Downloaded from UvA-DARE, the institutional repository of the University of Amsterdam (UvA)
http://dare.uva.nl/document/154505

FilelD 154505
Filename A. Baselocator R

SOURCE (OR PART OF THE FOLLOWING SOURCE):

Type Dissertation

Title Incomplete cartels and antitrust policy : incidence and detection
Author A.M. Bos

Faculty Faculty of Economics and Business

Y ear 2009

Pages 189

ISBN 9789036101462

FULL BIBLIOGRAPHIC DETAILS:
http://dare.uva.nl/record/323110

Copyright

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author (s) and/or
copyright holder(s), other then for strictly personal, individual use.

UVA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

http://dare.uva.nl/document/154505
http://dare.uva.nl/record/323110
http://dare.uva.nl

Appendix A
®

BaselL.ocator

We have operationalized the cartel screen that has been developed in Chapter 5 in a

simple topographic detection routine in Delphi 5~ .! Here we illustrate the logic of
the algorithmic steps taken in the software. Below we give the main program with the
key subroutines TracingBP, which traces the base using function SumOfSquares, and
EstimateLstatistic, which calculates the value of LoC.?

A.1 Steps to Trace the Base

Input is a structured data file (in Notepad) that has a column of individual mill
locations, and a column of individual customer project locations with the volume of
trade and the transaction price per project. Base tracing consists of three main steps:
data sorting, base tracing, and calculation of the LoC-measure.

In the first step, the data are sorted. All transaction data (P;,q;) are grouped by
base group, using the information on project site locations. Those combinations of
project locations that are aligned are disregarded as not independent—but this is a
rare occasion. All base groups with less independent observations than the number
of unknowns, which is four in the system developed in the text, are ignored—this
small sample problem would normally not need to appear. What remains is N sets of
independent observations, N < J.

I Excellent programming assistance has been provided by Eelko Ubels.
2The other subroutines called in the program are less insightful and lenghty. They are available
upon request from the author.

164 Appendix A. BaseLocator®

In the second step, each constructed set of observations [= 1,...N is used to
recover ¢, F' and base location used for the base group considere(L(Eil7 bl). For this,
the specification of T (g;,d;;) is crucial. The software would in principle allow for a
variety of specifications of T (g;, dy;)—for the user to choose from, or for the program
to find the best fit amongst. In the present version, transportation costs are linear in
distance and volume, and including a fixed component, as in equation (5.15) in the
text.

In a bounded area—that we determine as the size of the convex hull area of customer
projects locations, extended with twice that size in all directions—the program step-
searches in a grid for the specification of (E, F, (6l,bl)) that returns the lowest S
value. To be computationally efficient, we first use the information of the partial first-
order conditions to problem (5.19):

Ig,

a5 ~ ~ 2 2
% —2;% <R‘,—qu‘—F—\/(al—%J +(bl—bzi)>:0,and
s il
—_ = —QZ<R—qu—F—\/(ag—a$1)2+(bl—bﬁ)2) :O,
OF i=1
to obtain

ngi qi (Pi - F - dli)

c = Tor 3 , and
DIRER

P S (P g di)

F = i=1 [7 7)
Ig

v

where dj; = \/(al - ami)2 + (b — bfbi)z‘

Ia, e] Ig,
. = Svp, _ G = Sv gy, . .
Using the averages P = it P q= L=l 9 anq dy = Zicd A gome manipulation
Ig, ’ Ig, Ig, ?

yields

L Si% i (P — dy) -q(P—d)

~ Ig,

T = - I — , and
Too 2ici @i — 1
/ o
L (S er-d e P-d))
- - 1 ey 2 22 =%
Icvzz':lqi q

Plugging these expressions for ¢ and F into the criterion function (5.19), we obtain

I, LS g (P —d)—q (P-4
— T i=1 i ([z) q (l)
S=> (P—P+d—du+[g—ql | = T
k=1 Tor it 6 — T

A .2 Kernel of the Software 165

for which we are to find the value(s) for (61,/1)\;) that return(s) the lowest S-value.

In the search area, the value of S is determined for each combination of (a,b). The
program stores the S-value and overwrites it when further grid-point yields a lower
value. This is our candidate basing point.

In the third step, the base locations found are translated into the LoC-measure. The
program determines the convex hull of firm locations and its surface. It determines A
on the basis of the theoretical competitive mean base point and variance, using project
and mill locations only. Since the data are sorted per base group, in competition each
mill would be found only once. The theoretical competitive mean base point therefore
is the unweighted mean of the mill locations. The program subsequently calculates the
mean recovered base location and the ‘distance spread-circle’ around it. This returns
the surface S£. The intersection of these two areas gives the LoC-measure, a number
between zero and one.

As output, the program returns the name of data set used, the location [*, which
is referred to as the center of the convex hull for reference, the value of A, the sample
mean base, the sample mean variance, the parameters of the bid structure estimated
(normalized on t4 = 1), and the value of the LoC-measure. High values of LoC are
indicative of collusion, in particular when supported by a small sample variance.

A.2 Kernel of the Software

function SumOfSquares(const p,q:Vector; const x:Matrix; const ag,bg:integer):Vector;

{uses criterion function to calculate sum of squares, marginal cost and fixed
cost

for given basepoint candidate}
var s_i,s_j,s_jt,s_jn,pm,qm,dm,h:extended;
i,j,len:integer;
d,bp,s:Vector;
begin

len:=Length(p);

s_i:=0;

pm:=Mean(p) ;

gm:=Mean(q) ;
SetLength(d,len);
SetLength(bp,2);

bp[0]:=ag; bp[1]:=bg;

for i:=0 to len-1 do begin
h:=0;

for j:=0 to 1 do

h:=h+Sqr (bp[jl-x[il [j1);

d[i] :=Sqrt(h);

end;

dm:=Mean(d) ;

166 Appendix A. BaseLocator®

s_jt:=0; s_jn:=0;

for j:=0 to len-1 do begin
s_jt:=s_jt+q[jI*(p[jl-d[j]1)-qm* (pm-dm) ;
s_jn:=s_jn+Sqr(q[jl)-Sqr(qm) ;

end;

s_j:=s_jt/s_jn;

for i:=0 to len-1 do begin
s_i:=s_i+Sqr(p[i]-pm+dm-d[i]+(qm-q[i])*s_j)

end;
SetLength(s,3);
s[0]:=s_1i;
s[1]:=s_j;

s[2] :=pm-(s[1] *qm) -dm;
SumOfSquares:=s;
end; {Sum0fSquares}

procedure TracingBP(const base:integer; const x:Matrix; const p,q:Vector; var
BP:Matrix;
const i0,j1,i1,j0:integer);
{determines location with lowest value of sum of squares}
var step,len_BP,intm,a,b,a0,al,b0,bl:integer;
sum,c,fc:extended;
sos:Vector;

begin {TracingBP}
step:=50;
len_BP:=Length(BP) ;
SetLength(BP,len_BP+1);
SetLength(BP[len_BP],4);
intm:=Max(j1-j0,i1-i0);
a0:=10-0%*intm;
al:=i1+0*intm;
b0:=j0-0*intm;
bl:=j1+0%intm;
sum:=Sum0fSquares(p,q,x,a0,b0-1) [0];
c:=Sum0fSquares(p,q,x,a0,b0-1) [1];
fc:=Sum0fSquares(p,q,x,a0,b0-1) [2];
SetLength(sos,3);
for a:=a0 to al do begin
if a mod step=0 then begin
for b:=b0 to bl do begin
if b mod step=0 then begin
sos:=Sum0fSquares(p,q,x,a,b);
if sos[0]<sum then begin
sum:=sos [0] ;

A .2 Kernel of the Software 167

BP[len_BP] [0] :=a;
BP[len_BP] [1] :=b;
c:=sos[1];
fc:=sos[2];
BP[len_BP] [2] :=c;
BP[len_BP] [3] :=fc;
end;

end;

end;

end;

end;

end; {TracingBP}

procedure EstimateLstatistic(const h:Matrix; const sq,v:extended; const m:Vector;
out Ls:extended);

{determines overlap of circle in hull}
var i,j,1i0,11,j1,j0,0t,tot:integer;
p:Vector;
begin

SetLength(p,2);
MinimalRectangle(h,i0,i1,j1,3j0);
ot:=0;

tot:=0;

for i:=0 to 100 do begin

for j:=0 to 100 do begin

pl0] :=i0+i*(i1-10)/100;
pl11:=j0+j*(j1-j0)/100;

if PointInHull(h,p,sq) then begin
tot:=tot+1;

if PointInCircle(m,p,r) then begin
ot:=ot+1;

end;

end;

end;

end;

Ls:=1-ot/tot;

end; {EstimateLstatistic}

begin {main}
LoadFileName(s);
s_out:="LoCwl.txt’;
AssignFile(f,s_out);
Rewrite(f);

168 Appendix A. BaseLocator®

SetLength(res,2);

for i:=0 to 1 do begin

SetLength(res[i],201);

end;

for j:=0 to 200 do begin //read 201 files with standard errors on price
for i:=0 to 1 do begin

SetLength(res([i] [j],10);

end;

for k:=0 to 9 do begin //averageing over 10 files with same error
SetLength(arr_BP,0);

Writeln(k,Chr(9),3);
sl:=s+’—’+IntToStr(k)+’-’+IntToStr(j)+’-comp_n.txt’;

LoadData(s1,BP,sd,int_c,int_F,int_I,int_J,arr_x,arr_y,arr_p,arr_q,all_x,all_p,all_q);

thMean:=MeanVector (arr_y);
ConvexHull(arr_y,arr_h,quull);
len_x:=Length(arr_x);
MinimalRectangle(all_x,west,east,north,south);
for i:=0 to len_x-1 do begin

if Length(arr_x[i])>3 then begin

TracingBP(i,arr_x[i],arr_p[i],arr_q[il,arr_BP,west,east,north,south);
end;

end;

thSE:=SigmaBar (arr_y) ;

ConvexHull (arr_y,arr_h,sqHull);
lambda:=Labda(Radius (thMean,arr_h),thSE);
r:=lambda*SigmaBar (arr_BP) ;

SetLength(mC,2) ;

mC:=MeanVector (arr_BP) ;
EstimateLstatistic(arr_h,sqHull,r,mC,LStat);
res[0] [j] [k] :=LStat;

SetLength(arr_BP,0);
sl:=s+’-’+IntToStr(k)+’-’+IntToStr(j)+’-col_n.txt’;

LoadData(sl,BP,Sd,int_c,int_F,int_I,int_J,arr_x,arr_y,arr_p,arr_q,all_X,all_p,all_q);
len_x:=Length(arr_x);

MinimalRectangle(all_x,west,east,north,south);

for i:=0 to len_x-1 do begin

if Length(arr_x[i])>3 then begin

TracingBP(i,arr_x[i],arr_p[i],arr_q[i],arr_BP,west,east,north,south);

A .2 Kernel of the Software 169

end;

end;

r:=lambda*SigmaBar (arr_BP) ;

SetLength(mC,2) ;

mC:=MeanVector (arr_BP) ;

EstimateLstatistic(arr_h,sqHull,r,mC,LStat);

res[1][j] [k]:=LStat;

end;Writeln(f,Mean(res[0][j]):4:2,Chr(9) ,Mean(res[1][j]):4:2,Chr(9),sd:4:0);

end;
Writeln(’the end’);

GetProfits(all_x,arr_y,BP,int_I,int_J,all_p,all_qg,int_c,int_F,pi_col,pi_comp);

for j:=0 to int_J-1 do begin
Writeln(f,’firm ’,j+1,Chr(9),pi_comp[jl:4:2,Chr(9),Chr(9),Chr(9),pi_col[jl:4:2);

end;
CloseFile(f);
Readln;

end. {main}

