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Chapter 4

Evaluating the performance of tests

of overidentifying restrictions

4.1 Introduction

In linear regression models with endogenous explanatory variables a researcher utilizes

additional variables, so-called instruments (which can also include some of the regres-

sors), that have known correlation with the regression error term, and provide necessary

information for the consistent estimation of the unknown parameter(s). So far, the most

common estimator used to tackle the linear model is the Instrumental Variables estimator

which can be viewed as a special case of the Generalized Method of Moments estimator

(GMM) for possibly non linear models with non i.i.d. disturbances, introduced by Hansen

(1982) in his seminal paper. In that case the validity of the exploited moment conditions

(restrictions), provided by the instruments, is investigated via the Hansen (1982) J statis-

tic.

More recently, based on the concept of Empirical Likelihood introduced by Owen

(1991), an alternative method was proposed by Qin and Lawless (1994), Imbens (1997).

Empirical Likelihood (EL) finds an estimator together with ‘empirical probabilities’ that

maximize the ‘empirical likelihood function’ such that the moment conditions are exactly

satisfied in the sample (which, in general, is not the case with the GMM estimator for

which the implied ‘empirical probabilities’ are all equal). Here the maximized criterion
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98 CHAPTER 4. OVERIDENTIFYING RESTRICTIONS TESTS

function (empirical likelihood) provides the natural statistic for testing validity of overi-

dentifying restrictions (via the ‘Empirical Likelihood Ratio’ test, ELR). Other estimators,

such as Exponential Tilting and the Continuous Updating Estimator (CUE), were fur-

ther proposed. They are all special cases of the so called Generalized Empirical Likelihood

(GEL) estimator, see Smith (1997), Newey and Smith (2004) and citations therein. The

consistency of the overidentifying restriction tests based on GEL was proven by Smith

(1997). Optimality of EL for testing moment conditions was shown by Kitamura (2001).

The study of Newey and Smith (2004) suggests that GEL can have better finite sample

properties relative to GMM.

In this Chapter, for a simple linear model, we examine the finite sample properties of

several procedures for testing overidentifying restrictions via Monte Carlo simulation. We

compare several versions of known GMM statistics (that differ with respect to weighting

matrices applied) with GEL type Likelihood Ratio tests. We analyze the behavior of the

tests when the instruments are either weak or strong. We also examine the incremen-

tal version of those overidentifying restriction tests, that is the difference between test

statistics of the validity of a set of instruments and of a subset of those instruments. By

exploiting the validity of a subset of the instruments this incremental version should lead

to a ‘local power’ improvement, see Hall (2005).

Finite sample properties of the GMM tests can probably be improved by applying

bootstrap procedures. We examine an implementation suggested in Hall and Horowitz

(1996) and Brown and Newey (2002) and some modifications of those. We also analyze a

simple residual type bootstrap.

We find that the Hall and Horowitz (1996) implementations, in terms of size, are

working well for large samples and rather strong instruments. However, the residual

bootstrap performs much better here, for both small and large samples and under weak

or strong instruments. Brown and Newey’s (2002) implementation does not perform well

in our examples, which is probably due to numerical problems.

In Section 2, we present the GMM and GEL type tests for overidentifying restrictions.

In Section 3, we describe bootstrap procedures for correcting GMM type test statistics. In

Section 4 we illustrate the size and power of those tests and the performance of bootstrap
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procedures for a simple linear model.

4.2 Test statistics for overidentifying restrictions

For some stationary data vector Xi, i = 1, . . . , n, from X = [X1, . . . ,Xn]′, where n is the

sample size, we denote a particular l × 1 vector function of the data by gi(θ) ≡ g(Xi, θ)

and the corresponding sample moment function by ḡn(θ) = 1
n

∑n
i=1 gi(θ), where θ is a

p× 1 vector containing all the parameters. We assume that under the true but unknown

data generating process Egi(θ) = g(θ) and that ḡn(θ)
p→ g(θ) for every θ ∈ Θ ⊆ Rp. We

aim to estimate a unique θ0 for which g(θ0) = 0.

A popular estimation procedure for estimating θ0 is the Hansen (1982) GMM method,

which minimizes a particular quadratic form of the sample moment function. Although

having attractive asymptotic properties, GMM can perform poorly in finite samples. Es-

pecially when the parameter is weakly identified (when identifying conditions are close to

being violated), see Andrews and Stock (2007) and references therein.

Alternatives to Hansen’s (1982) GMM estimator and the test statistics for overidenti-

fying restrictions include: empirical likelihood (which finds an estimator that maximizes

the likelihood function of the data subject to the moment restrictions being satisfied in

the sample), exponential tilting and the continuous updating estimator, see Newey and

Smith (2004). These are members of so called generalized empirical likelihood estimators

(GEL).

Below we describe those procedures in some more detail.

4.2.1 GMM statistics

The GMM estimator is

θ̃ ≡ argmin
θ∈Θ

ḡn(θ)′W (X )ḡn(θ), (4.1)

where W (X ) = Op(1) is a l × l positive semi-definite weighting matrix. The efficient

GMM estimator is obtained in one, two or several ”steps”. In the first step we obtain

(4.1) using some initial W (X ) (for instance the identity matrix, but in particular cases an
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optimal weighting matrix can be derived analytically), in the second step we re-compute

(4.1)

θ̂ ≡ argmin
θ∈Θ

ḡn(θ)′Ω̂−1(θ̃)ḡn(θ), (4.2)

with W (X ) = Ω̂−1(θ̃) the inverse of a consistent estimator of the asymptotic variance of
√
nḡn(θ0). The third stage estimator, θ̂3, would be based on Ω̂−1(θ̂). For the theoretical

derivation of the consistency and asymptotic normality of the GMM estimator see Hansen

(1982).

As recommended by Andrews (1999) and further justified by Hall (2000) (because it

may lead to local power improvement), we shall examine the following ‘adapted’ form of

the covariance estimator,

Ω̂a(θ̃) =
1

n

n∑
i=1

gi(θ̃)gi(θ̃)
′ − ḡn(θ̃)ḡn(θ̃)′, (4.3)

next to the ‘standard’ estimator of the covariance matrix

Ω̂s(θ̃) =
1

n

n∑
i=1

gi(θ̃)gi(θ̃)
′. (4.4)

Hansen’s two-step test statistic for overidentifying restrictions is

Jn ≡ nḡn(θ̂)′Ω̂−1(θ̂)ḡn(θ̂). (4.5)

Using (4.3) or (4.4), this specializes to

Jan = nḡn(θ̂a)
′Ω̂−1

a (θ̂a)ḡn(θ̂a) (4.6)

or

Jsn = nḡn(θ̂s)
′Ω̂−1

s (θ̂s)ḡn(θ̂s), (4.7)

with

θ̂a ≡ argmin
θ∈Θ

ḡn(θ)′Ω̂−1
a (θ̃)ḡn(θ), (4.8)
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θ̂s ≡ argmin
θ∈Θ

ḡn(θ)′Ω̂−1
s (θ̃)ḡn(θ). (4.9)

Sometimes, for brevity, we will simply write θ̂ for θ̂s or θ̂a, although in general those

estimators are not equal. Also note that we used Ω̂−1(θ̂) in (4.5) and not Ω̂−1(θ̃), so

in general (4.5) will be different from, but asymptotically equivalent to, the minimized

criterion function, nḡn(θ̂)′Ω̂−1(θ̃)ḡn(θ̂).

Also the difference between the expressions (4.3) and (4.4), ḡn(θ̃)ḡn(θ̃)′, tends to zero

if the population moments are satisfied. Hence, it will not change the limiting null distri-

bution of the test statistic. However, if some population moment conditions are invalid,

this factor does not disappear in the limit, and thus can lead to power improvements of

the test, see Hall (2000).

When all the moment conditions are valid, i.e. g(θ0) = 0 for a unique θ0, then we can

test whether (l− k) overidentifying moment restrictions are satisfied. Under appropriate

regularity conditions, see Hansen (1982), (4.6) and (4.7) are asymptotically distributed

as χ2(l − k). The procedures for testing overidentifying restrictions based on (4.5) are

consistent, see Andrews (1999).

Linear model

In a linear model we have Xi = (yi, x
′
i, z
′
i), where zi is an l×1 vector of alleged instruments

and xi is a k × 1 vector of regressors (if some of the regressors are ‘exogenous’ or ‘prede-

termined’ then xi and zi can share the same elements), i = 1, . . . , n. Let Z = [z1, . . . , zn]′

be the (n× l) matrix of ‘instruments’, X = [x1, . . . , xn]′ the (n× k) matrix of regressors

and y = [y1, . . . , yn]′ the (n × 1) vector of dependent variables. The GMM estimator is

based on the following population moment conditions

g(θ0) = Ezi(yi − x′iθ0) = 0.

For an initial consistent estimator, θ̃, let u(θ̃) = y −Xθ̃, we then have

ḡn(θ̃) =
1

n

n∑
i=1

zi(yi − x′iθ̃) =
1

n
Z ′u(θ̃), (4.10)
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Ω̂a(θ̃) =
1

n

n∑
i=1

(yi − x′iθ̃)2ziz
′
i −

1

n2
Z ′u(θ̃)u(θ̃)′Z, (4.11)

and

Ω̂s(θ̃) =
1

n

n∑
i=1

(yi − x′iθ̃)2ziz
′
i. (4.12)

The second stage GMM estimator is

θ̂ = (X ′ZΩ̂−1X ′Z)−1X ′ZΩ̂−1Z ′y (4.13)

with Ω̂ being either (4.11) or (4.12). For testing moment conditions we are using (4.6) or

(4.7).

The instrumental variables (IV) estimator is

θ̃ = (X ′PZX)−1X ′PZy, (4.14)

where PZ = Z(Z ′Z)−1Z ′. It results from the minimization of (4.1) using W (X ) =

[ 1
n
Z ′Z]−1, where under conditional homoscedasticity, i.e. E((yi − x′iθ0)2|zi) = σ2

0, it is

an optimal choice. The unconditional covariance matrix of the moment conditions is

Ω = σ2ΣZ′Z . Using, for the weighting matrix in the second stage, the structure of this

matrix we can apply

Ω̇s(θ̃) =
u(θ̃)′u(θ̃)

n

1

n
Z ′Z (4.15)

or

Ω̇a(θ̃) =
u(θ̃)′u(θ̃)

n

1

n
Z ′Z − 1

n2
Z ′u(θ̃)u(θ̃)′Z, (4.16)

instead of (4.12) or (4.11).

However, from the form of (4.13) we can easily see that updating the estimator that

uses Ω̇s ≡ Ω̇s(θ̃) will not affect the second stage estimator. Hence, when using Ω̇s, one

obtains

θ̇s = (X ′ZΩ̇−1
s Z ′X)−1X ′ZΩ̇−1

s Z ′y = θ̃.

We now show that it is also true when using Ω̇a ≡ Ω̇a(θ̃).
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Lemma 4.2 For Ω̂ = Ω̇a(θ̃) in (4.13) we have

θ̇a = θ̃. (4.17)

Proof. For simplicity, write

Ω̇a = Ω̇s − g̃g̃′, (4.18)

with g̃ = 1
n
Z ′u(θ̃). The resulting estimator is

θ̇a = (X ′ZΩ̇−1
a Z ′X)−1X ′ZΩ̇−1

a Z ′y (4.19)

Applying a known matrix result, viz.

Ω̇−1
a = (Ω̇s − g̃g̃′)−1 = Ω̇−1

s + (1− g̃′Ω̇−1
s g̃)−1Ω̇−1

s g̃g̃′Ω̇−1
s ,

we obtain

θ̇a = {X ′Z[Ω̇−1
s + (1− g̃′Ω̇−1

s g̃)−1Ω̇−1
s g̃g̃′Ω̇−1

s ]Z ′X}−1

×X ′Z[Ω̇−1
s + (1− g̃′Ω̇−1

s g̃)−1Ω̇−1
s g̃g̃′Ω̇−1

s ]Z ′y

= {X ′ZΩ̇−1
s Z ′X + (1− g̃′Ω̇−1

s g̃)−1X ′ZΩ̇−1
s g̃g̃′Ω̇−1

s Z ′X}−1

×{X ′ZΩ̇−1
s Z ′y + (1− g̃′Ω̇−1

s g̃)−1X ′ZΩ̇−1
s g̃g̃′Ω̇−1

s Z ′y}

= {X ′ZΩ̇−1
s Z ′X}−1X ′ZΩ̇−1

s Z ′y = θ̃.

The third equality is due to

X ′ZΩ̇−1
s g̃ =

1

n
X ′ZΩ̇−1

s (Z ′y − Z ′Xθ̃) =

(
u(θ̃)′u(θ̃)

n

)−1

X ′PZ(y −Xθ̃) = 0.

The ‘standard’ Sargan test (Sargan (1958)) arises from the application of (4.15) in

(4.7), giving

Ssn ≡ ng̃′Ω̇−1
s g̃ = n

u(θ̃)′PZu(θ̃)

u(θ̃)′u(θ̃)
. (4.20)
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Even though the estimator θ̇a = θ̇s = θ̃, the test statistic

San ≡ ng̃′Ω̇−1
a g̃ (4.21)

is not equivalent to Ssn. In fact we have,

San = ng̃′[Ω̇−1
s + (1− g̃′Ω̇−1

s g̃)−1Ω̇−1
s g̃g̃′Ω̇−1

s ]g̃

= ng̃′Ω̇−1
s g̃ + (1− g̃′Ω̇−1

s g̃)−1ng̃′Ω̇−1
s g̃g̃′Ω̇−1

s g̃

= Ssn +
Ssn

n− Ssn
Ssn = Ssn

n

n− Ssn
. (4.22)

Since 0 ≤ Ssn ≤ n (equality can happen in the extreme cases when u(θ̃) is either orthogonal

to or completely spanned by Z), we have San ≥ Ssn. Hence, for a given critical value, San

will never reject less often than Ssn.

4.2.2 GEL statistics

Here we will shortly describe GEL and the resulting test statistic for overidentifying

restrictions. For the analytical development of the following results see Smith (1997). For

some more refined results on GEL see also Newey and Smith (2004).

Like GMM, GEL estimation is based on moment conditions, Egi(θ0) = 0. It assigns

multinomial weights {πi}ni=1 to each of the observations {Xi}ni=1. This allows the GEL

estimator to estimate the empirical (implied) probabilities {π̂i}ni=1 such that

n∑
i=1

π̂igi(θ̂GEL) = 0.

Note that for GMM we have π̂i ≡ 1
n

and in general 1
n

∑n
i=1 gi(θ̂GMM) 6= 0. For a concave

scalar function ρ(v) of the scalar v in an open interval V containing zero

θ̂GEL ≡ argmin
θ∈Θ

sup
λ∈Λ(θ)

n∑
i=1

ρ(λ′gi(θ)), (4.23)

where Λ(θ) = {λ : λ′gi(θ) ∈ V , i = 1, . . . , n}. For example, the Empirical Likelihood
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estimator applies ρ(v) = ln(1 − v) with V = (−∞, 1), the Exponential Tilting estimator

uses ρ(v) = − exp(v) with V = R and the Continuous Updating estimator employs

ρ(v) = −(1 + v)2/2 with V = R.

Let ĝi ≡ gi(θ̂GEL). The empirical probabilities of the observations associated with the

GEL are

π̂i ≡
ρ′(λ̂′ĝi)∑n
j=1 ρ

′(λ̂′ĝj)
, (4.24)

where ρ′(v) is the first order derivative of ρ, and λ̂ = argmax
λ∈Λ(θ̂GEL)

∑n
i=1 ρ(λ′ĝi). These proba-

bilities are important for the bootstrap procedure introduced by Brown and Newey (2002)

which we will describe later.

The GEL likelihood ratio test statistic is

GELRn ≡ 2(
n∑
i=1

ρ(λ̂′ĝi)− nρ(0))

and has asymptotic distribution χ2(l − k), when all the moment conditions are valid.

In the simulations we will analyze the size and power properties of this likelihood ratio

test using Empirical Likelihood (we will call it ELR) and Exponential Tilting (ETR). We

will also analyze a version that applies the GMM estimator (4.8) instead of (4.23). Then

λ̂ = argmax
λ∈Λ(θ̂a)

∑n
i=1 ρ(λ′gi(θ̂a)), and for ρ corresponding to either Empirical Likelihood or

Exponential Tilting we will call the modified LR test ELR(θ̂) or ETR(θ̂) respectively.

4.3 Bootstrap procedures

Below we describe bootstrap procedures of Hall and Horowitz (1996) and Brown and

Newey (2002) for improving the finite sample properties of the GMM overidentifying

restrictions test statistics. The Hall and Horowitz (1996) version of the bootstrapped test

statistic uses a ‘re-centered’ moment function such that it satisfies the moment restrictions

in the bootstrap samples. Brown and Newey (2002) propose resampling the data according

to the probabilities associated with the observations that arise from the computation of the

empirical likelihood evaluated at the GMM estimator. That way the moments exploited
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by GMM are also satisfied in the bootstrap samples, and in theory this procedure should

lead to improvements with respect to the Hall and Horowitz (1996) procedure.

4.3.1 HH type bootstrap

We adopt here the bootstrap procedure of Hall and Horowitz (1996) which is origi-

nally designed to handle dependent data. Assuming that the data is i.i.d., we have

E(g(Xi, θ0)g(Xj, θ0)′) = O for i 6= j. The version of the GMM statistic they consider is

the one that uses the inverse of (4.4) for the weighting matrix.

A bootstrap sample, X ∗, (X ∗i i = 1, . . . , n) is obtained by drawing independently with

replacement from X (Xi i = 1, . . . , n). Let θ̂ be the estimator for which we would like to

bootstrap the test statistic. Define

gh∗i (θ) ≡ g(X ∗i , θ)− E∗g(X ∗i , θ̂), (4.25)

where E∗(·) = E(·|X ). We have

E∗g(X ∗i , θ̂) =

∫
g(x, θ̂)dF̂ (x) = ḡn(θ̂)

and

E∗g(X ∗i , θ̂)g(X ∗i , θ̂)′ =
∫
g(x, θ̂)g(x, θ̂)′dF̂ (x) =

1

n

n∑
i=1

gi(θ̂)gi(θ̂)
′,

where F̂ (x) is the EDF of X . Writing g∗i (θ) ≡ g(X ∗i , θ) we get

gh∗i (θ) = g∗i (θ)− ḡn(θ̂). (4.26)

Clearly

E∗gh∗i (θ̂) = ḡn(θ̂)− ḡn(θ̂) = 0, (4.27)

which clarifies the structure of the bootstrap moment function (4.25). For that choice

the population moments exploited in the estimation, Egi(θ0) = 0, are satisfied exactly

in the bootstrap samples at θ̂. Because of the independence of the bootstrap samples
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(E∗gh∗i (θ̂)gh∗j (θ̂)′ = 0 for i 6= j) the bootstrap variance of
√
nḡh∗n (θ̂) is

nE∗ḡh∗n (θ̂)ḡh∗n (θ̂)′ =
1

n

n∑
i,j=1

E∗gh∗i (θ̂)gh∗j (θ̂)′ = E∗gh∗i (θ̂)gh∗i (θ̂)′

= E∗[g∗i (θ̂)− ḡn(θ̂)][g∗i (θ̂)− ḡn(θ̂)]′

= E∗g∗i (θ̂)g
∗
i (θ̂)

′ − ḡn(θ̂)ḡn(θ̂)′

=
1

n

n∑
i=1

gi(θ̂)gi(θ̂)
′ − ḡn(θ̂)ḡn(θ̂)′ = Ω̂a(θ̂).

The bootstrap version of (4.4) is

Ω̂h∗
s (θ̃∗) =

1

n

n∑
i=1

gh∗i (θ̃∗)gh∗i (θ̃∗)′ (4.28)

=
1

n

n∑
i=1

g∗i (θ̃
∗)g∗i (θ̃

∗)′ − ḡ∗n(θ̃∗)ḡn(θ̂)′

−ḡn(θ̂)ḡ∗n(θ̃∗)′ + ḡn(θ̂)ḡn(θ̂)′

and the bootstrap version of (4.3) is

Ω̂h∗
a (θ̃∗) =

1

n

n∑
i=1

gh∗i (θ̃∗)gh∗i (θ̃∗)′ − ḡh∗n (θ̃∗)ḡh∗n (θ̃∗)′ (4.29)

=
1

n

n∑
i=1

g∗i (θ̃
∗)g∗i (θ̃

∗)′ − ḡ∗n(θ̃∗)ḡ∗n(θ̃∗)′,

where θ̃∗ is obtained from

θ̃∗ ≡ argmin
θ∈Θ

ḡh∗n (θ)′W ∗ḡh∗n (θ), (4.30)

for some initial weighting matrix W ∗. Since E∗g∗i (θ̂)g
∗
i (θ̂)

′ = 1
n

∑n
i=1 gi(θ̂)gi(θ̂)

′ and

E∗g∗i (θ̂) = ḡn(θ̂), it is easy to see that

E∗Ω̂h∗
s (θ̂) = Ω̂a(θ̂). (4.31)



108 CHAPTER 4. OVERIDENTIFYING RESTRICTIONS TESTS

Lemma 4.3 For 4.29 evaluated at θ̂, we have

E∗Ω̂h∗
a (θ̂) =

n− 1

n
Ω̂a(θ̂). (4.32)

Proof. Let Â ≡ 1
n

∑n
i=1 gi(θ̂)gi(θ̂)

′. Now consider

E∗Ω̂h∗
a (θ̂) = E∗

{ 1

n

n∑
i=1

g∗i (θ̂)g
∗
i (θ̂)

′ − ḡ∗n(θ̂)ḡ∗n(θ̂)′
}
.

Because of independence of the terms in the summation and because

E∗g∗i (θ̂)g
∗
i (θ̂)

′ = Â, we have E∗
{

1
n

∑n
i=1 g

∗
i (θ̂)g

∗
i (θ̂)

′} = Â . Now

E∗ḡ∗n(θ̂)ḡ∗n(θ̂)′ =
1

n2
E∗

n∑
i,j=1

{
g∗i (θ̂)g

∗
j (θ̂)

′}
=

1

n2
E∗
∑
i=j

{
g∗i (θ̂)g

∗
j (θ̂)

′}+
1

n2
E∗
∑
i 6=j

{
g∗i (θ̂)g

∗
j (θ̂)

′}
=

1

n
Â+

n2 − n
n2

E∗g∗i (θ̂)g
∗
j (θ̂)

′ =
1

n
Â+

n− 1

n
ḡn(θ̂)ḡn(θ̂)′.

The last equality comes from the independence of g∗i (θ̂) and g∗j (θ̂) for i 6= j, then

E∗g∗i (θ̂)g
∗
j (θ̂)

′ = E∗g∗i (θ̂)E
∗g∗j (θ̂)

′. Summing up, we get

E∗Ω̂h∗
a (θ̂) = Â− 1

n
Â− n− 1

n
ḡn(θ̂)ḡn(θ̂)′ =

n− 1

n
Ω̂a(θ̂).

Hence, for the W ∗ in (4.30), we shall use the inverse of Ω̂h∗
s (θ̂) (if we bootstrap the

‘standard’ test statistic) or Ω̂h∗
a (θ̂) (for the ‘adaptive’ one, where the multiplicative factor

resulting from (4.32), n
n−1

, does not affect the estimator (and thus can be omitted) but it

will influence the bootstrap version of the test statistic). We will also examine how, using

the ‘updated’ (4.28) and (4.29), changes the results with respect to this initial choice.

The bootstrap versions of (4.6) and (4.7) are

J∗a = (n− 1)ḡh∗n (θ̃∗a)
′Ω̂h∗

a (θ̂a)
−1ḡn(θ̃∗a) (4.33)
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and

J∗s = nḡh∗n (θ̃∗s)
′Ω̂h∗

s (θ̂s)
−1ḡn(θ̃∗s), (4.34)

where the factor n − 1 in (4.33) is justified by (4.32). If we ‘update’ θ̂ in the weighting

matrix, the second stage versions are

J∗∗a = (n− 1)ḡh∗n (θ̂∗a)
′Ω̂h∗

a (θ̂∗a)
−1ḡn(θ̂∗a) (4.35)

and

J∗∗s = nḡh∗n (θ̂∗s)
′Ω̂h∗

s (θ̂∗s)
−1ḡn(θ̂∗s). (4.36)

Here, ignoring the subscript a or s, θ̃∗ is obtained from (4.30) using for the weighting

matrix Ω̂h∗(θ̂)−1 and θ̂∗ using Ω̂h∗(θ̃∗)−1. In the simulation, we will refer to the bootstrap

critical values obtained from J∗ or J∗∗ as 1 step and 2 step critical values.

Having designed their procedure primarily for dependent data, Hall and Horowitz

(1996) are concerned with the fact that the block bootstrap does not replicate the depen-

dence of the true data generating process. To overcome this issue they apply a particular

transformation to (4.28). Since we are not dealing here with dependent data we do not

need to apply this transformation here.

Linear model

In the linear case we have

ḡh∗n (θ) =
1

n
Z∗
′
u∗(θ)− 1

n
Z ′u(θ̂),

where u∗(θ) ≡ y∗ −X∗θ. For a given weighting matrix W ∗, say the inverse of Ω̂h∗
s (θ̂) or

Ω̂h∗
a (θ̂), (4.30) becomes

θ̃∗ = (X∗
′
Z∗W ∗Z∗

′
X∗)−1X∗

′
Z∗W ∗(Z∗

′
y∗ − Z ′(y −Xθ̂)). (4.37)
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The bootstrap version of the weighting matrix used for the Sargan test statistic based on

(4.28) or (4.29) will use the inverse of

Ω̇h∗
s (θ̃∗) =

u∗(θ̃∗)′u∗(θ̃∗)

n

1

n
Z∗
′
Z∗ − 1

n2
Z∗
′
u∗(θ̃∗)u(θ̂)′Z (4.38)

− 1

n2
Z ′u(θ̂)u∗(θ̃∗)′Z∗ +

1

n2
Z ′u(θ̂)u(θ̂)′Z,

or

Ω̇h∗
a (θ̃∗) =

u∗(θ̃∗)′u∗(θ̃∗)

n

1

n
Z∗
′
Z∗ − 1

n2
Z∗
′
u∗(θ̃∗)u∗(θ̃∗)′Z. (4.39)

Hence, the bootstrap versions of the standard or alternative Sargan tests (S∗a, S
∗
s , S

∗∗
a and

S∗∗s ) will have the same structure as (4.33), (4.34), (4.35), (4.36) but with the weighting

matrix replaced with ‘the dotted’ version.

In the MC experiments we will examine how, for a given version of the test statistic,

the bootstrap critical values obtained from the bootstrapped statistics (J∗a , J∗s , J∗∗a , J∗∗s ,

S∗a, S
∗
s , S

∗∗
a or S∗∗s ) perform relative to the standard asymptotic critical values.

4.3.2 EL type bootstrap

An alternative approach to the one of Hall and Horowitz (1996) was proposed by Brown

and Newey (2002). Instead of drawing (with replacement) bootstrap samples X ∗i =

(y∗i , x
∗′
i , z

∗′
i ) from X , with each Xi having equal probability, they suggest using the prob-

abilities obtained from the calculation of the empirical likelihood at the given GMM

estimator, θ̂. These are

π̂i =
1

n(1− λ̂′gi(θ̂))
, (4.40)

with

λ̂′ = arg max
λ′gi(θ̂)<1

∑
ln(1− λ′gi(θ̂)).

For that choice we then have
n∑
i=1

π̂igi(θ̂) = 0.
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The bootstrap procedure then goes as follows:

• For a given GMM estimator θ̂ and the ‘resulting’ statistic Jn(θ̂) obtain the proba-

bilities (4.40)

• obtain bootstrap samples X b∗ by drawing with replacement from X , where Xi has

the probability of being drawn π̂i, i = 1, . . . , n b = 1, . . . , B.

• compute the statistic J b∗n (θ̂) exactly the same way Jn(θ̂) was obtained but using the

bootstrapped data X b∗, instead of X .

• the bootstrap α level critical value is the 100(1 − α)% quantile of the bootstrap

distribution: cv∗ ≈ J
[(1−α)B]∗
n

A modification to that procedure could use probabilities derived from another GEL mem-

ber. For example, for the exponential tilting, where ρ(v) = − exp{v}, we would use

π̂i =
exp(λ̂′gi(θ̂))∑n
j=1 exp(λ̂′gj(θ̂))

, (4.41)

with

λ̂′ = argmax
λ∈Λ(θ̂)

{
−

n∑
i=1

exp(λ′gi(θ̂))
}
.

4.3.3 Residual type bootstrap

For the linear model (4.44) that we are going to analyze, the residual type bootstrap

consists of:

• obtain Π̂ols = (Z ′Z)−1Z ′X and the residuals V̂ = MZX (scaled by
√

n
n−l)

• obtain θ̂ from (4.13) (we used (4.11) for the weighting matrix) and the residuals

û = y −Xθ̂

• from V = (û, V̂ ), for b = 1, . . . , B obtain bootstrap versions of the disturbances
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V b∗ = (ûb∗, V̂ b∗) by re-drawing ‘row-wise’; generate

Xb∗ = ZΠ̂ols + V̂ b∗ (4.42)

yb∗ = Xb∗θ̂ + ûb∗ (4.43)

• compute the bootstrap versions of the Sargan or Hansen tests (from yb∗, Xb∗ and

Z)

• the bootstrap critical value is obtained from the 100(1− α)% quantile of the boot-

strap versions of the statistic.

By ‘fixing’ Z in (4.42) we produce exogeneity of the instruments in the resampling scheme.

By drawing ‘row-wise’ from the residual matrix V we preserve in (4.43) possible simul-

taneity of the regressor and heteroscedasticity of the disturbances.
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4.4 Illustrations

Here we present illustrations. We will analyze two linear examples, one involving ho-

moscedastic errors the other heteroscedastic ones. For a (n × l) matrix Z we denote by

Zi its i’th column and its t’th row we denote by z′t.

4.4.1 Homoscedastic Example

Let us consider the simple linear model

yt = xtθ + ut (4.44)

xt = z̄′tπ + vt, (4.45)

where yt, xt are scalar endogenous variables, t = 1, . . . , n, π is a (l× 1) vector of reduced

form parameters. The instruments Z̄ = [z̄1, . . . , z̄T ]′ are exogenous, E(u|Z̄) = 0 with

Var(z̄t) = Il. Let

ut
vt

 ∼ IIN
(
0,Σ

)
, Σ =

 σ2
u ρuvσuσv

ρuvσuσv σ2
v

 . (4.46)

We take l = 3 and create one invalid instrument (say the first one, Z1) by generating Z1

according to

Z1 =
√

1− ρ2
Z1u

Z̄1 + ρZ1uu. (4.47)

We have Var(zt1) = 1. For the normalization we take σ2
u = 1, θ = 1. We will choose

values for π and σ2
v via population versions of the concentration parameter and the signal

to noise ratio, which we define below.

The concentration parameter in the valid instruments case for (4.45) is

µ2 = π′Z̄ ′Z̄π/σ2
v . (4.48)
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Denote the ‘population’ version of the concentration parameter by

µ2
p = nπ′ΣZ̄′Z̄π/σ

2
v =

n

σ2
v

l∑
i=1

π2
i . (4.49)

Denote Var(xt) by σ2
x. We then have

σ2
x = π′ΣZ̄′Z̄π + σ2

v =
l∑

i=1

π2
i + σ2

v , (4.50)

and combining (4.49) with (4.50) we get

σ2
v =

σ2
x

µ2
p/n+ 1

. (4.51)

We define the signal to noise ratio of (4.44) by η2 = Var(xtθ)
σ2
u

, then η2 = σ2
x.

Taking πi = π0 in (4.49) for i = 1, . . . , l, we get µ2
pσ

2
v = nlπ2

0. Hence, for a given

sample size n, µ2
p, and η2 we can calculate σ2

v from (4.51) and π0 from π2
0 = µ2

pσ
2
v/(nl).

4.4.2 Heteroscedastic Example

In the above example we have conditional homoscedasticity, because E(u2
t |z̄t) = 1. The

Sargan test seems the most appropriate one to use. Here we will generalize the previous

model by introducing conditional heteroscedasticity.

Let wt ≡ (z̄′tz̄t)/l. Because z̄t ∼ N(0, Il), we obtain E(wt) = 1 and E(w2
t ) = 5/3 for

l = 3 (as wt ∼ χ2(3)/3). Let w̄t ≡ α1+α2wt√
α2

1+ 5
3
α2

2+2α1α2

, for some scalars α1, α2. By construction

Ew̄2
t = 1 and

Ew̄t =
α1 + α2√

α2
1 + 5

3
α2

2 + 2α1α2

≡ γ.

In the extended Monte Carlo design below the w̄t will be used to introduce conditional

heteroscedasticity given by w̄2
t , by generating the disturbances as ũt = w̄tut. Note that γ

can be equal to one or minus one only if α2 = 0. Then w̄t is in fact nonrandom and we
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again have conditional homoscedasticity. For α2 6= 0 we can rewrite the above as

w̄t =
κ+ wt√

κ2 + 2κ+ 5/3
(4.52)

and

γ = Ew̄t =
κ+ 1√

κ2 + 2κ+ 5/3
, (4.53)

where κ = α1/α2. One of the solutions to (4.53) is

κ =
γ√

1− γ2

√
2

3
− 1, (4.54)

which we will use to parameterize the conditional heteroscedasticity in our simulations.

Now, for |γ| 6= 1, we generate

yt = x′tθ + ũt (4.55)

xt = z̄′tπ + vt, (4.56)

where ũt = w̄tut (hence yielding conditional heteroscedasticity, E(ũ2
t |z̄t) = w̄2

t ). When

|γ| = 1 then we would take ũt = ut and we would be back in the previous example. We

have

Eũt = EE(ũt|z̄t) = Ew̄tE(ut|z̄t) = 0

Eũ2
t = EE(ũ2

t |z̄t) = Ew̄t
2E(u2

t |z̄t) = 1.

Eũ3
t = EE(ũ3

t |z̄t) = Ew̄t
3E(u3

t |z̄t) = 0.

Hence, the unconditional first three moments correspond to those from the previous ex-

ample. The fourth unconditional moment, however, is

Eũ4
t = EE(ũ4

t |z̄t) = Ew̄t
4E(u4

t |z̄t) = 3Ew̄t
4 =

3E
κ4 + 4κ3wt + 6κ2w2

t + 4κw3
t + w4

t

(κ2 + 2κ+ 5/3)4
= 3

κ4 + 4κ3 + 10κ2 + 155
9
κ+ 112

3

(κ2 + 2κ+ 5/3)4
.

Via (4.54) Eũ4
t is a function of γ. It can be shown that Eũ4

t > 3 for |γ| < 1. Figure
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4.1 shows the graph of Eũ4
t for different γ’s. Hence, for |γ| < 1 the distribution is more

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
3

6

9

12

15

18

21

24

Figure 4.1: Eũ4
t for different γ’s.

peaked around the mean with fatter tails than the standard normal, as can be seen from

Figure 4.2, which presents the shape of the density of ũt in comparison to the standard

normal. Figure 4.3 shows realizations of ut and ũt.

From (4.56), we now have

Extũt = EE(z̄′tπw̄tut|z̄t) + EE(w̄tutv2t|z̄t) =

E(z̄′tπw̄t)E(ut|z̄t) + Ew̄tE(utv2t|z̄t) = γρuvσv.

Because Varxt = η2 and Varũt = 1 then

ρxũ =
γρuvσv
η

.
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Figure 4.2: Densities of ut (black) and ũt (red) for different γ’s.
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Figure 4.3: A realization of ut (upper panel) and ũt (lower panel) for γ = 0.9.
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Similarly to (4.47) we generate the invalid instrument, Z1, according to

Z1 =
√

1− ρ2
Z1ũ

Z̄1 + ρZ1ũũ. (4.57)

Results

For all overidentification tests presented above and for different values of the concentration

parameter µ2
p, signal to noise ratio η2, sample size n, simultaneity ρxu (or ρxũ when γ 6= 1),

we will present our findings on size distortion and size corrected power by varying ρZ1u

(the degree of invalidity of the instrument when γ = 1) or ρZ1ũ (when γ 6= 1).

For the heteroscedastic case we use γ = 0.9. For that choice the fourth moment of ũt

is approximately 6.96 and the peak of the distribution of the disturbances is moderate.

For given model parameters we generate z̄′t ∼ N(0, Il) and the disturbances (4.46) (there

we use ρuvσv = ρxũη/γ), we obtain (4.44), (4.45), (4.47) for the homoscedastic case and

(4.55), (4.56), (4.57) for heteroscedastic disturbances.

We take the number of Monte Carlo replications MC = 190000 (we made that choice

to achieve ‘the accuracy’ of 0.0005 for α = 0.05, see Table 4.2) for the ‘GMM’ results

(Sargan and Hansen tests) and MC = 50000 (to achieve ‘the accuracy’ of 0.001 for

α = 0.05) for the results involving ‘GEL’ (ELR, ETR, ELR(θ̂), ETR(θ̂)), whereas the

number of bootstrap replications B = 100.

Whenever computations involve Empirical Likelihood or Exponential Tilting, we used

the Matlab optimization toolbox to obtain θ̂ (function fminsearch.m modifying the de-

fault accuracy criteria (‘TolFun’ and ‘TolX’) from 10−4 to 10−10 setting ‘MaxIter’=100)

and adopted the elm.m program from A. Owen’s webpage to calculate λ̂ for Empirical

Likelihood. Moreover, we used B. Hansen’s lecture notes for writing the Newton algorithm

for λ̂ in Exponential Tilting cases. For the weak instrument case (µ2
p/3 = 1), 2.7%−4.5%

of the simulations where skipped (hence the number of MC accordingly is smaller) when

Empirical Likelihood or Exponential Tilting were being computed, due to lack of conver-

gence of the optimization procedure. For the strong instrument case (µ2
p/3 = 20), this

percentage was almost zero (about 5 simulations out of 50000 were skipped).

For n = 50, 200 (small and larger sample), µ2
p/3 = 20, 1 (rather strong and weak
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instruments), and γ = 1, 0.9 (homoscedastic and heteroscedastic disturbances) Tables

4.3 and 4.4 contain the Monte Carlo estimate of P (Tn>cv)−α
α

, i.e. the fraction of the

size distortion for the given nominal significance level α = 0.05 of the standard Sargan

and Hansen tests, Ssn and Jsn, and the adapted versions, San and Jan. The critical values

employed are either based on asymptotic theory (cv∞), Hall and Horowitz (1996) (referred

to as HH from below on) 1 step (cv∗) or 2 steps (cv∗∗) bootstrap, or the residual type

bootstrap (cvR). In the column indicating instruments used by a test (say Tn), [123] means

that all the three instruments are taken, [23] only the second and the third, [123]|[23]

means that the test used is the incremental one (Tn([123]) − Tn([23])). We do not show

the results for [13] or [12] in the size distortion Tables 4.3, 4.4 and 4.5 since all three

instruments are valid and i.i.d. here, they would yield the same (similar) results as

Tn([23]). Likewise, as far as type I errors are concerned, Tn([123])− Tn([23]) gives similar

results as Tn([123])−Tn([12]) or Tn([123])−Tn([13]). In fact, for the size distortion results,

we averaged the results for [12] and [23] (hence the result is based on 2MC replications).

We did the same for [123]|[12] and [123]|[23].

Given the ‘true’ rejection probability p, the MC estimates of the size distortion results

would have standard deviation equal to
√

p(1−p)
MC

/α. Table 4.1 shows this standard devia-

tion for a given p and actual number of Monte Carlo simulations. For ‘GEL’ results this

is (almost) 50000 for [123] and (almost) 100000 for [12] and [123]|[12]. For ‘GMM’ results

it is 190000 or 380000 respectively.

Table 4.1: Standard Deviation of MC estimate of p−0.05
0.05 :

√
p(1−p)
MC /0.05

p
MC 0.01 0.05 0.1 0.2 0.3
50000 0.0028 0.0195 0.0268 0.0358 0.0410
100000 0.0020 0.0138 0.0190 0.0253 0.0290
1900000 0.0015 0.0100 0.0138 0.0184 0.0210
3800000 0.0010 0.0071 0.0097 0.0130 0.0149

As we will see from the size distortion tables, the GMM tests will mainly under-reject

(hence the true p is less than 0.05). That means that the standard errors of the MC

results are less than or about 0.01 (i.e. 1%). When the tests over-reject, but less than
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Table 4.2: Standard Deviation of MC estimate of p:
√

p(1−p)
MC

p
MC 0.01 0.05 0.2 0.3 0.5
50000 0.0004 0.0010 0.0018 0.0020 0.0022
1900000 0.0002 0.0005 0.0009 0.0011 0.0011

100%, the standard errors are about 0.02 (i.e. 2%). When tests over-reject by more than

100%, this occurs only on 3 occasions for LR tests and almost always for the Sargan tests

in the heteroscedastic case, the standard errors do not exceed 0.04 (i.e. are less than 4%

and this accuracy suffices).

Tables 4.6 to 4.9 show the size corrected power of the analyzed tests. Here, we can

not merge different results, hence, the number of Monte Carlo replications is 50000 for all

the GEL results and 190000 for the GMM results. There, if the true rejection probability

is p, the ‘power’ results have standard deviation
√

p(1−p)
MC

. Table 4.2 shows values of the

standard deviation for given p and MC. We notice that the GMM results will be twice as

accurate. The highest standard errors are obtained when p = 0.5. Hence, the standard

errors of the results are never higher than the values in the last column of Table 4.2.

Tables interpretation

From Tables 4.3 (γ = 1) and 4.4 (γ = 0.9) we see that as far as size distortion is

concerned, 2 stage HH bootstrap performs better than 1 step, except for the γ = 1,

n = 200, µ2
p/3 = 20 case.

For the homoscedastic case (both for the Sargan and Hansen tests), we notice that the

standard asymptotic critical values produce size distortions of more than 10% in absolute

value in the cases when we have ‘weak’ instruments (for both sample sizes we consider) or

‘strong’ instruments (for n = 50). In those cases HH bootstrap gives improvements with

respect to the asymptotic results, but we notice that the residual bootstrap performs

even better. When we have the ‘large’ sample (n = 200) and strong instruments the

standard asymptotics works very well and bootstrapping does not produce better results.

Fortunately in this case, bootstrap size distortions never exceed 10%. Hence, for both
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Sargan and Hansen tests the residual bootstrap would be preferable to the HH in the

homoscedastic case, since it seems to perform better in ‘weak’ instruments cases and in

small samples with ‘strong’ instruments.

For the heteroscedastic example, however, when applied to the Sargan tests, the resid-

ual bootstrap performs equally badly as its standard asymptotic implementation. For

that case HH bootstrap (2 step) gives improvements, the nicest for the large samples

(< 10%). For the Hansen tests HH bootstrap does not give improvements in the cases ex-

amined, but the residual bootstrap does. Note that for the Sargan tests HH bootstrap size

distortions are smaller than the corresponding asymptotic ones for the Hansen test, and

clearly smaller than the corresponding HH ones. They are also smaller or about the same

as the corresponding residual bootstrap size distortions for Hansen tests when n = 200.

Hence it seems that, even though asymptotic χ2 critical values are not appropriate for

the Sargan test here, the HH bootstrap produces valid critical values (replicates well the

distribution of the Sargan statistic).

Table 4.5 shows results for the procedures applying Empirical Likelihood or Expo-

nential Tilting. The first columns present outcomes of applying the BN bootstrap for

the alternative Sargan and Hansen tests, with either Empirical Likelihood or Exponential

Tilting implied probabilities. We notice that this bootstrap procedure underrejects by at

least 50%. (The results for the ‘standard’ Sargan and Hansen tests were almost identical)

The right-hand columns show the LR type tests. We see that, for the strong instrument

case, ELR is less distorted than ELR(θ̂), similarly for ETR and ETR(θ̂), and this size

distortion decreases with the sample size. For the weak instrument case ELR and ETR

are worse than the versions evaluated at the GMM estimators, which is probably due to

the optimization procedure applied to find Empirical Likelihood or Exponential Tilting

estimators. Apart from a few (regular) cases, the distortions are rather high.

Tables 4.6 to 4.9 show the size corrected power of the analyzed GMM tests and the

LR type tests considered in Table 4.5. They all seem to perform about equally. We have

highlighted the entries with the highest values (row-wise).

For the homoscedastic case, we notice that the Sargan tests are the best, overall. From

[123]|[12] entries we conclude that the ‘adapted’ version is probably better to reject [123].
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Unfortunately, we would probably conclude here that it is due to the ‘third’ instrument,

instead of the ‘first’. We notice that for all the tests, the power is substantial only for

rather strong invalidity of the instrument (ρZ1u = 0.5), where for the weak instruments

we have only about 50% chance to be right in rejecting (similarly for ρZ1u = 0.2, large

sample and strong instrument).

The corresponding heteroscedastic results show the power loss with respect to the

homoscedastic case. Here the power is high only for the large sample, strong instrument

and serious invalidity. There is no uniformly best test in the heteroscedastic case.

For the values of n, γ and µ2
p/3 analyzed in the previous Tables, Figures 4.4 (for γ = 1)

and 4.5 (for γ = 0.9) each show four panels of four plots (2 ‘Sargans’ and 2 ‘Hansens’)

for 3 values of invalidity of the instrument (0.1, 0.2, 0.5) on the horizontal axes. They

depict the worst case among the different ‘instrument settings’ ([123], [12], [123]|[12] and

[123]|[23]) of p̂−p̂c
p̂c

- percentage distortion of the ‘power’ rejection probability, p̂, obtained

using different critical values (asymptotic, HH and the residual bootstrap) with respect

to the ‘size corrected power’, p̂c. First, we notice that using asymptotic critical values is

almost never the best choice (in terms of being closest to the ‘size corrected’ power line).

For the J tests it seems that the residual bootstrap is the best, except for the large sample

and weak instrument case. The percentage distortion of HH bootstrap looks similar to

the size distortion for the Hansen tests. Residual bootstrap also works well for the Sargan

tests in the homoscedastic case. For the heteroscedastic case, the HH bootstrap is the

only good option for the Sargan tests. Here also the ‘power percentage distortion’ looks

similar to the ‘size percentage distortion’.

4.5 Conclusions

In this Chapter we analyzed and compared several versions of overidentifying restriction

tests. They are based on the GMM criterion function and GEL type Likelihood Ratio

tests. We used different bootstrap schemes to improve on GMM type tests. For a simple

linear homoscedastic model we saw that the Sargan tests perform very well in terms

of power and when supported with the residual bootstrap their size distortion does not
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exceed 10%. Hansen tests are best corrected for size by the residual bootstrap.

For the heteroscedastic case the residual bootstrap does not work for the Sargan test,

but the HH (2 step) bootstrap does work well. In the same circumstances, HH bootstrap

performs better for Sargan than for Hansen tests. The residual bootstrap does best for

the Hansen tests.

The BN bootstrap does not perform well in the examples we considered. Also the LR

type tests have size problems, which can be fixed possibly by using bootstrap techniques.

Size corrected versions do not perform better than Sargan tests in the homoscedastic case,

but for the heteroscedastic case they show some potential (but with no obvious winner

among the LR type tests). There is no clear winner for the heteroscedastic case anyway,

and together with rather substantial size problems, the GMM (Sargan) tests seem to be

the safest option for the model and circumstances we analyzed.

Kitamura (2001) analyzes the performance of the EL and Hansen tests in a non-linear

example from Hall and Horowitz (1996). It shows that EL performs better than GMM

tests. Here we demonstrate that in a linear model the Sargan test can be a better option.
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Ssn San
instr. cv∞ cv∗ cv∗∗ cvR cv∞ cv∗ cv∗∗ cvR

µp/3 = 20 n = 50

[123] -0.02 -0.1 -0.089 0.084 0.38 -0.1 -0.098 0.083
[12] -0.023 -0.054 -0.0082 0.074 0.16 -0.055 -0.013 0.074

[123]|[23] 0.052 -0.073 -0.071 0.045 0.35 -0.089 -0.092 0.04

µp/3 = 1 n = 50

[123] -0.3 -0.25 -0.16 -0.082 0.0088 -0.25 -0.17 -0.083
[12] -0.34 -0.22 -0.12 -0.11 -0.21 -0.22 -0.12 -0.11

[123]|[23] -0.059 -0.26 -0.16 -0.1 0.19 -0.27 -0.17 -0.11

µp/3 = 20 n = 200

[123] -0.02 0.04 0.071 0.085 0.064 0.04 0.071 0.085
[12] -0.042 0.026 0.073 0.075 0.001 0.026 0.073 0.075

[123]|[23] -0.0028 0.04 0.044 0.053 0.064 0.038 0.042 0.051

µp/3 = 1 n = 200

[123] -0.31 -0.17 -0.079 -0.086 -0.24 -0.17 -0.08 -0.086
[12] -0.36 -0.2 -0.087 -0.095 -0.33 -0.2 -0.088 -0.095

[123]|[23] -0.094 -0.18 -0.1 -0.1 -0.038 -0.18 -0.1 -0.11

Jsn Jan
instr. cv∞ cv∗ cv∗∗ cvR cv∞ cv∗ cv∗∗ cvR

µp/3 = 20 n = 50

[123] -0.18 -0.36 -0.3 0.07 0.2 -0.37 -0.31 0.068
[12] -0.11 -0.19 -0.11 0.074 0.076 -0.2 -0.11 0.074

[123]|[23] -0.024 -0.3 -0.25 0.037 0.27 -0.33 -0.28 0.037

µp/3 = 1 n = 50

[123] -0.42 -0.47 -0.35 -0.071 -0.14 -0.49 -0.36 -0.072
[12] -0.4 -0.34 -0.19 -0.092 -0.27 -0.35 -0.2 -0.094

[123]|[23] -0.12 -0.45 -0.32 -0.088 0.12 -0.47 -0.34 -0.093

µp/3 = 20 n = 200

[123] -0.06 0.012 0.048 0.085 0.028 0.011 0.047 0.085
[12] -0.055 0.012 0.061 0.075 -0.015 0.012 0.06 0.075

[123]|[23] -0.011 0.0062 0.021 0.043 0.057 0.0038 0.018 0.044

µp/3 = 1 n = 200

[123] -0.35 -0.2 -0.1 -0.086 -0.28 -0.2 -0.1 -0.087
[12] -0.38 -0.22 -0.11 -0.087 -0.35 -0.22 -0.11 -0.088

[123]|[23] -0.11 -0.22 -0.14 -0.099 -0.054 -0.22 -0.14 -0.099

Table 4.3: Size distortion: For different n and µp/3, the table presents P (Tn>cv)−α
α (relative deviation

of the actual rejection probabilities from the nominal level α = 0.05), where Tn is either Ssn, San in the
upper part of the table or Jsn, Jan in the lower part. cv stands for the different critical values (at the
given significance α level used): cv∞ asymptotic critical value, cv∗ based on ‘one step’ version of Hall
and Horowitz (1996), cv∗∗ based on ‘two steps’, cvR is based on the residual type bootstrap alternative.
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Ssn San
instr. cv∞ cv∗ cv∗∗ cvR cv∞ cv∗ cv∗∗ cvR

µp/3 = 20 n = 50

[123] 2.6 -0.32 -0.34 2.7 3.4 -0.32 -0.36 2.7
[12] 1.7 -0.23 -0.2 1.8 2 -0.23 -0.21 1.8

[123]|[23] 1.9 -0.24 -0.25 1.8 2.5 -0.29 -0.31 1.9

µp/3 = 1 n = 50

[123] 1.5 -0.4 -0.3 1.8 2.1 -0.41 -0.31 1.8
[12] 0.79 -0.32 -0.21 1 1 -0.32 -0.21 1

[123]|[23] 1.4 -0.4 -0.28 1.2 1.9 -0.43 -0.3 1.3

µp/3 = 20 n = 200

[123] 2.8 -0.02 0.013 3 3 -0.02 0.011 3
[12] 1.9 -0.0011 0.065 2 1.9 -0.0014 0.064 2

[123]|[23] 2 -0.0019 0.005 2 2.1 -0.0098 0.0011 2

µp/3 = 1 n = 200

[123] 1.7 -0.2 -0.084 2 1.8 -0.2 -0.086 2
[12] 0.85 -0.21 -0.085 1.2 0.91 -0.21 -0.086 1.2

[123]|[23] 1.6 -0.21 -0.11 1.4 1.7 -0.22 -0.11 1.4

Jsn Jan
instr. cv∞ cv∗ cv∗∗ cvR cv∞ cv∗ cv∗∗ cvR

µp/3 = 20 n = 50

[123] -0.36 -0.76 -0.73 -0.013 -0.0099 -0.77 -0.74 -0.022
[12] -0.21 -0.52 -0.46 0.0087 -0.04 -0.52 -0.46 0.0048

[123]|[23] -0.084 -0.67 -0.63 -0.017 0.2 -0.7 -0.67 -0.03

µp/3 = 1 n = 50

[123] -0.55 -0.77 -0.69 -0.19 -0.29 -0.78 -0.7 -0.2
[12] -0.48 -0.56 -0.43 -0.19 -0.35 -0.56 -0.44 -0.19

[123]|[23] -0.19 -0.72 -0.63 -0.18 0.053 -0.75 -0.66 -0.18

µp/3 = 20 n = 200

[123] -0.16 -0.3 -0.28 0.028 -0.063 -0.3 -0.28 0.027
[12] -0.084 -0.15 -0.098 0.059 -0.039 -0.15 -0.099 0.058

[123]|[23] -0.045 -0.25 -0.22 0.00037 0.023 -0.25 -0.23 -0.0038

µp/3 = 1 n = 200

[123] -0.41 -0.41 -0.33 -0.17 -0.35 -0.41 -0.33 -0.17
[12] -0.41 -0.32 -0.21 -0.17 -0.38 -0.32 -0.21 -0.17

[123]|[23] -0.15 -0.4 -0.31 -0.18 -0.087 -0.4 -0.31 -0.18

Table 4.4: Size distortion: Same as Table 4.3, but with conditional heteroscedasticity where γ = 0.9
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San Jan
instr. cvEL cvET cvEL cvET ELR(θ̂) ETR(θ̂) ELR ETR

γ = 1

µp/3 = 20 n = 50

[123] -0.51 -0.49 -0.78 -0.74 0.85 0.6 0.75 0.52
[12] -0.65 -0.6 -0.79 -0.77 0.37 0.27 0.28 0.21

[123]|[23] -0.71 -0.68 -0.84 -0.83 0.78 0.58 0.73 0.54

µp/3 = 1 n = 50

[123] -0.67 -0.62 -0.86 -0.85 0.35 0.15 -0.45 -0.56
[12] -0.77 -0.75 -0.88 -0.87 -0.054 -0.13 -0.61 -0.65

[123]|[23] -0.74 -0.72 -0.87 -0.86 0.52 0.36 -0.14 -0.26

µp/3 = 20 n = 200

[123] -0.53 -0.5 -0.57 -0.58 0.14 0.14 0.11 0.11
[12] -0.68 -0.65 -0.71 -0.7 0.04 0.042 0.013 0.017

[123]|[23] -0.72 -0.7 -0.74 -0.74 0.14 0.14 0.12 0.12

µp/3 = 1 n = 200

[123] -0.69 -0.68 -0.71 -0.72 -0.19 -0.19 -0.73 -0.73
[12] -0.79 -0.79 -0.81 -0.8 -0.31 -0.31 -0.74 -0.74

[123]|[23] -0.76 -0.75 -0.77 -0.77 0.011 0.0096 -0.51 -0.51

γ = 0.9

µp/3 = 20 n = 50

[123] -0.36 -0.27 -0.91 -0.86 1.7 1 1.6 0.88
[12] -0.54 -0.47 -0.89 -0.87 0.87 0.52 0.72 0.42

[123]|[23] -0.6 -0.55 -0.93 -0.89 1.5 0.95 1.4 0.89

µp/3 = 1 n = 50

[123] -0.54 -0.47 -0.95 -0.92 1 0.44 -0.21 -0.47
[12] -0.7 -0.64 -0.93 -0.91 0.28 0.03 -0.5 -0.6

[123]|[23] -0.65 -0.6 -0.94 -0.92 1.1 0.68 0.13 -0.12

µp/3 = 20 n = 200

[123] -0.46 -0.41 -0.69 -0.68 0.55 0.39 0.48 0.34
[12] -0.62 -0.58 -0.76 -0.75 0.28 0.2 0.22 0.16

[123]|[23] -0.67 -0.64 -0.8 -0.8 0.51 0.37 0.46 0.35

µp/3 = 1 n = 200

[123] -0.61 -0.58 -0.75 -0.74 0.088 -0.028 -0.65 -0.67
[12] -0.74 -0.71 -0.81 -0.82 -0.15 -0.19 -0.68 -0.7

[123]|[23] -0.72 -0.69 -0.78 -0.78 0.28 0.18 -0.39 -0.43

Table 4.5: Brown and Newey (2002) bootstrap: relative size distortion: P (Tn>cv)−α
α ; for different Tn

with the critical values cvEL, cvET obtained applying Empirical Likelihood (4.40) or Exponential Tilting
(4.41) implied probabilities. Last 4 columns show relative distortion of ELR(θ̂), ETR(θ̂), ELR and ELR
type Likelihood Ratio tests.
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instr. Ssn San Jsn Jan ELR(θ̂) ETR(θ̂) ELR ETR

µp = 20

ρZ1u = 0.1

[123] 0.0727 0.0727 0.0697 0.0697 0.0711 0.0708 0.0726 0.0716
[12] 0.0751 0.0751 0.0734 0.0734 0.0746 0.0741 0.0763 0.075

[123]|[12] 0.0588 0.0598 0.0569 0.0577 0.0596 0.0585 0.0596 0.0596
[123]|[23] 0.0834 0.0829 0.081 0.0809 0.0818 0.0815 0.0833 0.0831

ρZ1u = 0.2

[123] 0.151 0.151 0.138 0.138 0.143 0.143 0.145 0.145
[12] 0.155 0.155 0.148 0.147 0.152 0.152 0.154 0.153

[123]|[12] 0.087 0.093 0.0779 0.0823 0.0921 0.0874 0.094 0.09
[123]|[23] 0.192 0.191 0.176 0.176 0.184 0.184 0.187 0.187

ρZ1u = 0.5

[123] 0.718 0.718 0.646 0.645 0.675 0.675 0.674 0.673
[12] 0.615 0.615 0.579 0.579 0.593 0.591 0.583 0.582

[123]|[12] 0.339 0.41 0.23 0.274 0.376 0.34 0.395 0.36
[123]|[23] 0.797 0.797 0.733 0.735 0.761 0.76 0.758 0.759

µp = 1

ρZ1u = 0.1

[123] 0.0648 0.0648 0.0639 0.0639 0.0642 0.064 0.0647 0.064
[12] 0.0662 0.0662 0.0653 0.0655 0.0664 0.0669 0.0668 0.0666

[123]|[12] 0.0575 0.058 0.0558 0.0566 0.0583 0.0587 0.0583 0.0578
[123]|[23] 0.071 0.0707 0.0693 0.0691 0.0709 0.0714 0.0707 0.0697

ρZ1u = 0.2

[123] 0.122 0.122 0.115 0.115 0.118 0.118 0.111 0.109
[12] 0.122 0.122 0.118 0.118 0.121 0.122 0.115 0.115

[123]|[12] 0.0853 0.0882 0.08 0.0824 0.089 0.0878 0.0842 0.0833
[123]|[23] 0.147 0.147 0.137 0.137 0.142 0.143 0.131 0.131

ρZ1u = 0.5

[123] 0.43 0.43 0.397 0.396 0.412 0.411 0.303 0.302
[12] 0.328 0.328 0.317 0.316 0.323 0.323 0.26 0.259

[123]|[12] 0.241 0.264 0.204 0.22 0.256 0.242 0.193 0.187
[123]|[23] 0.485 0.484 0.45 0.45 0.467 0.468 0.354 0.352

Table 4.6: Size corrected power: P (Tn > cα|ρZ1u); α = 5%, n=50, γ = 1.
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instr. Ssn San Jsn Jan ELR(θ̂) ETR(θ̂) ELR ETR

µp = 20

ρZ1u = 0.1

[123] 0.156 0.156 0.153 0.153 0.153 0.152 0.155 0.154
[12] 0.163 0.163 0.161 0.161 0.159 0.16 0.161 0.161

[123]|[12] 0.0895 0.0908 0.0869 0.0883 0.0906 0.0904 0.0914 0.091
[123]|[23] 0.205 0.204 0.199 0.199 0.196 0.198 0.197 0.199

ρZ1u = 0.2

[123] 0.502 0.502 0.489 0.489 0.491 0.491 0.493 0.493
[12] 0.465 0.465 0.458 0.458 0.457 0.458 0.458 0.459

[123]|[12] 0.226 0.236 0.207 0.216 0.229 0.227 0.234 0.231
[123]|[23] 0.607 0.607 0.593 0.593 0.589 0.593 0.59 0.594

ρZ1u = 0.5

[123] 0.996 0.996 0.994 0.994 0.994 0.994 0.993 0.993
[12] 0.949 0.949 0.945 0.945 0.945 0.945 0.94 0.94

[123]|[12] 0.875 0.902 0.772 0.808 0.857 0.858 0.864 0.874
[123]|[23] 0.998 0.998 0.997 0.997 0.997 0.997 0.997 0.997

µp = 1

ρZ1u = 0.1

[123] 0.124 0.124 0.122 0.122 0.12 0.12 0.112 0.112
[12] 0.122 0.122 0.121 0.121 0.119 0.119 0.111 0.111

[123]|[12] 0.0866 0.0873 0.0851 0.0857 0.086 0.0858 0.0846 0.0836
[123]|[23] 0.151 0.151 0.147 0.147 0.145 0.145 0.131 0.132

ρZ1u = 0.2

[123] 0.322 0.322 0.315 0.315 0.314 0.315 0.251 0.252
[12] 0.266 0.266 0.263 0.263 0.261 0.263 0.217 0.217

[123]|[12] 0.186 0.189 0.179 0.182 0.188 0.188 0.162 0.161
[123]|[23] 0.381 0.381 0.373 0.373 0.374 0.374 0.301 0.301

ρZ1u = 0.5

[123] 0.479 0.479 0.474 0.474 0.474 0.476 0.365 0.366
[12] 0.332 0.332 0.329 0.329 0.327 0.328 0.287 0.287

[123]|[12] 0.342 0.349 0.324 0.331 0.343 0.342 0.234 0.232
[123]|[23] 0.533 0.533 0.527 0.527 0.528 0.529 0.422 0.422

Table 4.7: Size corrected power: P (Tn > cα|ρZ1u); α = 5%, n=200, γ = 1.
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instr. Ssn San Jsn Jan ELR(θ̂) ETR(θ̂) ELR ETR

µp = 20

ρZ1ũ = 0.1

[123] 0.0622 0.0622 0.0593 0.0591 0.0599 0.0594 0.0608 0.0604
[12] 0.0637 0.0637 0.0605 0.0606 0.0619 0.0625 0.0629 0.0641

[123]|[12] 0.0544 0.0559 0.0528 0.0531 0.0538 0.0538 0.054 0.0544
[123]|[23] 0.0684 0.0679 0.0636 0.0639 0.0652 0.0646 0.0663 0.0659

ρZ1ũ = 0.2

[123] 0.102 0.102 0.0896 0.0894 0.0951 0.0928 0.0961 0.0945
[12] 0.106 0.106 0.0964 0.0964 0.102 0.102 0.103 0.104

[123]|[12] 0.0682 0.0735 0.0624 0.0644 0.0697 0.0683 0.0706 0.0685
[123]|[23] 0.124 0.124 0.107 0.107 0.116 0.115 0.117 0.117

ρZ1ũ = 0.5

[123] 0.441 0.441 0.375 0.373 0.446 0.441 0.441 0.44
[12] 0.387 0.387 0.372 0.371 0.412 0.41 0.398 0.406

[123]|[12] 0.192 0.247 0.139 0.156 0.239 0.214 0.253 0.224
[123]|[23] 0.526 0.528 0.463 0.464 0.534 0.532 0.526 0.529

µp = 1

ρZ1ũ = 0.1

[123] 0.0561 0.0561 0.0557 0.0556 0.0548 0.0552 0.0576 0.0575
[12] 0.0566 0.0566 0.0569 0.0568 0.0564 0.0568 0.0588 0.0592

[123]|[12] 0.053 0.0536 0.0522 0.0524 0.0529 0.0526 0.0548 0.0537
[123]|[23] 0.0585 0.0588 0.0577 0.0578 0.0576 0.0579 0.0601 0.0611

ρZ1ũ = 0.2

[123] 0.0825 0.0825 0.0781 0.0779 0.0791 0.0792 0.0812 0.0821
[12] 0.0828 0.0828 0.082 0.0819 0.0833 0.084 0.0836 0.0841

[123]|[12] 0.0655 0.0681 0.0628 0.0636 0.0664 0.0653 0.069 0.0684
[123]|[23] 0.0936 0.0942 0.089 0.0887 0.0906 0.0917 0.0916 0.0934

ρZ1ũ = 0.5

[123] 0.263 0.263 0.26 0.258 0.284 0.284 0.223 0.233
[12] 0.221 0.221 0.24 0.239 0.244 0.246 0.204 0.208

[123]|[12] 0.15 0.167 0.139 0.146 0.179 0.169 0.149 0.149
[123]|[23] 0.308 0.309 0.306 0.306 0.33 0.33 0.261 0.271

Table 4.8: Size corrected power: P (Tn > cα|ρZ1ũ); α = 5%, n=50, γ = 0.9.
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instr. Ssn San Jsn Jan ELR(θ̂) ETR(θ̂) ELR ETR

µp = 20

ρZ1ũ = 0.1

[123] 0.104 0.104 0.1 0.1 0.102 0.102 0.103 0.103
[12] 0.108 0.108 0.106 0.106 0.105 0.105 0.107 0.106

[123]|[12] 0.0711 0.0724 0.0678 0.0684 0.0713 0.0697 0.0712 0.0703
[123]|[23] 0.129 0.129 0.124 0.124 0.125 0.126 0.126 0.127

ρZ1ũ = 0.2

[123] 0.284 0.284 0.274 0.274 0.281 0.284 0.282 0.285
[12] 0.273 0.273 0.273 0.273 0.274 0.275 0.275 0.277

[123]|[12] 0.141 0.149 0.124 0.127 0.144 0.139 0.146 0.142
[123]|[23] 0.361 0.361 0.349 0.35 0.355 0.36 0.357 0.363

ρZ1ũ = 0.5

[123] 0.93 0.93 0.946 0.946 0.954 0.954 0.947 0.951
[12] 0.799 0.799 0.854 0.854 0.859 0.858 0.845 0.848

[123]|[12] 0.654 0.706 0.491 0.52 0.689 0.669 0.69 0.683
[123]|[23] 0.96 0.961 0.967 0.967 0.974 0.975 0.97 0.972

µp = 1

ρZ1ũ = 0.1

[123] 0.0823 0.0823 0.0835 0.0834 0.0827 0.0832 0.0817 0.0813
[12] 0.0821 0.0821 0.0851 0.085 0.0849 0.0852 0.0842 0.085

[123]|[12] 0.0668 0.0675 0.0665 0.0669 0.0676 0.0676 0.0697 0.0689
[123]|[23] 0.0954 0.0954 0.0976 0.0974 0.0964 0.0965 0.0927 0.0938

ρZ1ũ = 0.2

[123] 0.178 0.178 0.195 0.195 0.192 0.194 0.17 0.172
[12] 0.161 0.161 0.18 0.18 0.177 0.178 0.16 0.162

[123]|[12] 0.116 0.119 0.118 0.119 0.126 0.125 0.117 0.117
[123]|[23] 0.216 0.216 0.237 0.237 0.237 0.238 0.206 0.211

ρZ1ũ = 0.5

[123] 0.317 0.317 0.429 0.429 0.423 0.425 0.322 0.329
[12] 0.224 0.224 0.307 0.307 0.301 0.303 0.264 0.269

[123]|[12] 0.221 0.229 0.265 0.271 0.293 0.289 0.206 0.21
[123]|[23] 0.365 0.365 0.481 0.481 0.477 0.48 0.379 0.388

Table 4.9: Size corrected power: P (Tn > cα|ρZ1ũ); α = 5%, n=200, γ = 0.9.
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Figure 4.4: Percentage deviation of rejection frequencies from the ‘size corrected’ power
when using different critical values: asymptotic (∞), 1,2 step HH, and based on the
residual bootstrap; γ = 1.
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Figure 4.5: Percentage deviation of rejection frequencies from the ‘size corrected’ power
when using different critical values: asymptotic (∞), 1,2 step HH, and based on the
residual bootstrap; γ = 0.9.


