong due to
finfite cell sample size. This factor then serves as the level of
confidence in the test, see eq.(4). The specimen decision rule

based on the KS—-test is:

v, = Vv where max | qn(v)-qt(v)l (l4da)
Vtest
2
(£, (E2))
KS§" K
n_ o= 5 (14b)
(g _(v . )-q (v ))
if qn(v)<qt(vt) .and. n)nt assign I to class K=1
if § (v)>q (v ) .and. nd>n assign I to clasgs K=2 (lbc)

else specimen I is undecidable.

Note the difference between eq.(4) and eq.(l4). The null
hypothesis used in /5/ was that §_ (v) originated from q,(v) or
qz(v) which are example histograms of specimen class K=1 and
K=2, In many problems, a class of specimens cannot reliably be
represented by one exXample histogram, Doing so may lead to large
classification errors. Alternatively, in eq. (l4), 4. (v) is
tested against qt(v), the critical function. When ﬁn(v) deviates
significantly from q.(v), a decision <can be taken with a known,
bounded error probhability.

A drawback of the KS-test is its aspecificity. Many samples
are needed to demonstrate a significant difference. As a
solution, the following test is proposed.

Consider one specimen class v', Let the tolerated fraction
of specimen to be classified wrong again be EE. As qt(v‘) is a
fraction, samples of q.(v') based on n observations (cells) are
distributed binomially with mean q (v') and standard deviation
similar to eq.{(12). With good approximation, the binomial
distribution may be replaced by the Gaussian one with same mean
and standard deviation. A relation now may be found between the
value of G, ,(v') needed to reject the hypothesis given q- (v'), n
and fe(EE), see eq.(15).

The same test holds, varying v' over v. In that case gy(v)

is said to be decidable if one value v'! is found for which

>0




Lin )

§ (v') significantly differs from qt(v').

The proposed test becomes:

For K=1,2

v, = v where min {n (v)}, with (15a)
t \Y t
test

4, (v) (1-q (v)) (£ (B

(q,(v) = g _(v))?
if n>nt(vt) assign specimen I to class K=1 if qn(vt)<qt(vt)

nt(v) = (15b)

if n>nt(vt) asgign specimen I to class K=2 if qn(vt)>qt(vt)

else nint(v ) and specimen I is undecidahle.

t

The comparison of eq.(4) with eq.(l4), can also be made for this
test, comparing eq.(2) and (3) with eq.(15). Again, rather than
comparing §,(v) with one particular value q¢(v) or qz(v) as was
done in /1-3/, ﬁn(v) here is compared with qt(v). In practice,
it is likelg to lead to smaller classification errors.

It should be noted that the above tests could be wused ¢to
compute a value for n to analyze on all unknown specimens. Lt
is more profitable, however, to apply eq.(l4) or eq.(1l5)
sequentially. In that case, the entire population classification
becomes:

l, Define an operation M reducing the more dimensiocnal cell

feature space w to a one dimensional vector /6,9/.

A

+ In the learning phase, estimate the population functions by
eq.(11) and compute qt(v). Specify the tolerated error
fractions due to specimen overlap and find v _ g, eq.(13).

3. In the test phase, specify the tolerated error fractions due

to the finite c¢cell sample size. Update qn(v) after the

analysis of each cell and apply the following decision rule:
Evaluate eq.(14) or eq.(15)
Lf the specimen is decldable, stop the analysis,

else proceed with the next cell.

It has been made pausible /10/, ¢that ¢the procedure based on
eq.{15) 1is both more efficient, 1n the sense that it needs fewer
cells to arrive at a conclusion, and more accurate in the sense

that 1t makes fewer errors in the classgification, than the
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method of eq.(l&4). Also, this procedure 1is likely to be more
ef ficient and accurate than the method based on eq.{(2) and (3)
/1-3/, and more accurate than the method of eq.(4) /5/. Model

studlies are currently Dbeing done to investigate these

conjectures /12/.

>, CONCLUSION

In the foregoing, the population function PK(v,q(v)) was
introduced as a theoretical framework to describe the
performance of cascade classifiers. Three items are important
here, the cell (primary) classifier, the specimen (secondary)
classifier and 2 rule prescribing how many cells need to be
analysed Dbefore a specimen is decidable. The performance of a
cascade classifier is established by its accuracy (specimen
classification error) and its efficiency (number of cells to be
analysed).

The population function is the equivalent of the probability
density function for one-classifier problems. The equivalent of
the Bayes—rule, optimizing overall accuracy, is for population
classification given by eq.(10). Equation (10) will give the
theoretical most accurate cell clagsifier selected prior to the
analysis and the associated specimen classifier. This gives a
theoretical solution to the problem raised in f1/ and /2/. TFrom
eq.(l0) it {is also clear that the cell and specimen classifier
are hest optiwmized in combination, not separately, as was done
in /1,2/. A priori selected cell classifiers will be further
discussed in /13/.

In practice, eq.(l0) can only be approximated by a learning
phase for which we propose the computation of the
Parzen—-estimation given in eq.(11), and the selection of a part
of the cell feature as specified in eq.(13). The selection of
this part of the feature vector implies that the specimen
classiflcation error is restricted to a bound, derived in /12/.

In spite of eq.(10), it is not necessary (even unprofitable)
to select a2 cell classifier prior to the analysis, as was done
in /1,2,3/. Bounding the tolerated specimen classification error

to a gpecified fraction as proposed in eq.{(13), fewer cells need
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to be analysed when using sequential classification techniques.
The technique differs from previous ones in that the difference
18 demonstrated with the threshold function q (v) between the
two populations rather then the concordance with the examplatory
population functions /3,4,5/. This 1is expected to lead to a
higher accuracy. Presently, model studies are carried out to
investigate the accuracy and effiency of the proposed models in

comparison to the existing ones /12/.
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