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Chapter 1 Introduction

Imagine we are going to the movies. We enjoy theienat most, when we see the movie at
night and preferably in the weekend. Then we dbatte to work the next day. But the
problem is that a lot of people may think that veaigl so on Saturday evening the movie-
theatre is crowded. We have to wait in order to &tigket, wait to get a drink, wait in line

for the bathroom and when finally the movie sténere are no seats left, so we have to sit in
the first row, not enjoying the movie at all. Silithere all annoyed, we think: “We should
have stayed at home!”.

Now think we are buying a house. The old house reviae are living in now, is too small

and doesn’t have a garden. But also you don’'t wapay too much for a bigger new house.
So it would be best if you were the only one whaisdo buy a house at this moment, so you
can pick the right one and bargain for a good amdgrice. If a lot of other people also want
to buy a bigger house, you will have a lot more petition. First to get the bigger house with
garden and second when you finally found it, theepwill be sky high, because of all the
other potential buyers.

These two examples clearly show that in our d#f¢éythere are many situations where we
have to compete for the use of a limited resouaagofd seat in the movie-theatre, the bigger
house with garden). We will give one more examipézause this is a typical example of
dividing a limited resource. This example is calRaoute Choice.

Every morning people have to go by car from plade Alace B and they can choose to take
the highway or to take a country road to get te@lB. The problem is when everyone takes
the highway there will be a traffic jam, so it wilke much longer to get to the place B and in
that case it would be smarter to take the coumtagrBut if everyone takes the country road,
there will be a traffic jam on the country road ahen it would be faster to would have taken
the highway. So the difficulty here is that peopldney want to get to B the fastest must
choose that road that nobody chooses.

What these three simple examples clearly show &t vghcalled coordination problems. There
is a limited resource (a good seat in the moviattiee the bigger house with garden and the
quiet fast road) and people who want to use orwmesthis resource. Those people have to
think about the actions of the other people to doate to get the resource.

This problems would be easier if the agents coaldraunicate or at least see what the other

agents were doing. Here we are considering caserevthis is not possible.



It is interesting to see what will happen, whendhene is played repeatedly. We ask
ourselves whether we could predict the behaviowgehts in this repeated setting. But then
we have to make some assumptions about the af@néxample, we may assume that agents
make decisions rationally. In the next paragraphwillesee what happens with one game

when we assume rationality of the players of tlzame.

1.1 Rationality
Consider a game of some kind and assume thateafighnts playing this game are fully

rational. This implies first the agents know albabthe game and the payoffs of all agents.
Second they know that the other players know tmeegd hird they know the other players
know that they know that they know...Fourth ratiotyaiissumes that the aim of the agents is

to maximize their expected profits.

We consider, as example, the 2 player-Hawk-Doveeg@dsborne, 2004). The two players
have two actions: Fight or Yield. The action Figlihen played against action Yield, has a
payoff ofv > 0.When both players choose the action Fight) etayer has an equal chance to
win the fight or loose the fight. The payoff of wing the fight isy and the payoff of loosing
the fight is €. The expected payoff, when both players choosac¢hien Fight, is therefore

Yorv+lo*-c = V—ZC When both players Yield, each get payd#. This payoff structure is

represented in Table 1. In this table the rowsasgmt the actions of player 1 and the columns

represent the actions of player 2. Payaffo) means the payoff of playerlasand the payoff

of player 2 isb.
1\2 Fight Yield
Fight ((v-0)/2, (v-c)/2) (v,0)
Yield ((OAY)] (W2,viI2)

Table 1: Payoff of 2 player-Hawk-Dove game. Pagepff) means the payoff of player 1 is a and theofiayf
player 2 is b.

As stated before, an interesting question is whietleecan predict the outcome of the game
when we assume rationality of the players. Thetswiwof the game under full rationality

corresponds to its Nash equilibria.



A strategy gives the chances a player plays tHerdiit actions. A Nash equilibrium is a set
of strategies, where each strategy is the besbnsgpto the strategies of the other players.
This must hold for all players. In this examplengans that player 1 plays that strategy, which
is the best response to his beliefs about theeglyatf player 2. Similarly the strategy of
player 2 is best response to his beliefs aboustiiaéegy of player 1. Finally in equilibrium

the beliefs of player 1 and 2 are consistent. Meifayer has the incentive to deviate, given
that the other player uses this strategy. Whenidhise case, we have a Nash equilibrium.
There are two different kinds of equilibria to digfuish. These are pure and mixed equilibria.
The only difference is that if there is a puretslgg Nash equilibrium players play an action
with chance 1. While, if the equilibrium is mixetie actions can be played according to a
probability -distribution. For example the actioiglit can be played with probability % and
Yield with probability ¥a.

The pure equilibria in the 2 player-Hawk-Dove gamith assumptiorv > c are clear:

(Fight, Yield) and (Yield, Fight). This equilibriums easy to understand. In Table 1 we see
that when player 1 chooses the action Fight githahplayer 2 plays Fight, the payoff of
player 1 is ¥-c)/2. However when player 1 plays Yield, the paydfplayer 1 would be/2.
The payoff of playing Yield is higher than the p#yaf playing Fight for player 1, because
c>0. So the best response to the action Fightehdose the action Yield.

Suppose now that player 2 plays action Yield, twgofff of player 1 of choosing action Fight
is v, while the payoff of player 1 choosing action Yi&d/2. Therefore the best response to
the action Yield is to choose the action Fight.

In the symmetric mixed strategy Nash equilibriura playoffs of playing Fight must be equal
with playing Yield. Here the symmetric mixed stiggeNash equilibrium is

{(Vic, (c-v)lc), (Vic, (c-v)/c)}. This makes sense, because given these protiedbiine payoff
for both strategies is the same. When player 2axipg Fight with probability/c and Yield
with probability €-v)/c, then if player 1 plays Fights his expected pajgoff

vic* (v-c)/2 + (c-v)Ic* v=Vv* (c-v)/2c. If player 1 plays Yield his expected payoff is:

vic* 0 + (c-v)/c * vi2 =v * (c-v)/2c, which is the same payoff of choosing action Figtihen
this strategy is played, it doesn’t matter whayptal plays; he always gets the same.
Therefore he is willing to randomize between thastons. It is called symmetric, because

both players have the same equilibrium strategy.



When this 2 player-Hawk-Dove game is played withrenalayers the game becomes more
complicated. In more complicated minority gameselean be more Nash equilibria; pure
and mixed (symmetric or not).

The main assumption in a Nash equilibrium is thatplayers are fully rational. We are
interested whether this is a realistic assumptiothe next paragraph this assumption of
rationality is being challenged.

1.2 Bounded Rationality
In the previous paragraph we discussed what happengame when we assume rationality.

However real people are only rational up to songreke They cannot comprehend all the
facets of a complicated game, just because themangally not equipped&o people use
simpler models to fill the gap of their understangdiOften these models can be described as
simple rules of thumb. People may switch betweesdlsimple rules of thumb, dependent on
how well these rules perform.

As stated before, in theory fully rationality isedisto find equilibria and explain behaviour
seen in these kinds of problems. But in reality hamationality is bounded and also in
interactive situations, as in coordination probleaggents cannot rely on the perfect
rationality of the other agents. So they must cglysomething else. Bounded rational people
form hypotheses, act upon them and verify whethehiypotheses are still holding.

We would like to know how people play a game, wivenassume bounded rationality instead
of rationality. Nash equilibria are based upon fationality, but perhaps models of bounded
rationality give a better description of actual &eilour.

In the next paragraph we will introduce a game Wigcvery suitable to examine what
happens when agents are rational or bounded rdaodavhat the differences are in the

actions chosen by players in these two cases.

1.3 El Farol Problem
The El Farol game was first introduced by Arthu®94) to compare the actions of rational

agents, who have perfect foresight with actionsafnded rational agents with subjective
beliefs. The original version of Arthur considerbax called El Farol, after an existing bar



which is close to the Santa Fe Institute in New MexUSA. In this bar every Thursday there
is a popular music show. The problem is that winenlar is too crowded, so when too many
people are going, it is not enjoyable anymore.diraven be so bad, that people would rather
stay at home, than to go to the bar, when it isctovded. Arthur himself had been playing
such a game during his stay at the Santa Fe ltestifnspired by the struggle to enjoy the
music show in a quiet place, he formulized the &bFbar problem as an economic problem.
This game is suitable to examine how these bededdve over time, what different kind of
parameters affect the model and especially eqililare they reached and how fast).
Formally the game used by Arthur works as followsek after week some agents must
decide whether or not to go to a bar. The probléthebar is that when there are more than
b*N (b1 (0, 1)) agents going, then the agents rathertstaye than be in a crowded bar. The
choices are independent of previous visits: thereinegotiation or coordination between the
different agents. The only available informationhe attendance of previous weeks. Arthur
assumed the agents are bounded rational. He exainave the aggregate dynamics would
look like by using numerical simulations. Each agawssesses an individual sekof
predictors. An agent chooses the predictor, whiak performing best in the last week. The
result is, that the mean aggregate attendance mges/éob*N (which is close to the Nash
Equilibrium, see Chapter 2), but the compositiothef group of agents going to the bar
differs every time. Two elements are interestingutthis game. First it shows a way to deal
with the bounded rationality of agents, by lettthgm choose between different kinds of
predictors. The second element is the result. Agggeeattendance converges to a Nash

equilibrium, although attendance still fluctuatesl ahe population going differs every time.

In the next paragraph we will outline what we aoéng to do in this thesis.

1.4 This Thesis
We saw that the El Farol game may be used to exawlrat happens when we assume

bounded rationality of the agents instead of thler&tionality. This is examined by studying
an experiment with human subjects to find the sgias the subjects used in this experiment
(see Chapter 4). These strategies we will be usisgme simulations. Furthermore we want
the agents by able to switch between these stest@githe simulations. The agents will
switch dependent on the performance of the strabggysing some kind of switching

mechanism. These switching mechanisms are calleavimiral models (see Chapter 5).



In particular, we will be interested in the followg questions:

1. Which equilibrium will be reached in the El Far@rge under an evolutionary
framework?

2. Which strategies will survive the evolutionary caetipon?

3. What are the differences between the three behalimodels?

4. What is the effect of different parameters of tlke@dwioural models on the outcome of the

questions above?

The outline of this thesis is as follows. In Chagtéhe Nash equilibria of the EI Farol game
will be given. In Chapter 3 we will summarize arahpare some articles. These articles have
in common that the authors of the articles distieehaviour of players in experiments
with real human subjects playing games similahoEl Farol game. And especially they
discuss whether the outcome of these different gdauk like a Nash equilibrium of the
game. We will examine an experiment of the Uniugrsf Amsterdam to find strategies of

the players in Chapter 4. These strategies arsdtwalled rules of thumb bounded rational
players use to play the game. The way boundedhatiayers switch between these rules of
thumb is described by three behavioural modelshapier 5. The strategies from Chapter 4
and the behavioural models of Chapter 5 are gairgetused to do some simulations. In
Chapter 6 the behavioural models and two simpégegies are used to show the dynamics of
the El Farol game and see what happens to it wthieistang the different parameters of the
behavioural models. In Chapter 7 the behaviouralety) the strategies found in Chapter 4
and the knowledge of Chapter 6 are combined to angwe questions asked at the beginning

of this paragraph. Finally in the Chapter 8 a sumynaad some conclusions are given.



Chapter 2 Theory

In this chapter we will discuss a class of paratipn games. The El Farol game,mentioned in
chapter 1, is a special kind of a participation gamve will discuss the Nash equilibria of that
game, which will be used as theoretical benchmankgsarticular we will be interested
whether convergence to these theoretical Nashikegaihappens even if we let go of one or
more assumptions of the theory.

In this chapter first the game will be explainedineanatically. Then pure Nash equilibria and
mixed Nash equilibria will be discussed. The foratian is similar to the formulation of the
Nash equilibria used in Dindo (2004).

In the participation game there &eagents and they can choose between two actioasdA
B, so the action of agents a1 {A, B}. A mixed strategy is defined &= (p, 1-p, which
means: agentchooses A with probabilityg and B with probability 1p. By s = (s, S, .-, §-

1, S+1, -.-,Sn) We denote the strategies of the otlieil] players. When an agent plays action
B, he gets a payoj. When the agent plays action A and there are mhargb* N agents also
choosing action A, the payoff i (f for failure). When he plays action A and thereraoe
more tharb*N agents playing action A, he gets(s for success). We assume tjggt o, > b
The (expected) payoff function therefore is:

p(s = 0D,s,)=p, 'S

p., X £b* N

P& =08 ) =)= 0y b

N
With X = a;, b*Nis integer and witis> o > pr.
j=1
The strategy profiles’ =(s;,s,,...,Sy) is a Nash equilibrium ip, (s ,s,) 2 p,(s,s, ,forall
s and for alli. It says that each playgrin playings , is playing a best response to the others’

equilibrium strategy choice.

2.1 Pure strategies Nash equilibrium
TheN agents only play the game one time. The set & purategy Nash equilibria is

characterized big*N agents are playing A and (J*N agents are playing action B (provided
b*N is an integer number). The agents who play A ggbfi p. They can do no better

10



because given the other players play the sameay@ffof choosing sector B jg,. And ps is
by definition larger tham,.

The agents who play action B get payaif This is the best payoff they can get, because
when they switch to play action A, they would gayeff &. This is since in that case more

thanb*N agents are playing A.

N
Now there are bN of such equilibria (ib*N is an integer), because this is how many times

the population can be divided in two group$bl and (1b)*N agents.

10
For example when there are 10 play&ts=(10) andb*N is 6 = 0.6). There are 6 =210

pure strategy Nash equilibria.
In such a pure strategy Nash equilibrium the avemayoff is:z = (1- b)" p, +b" p..

When played several times, there is no varianeggregate attendance, because exatily
players are playing A and the others play B. Thithe same in every period. It is not known
which equilibrium is played, because players caange every round. Notice that having such
a ‘rotating’ pure strategies equilibrium might bL#fidult to coordinate on. So on the

individual level there can be changes, which ateobserved on the aggregate level.

2.2 Mixed strategies Nash equilibrium
Now the mixed strategy Nash equilibria will be cdesed. One property of these Nash

equilibria is that players are indifferent betwékea two actions A and B. This means, that the
player who is randomizing his action is willingdo so only when, given the strategies of the
other players, his expected payoff of playing &dgual to his expected payoff of playing B. If
he was not indifferent, he would be choosing acAaor action B with certainty.

The randomization condition for playieis given by:E(p (L s.,)) = E(p(0,s.,)) =p,..

Now assume all agents are playing the same straidégy is, we consider symmetric mixed
strategies (all players are randomizing with theeg@robabilityp). Then the expected payoff

of one agent would be:

E(p(A p9 = E(p(B, p9) =p, withp' =si =, ...,p) T [0,1]".

The probability of success§(is the chance that, not looking at agernihere are at most
b*N-1 agents playing A, that is®(= P £ b*N - 1) with X; the number of agents of the
N-1 group playing A.

11



The expected payoff when playing A therefore is:
E(o(A p)) =S(p)ps + (L- S(p)p¢ =S(P)WDs - pi) +p;

bN-1 -
with S(p) = . p“@- p)V'* whereb*Nis an integer.
k=0
The symmetric mixed strategy Nash equilibrigph therefore has to satisfy () (ps- & )=
Ao B
For example assume again there are 10 playerb artl6. When a player plays B his payoff
is 2 (oh = 2), when he plays A and more tHaiN players are also choosing A the payoff is 1

(& = 1) and when not, he gets& € 3). What is the mixed strategy Nash equilibrium?

Ph- Py _2-l:l

We have = = . Therefore in the Nash equilibriupf should satisfy
ps-p; 3-1 2

5

10
S(py= P p)Ti=
k=0

N |

This holds whenp* is approximately 0.61. Notice that is not exactly equal tb.
Only whenN ® ¥, thenp* ® b. This is shown in Figure 1. This figure shows thrigafp*

for different values oN. Different curves correspond to different valués/—jéi. WhenN
Ph- Py

gets larger, thep* gets closer to 0.6M).
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Figure 1: Graph of pwith different values for—— " (0.25, 0.4, 0.5, 0.6 and 0.75) and N from 5 to 170
Ps - P

When playing repeatedly and the players play Wmsrsetric mixed strategy, the aggregate
attendance is a binomial distribution withdegrees of freedom and probabifity(mean is

N p*, variance i\ p*(1- p*)). Note, therefore, that the mean is not equakid and the

12



variance is not equal to 0 as it was in the pusdesgy Nash equilibria. The long run average
payoff will be g, since players, by the nature of a mixed equiiiori should be indifferent

between the two actions.

In the next chapter some articles will be summalriened compared. The authors of the
articles discuss the behaviour of players in expenits with real human subjects playing
games. And they look whether the outcome of theagalnave something in common with

one or more Nash equilibria of the game.

13



Chapter 3 Experiments in literature

In the previous chapter we discussed the Nashikquih of the El Farol game. We will now
discuss a number of experiments with human subjegames similar to the El Farol game.
We are interested in which of the Nash equilibnaeg a good description of subjects’
behaviour in these experiments.

In these articles the symmetric mixed strategy Naglhilibrium is often used to check
whether it resembles the outcome of the differgpeements and the same thing we will
investigate later in this thesis.

We will give brief overviews of the articles. ThislMalways occur according to the same
structure: Background, Game, Nash Equilibrium, MdtHesults and Versus El Farol. This
general form will make it easier to compare théedént experiments later.

The “Background” will give a short summary of whatdiscussed in the article. In “Game”
the used game will be explained and its Nash Eqialdre given in the part called “Nash
equilibrium”. What method the authors used and ktwey performed the experiment is
discussed in “Method”. In “Result” the differentstdts are mentioned. Finally in “Versus El
Farol” the difference between the game of the leracd the El Farol game are given.

In paragraph 3.2 similarities and differences betwihe different articles are described.

3.1 Summary of different articles

3.1.1. Ochs (1990)

Background

In the article of Ochs (1990) a specific coordioatproblem is discussed. He considers
decentralized markets with several locations ativipotential buyers and sellers may meet.
The coordination problem here is that each agent ohgose a location without any

knowledge about how the other agents are behaving.

Game

A market consists of:

- a set of locations at which units of stock arailable.
- a set of agents.

14



At the beginning 9 units of stock are divided aserthee locations and this is made public.
Nine agents are assigned to this market for thimgeEach agent can choose one location.
The payoff the agents get for making the choicegdép on the number of agents who
choose locatiom, r; (in Chapter 2 this is calleX), with the stock posted at that location that
period,s (in Chapter 2 approximatebyN). If s rj, then all agents in that market are
successful and & < r;, then there arg agents randomly chosen from theagents who can
purchase a unit and the others (§) agents who cannot.

A successful purchase retumsents, a failure ig, wherex >y andx andy are varied from
experiment to experiment (in Chaptex B equal tqos andy is equal tqn ).

Another distinction was made in the experiment. €lveas a treatment with a high turnover
rate and a treatment with a low turnover ratehihigh turnover rate treatment there are
three markets simultaneously and each subjecvena different sequence of market
assignments over the three markets. Each subjeatipared in only one market per period.
It was common knowledge among subjects that thefgarticipants in a given market was
not the same from period to period in these highdver markets.

In low turnover rate markets the turnover rate @aghe subjects were linked to one market

during the entire experiment and this was commé&ntwn.

The number of periods was different between theahfit kinds of experiments. At least 23
and at most 55 periods were played. The author nloespecifywhether the players knew

how many periods they were playing.

Nash equilibria

There are multiple pure strategy Nash equilibrianelevery agent receives the same payoff
in every pure strategy Nash equilibrium, becausddtal of units is equal to the total number
of participants (buyers). There is a unique symmatixed strategy equilibrium. The
objective of the author is to investigate whetlmes symmetric mixed strategy equilibrium is
a good predictor of the pattern of behaviour ingkperiment.

Method
216 subjects, all undergraduates from economisetawith no prior experience in economic
experiments participated in the experiment. Insions were given and the players were

informed about whether there might be several maikewhich the players could switch

15



over a sequence of market periods. So the players iwformed whether they played in a low
or high turnover rate market.

At the beginning of each market period the divisabithe stocks per location was made
public. The subjects then decided which locatiory thanted to go to. After the market was
closed the players who failed and (except fromvadgperiments) the distribution of choices

over locations were made public.

Results
The results can be divided in the following thregga
Effect of turnover rates

The processes observed in the high turnover ratkendiffer from those observed in zero

turnover markets. The number of failures per peisacmaller in low turnover rate markets,
so the degree of coordination achieved is muchdrighthose markets, because it is more
difficult off course to coordinate when markets iha all the time like in the high turnover

rate game.

High turnover rate markets experiments

In the high turnover rate market experiments tloe@ss of matching resembles the properties
of the symmetric mixed strategy Nash equilibriunch®describes different propositions.

First he shows that the location with the mostlstiraws a disproportionately high
percentage of choices. Also the relative frequemitly which the location with the highest
volume of stock is chosen increases with the péagenof a market's stock that is available at
that location. Furthermore he claims that the matcprocesses in these high turnover rate
market experiments are stationary stochastic psesed he frequency distribution of choices
deviates from the Nash equilibrium, however the lmsany individual relative to expected

earnings from this best response is quite small.

Low turnover rate market experiments

For the low turnover rate market experiments Odssthe hypothesis that market clearing is
an absorbing state, however there is no evidewee fine data of the experiment to back this
up. Also the amount of payment (that is the valfesandy) has no effect on the degree of

coordination. He finds that the confidence whichesessary to sustain market clearing over

many periods, can be easily destroyed by changmgamber of units across the locations.
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So in short for the high turnover rate market eixpents the symmetric mixed strategy Nash
equilibrium reflects the outcome of the experimenetl.
When the turnover rate is zero, the matching pmbesomes nonstationary. Agents then

persist in the selection of a location, which hes/pn to be successful in the past.

Versus El Farol

There are some differences between the El Farol gawh¢he game of Ochs. In Arthur’'s
game the players only have 2 options and in Ocasiggthe players have 3 or 4. Also were
the other players constant in Arthur’'s experimert & some games of Ochs they were not
constant.

Finally in the EI Farol game there is a “safe chbi¥éhen a player chooses this action, he
gets a certain payoff for sure. In the Ochs gamaénays depends on the other players. They
both have step-wise payoff functions. In Ochs yaili(f) or succeedx). In El Farol an agent
fails (&), succeedéps) or stays home (safe choiga). Finally in the game of Ochs when
more players choose the location than the capégkyr) still s players have success. In the
El Farol game everybody fails in that case.

3.1.2. Sundaliet al. (1995)

Background

Sundaliet al (1995) discuss experiments with a well known gatime market entry game.
The main topic in the paper is the effect of infotiorafeedback.

The market entry game has a payoff which is lineahe& number of entrants. Each player
(n=20) must decide whether or not to enter a mafket. capacity of the market is public
knowledge. The decision is between entering the etakd receiving an uncertain amount
whose magnitude is determined by the decisionseobther agents or staying out and
receiving a fixed amount with certainty.

Sundaliet al. want to investigate whether on an aggregate lest¢ain behavioural
regularities can be observed and if a Nash eqiuhtwill be reached. They also look, at an

individual level, which decision rules agents usd whether these rules change over time.
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Game

The game is played bhysymmetric players, who cannot communicate witthedher. At
each trial the capacity (& odd integer, between 1 and 19) is made publics Tapacity
changes between trials. After this announcemerit piyer must decide to enter the market
or not.

The payoff isk when player stay out and+r*(c-m) when player enters, withm the number
of entrants. The values of kandr are common knowledge.

The authors ran two experiments. In experiment Véhge ofc is changed without providing
trial-to-trial feedback on group or individual oatnes. So in this experiment players’
decisions are examined before gaining any expeziwiith the market entry game. In
experiment 2 participants receive feedback abait frayoff after each trial. In this

experiment learning can be studied.

Nash Equilibria

There are 2 pure strategy Nash equilibria with* = ¢ and c? 1 pure strategy with

m* =c-1.

In the first group of Nash equilibr@players enter anakc do not. The entrants get a payoff
of k and the non-entrants also get a payoi @o if an entrant decided to stay out and the
others play the same, he will not gain more payb#.non entrant decides to enter, he will
get a payoff ok-r, which is smaller thak because is bigger than 0, so he won’t change.
Therefore this is a Nash equilibrium.

In the second group of Nash equilibria thereateentrants who get paydff+ r, while the
non-entrants g&& When an entrant would stay out, he will loose payoff. When a non-
entrant decides to enter, he will still get okly50 also this corresponds to a Nash
equilibrium.

In the theory of Chapter 2 there was only one grafypure strategy Nash equilibria, where
b*N agents were choosing A. This difference existsabge of the difference in payoff
function. In Chapter 2 when choosing A the paraaipgetss: or ps. They never can get.

In the pure strategy Nash equilibrium the partinigavho choose A get. All players of the
market entry game receive the same payofin the first type of Nash equilibria and in the
second the entrants receive more than the playbis stay out. Entrants gletr and the

players, who stay out gkt
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c 1) all players get

In the unique symmetric mixed strategy Nash equilit (which isp* =

k. These equilibria are similar to the Nash equidilwi El Farol game mentioned in Chapter 2.

Method

There are 80 subjects, who are undergraduates,ajesdor university personnel. Twenty
played experiment 1 and sixty played experimen 2hfee groups of each 20 players). They
get an endowment of 34 and play 60 trials in expent 1 and 100 trials in experiment 2.

The variablek was set to 1 andto 2.

20 0\ : —e—not enter

c=1

c=5

Payof f

0*#*\*‘\‘\‘;*\‘;‘\‘\ S—_ . r T T

10l0 1234567 8910111213 >—c=10

—e—Cc=15

—-o—Cc=19

# entrants

Figure 2: Payoff functions for different valuescapacity ¢

When an agent stays out, he gets 1 and when hes éietgets 1+2 *cofm). Clearly wherc =
m an agents gets the same, whether he enters sraiay

In experiment 1 first the value ofwas displayed. Second the subjects must decideté&r or
stay out. Then the next value of ¢ is shown andis@bno time during these 60 trials the
subjects got feedback about their performance.

In experiment 2 there are 60 subjects, each assignene of the three groups. After each
trial they got feedback about the valuecoi, the subject’s payoff of that trial and the
cumulative payoff. Also they had paper and pencihiake notes during the experiment.
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Results

Experiment 1

In experiment 1 without information feedback thiera significant and positive correlation
between the market capacity,and the number of entrants, The equilibrium predicts a
correlation of one betweenmandm. The number of entrants for a certaiis very stable: the
group exhibited little change in the number of glecisions. Noticeable was that the
standard deviation oh first increases and then decreasesiasreases.

The equilibrium solution only looks at group behaxiand not at individual behaviour.
Different participants use different strategiegréiore at an individual level participants do
not seem to play according to the Nash equilibritiheere is no indication that players use
pure strategies, because there were no subjectaiwlys entered or who never entered.
Also the null hypothesis that the observed payqtfats the equilibrium payoff could not be

rejected.

Experiment 2
The effect of the value afwas high in each group. The correlation betweandm is

positive and highly significant. The difference beemc andm was very small, which

suggests an equilibrium solution.

Both experiments show individual differences inegimy the market and decision opinions.
There is a positive and significant correlation besgw market capacity and the amount of
entry. When the capacity increases more subjedtemier, because they expect to get more
than the payoff of not entering.

Group results converge to the equilibrium solutibne experiments show that even
individuals of experiment 1 without feedback chatigsr strategies during the experiment,
because of extra information like experience, bekaviour and expectations of the
experiment. With trial-to-trial feedback playerati: they reach the equilibrium solution

sooner.

Versus El Farol

The payoff function of entering is linear insteadtwé step function with two optionp:(and
ps) in Arthur’s El Farol game. The payoff function aldzanges with the change in the
parametec which is similar to the numbér N in the El Farol game. Just as in the El Farol

game there is a safe choice.
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3.1.3. Meyeret al. (1992)

Background

In the article of Meyeet al.(1992) again a decentralized allocation probledissussed. The
experiment is motivated by the so-called “law oéqmice”, which says that the price of a
homogenous good sold at different locations shbelthe same. There are two problems
arising with this theory. First when the prices #me same there is no incentive or information
for suppliers to go to a certain location which methen the allocation becomes
indeterminate and the second problem is that whenheory is violated there is uncertainty

about the profit of the suppliers. This gives ris@tcoordination problem.

Game

The game here is a simple binary allocation gamexeTée two islands A and B. On each
island there is a Marshallian fish market. Each fihyermen catch fish and deliver their catch
either to island A or to island B, without commuation among fishermen and consumers.
Consumers are endowed with a numeraire commoditybibth consumers and fishermen eat.
An auction determines the relative price betweemtiimeraire commodity and fighand
quantity,q;, that clears the fish market. Demand is givei@py= D; (P;) forj is A or B where

D is a decreasing function. Den@e= 1 when supplierdelivers to island A and = 0 when
supplieri delivers to island B. Suppliechooses; to maximize the expected profit function
(when suppliers have 1 unity, = E[P,a + B, (1- & .)]

The outcome of suppliers’ choicesais (ay, ... , a,). An outcomea gives the total quantity
delivered to islands A and B. Market clearing regsiithat the supplied quantity is equal to
the demanded quantity.

Competition is decentralized, because suppliess dieliver their products and then prices are
determined at which the island’s markets clearsh8ce are two auctions, one on each island.
This leads to the coordination problem: each supplaptimal decision depends on the

decisions made by other suppliers.

Given the quantity supplied to markeQQ;, and the demand function, the local auctioneer

announces a pricB, that clears the island's mark&: = P!(Q?), j = A,B with P is the

inverse demand function.
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Nash equilibria

The number of pure strategy Nash equilibria equedswumber of combinations nfsuppliers
supplyingQ* units to island A, wher€ s defined byP*(Q*) = P®(n- Q *) The unique
symmetric mixed strategy Nash equilibrium corregfsoto the law of one expected price.
This means that the expected price at island Aditimmal on delivery to A) equals the

expected price at island B (conditional on delivar).

Method

The experiment was held with sophomore businessseaubjects. They were put behind a
computer and they had to choose between two urastd®B. No negotiation was allowed.
Their earnings for choosing urn A or B was deteldiby two factors: the payoff table of the
urn and the total number of subjects choosing Ae payoff table was given as a table from
0 to 6 subjects choosing urn A. The price and gtyaot each market was made public after
decisions were made.

In the experiment the authors worked with 2 différ@verse demand functions. First an

isoelastic inverse demand functién(t) = 105

for j = A or B and second a linear inverse
i

demand functiorP, (t) = 0.7- 0.117" Q(t )
The pure Nash equilibrium for the first inverse @ function iQ* is 3 units withP* is

0.35 (=1.05/ 3). The mixed strategy is when evedybchooses A or B with probability 0.5,
which leads to an expected price of 0.34. Foritieal inverse demand function this is 0.29.

1,2
1 N
0,8 1
8 0.6 —=— [soelastic P
=
a Lineair P
04 =~
0,2 \-\I—\.
O —_—
1 2 3 4 5 6
0,2
# choose A

Figure 3:Isoelastic and linear price functions oelkr et al.(1992)

In Figure 3 we have shown that the linear funct®tangent to the isoelastic function at the

Nash equilibrium.
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Meyeret al. checked what strategy was played by the partitgoatrategic rationality,
adaptive expectations, nonresponding and play baseal historical precedent.

Strategic rationality assumes that participantg i@ mixed symmetric Nash equilibrium. In
this case violations of the law of one price wilk tbe serially correlated and history plays no
role in coordinating decentralized allocation dexis.

When patrticipants use the adaptive expectatioasesly, they will choose urn A when the
price of urn A in the previous period was higharthhe price of urn B. When the price of urn
A was lower than the price of urn B at timg, the participants using the adaptive
expectations strategy choose urn B at im&hen all participants use the adaptive
expectation strategy then whert-dtthe price is below the equilibrium price at titriewill

be above the equilibrium price. When the pricexiactly the equilibrium price it stays there.
Violations of the law of one price would be negalycorrelated when participants use
adaptive expectations.

The nonresponding strategy means that when patitspare playing this strategy their
actions are not influenced by violations of the laivone price.

Finally when participants chooses based on pre¢sdee outcome is the same as under
strategic rationality, except when at titag the price is equal to the equilibrium price. As
soon as they, by accident, coordinate on a puagesgty Nash equilibrium they will keep on
playing this equilibrium. Again violations of thaw of one price are not correlated, but
history does influence allocation decisions.

The authors did a number of different experiments:

1. E (15): 15 times playing the game with isoetastverse demand function

2. RE (10): reconstructing games after E(15) byrgtthe subjects change until all are
satisfied with their choice.

3. E (60): 60 times playing the game with isoetastverse demand function.

4. L(60): 60 times game with linear inverse demaumttion

5. EE (15): 15 times game with isoelastic inversmadnd function with experienced subjects.
E(60), L(60) and EE(15) were played to check thmusbness of results of E(15).

In the isoelastic inverse demand function the sisrpif the suppliers’ is constant: P*Q is

always 1.05 (&' Q; (t))- To check whether constant suppliers' surplisiportant the

Q; (t)
authors looked at the game with a linear inverseatal function, where the suppliers surplus

is not constant. Therefore they did the experinhé¢&).
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Results

In RE(10) the prices always satisfied the law of price (that is the subjects played the
symmetric mixed strategy Nash Equilibrium). In tbése the allocation problem is solved
perfectly.

In E(15) there were no precedents and there wetatvns of the law of one price. The
transaction data does not correspond to the syrmmsegmilibrium prediction.

In experiment E(60) participants did not learn éominate or to use precedents to coordinate
their decentralized allocation decision. Choicgseaped to converge to an asymmetric mixed
strategy Nash equilibrium.

In L(60) there were fewer fluctuations: the papants responded less intense to the violation
of the law of one price. In one group some evidemas found that the subjects learned to use
precedents to solve the allocation problem. Thidence was that exactly 3 subjects choose
urn A at the end of the game. In the other threegs this wasn't observed.

In EE(15) the subjects used historical precedens®lve the allocation problem and (in 3 of 4
experiments) the prices satisfy law of one pricec@ding to the authors this result is
different from experiment E(60), because when tligext begin with not believing, they will

never learn. The authors called this fragility efiéfs.

Although on subject level not much can be said sgmemetric mixed strategy Nash
equilibrium accurately predicted the average quyastipplied, the average price and average
market efficiency. However experienced subjectslusstorical precedents to coordinate on

pure-strategy equilibrium outcomes.

Versus EIl Farol
Here there is no safe choice. There are 2 diffekients of payoff functions: linear and
isoelastic. Also there is a focus on learning asliebs, which is less the case in the El Farol

game.

3.1.4. Bottazzi and Devetag (2003)

Background
The game used in the article of Bottazzi and Dey€2803) is a coordination game, where

agents repeatedly must choose between two sidey.Jédt a positive payoff only for the side
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with the minority. There are two treatment variagbllne amount of memory) and the
amount of information about the other players’ pamstices. The main research question is:
What is the impact of varying the amount of infotioa that players have regarding the game

history and the past actions of the other players?

Game

A fixed group ofN players must privately and independently choosé eaund between two
actions available to them. If the agent is on theomity side (that is, chooses the action with
the least agents) he gets a positive payoff. Thenthaside gets nothing. Formally is odd
and participants choosingyget 1 wherk; £ (N-1) / 2 and 0 elsek(is the amount of players,
which pick sida).

Nash Equilibria
n
The minority game has(n /2 pure strategy Nash equilibria, wherel()/2 agents pick
the same side repeatedly.
There is also a unique symmetric mixed strategyhMNaglilibrium, where each agent picks

the two sides with equal probability.

Method

120 undergraduate students from various departnpanti€ipated in the experiment. Four
groups of 5 players participated in the singlettreants. The authors used a 3x2 design with
different levels of memory and information for gharticipants. Memory is difficult to

control, so this is done by only showing a limitgdng of past outcomes on the computer
screen. There are three different memory stringsrtsmedium and long (1, 4 and 16) past
outcomes.

For the information conditions they used

1) aggregate informatigragents only know the winning side; and

2) full information; subjects could also see the entire distributioimaividual choices within

their group.
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Results
Allocative efficiency

The measure the authors use for allocative effoyiensists of the difference between the
number of players choosing one side and 0.5 timesatal number of players participating in
the game. When the difference is small there ik Rificiency and when the difference is
large there is low efficiency. When a pure stratBiggh equilibrium is played, then according
to this efficiency measure the efficiency wouldli®ee, because (N-1)/2 players of the total
population N are going and this is near N/2. Tiveas no high efficiency seen, so the authors
concluded the pure strategy Nash equilibrium wagnplayed.

A general increasing trend in allocative efficiewegs observed.

Informational efficiency

The authors developed a measure for informatidifialency which is an aggregate measure
of closeness to the mixed strategy Nash equilibritmelependent of memory and information,
information efficiency deviates less than 1 staddbgviation from the benchmark value.

At the aggregate level, a quite remarkable degfeeardination is achieved. Providing
players with full information about other playecsioice distribution does not appear to
improve efficiency significantly.

The authors claim that the main result is that @laynly need minimal information to

coordinate efficiently.

Versus El Farol
Again here there is no safe choice, but the payoittion is step function, just like El Farol

(not looking at staying home).

3.2 Similarities and differences

Games

The four articles discussed only described gamesevtihe winners are those who are with
the minority. Important in all games was the nomaownication between the subjects.

Only in the game of Ochs the subject has to chbesgeen 3 or 4 locations, but in the games

of the other articles they only have to choose betw2 options.
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In the game of Sundadit al.there is, just like in the El Farol game, a “selfieice”. This

means, that the payoff of a safe choice is for,ssoendependent of the amount of subjects
also making this choice.

The payoff functions also differ. In the games @h® and Bottazzi and Devetag the payoff
functions are step functions. In Ochs theyxgety and in Bottazzi and Devetag they get O
and 1.

In Sundaliet al.and Meyeret al.the payoff functions are linear, although in Metfer linear
function was only used in 1 part of the experimiannost parts of the experiment in that
article they used isoelastic payoff functions. Néwveless payoffs are continuously decreasing
in the number of participants making the same @hoic

In the articles of Ochs, Sundali al.and Meyeret al.the authors also check whether
experience is important. Ochs checks experiendatlyducing low and high turnover rates,
although this is more a check to see whether knoawmponents are of importance. In Sundali
et al.the subjects don’t know a component of the pafurifstion in some experiments and

this changes also all the time. Mewtmal. uses subjects, who are already experienced.

Nash equilibria
In all games there are multiple pure strategy Naglhilibria and a unique symmetric mixed

strategy Nash equilibrium.

Method
All authors use students as subjects. In Surdall. and Bottazzi and Devetag seems the
students are from a more varied subject pool tharstibjects used in Ochs and Megtal.

In the latter subjects were students from econamicses.

Results

The symmetric mixed Nash equilibrium seemed to giywod description when looking at
the aggregate level. In Ochs the experiments \wighhigh turnover rate converges to this
equilibrium. In Sundalet al.they also observed the mixed symmetric Nash daiuin. In

the article of Meyeet al.the mixed symmetric Nash equilibrium is only seethe
experiments with experienced subjects. In thelart€Bottazzi and Devetag the same mixed
symmetric Nash equilibrium is seen.

When the result converges to a Nash equilibriums,ithonly on aggregate level. However on

individual level no convergence to a mixed stratBiggh equilibrium is observed.
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Chapter 4 The UVA Experiment

In this Chapter we discuss an experiment whichmwasn the CREED laboratory at the
University of Amsterdam on April 252006. It consists of different kind of Market-Bntr
models, but we will only be using one (El Faroliaat). The experiments simultaneously

investigate expectations of participants and tbledices in the game.

4.1 Design
There were 6 groups with each 7 participants. Gemmpposition remained the same over the

course of the experiment. This was also the capeeiviously discussed articles, except the
experiment in Ochs (1990) with the high turnovee r@nd experiment 1 in Sundatial.
(1995).
Participants were told they had to choose a jolerdlare two sectors they could choose from.
Sector B with a fixed wage and sector A with valealbages. These variable wages depend
negatively upon the total number of participantsaging sector A. If there are more than 4
participants choosing sector A the wages are thelle were less the wages would be 125.
Furthermore there is a stochastic tefmepresenting external economic circumstances &om
symmetric triangular distribution on [-25, 25] whits added to the wages each period.
So: Whenn 4thenw=125 +

When n > 4 then w75 +

The wages in sector B are equal to 100 indeperafehe decisions made by the participants.

The experiment lasts 50 periods and besides makatgpice between sector A and B, the
participants also had to predict the wages in seécthettingd be the difference between the
prediction of the participant and the realized neagkice, their expectation payoff function
LSR() is:

LSR(d) = 120-2*d if d <60

LSR(d) =0 ifd 60

The choice payoff function of the participantsimgle: it is the wage of the chosen sector.
To make sure the participants were serious abdutd@ectations and actual choices the
final payoff was calculated as follows: for eachipe either the expectation payoff or the

choice payoff was randomly chosen.
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4.2 Equilibria

N
In paragraph 2.1 we saw that there aég N pure strategy Nash equilibria, where in each
of those Nash equilibria exacthyN participants choose A and £)*N other participants

7
choose B. For the game heke= 7,b*N = 4. So there are4 = 35 pure Nash equilibria,

where 4 participants choose sector A and 3 paaitgchoose sector B.
In paragraph 2.2 the symmetric mixed strategy Naghlibrium was discussed. It is given by
thatp* which satisfies the next equation:

bN-1 N - 1 N p - p
S(p*) = K p** @ py =T
k=0 IOS - pf
In the game of the UvA-experiment we therefore get:
5 6 100- 75 _1
S(p*) = - p)te=T T T =
(p*) K p** @- p*) 125 757 2

This gives p*» 0.57589. Notice that the capacity divided by ttaltnumber of agents is 4/7
» 0.5714 and smaller thaot.

4.3 Results from the experiment
Figure 4 shows the time series of the number gfestdowho decide to choose sector A for

each of the six groups. As is shown in the six @saphis number fluctuates over time. The
subjects do not seem to coordinate on one of thauds strategy Nash equilibria. Only in
group 2 the subjects do seem to coordinate oneagitategy for some periods: 4 subjects

choose A and 3 subjects choose B for a numberredfestutive periods.

There are several strategies that can be obsamntbd ichoices the participants make. The
Table A.1 in Appendix presents a number of descriptive statistics thateaused to
classify different choice strategies. Table 2 shavpart of table A.1. It gives the descriptive

statistics of group 1.
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Figure 4: Time series of the number players chapsictor A in experiment for groups 1 till6. Theipds are

on the horizontal axis and the number of A choareshe vertical axis.

Payoff
(choices
#al Payoff Payoff |  without # changes | Inconsistent

Group 1 #a| #periods| (predictions)| (choices) error) | # Changes| (# periods - 1) Choices| Mixed?
part 1 17 0.34 2,225 4,881 4,925 21 0.4286 2 0
part 2 36 0.72 3,033 5,166 5,100 25 0.5102 2 0
part 3 24 0.48 2,855 4,945 4,950 28 0.5714 4 1
part 4 45 0.90 3,165 5,345 5,275 8 0.1633 7 0
part 5 28 0.56 2,850 5,061 5,050 22 0.449 0 1
part 6 2 0.04 3,117 4,951 4,950 4 0.0816 4 0
part 7 49 0.98 3,155 5,441 5,375 2 0.0408 0 0
Mean 28.71 0.57 2,914 5,113 5,089 16 0.3207 271 1

Table 2: This is part of table 10 in appendix lexample. It only gives the descriptive statisticgroup 1 of the

UVA experiment.
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These statistics are calculated per participantadtide end of each group the mean of the
group is calculated. The total number of times rigipant chooses sector A is given in
column 2 “# a”. Also informative is “# a / periodsthich is in column 3.

There are 3 kinds of payoffs calculated. Firstghediction payoff is in column 4, which
shows how well the participants predicted the wiageector A. Second the choice payoff is
in column 5, which is the wage of the sector theigpant chooses. As third payoff the
choice payoff is calculated without noise. Thisrales the wage in sector A. When too many
participants (more than 4) choose sector A the vimggactly 75 and when less than 5
participants choose sector A the wage is exactby 12

Column 7 of Table 2 gives the total times a pgvaait changes during the experiment. That
is, how many times a participant chooses sectohfAevin the previous period he chose
sector B or chooses sector B while in the previpersod he chose sector A. These changes
are divided by the total amount of periods minus @t9) and are given in column 8.
Column 9 gives the number of inconsistent choi¢éss means, that when participants
predict a wage in sector A higher than the waggertor B (which is 100), the expectation is,
they also would choose sector A. Or predicting geMawer than the wage in sector B, they
would choose sector B. The inconsistent choicew/ghe total times in a game a participant
doesn’t choose according to his expectations.

The final column shows whether the null hypothdéisa the symmetric mixed Nash
equilibrium is played is rejected or not. In th@wmn 0 means rejected and 1 means not
rejected. How this null hypothesis is tested iscdbged in paragraph 4.5.

The use and implications of these descriptivestas will become clear in this chapter.

4.4 The strategies on choosing
The simplest strategies are the optimistic ang#ssimistic ones. An optimistic strategy is

the strategy, where a subject (almost) always dwt® ‘risky’ choice. Here the ‘risky’
choice is sector A, because the payoff is unsungegsimistic strategy is the opposite: a
subject playing this strategy almost never chotisesisky’ choice, but plays safe, here
sector B with fixed payoff 100.

Participants choosing sector A 45 or more timesnguihe game are called optimistic

Participants choosing sector B 45 or more timesduhe game are called pessimistic
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In group 1 subject 4 chooses sector A 45 timediSetrategy will be called optimistic. Just
like: group 1, subject 7 (49 times), group 2, sabje(48 times), group 3, subject 1 (50 times)
and group 4, subject 2 (49 times).

The pessimistic strategy is also seen in the diffegroups. Look for example at group 4
subject 7: this subject only chooses sector A owbéch clearly is a pessimistic strategy.
Also group 1, subject 6 (2 times), group 2, subi( times), group 5, subject 4 (3 times)
and group 6, subject 5 (1 time) are playing thesipeistic strategy.

A naive strategy is played by participant 2 frorowgy 1. This strategy means that the
participant only changes when his choice in theiptes period was not optimal. Participant 2
in group 1 changes 25 times and 24 of these chamigexe after a nonoptimal choice in the

previous period.

There can also be a combination of strategies. i@enfor example participants 4 and 6 in
group 4. Participant 4 chooses sector A 9 timespanticipant 6 does 44 times. So they are
leaning towards a pessimistic/ optimistic strategwarticipant 4 changes 7 times and
participant 6 changes 11 times. Participant 4 chgnges when the previous choice was the
nonoptimal choice and participant 6 changes 10@fltl times for the same reason. So the
strategies they use can be denoted naive/ pessiuatticipant 4) and naive/ optimistic

(participant 6).

It is interesting to look at whether participanisoge when their choices have been
nonoptimal for some time. Participants do changemithe previous period(s) the nonoptimal
choice was made. But as table 2 shows it is notdlse, that when more periods are not good
and they made the same choices in those periagisctiange for sure.

Table 3 shows whether participants change theilcehehen they have chosen the
nonoptimal choice for a number of consecutive gixid he different participants are given in
the rows of the table. In the columns the numberesiods is shown. When the column says
“t per”, it means that we looked &t-1, ... and 1 period before. The table shows howyma
changes occurred wheronsecutive periods the same nonoptimal choicemeate.

So for example consider participant 4 of group@d). This participant changes 45 % of the
time his previous choice was a bad one. When tbéeiquis two choices were bad and the
same he changes 33% of the times. When the preSipesiods were bad choices and the

same he only changes 25% of the time.
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groupl |lper [2per |3per |4per |S5per [group2 |1per 2 per 3 per 4 per 5 per

part 1 0.3429| 0.2857| 0.3750| 0.5000| 0.5000| part 1 0.0526| 0.0000] 0.0000] 0.0000 -
part 2 0.8571| 0.6667| 1.0000 - - | part2 0.1351] 0.0385| 0.0500| 0.0625| 0.0000
part 3 0.6176| 0.4000| 0.2500{ 0.0000 - | part 3 0.1081] 0.0000] 0.0000] 0.0000[ 0.0000
part 4 0.2273| 0.2000| 0.0000 - - | part4 0.5652| 0.5556| 0.6667| 1.0000 -
part 5 0.4194| 0.5455| 0.3333| 0.5000| 1.0000| part5 0.4444| 0.3333] 0.5000] 1.0000 -
part 6 0.1176| 0.1000] 0.0000{ 0.0000| 0.0000| part 6 0.2308| 0.2308| 0.1765| 0.2308| 0.2000
part 7 0.1111] 0.2500] 0.0000 - - | part7 0.1765| 0.0000] 0.0000] 0.0000 -
Mean 0.38 0.35 0.28 0.25 0.50| Mean 0.24 0.17 0.20 0.33 0.07
group3 |1per [2per |[3per |4per [5per |Group4 |1per 2 per 3 per 4 per 5 per

part 1 0.0000| 0.0000| 0.0000{ 0.0000 - | part1 0.3030] 0.2667| 0.2857| 0.2500[ 0.5000
part 2 0.4688| 0.3636| 0.4000{ 0.5000| 1.0000| part 2 0.1053| 0.0000] 0.0000 - -
part 3 0.2121]| 0.1333| 0.2857| 0.5000| 1.0000| part 3 0.5385| 0.4615| 0.5000| 0.6667| 1.0000
part 4 0.6061| 0.5556| 0.0000{ 0.0000 - | part4 0.1892| 0.0500] 0.0833] 0.1250| 0.2000
part 5 0.3889| 0.2857| 0.2857| 0.2500| 0.5000| part 5 0.7500| 0.6000| 1.0000 - -
part 6 0.5000| 0.3000| 0.2000{ 0.3333| 1.0000| part 6 0.4762| 0.5000| 0.0000 - -
part 7 0.1818| 0.1250| 0.0000{ 0.0000| 0.0000| part 7 0.0313] 0.0000] 0.0000] 0.0000[ 0.0000
Mean 0.34 0.25 0.17 0.23 0.70| Mean 0.34 0.27 0.27 0.26 0.43
Group5 |1per |2per [3per |4per |5per |Group6 |1 per 2 per 3 per 4 per 5 per

part 1 0.5714| 0.7000{ 1.0000 - - | part1 0.3077| 0.4444| 0.3333| 1.0000 -
part 2 0.5714| 0.5000 - - - | part 2 0.2258| 0.2000] 0.3333] 0.2500[ 0.3333
part 3 0.1481| 0.1667| 0.2857| 0.4000| 0.6667| part 3 0.4516| 0.3077| 0.2857| 0.3333| 1.0000
part 4 0.1389| 0.0000| 0.0000{ 0.0000{ 0.0000| part 4 0.4474| 0.3333] 0.2500| 0.4000| 0.5000
part 5 0.1111] 0.1667| 0.2857| 0.4000| 0.6667| part5 0.0588| 0.0455| 0.0000] 0.0000| 0.0000
part 6 0.8667| 0.5000{ 1.0000 - - | part 6 0.4828| 0.6000| 0.6667| 1.0000 -
part 7 0.3704| 0.5000{ 0.6667| 1.0000 - | part 7 0.3810] 0.2857| 0.0000 - -
Mean 0.40 0.36 0.54 0.45 0.44| Mean 0.34 0.32 0.27 0.50 0.46

Table 3: The table shows how many changes occuvhexh t consecutive periods the same nonoptimatehoi

was made.

I would have expected, that when participants nita&esame choices the previous 5 periods
and this choice was not optimal, they would chaiegeertain. But in table 2 the numbers in
the “5 per” column are not everywhere equal ta tould be, that participants who make the
same choice for 5 periods are not too eager togghahey didn’t change for the last periods,
so perhaps they are change-averse.

4.5 Mixed strategy tests
In column 3 of Table A.1 in Appendix 1 for eachtg@pant the total number of choices for

choosing sector A are divided by the number ofquis; here 50. This statistic deviates very
much across the different participants, but peupribis relatively constant: 0.55, 0.56, 0.57
and 0.59.

We tested for the unique symmetric mixed strateggtNequilibrium for all participants and
the groups as a whole (see last column of TablearAAppendix 1).
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Under a fully symmetric mixed strategy Nash equilitn the number of participants
choosing sector A is binomial divided with expeictat 50 xp* = 50 x 0.5759 = 28.79 (as
frequency 0.5759) and with variance of 5@% x (1- p*) = 12.21 (standard deviation as
frequency: 0.070). This gives a 95% confidenceruatieof {0.436; 0.716}. For 18 of the 42
participants the null hypothesis of a fully mixgarsnetric Nash equilibrium is not rejected.
When the group as a whole is tested the 95%-camdelenterval becomes {0.523; 0,629} and
it is remarkable that the mean of participants sipA for all groups is in this interval.

So as a group the symmetric mixed strategy Nashilagum cannot be rejected but at
individual level it can. Such results are also sedhe thesis of Heemeijer (2008) for the

other Market-Entry treatments.

4.6 Predictions
Until now we characterized the strategy of 32 @ 42 participants (see Table 4).

Strategies Mixed Opt | Pess| Opt/naive| Pess/Naivg Naive
Group 1 2 2 1 1
Group 2 0 1 1 1
Group 3 4 1

Group 4 3 1 1 1 1

Group 5 5 1

Group 6 4 1

Total 18 5 5 1 1 2

Table 4: Overview of choice strategies per groug par strategy.

In the thesis of Heemeijer (2008) the predictiohthe participants were taking a closer look
at. He estimated the prediction strategy usedarother Market-Entry treatments, but not
those in the El Farol treatment. For the El Famdhtment of the experiment we followed the
same procedure of the thesis. Heemeijer argueaubechere is no a priori reason to assume
participants use complicated nonlinear predictides, it is sufficient to estimate linear rules
with past prices known to all players and privatg@redictions of previous periods. He used

5 lags for each group, giving the formula:
5 5
W =c+ sw;, + ow_ +¢for 7Et£50. 1)
i=1 j=1
In Appendix 2 Table A.2 the results of the ordinbrgst squares estimations are given, first
for the groups in total and then per group for gaatticipant. First equation (1) was

estimated. Subsequently the least significant abgiaas eliminated until all remaining
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variables were significant at 5%. Sometimes thiamhenly the constant remained (16 of 42
estimations). We tested for serial autocorrelafgee last column Table A.2 in Appendix 2)
with the Q-statistic at 5%, to be sure that thened specification error.

It is interesting to see (just like in Heemeijed@8)) that the most important explanatory
variable is the wage of sector A in the previousquk w:.1, and the sign of the coefficient is
positive in most cases. Because other lags weretsoes but mostly not significant a

simpler prediction rule will be estimated: the sdled First-Order Heuristic (FOH) rule:

1 50
W =a W, tawe, (1 a; - az)—tzzvvt + DWWy - W) g ()
The prediction at timeédepends on previous wage, previous wage predjdti@esample
mean of market sector wages and the differencedsetithe previous two wages. The rule
assumes the participant takes an average of tpsewage, the previous prediction of the
wage and a constant. Then he adds some extrapotdttbe last change in wages.
The only difference is that in Heemeijer (2008) E&@H rule was only estimated at group
level and we will also be estimating the rule aiwidual level, because our intention is to
find more strategies for the individual participant
First the restriction imposed by FOH rule on equa(2) was tested using a Wald test. An x
in Table 5 indicates the null hypothesis of therretson was rejected at 5%.
Then, when the restrictions were not rejected,aseet with a Wald test whether the
estimations could be used to find an even simpiediption rule. For certain conditions on
coefficient there are well-known prediction rulegls as naive expectations, adaptive

expectations, trend following expectations, treexersing expectations or fundamentalists.
Naive expectations correspond tq,( 2, ) = (1, 0, 0), which meang; =w, , +¢,. That is
the prediction is equal to the wage of the previpeisod.

Adaptive expectations correspond t@,( 2, ) =( 1, 1 - 1, 0) with ;>0. Then

w =a,w,_, +([1- a,)w;, + e, the expectations are an average of the previage and the
participant’s previous prediction of the wage.

Trend following or reversing expectations corresgoto (1, 2, ) =(1, 0,£1), so

W =Wy (Wey - W)+ 6

Fundamentalist expectations correspond {9 (, ) = (0, 0, 0), which is the sample average

1 50
of wage of sector Aandf =— w, +¢.
t=2

Table 5 shows the results:
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Subject FOH Prediction Choice
group 1 1 2 Strategy Strategy

1 -0,311 0,138 0,205 | fundamentalist

2 0,468 0,079 -0,003| none Naive

3 X X X X mixed

4 -0,107 0,288 0,072 | fundamentalist optimistic

5 X X X X mixed

6 0,180 -0,065 -0,039| none pessimistic

7 0,220 0,456 0,045| none optimistic
group 2

1 0,843 -0,064 -0,043| none

2 0,080 0,230 0,216 | near fundamentalist

3 0,223 0,351 -0,134| near fundamentalist pessimistic

4 0,545 -0,057 0,056 | none naive

5 0,302 0,106 -0,689| none

6 0,236 0,316 -0,064| near adaptive expectationg

7 0,009 0,317 0,035 | fundamentalist optimistic
group 3

1 -0,004 0,355 0,079 | fundamentalist optimistic

2 0,087 0,199 0,031 | fundamentalist mixed

3 -0,281 -0,078 0,047 | fundamentalist mixed

4 0,243 -0,098 -0,091| fundamentalist mixed

5 -0,224 0,132 0,092 | fundamentalist

6 X X X X mixed

7 0,140 0,075 0,108 | near fundamentalist
group 4

1 0,017 0,419 0,103 | near fundamentalist mixed

2 0,104 0,195 0,144 | fundamentalist optimistic

3 -0,045 0,001 0,041 | fundamentalist mixed

4 0,025 0,411 0,191 | adaptive expectations pess/ naive

5 0,248 0,075 -0,025| none mixed

6 0,029 0,065 0,117 | none opt/ naive

7 X X X X pessimistic
group 5

1 0,232 0,047 -0,076| fundamentalist mixed

2 0,076 0,013 -0,032] fundamentalist mixed

3 -0,286 0,045 0,260 | none mixed

4 0,645 -0,069 -0,185| none pessimistic

5 X X X X

6 -0,340 -0,085 0,259 | fundamentalist mixed

7| 0.298783 0,347 -0,148| fundamentalist mixed
group 6

1 0,189 -0,084 -0,084| fundamentalist

2 -0,025 0,145 0,015 | fundamentalist mixed

3 0,162 0,259 0,055 | none mixed

4 -0,035 0,148 0,072 | fundamentalist mixed

5 X X X X pessimistic

6 -2,150 -0,068 0,803 | fundamentalist mixed

7 -0,019 0,122 -0,050| fundamentalist

Table 5: The FOH results. An x indicates that tiegt was not valid. “Near" strategies are rejectcb%, but

not at 1%. In the last column are the choice syage found so far.

Of the 42 estimations 6 were not estimated, bectgs@/ald tests at 5% were rejected with

the restriction necessary to estimate the FOH-aditom.

For 19 participants the fundamentalist expectati@ssrictions are not rejected at 5% and

even for 23 participants they are not rejectedat 1
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There was one adaptive expectation participantsednear adaptive expectation participant.
Finally 11 participants didn’t follow one of thexgple expectations rules. Those we indicated
by “none”.

It is remarkable that of the 23 participants withdamentalist expectation 12 corresponded
with the mixed strategy of the choice strategies.

Now for all participants it is possible to findledtr a prediction strategy or a choice strategy,
except for participant 5 in group 5. In Chapteh&se strategies will be used in our simulation

model and the choice strategies will be comparel thie prediction strategies.

4.7 Last 20 periods
The participants played the game 50 times. Is thatéerence between the last 20 periods

and the whole game? Will they converge to an duypiuim in the final periods? In Table 6
first the different results are shown for all 5@ipds and then the corresponding results are

shown for the last 20 periods.

all 50 periods

Group level group 1 | group 2 | group 3| group 4| group 5| group 6
#a 28,71 29,71 28,00 28,14 28,57 27,71
# al # periods 0,57 0,59 0,56 0,56 0,57 0,55

Payoff (predictions)/ periods 58 70 56 57 66 67
Payoff (choices)/ periodg 102 104 99 101 103 102

Payoff (choices without error)/

periods 102 104 98 100 102 101

# changes 16 8 16 13 17 14

# changes / (# periods - 1)) 0,32 0,17 0,32 0,27 0,36 0,29
inconsistent choices 0,054 0,286 0,129 0,206 0,146 0,103

Last 20 periods

Group level group 1 | group 2| group 3| group 4| group 5| group 6
#a 11,71 12,00 11,71 12,00 13,14 12,14
# al # periods 0,59 0,60 0,59 0,60 0,66 0,61

Payoff (predictions)/ periods 74 88 69 67 82 74

Payoff (choices)/ periodg 106 109 101 101 102 101
Payoff (choices without noise)

periods 103 106 98 98 98 98

# changes 6 1 6 5 7 5

# changes / (# periods - 1)) 0,34 0,08 0,33 0,29 0,36 0,29
inconsistent choices 0,050 0,307 0,121 0,214 0,129 0,071
Table 6: Descriptive statistics for the entire gaand for the last 20 periods. The bold and undedlinumbers

are those payoffs per period, which are lower el#st 20 periods than in the entire game.

The number of participants choosing A increasdaherast 20 periods away from the

symmetric mixed strategy Nash equilibrium. Is thisign of boredom or learning?
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In groups 4, 5 and 6 the bold and underlined numimepayoff per period are smaller in the
last 20 periods than the payoffs in the entire garhe prediction payoff per period increases
substantially in the last 20 periods in every grdug the choice payoff increases in the last
20 periods only in groups 1, 2 and 3 and the irsgésnot very substantial.

Furthermore the number of changes per period reasing or the same in the last 20 periods
for 5 groups. Only for group 2 this is decreasing.

One reason for the increase of participants chgo&iand the increase of switching between
sector A and B might be boredom. The participaht®se more often the risky choice or

change more often to make the game more exciting.

4.8 Inconsistent choices
Finally we look at column 9 of Table A.1 in Apperdi. 34 out of the 42 participants made

inconsistent choices. In total 323 of the 210G 0geriods times 42 participants) choices
were inconsistent, which is 15%. Inconsistent obeiare contradictions in prediction and the
sector choice. When the participant predicts a vilagector A above 100 and he chooses
sector B or when the participant predicts a wadevb&00 in sector A, but still chooses
sector A his prediction and choice are inconsistéspecially in group 2 there is a lot of
inconsistent choice behaviour. Because the pagoffade to prevent that the participants
make inconsistent choices, it is difficult to explavhy there are still such inconsistent
choices.

But it is important to notice, because when ushegprediction rules to make the choices, this

inconsistent behaviour should be thought of.

In this chapter the experiment of the UvA was exaadito find the strategies. The strategies
are divided in two groups: prediction strategied ahoice strategies. Prediction strategies are
the strategies the participants use to predictvidnge in sector A. Choice strategies are the
strategies the participants actually use to ma&ehivice between sector A and B. These

strategies are going to be used in the simulafiotiss thesis.
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Chapter 5 Behavioural Models

In the previous chapter we have seen that diffdders of strategies are used by participants
in the UvA-experiment. We want to use these straseg the simulation of the experiment to
see which group of strategies performs better.aghor prediction and what happens when
the participants get the choice to switch betwerategies. This switching process happens
according to some behavioural model.

Such a behavioural model describes how an agewselsdetween different strategies given
the results of the game in previous periods. Thesalifferent kinds of behavioural models.
We will discuss the following three: Replicator Rynics, Discrete Choice Dynamics and

Reinforcement Learning.

For the models to work we have to know how wellrategy is doing. One measure of how
well the strategies are performing is the fithnesemsure. Here we follow the approach of

Dindo (2004):u,, = u,., + (L- M) p,,. The fitness measure depends on the payoff of the

strategy one period before and also, whes not equal to O of the periods before that. This
allows us to investigate the effect of memory ia titness measure (like in the article of

Bottazzi and Devetag (2003) discussed in Chapter 3)

5.1 Replicator Dynamics
The Replicator Dynamics (RD) are introduced by daynd Jonker (1978) as a biological

model.

This dynamics lets the fraction of the populatitelypg each strategy grows proportionally
with the performance (fithess measure) of thatea

When there aréstrategies, the proportion of the agents choosiiragegyk at timet+1 is:

_ Xk,tuk,t
Xk,t+l_ | ' (3)
X..u
j=1

et

This equation (3) shows that the better a straieggrforming (that is, the higheg;) the
more often it will be used in the next period.
The RD is originally a biological model, where fiitaess y can be interpreted as the

amount of offspring the parents of a strategy anarg and that offspring uses the same
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strategy as the parents are using. The more aftgpttie higher the fraction in the population
that will use the strategy in the next period.

Samuelson and Zhang (1992) used the RD with tiansgtrors (see also Foster and Young,
1990). In the current model it means adding théeabée 1 [0,1]. This variable gives the

fraction of the population that chooses a rule canlg and independent from the payoffs. The

Xyt Uit e
RD then becomesx, ,,, = (1- &)——— +|__
X
=

iUt

The RD can be illustrated by an example using #reeydiscussed in Chapter 2 witk 0.6.
There are 2 actions: A and B. When playing B thgffas p, = 2. When playing strategy A,
the payoff depends on how many other players dged A:

p(s =As;)=py(X) = i ))://sfg:g

We will use 2 simple strategies (see Chapter 2)ogitimistic strategys{ +1 = (1,0) for allt)
and the pessimistic strategs {1 = (0,1) for allt). Assume thatr= 0, e= 0 andl = 2. Let the
initial conditions be given bya o= 0.7 andxg o= 0.3, implying that payoffs ar@gno=1

(X/IN=0.7) ando, = 2.

Thenx,, = Xaofao = ,0'7, 1 —— =054 and
T XaoPao T Xgalpo 077 1+03° 2
« ,
Xs, = 8080 _ 03" 2 — 046

XpoP a0 t X 0P80 S 07°1+03 2

So the better performing strategy-1 will get more followers at the expense of the égss
performing strategyo i+1.
Now assume is not equal to O, but= 0.5 and all the other assumptions will be kapt t

« ,
same. Therx,, = (1- &)’ AP a0 +€=-qa- 05 ,0'7 1 —— + 025= 052
XpaoPao ¥ XgolPpo 2 0.7°1+03" 2
« ,
andx, =(- & — P €_q o5 932, gr5- 048
XioPio + Xoaloo 2 07 1+03 2

This shows the effect of Although this example is somewhat confusing. &tiect of is
that it subdues the effect of the feedback andwasits to divide equally between the two
strategies, so at time 1 there will be more agem®sing 1 (Xa1is closer to 0.5) then
when was 0. But in this example it looks like it dogsstibdues the effect of the feedback,

because the effect ofis equal to the effect of the feedback.
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The effect of is also shown in figure 5. The figure shows fdfedent kinds of initial
conditions the next realization of the number dirasts. The pink line corresponds to all
participants using the feedback system, the puré RDD). The yellow line represents when
half of the population uses the feedback systemhaifdust chooses between the two
strategies randomly € 0.5). The blue line correspondsxo= 0.5, which is the outcome
when =1. The yellow line lies in between the pink ligwed the blue line.

120
1.00 -

0.80 -

0.60 -/'/\ o ::s,d;
e

Xi+1

0.40

0.20

0.00

Figure 5: Replicator dynamics, xand % ., With /770 and different values of The pink line corresponds to

=0, the yellow line corresponds te0.5 and the blue line corresponds tel.

Finally we will illustrate the effect of? All assumptions are the same as before an@
again. The game has to be played once more tdeesdfect of/n For m= 0 the evolution of

variables looks like:

time | X Xot | Pr1| Pro| Uit | Uot
0 0.7 0.3 1 2 1 2
1 054 | 046 3 2 3 2
2 064 | 036 1 2 1 2

For m= 0.5 this changes to (with in red the changes)

time | Xg. Xot | Pe1| Pro| Urt | Uot
0 0.7 0.3 1 2 1 2
1 054 | 046| 3 2| 2 2
2 054 | 046 3| 2 | 25| 2

At time 2 the fraction of agents choosing A decesabecause they remembered how bad the

strategy was doing at time 0.
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In Figure 5 for different initial condition{ from 0 to 1 )X, 10iS shown whenm= 0 andm=
0.5. Wherx, o is close to O or close to 1 the effect isn’t nedible, but in between there is a

slight effect: the yellow line is closer to 0l6).(

1.20

1.00 o

0.80

0.60 A A A _ ;-/\ )\7 s =0, =0
\/ \/ \// \/ =0, =05

Xt+10

0.40

I

0.0074‘\\“\\\“\\“\\\“\\
P E S L F LS ELES

Xt

Figure 6: Replicator Dynamics: effect of

So when we agree that RD gives a good descripfibow agents will choose their strategy,
we can also check what the effect is of:

- memory

- noise in the dynamics

- initial conditions

5.2 The (Adaptive) Discrete Choice Dynamics

McFadden (1981) introduced this model as an ecotranteol. The Discrete Choice
Dynamics tries to model an individual decision peoiy, while the RD tries to model an
evolution growth problem.

McFadden assumes that the modeler has imperfeuwtl&dge about the utility of each agent:

v, (i) =u, (i) + beli) whereu is the observable part (in our case the fitnesssume) ane is

the unobservable part. Hebas a scaling factor for the variance of the unobegle part.
An agent chooses strategwhenvy;(i) is the maximum of all utilities. This means the

change of choosing strategis R= Pr{;(i)> v;(k)) for all otherk* i.

u, (K)- u, (i)
b

So B =Pr(u; (i) + be(i) > u; (k) + be(k)) = Pr(e(k) - e(i) < ).
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When we assume thais double-exponentially distributel(e(i)) = expe " and we

exp(u;,/ b)

assume that the population is large suchxhatP; we obtainx. for

i,t+1 = |
exp(u;,/ b)
i=1
everyl T [1,1].
Dindo (2004) mentioned an Adaptive Discrete Ch@&leCD) model, where only a fraction

updates its strategy:
expl, / b)
|

expl;, / b)

Xt = (1' a) +ax

it
i=1

An example will follow to illustrate how the dynaesiworks and what the effect is &f b6

and/m The fitness measure is again = m u, ., + (L- 7" p,, and the game is the same as

in paragraph 5.1.

First assume =0 (entire population updates its strategy in ey@mmyod),6 = 1 andm = 0.

Just like in paragraph 5.1 the initial conditioms o=0.7 andxg o= 0.3. The payoffs argn o

=1 X/N=0.7) andos o = 2. Then:

_ eXp(OA,o) - exp@) = 027
eXp o) +eXPP;,)  expl) +exp@)

Al

eXp(UB,o) — exp@) - 073
expg,) +expg,)  expl) +exp@)

A large fraction of the population chooses thetegrg that performed best in the previous

and Xg, =

period.

Next, let us investigate the effect by looking atb = 0.01 andb = 100
Firstfor 6= 0.01 we have:

. = exp o/ b) _ exp(1/007) 50
M expp,, ! b)+exppg,/ b)  exp(l/001) +exp(2/007)

« = exppg,/ b) _ exp(2/001 51
"L exppa, ! b) +exppg,/ b)  exp(l/001) +exp(2/007)

Whenb® 0 the population will switch even more: when atggy is doing well (almost)
everybody will choose this strategy the next perhddte that for the El Farol game this

would be destructive to its success.
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Now conside = 100. We then have

« = exp o/ b) _ exp@/100)
M exp,a, | b)+exppg,/ b)  exp@/100) +exp@R/100)

Xpq = &XPWso/ D) = exp@/100 » 05
"L expp,, ! b)+exppy,/b) exp@/100 +exp@R/100

» 05 and

Whenb® ¥ the performance of a strategy does not mattef.dfidhe population will
choose one strategy and the other half will chdlosether.
This is also shown in Figure 7. Wheéns small (yellow line) the switching is high and evh

bis large (blue line) there is no switching anymore

1.20

1.00 +

0.80

\ —s— =1, =0, =0
$ 060 | =001, =0, =0

—— =100, =0, =0
0.40

0.20

000+—F—FT T T T T T T T & o o & & 11
PSP EFLELLES

Xt

Figure 7: Adaptive Discrete Choice Dynamics: efiafch

What will happen when only a fraction of the popigia will update its strategy?

Let us assuma = 0.5 andb = 1 again. The dynamics then becomes

Xa1 = (- @) eXP0, 1 0) va x.,=0- 05 — PO 405 07=048
' expp o/ D) +exppg, ! b) ’ exp@) +expR)

Xy, = (1- @)’ eXPPs,/ 5) va x,=@- 05 — XPO 45 3= 052
’ expp .,/ b) +exppg,! b) ' exp() +expR)

The effect of the performance of the strategiekeieased. (0.48 = (0.7+0.27)/2).
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Figure 8: Adaptive discrete choice dynamics: eftda

The effect ofa is illustrated in Figure 8. The blue line is d@me as before with everybody
updating his strategy. When nobody updates hisestyda = 1, yellow line), then of course

Xo.1= Xo.0- When only half of the population uses the updptimodel, then x; will be between
the yellow and the blue line.

Finally the effect ofmwill be shown. All assumptions are the same ardO again.
The game has to be played once more to check fibet ef /17

For m= 0 the history looks like:

time | X1t | Xot | Pz | Pro| Uit | Yoy
0 |07103] 1| 2| 1| 2
1 (027|073 3 | 2| 3| 2
2 1073|027 1| 2| 1| 2

For m= 0.5 this changes (red has changed) in:

time | X1t | Xot | Pz | Prol| Uit | Yoy
0 [07]03] 1| 2| 1| 2
1 /1027|073 3 | 2| 2| 2
2 |0.50{050| 3 | 2 |25] 2

At time 2 the fraction of agents choosing 1 is lowan in the dynamics without memory,
because the agents remembered how bad the strassgyoing in period O.
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Figure 9: Discrete Choice Dynamics: effectnf

In Figure 9 the effect ofis shown. Whenmgets larger the past will become more important

than the present. So what happens closer to timé Bave more effect.

5.3 Reinforcement learning
This type of learning is investigated by FrankeO@)p In this Reinforcement Learning (RL)

model the agents do not form explicit expectatidieeir behaviour is described on the basis
of probabilities for their single action. The leug part of this model is that the agents update
their probabilities. They make use of their pers@xaerience only and do not take the
statistics of past attendances into account. Chdlct have led to good results in the past are
more likely to be repeated in the future.

The model has the forpjw1 = pj+h(Ss, d., Pr) With pj1, the probability agerjtchooses A

at timet+1, p;, the probability agerjtis chooses A at time t,$)(, d, p1), the adjustment
function withs;; as the action of agepat timet, andd;;, the difference between the payoff of
agent at timet and reference level (dj; = U(St, %) - Ur ) ). This reference level can be seen
as a reservation utility or aspiration level.

Franke specified the following function for

rdy @- py) if d,30,p,31-/

rd. p.
hd,,p,) = %

if d, £0,p, £/

rd, if else
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To make sure the probability stays between 0 atie hext inequality must hold:
r |dit]/ <1 for all possible cases.
The function consists of two kinds of adjustmeRportional to Probability Gap (PPG) and
Fixed Size Step (FSS). Suppose agetually went at timé The PPG adjustment happens
whena;; = 1 and the resulting payoff exceeded his refexdexcel,d;; 2 0, andp;; is more
than 1- or when the resulting payoff is less than his egfee leveld;; £ 0 andp;; is less than

. The adjustment will be some factdr , the difference between the payoff and a reference
level,di; and the ‘probability gap’. Whem; 2 1- andd;; 3 0 the probability gap is the
difference of 1 andpi;, (1-pit ). Whenp;; < andd;; £ 0 the probability gap is the distance
betweerpi; and O (pi; ). So a change ip: may be said to be proportional to the probability
gap.
The FSS adjustment occurs when the assumptiongalm®s not hold, so when < 1- and
di:3 Oorp:> andd:£ 0). The changes in are then directly related to some factand
the difference between the payoff and a refereewel Id; ;. The probability adjustment takes
place with a fixed step size.
The difference between PPG and FSS adjustmetmiaistite FSS adjustment is always bigger
than the PPG adjustment. This is shown by theviolig.
Whenp;; 3 1- (andd;3 0, so the PPG adjustment should be used), fhaE-1+ and 1-
pit£ ,s0 (1-pit) £ 1. This means that PPG adjustm@mSS adjustment, because

dit (1-pit) £ dit.
Now whenp;;  (andd;; 0, so the PPG adjustment should be used),ghan£ 1. This
means that PPG adjustménESS adjustment, becausd; pi/ £ di.

Here there is no fitness measure used as baigjeRranke uses only the difference between

payoff at timet andg, as a measure. Tthe model changes the chancedayfea choosing A

We want to make two adjustments for this modelrahke. First we want to use the same
fithess measure as is used in the replicator dycsamnd the discrete choice dynamics.
Second we will use the chances for the differend kaf strategies. The chance for a player for
choosing some strategy will be updated.

These changes require some rebuilding of the mattktherefore Franke’s updating model

becomes+1 = Xit+h(Sit, i, Xit) With diy = Uir - mean @i, Uzt, ... , Uity Uietty -- 5 Urg)
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We adjusted;;, because we want the strategies that are perfgrb@tter than the average of
the other strategies to be positively updated hadhes that are performing worse than the
average of the other strategies to be negativedataal.

What happens at tinte1 whend;; 3 0, so what happens when strate¢nas done better than

the mean of the fithess measure of the other gies@

It will be the fraction at timé pluss d;;times some adjustmentif; > 1 — .

In formula this becomes

r’ dit' (1' Xit)
Xit+1 = X+ : ; : whend;; 2 0 andx;3 1 —
X1 =Xt 77 dy whend;; 3 0 andx ;<1 —
(1' Xi,t) A .
Whenx;(3 1 — thenT £1, so whenx;; gets closer to 1 and still is doing wed|(3 0)

then the positive adjustment will be smaller orre@evhenx;; = 1.
The strategies with a negatigig are updating their fraction as:

rode” X,
X t+1 = X e+ f whendy; £ 0 andx (£

Xetrd = Xt 77y, whendy £ 0 andx; >

o

2 f, i .
with 1 (0, 1) andf’t must be small enough to make sure the fraction¥ decome

|
greater than 1. Furthermore x;, =1, because everyone must choose some strategy.
i=1

When there are 2 strategi¢s=(2) the summation of the fractions is always 1.

Just as with the RD and the ADCD the RL will bedusea simple example to illustrate what
the effect is of parameters , andm

Assume again the same game as used in paragrafii+=8.6,5 =1, 0,= 2, = 3,pit = 0.7,
SOxa0=0.7) =0.05,7 =0.1,0n0= 1 (because 0.7 > 0.6 ) add= 1 — (1+2)/2 = -1/2.
Becaus@la o< 0 andxao> it holds x,;, = X,,+ 7" d,, =07+0.1 - 05= 065 and

ds =2-(1+2)/2=1/2 antg o =0.3 , sadz o> 0 andxg o <1- . And also

Xg1 = Xgo + 7 dgo=03+01" 05=035=0.35.

What happens whenbecomes 0.3 and all the other parameters stasatine?

Xpy = Xpo+ 7 d,o=07+03 - 05= 055 andxs = 0.45.
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So wherr gets larger the effect of the performance of the ¢hoices becomes also larger.
Figure 10 illustrates this effect. The lines pig&llow and blue are showing whief ;
belongs to whictxa o. The blue line has the highess{0.3) and the pink line has the lowest
Whenxa o is smaller tha the positive effect in the next period is biggdrens is higher: so
in that case the blue line is higher than the yellhich again is higher than the pink one.
Whenxa o is larger tharb the negative effect in the next period is agaggbr whery is

higher: so the blue line is lower than the yellevjch is lower than the pink line.

XA,1
o O
5 8

4
44
b &
& &

=0.3,

Figure 10: Reinforcement Learning and effect of

Let us now illustrate the effect of Because is not just in the adjustment function, but also
defines which adjustment function is used (PPGS8)-the value of is between 0 and 1
and assume = 0.8 andr = 0.1 again. Becaus® ois now bigger than 1-

r dA,O, Xp0

Xpqg =Xy +——— "= =07
Al A0 p

The difference with the example before is, thatatipistment now PPG is.

401 205 07 456 and S, = 0.34.

To take a closer look at the effect ofve made Figure 11.

120
1,00

0,80 /
% 060 —a” =01, =0, =05

/ =01, =0, =1

0
0,05
01
0,15
0.2
0,25
03
0,35
0.4
0,45 |
05
0,55 |
0,6
0,65
07
0,75
08
0,85
0,9
0,95

Figure 11: reinforcement learning: effect of
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The effect is not so obvious as when we looketi@etfect ofr, although the effect is similar

to the effect ofr.

Finally we will show the effect of on this RL model. The variables are set at0.3 and
= 0.05.

First we see what happens whet®:

time | Xat | X8t | Bar | Por | Ura |Uis
0 |0,70|0,30 1 2 1 2
1 ]0,55|0,45 3 2 3 2
2 (0,70(0,30 1 2 1 2

Now is set at 0.5 and the table becomes (with in reckianges):

time | Xa: Xet | Par| Par | Uia | Urs
0 | 0,70/ 0,30] 1 2 1| 2
1 | 055[045| 3 2 2] 2
2 | 055|045 3 2] 25| 2
We see that the good performance of choice A isnilstned because of the memory of the

performance of A at time 0.

When we take 10 steps further, as is shown in iipgr€& 12, the effect is less clear.

A A A
oo |0 N A W KR A
0,50 ww \/\y >t \)/ = =03, =0, =005

=0.3, =0.25, =0.05
=0.3, =05, =0.05
—x— =0.3, =0.75, =0.05]

0,40

Xa,1¢

0,30

0,20

0,10

0,00

Figure 12: reinforcement learning and the effeict o

It is difficult to make some general remarks abtbeteffect of based on Figure 12. It looks

like the effect of performing on the total fractimnsmaller, when becomedarger.

In this chapter we have discussed three behaviauwrdkls and in short the effect of their
parameters. These three models are going to beusieel simulation of the UvA experiment
discussed in Chapter 4. In the simulation we wametithe participant be able to switch

between the strategies and therefore the threelmadeintroduced.
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Chapter 6 Optimists versus Pessimists

In this chapter we will simulate the different betwaral models of Chapter 5 with two simple
strategies, namely the optimistic and pessimistategies. We will replicate the simulations
of Dindo (2004) and we will do similar simulatiofts the third model: Reinforcement
Learning.

For a more detailed description of the dynamicsthednfluence of the different parameters
of the behavioural models RD and ADCD we refeti drticle of Dindo (2004).

6.1 Outline of Simulations

Strategies
We will consider two simple strategies: a pessimashd an optimistic strategy. When a

player uses the optimistic strategy, he always sésohe risky choice (action A). His strategy
is formallys = (1, 0). The pessimistic player always plays gaétion B). His strategy is
s =(0,1).

|

The fraction of the population choosing A in perted iSX..; = X, 11 Pyisr WIth X1
k=1

representing the fraction of the population playstrgitegyk at timet+1. The fraction t+1 IS
calculated with a behavioural model gng.1 is the chance of choosing action A for strategy
K.

Using the pessimistig( ++1 = 0)and the optimisticf; +1 = 1) strategies the fraction becomes

2

X1 = Xepsa Prrss = Xisr Prost T Xon Poen = X 0 X ™ 1= X500
k=1

So the fraction of the population choosing A isa@&duo the fraction of the population using
the optimistic strategy.

Payoff function

We will use the same payoff function as Dindo (20@ged. This payoff function is more

general than the one we used in Chapters 2, 4 amirtlo (2004) used as payoff function

PstP: Ps- Py
2 2

There are five parameters:, 1, g bandr. We already have seep, : andbin previous

p,(x)= tanhig(x - b)+%r).

chapters. The relation between the payoff valyes and is expressed by:
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r= In(u). When  is closer to sthan to ¢, thenr is negativer is positive, when,
Pn - P

is closer to ; than to <. This can be seen more clearly whentHanction is expressed as

+p,  exp(r
follows: p, = Ps P P{) and by looking at Figure 13.
1+exp(r)

3,50

3,00

2,50

2,00

1,50

1,00

0,50

0,00

_25§
5
Qs
0s
:Lsg
25§

Figure 13: Relation between, andr with ;=3 and ;=1

Figure 13 shows howh changes for a shift in. Whenr is greater than 0, then is smaller
than 2. In that case the difference betweeand ; is smaller than the difference betwegn
and s. Whenr is negative, it can be seen thais larger than 2. In this casgis closer to

than to .

The parametegdetermines the steepness of the payoff functionag¥¢eme thats= 3, ;=
1,b=0.6 andr = 0 (that is, ,, = 2). Figure 14 shows for different valuesgoivhat the payoff

function looks like.

350

g=1

— g=10
— g=10

g
/

g I

payof of choosing
N N w
8 8 8

«Q

&

0,00

Figure 14: Payoff functiony(x) with different values of: =1, =5, =10 and =100
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Wheng= 1 the payoff function is linear as can be seemfthe yellow line in Figure 14. The

dark blue line shows that the payoff function epstise in casg=100.

Behavioural Models

When we substitute the payoff function and therojsic and pessimistic strategies in the
behavioural models we discussed before (see Chaptere generate a 2-dimensional system.
This consists of the fraction of the population @siog A and the fithess measure of the
optimistic strategy.

For the first behavioural model, namely the Reptic®ynamics, the system consists of the

following formulas:

u
XUy G

4=1-e
et Pn+x U - p,) 2
ut+1 = /mt + (1- n)pg (Xt+1)

For the Adaptive Discrete Choice Dynamics this lnees:

1 .
Xt+1=(1'a) ta Xy
1+exp((py, - u)/lb)
Uy, = Mg + (1_ m)pg(xt+1)

And finally the Reinforcement Learning model canpoesented by:

(U +py)

t(u, - )(A- %)
X +— 2/ if UI-LZ’D")>Oandxt>l-/
u, +
(-0
Xisg = X, + ; , if ut-tT“<0and>q</
xt+z‘(ut-L2p“)) else

Uy = /M + (1= mMpg (%)
The three behavioural models have the payoff fonctind the fithess measure in common.
As stated before the payoff function of Dindo (2PB4s 5 parameters. Two parameters are
fixed: s=3and ;= 1. The other three have the following rangeb: (-3,3), 1 (0¥) and
b1 (0,1). The fitness measure has only one parante&memory parameteri [0,1). The
three behavioural models have some parametergfaivn. The RD has only one other
parameter, namelgl [0,1]. The ADCD has two other parameters, [0,1] and T [0,3).
Also the RL model has two other parametersi0, 0.3] and/ T (0, 1].
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In the next paragraphs the different behaviourad@are simulated with the two strategies.
We will examine what happens to the dynamics offthetion of the population choosing A
by changing the parameters of the system. We \gitl ok at the differences between the
systems of the three behavioural models.

We will do these simulations to see what happenkase systems, which are more
complicated than the examples of Chapter 5 for éatiavioural model. Furthermore we will
discuss the effects of the parameters more extetisan the simple examples of Chapter 5 to
learn more about the effects of the parameters.

Bifurcation diagrams will be used to illustrate #féect of the parameters on the fraction of
the population choosing A. On the y-axis the fiaetf the population choosing A is shown
after the system has run for 300 periods and theméxt 100 periods are shown. The x-axis
shows the parameter under examination. All simatetiare done by E&F Chaos (see Daks
al. (2007)).

6.2 Pessimists and Optimists in the RD

The system under the RD is given as
- XUy €
X’[+ - (l_ e) -
' Pt % (U - py) 2
Uy = /M + (1' ”)pg (X'[+1)

+ -
with payoff function,og(x)zpS 2,0f s Z'Df tanhg(x - b)+%r).

The initial conditions arg& = 0.25 andip = 2 and the parameters in this model are b,
and . First the three parameters of the payoff funciomexamined ( andb), then the
influence of is looked at and finally the effect of the memparameter on the fraction of

the population choosing A will be illustrated.
As just noted we will start by looking at the irdloce of , andb. To see how the ‘pure’ RD

works, we set =0. Then we can segow the dynamics looks when the entire populatisesu

this behavioural model.
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The effect of

The parametersand change the payoff function:changes the steepness of the function
and the distance betweerand ;. In Figure 15 there are three different bifurcatio
diagrams. In each diagrantuns from 0 till 100 and has a different value for each diagram,

namely -1, 0 and 1.

] 25 50 5 100 ] 25 50 75 100 ] 25 50 75 100

Figure 15: RD; effect of and on the fraction of the population choosing A wittk0, =0 and b=0.6.

It is remarkable that the dynamics is stable ardu(m=0.6) when is low for all 3 values of

. When becomes bigger, then the dynamics becomes matcerr

The effect of b
It is interesting to see what will happen when Wwargyeb. This will be examined by looking

at Figure 16. In this figurb runs from 0 till 1 and is 10 or 45.

=10 =45

04

LR

044

024

o
T T T T T T T T
) 0.2 0.4 0.6 0.8 1 0 02 04 0s 08 1

Figure 16: RD; effect of b on the fraction of thepplation choosing A with=0, =0 andr=0.

It can be seen that the dynamics still will be avoundo. Againwhen becomes bigger,
the dynamics are more unstable, but in this casgdhe still around.
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The effect of
We will now see what happens whers no longer 0. In Figure 17 the effect obn the

fraction of the population choosing A is illustrdtior three different values of

=25 =45 =100

Figure 17: RD; effect of on the fraction of the population choosing A wittD, =0 and b=0.6

Note that is of great influence on the dynamics, becausdifinecation diagrams are very
different for the three values ofWhen the dynamics is stable the value of of no
influence on the dynamics. When the dynamics iseneoratic, the fraction of the population

choosing A is increasing with

The effect of

The effect of is predictable. Whengets closer to 1, the dynamics will become maablst
because a smaller fraction of the population willlate its strategy according to the model. In
that case the fraction of the population is mostign divided between the two strategies. So

when is increasing to 1, the fraction of the populatetimosing A will be approaching 0.5.

=45 =100

Figure 18: RD; effect of on the fraction of the population choosing A witfd, =0 and b=0.6

Figure 18 illustrates this effect of Even when becomes larger, then still the effect ain
the dynamics is larger and again the dynamicsasifiverge to 0.5, whenbecomes closer to
1.
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The effect of
Finally we look at the effect of. When gets bigger, the dynamicsbhsWhen s close to 1,
the dynamics need a lot of time to settle down. Bifiercation diagram seen in Figure 19 is

made after running the system 3000 times instedldeo$tandard 300 times.

] 0.2 04 08 03 1

Figure 19: RD; effect of on the fraction of the population choosing A witl®d, =0, =45 and b=0.6

6.3 Pessimists and Optimists in the ADCD
Under the ADCD the behavioural model becomes:

1

X1 T 77 exp(( p, - u,)/ b) with the payoff function
u..,=m, + (1' m)pg(xt+1)
+ -
pg(x):’as Z’Df P 2,0f tanhg(x - b)+%f)-

The initial conditions ar& = 0.25 andiy = 2. First we will discuss the parameters of the
payoff function: , andb. Then the influence of is considered and furthermore the effect of
the parameter on the fraction of the population choosing A vad illustrated. Finally the

parameter is discussed.

The parameter is set to O for the discussion of the parametersandb, because of the same
reason why with the RDwas 0 when the first parameters were discussedvaie that the

entire population uses the updating from the ADCD.

The effect of
We start by looking at the effect ofwith different values of. This is illustrated in Figure 20,
where three bifurcation diagrams are shown. Infigige runs from O till 200 and takes

the values -1, 0 and 1.
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Figure 20: ADCD; effect of/ [0, 100] and =0, b=0.6, =0 and =1

The effect on the dynamics is clearly differentnfrthe effect of and on the dynamics of
the RD. When is small the dynamics is stable. In other casesycle appears, which means
that the fraction of the population choosing Aligcfuating between 2 values.

The mean of the fraction of the population choo#ng higher when is 1 than when is -1.
The dynamics is not as much concentrated arduhdn in the RD.

The effect of b
Now we are going to look at the effectlofin the three bifurcation diagrams of Figurel®21
runs from O till 1 and is 5, 10 or 45.

=5 =10 =45
04 / GRS _//;——//

Figure 21: ADCD; effect of [0, and =0, =0, =0, =1and =5, =10, =45

Just as seen with the effects @ 2-cycle appears, but only whieis not close to 0 or 1.

When is big enough, then the valuelmfioes not influence the fraction of the population
choosing A like it did with the Replicator Dynamidslooks like even whenis large, which
means the payoff function is almost a step functibe participants are not able to coordinate,

whenb is not close to 0 or 1. Furthermore the dynanock lsymmetric around 0.5.

The effect of
We will now examine the effect ofon the fraction of the population choosing A. igu¥e

22 a bifurcation diagram is shown, whermuns from -3 till 3.
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I

K] 13 0 15 3

Figure 22: ADCD; effect of /[-3, 3] and =0, b =0.6, =0 and =1

We are not surprised that Figure 22 does not sip@etacular dynamics. Under the chosen
values of the other parameters, we already havetbaéthe dynamics is either stable or has a

2-cycle.

The effect of

A parameter particular to the ADCD, isand we will discuss its effect on the dynamics now.
In Figure 23 this is illustrated by the bifurcatidimagrams with from O till 3, where has

three values 10, 45 and 100. Notis not equal to 0, but is equal to 0.5. When 0 only two-

cycles can be observed.

=10 =45 =100

. 08 | 08 )
— @@ | SR
///// 0.4 0.4

Figure 23: ADCD: effect of with =0.5, =0, b=0.6, =0

When is close to 0, we expect a 2-cycle of 0 and 1.8Mwect this, because a small
difference in payoff between the 2 strategies ga@xed enormously in the system of this
behavioural model.

When gets larger the dynamics become more complex. Wigats larger again, the
dynamics will always settle down again.

When becomes large, the population splits evenly betvilee optimistic and the
pessimistic strategy. A difference in payoff ongsha small influence on this system. In this
case the one half of the population will chooséoac and the other half will choose action

B. In Figure 23 the fraction of the population chimgy sector A when =3 is around 0.58.
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When become s really large, the fraction of the popoilathoosing A is converging very
slowly towards 0.5.

The effects of
In Figure 24 the effect of is illustrated again, but now the bifurcation demgs are made
with  =0.5

=45 =100

Figure 24: ADCD, effect of with =0.5, =1, b=0.6 and =0

It is remarkable, as was already noted when treceéff was discussed, that the mean

increases with, but also the variance does.

The effects of

The effect of on the dynamics of the ADCD can be seen in Fig@steNe already saw in the
previous descriptions of the effects of the othemameters that a 2-cycle appears when

small. When gets larger, some erratic dynamics can be se¢mnyien becomes closer to 1
the variability decreases. There will be more foonghe past performances of a strategy than

on the present ones and therefore there will beerst@bility when becomes closer to 1.

=10 =45 =100

am

3

Figure 25: ADCD, effect of with =0, =1, b=0.6 and =0
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The effects of
Finally the effect of will be discussed. Only a fraction of (1) of the population will
update its strategy according to the ADCD. In Fegg26é we will try to explain what the effect

of a positive value for is.

=10 =45 =100

Figure 26: ADCD, effect of with =0, =1, b=0.6and =0.5

When we look at Figure 26, the variability of thestem decreases wherbecomes larger
(and is not small). The dynamics or fraction of the plgpion choosing A seems to be
aroundb.

6.4 Pessimists and Optimists in the RL

We used the following version of the Reinforcemlegdirning model for the simulations:

u, +
rw - Pha ) )
X, + ; , if ut-tTh>Oand>q>l-/
u, +
rw - Py
Xisg = X, + ; , if ut-tT“<0and>q</
xt+z‘(ut-L2p“)) else

ut+1 = ,mt + (1- n)pg (Xt+1)

(x)=2= “;”f s 'pr tanhig(x- b)+%f).

First we will discuss the parameters of the pafinfiction: , andb.

The model has the payoff function

The parameter is set to 0 and the initial conditions ape= 0.25 andlip = 2.
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The effects of
We will illustrate the effect of with different kinds of values of. The parameterand

change the payoff function:changes the steepness of the function athe distance between

sand .

Figure 27: RL; effect of with b=0.6, =0.1, =0.2and =0

When is low, the dynamics is stable aroumdnd has a steady state. At 0 the dynamics

change in a 2-cycle. Whenis not equal to 0 the dynamics become less stkblea positive
there is an increase seen in the fraction of tplation choosing A. For a negativeéhere

is a decrease seen in the fraction of the populaimosing A. This can be explained with the

value of . When is positive, j, is closer to sand so the incentive to choose A is bigger, the

participant has more to gain and less to loosehopsing A. This mechanism works the other

way around when is negative.

The effects of b

We now look at the effect dfillustrated in Figure 28

=25 =45 =100

o 0 o
0

Figure 28: RL; effect of B[0, 1] and =0.1, =0.2, =0and =0and =5, =10, =45

Just as in the RD model wheiis small, the dynamics is stable arolm@®nly when
becomes really large the fraction of the populatbaosing A is more unstable, but it is still
aroundb.
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The effects of
Furthermore we illustrate the effect ofvith different values of

=25 =45 =100

il 0 ﬂf ) /Qj
S

0s 05

04
15 LS 15 0 LS 3 13 15 3

Figure 29: RL; effect of /[-3, 3] and b=0.6, = 0.1, =0.2, =0and =25, =45, =100

It looks like the value of does not have an effect on the mean of the fractigopopulation
choosing A. When is small the dynamics is stable, wheimcreases the dynamics become
more unstable from the interval obf [-2, 2].

The effects of
Now we investigate the effect of the parametersifipdor the RL model: parametersand .
First the effect of is illustrated in Figure 30.

007 014 021 028

Figure 30: RL; effect of/ [0, 0.3] and b=0.6, = 45,

This effect looks like the effect of For small values ofthe dynamics, so the fraction of the
population choosing A is stable and arotmdVvhen becomes bigger the dynamics become
more unstable. This also depends on the value\fhen is 0, there is a 2-cycle, but when
IS negative or positive the dynamics becomes mongpticated. Another effect ofis also
seen. When is smaller than 0, the mean of the dynamics idlemthanb. And when is
higher than 0, the mean of the dynamics is biggen!b.

The effects of
Figure 31 illustrates the effect of
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Figure 31: RL; effect of / (0,1] and b=0.6, =45, =0.1, =0and =-1, =0, =1

This dynamics are looking very stable. Only whee O we see a 2-cycle. The dynamics
doesn’t change that much whers bigger. It looks like does not have a lot of effect on the

fraction of the population choosing A.

The effects of
Finally the effect of is discussed and illustrated in Figure 32. Whensmall the fraction of
the population choosing A is aroubdThis stays the same for the mean of the fracban,

when is big enough a 2-cycle aroubappears.
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Figure 32: RL; effect of / [0, 1] and b=0.6, =0, =0.1,and =0.2and =25, =45and =100

6.5 Similarities and differences

In the previous paragraphs the effects of the patars on the three behavioural models with
the two strategies were discussed. In this par&gnagshow the similarities and differences

between the models. This again is discussed fdr paameter.
In all three systems the effect ois similar. When is small the dynamics are stable. In the

systems of the RD and the RL the dynamics areestaiolundh. When is bigger a different

kind of dynamics occurs. In the system of the AD&EP-cycle is seen wheris bigger.
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Furthermore the effect ofis less clear. In the systems of the RD and théhHelLmean of the
fraction of the population choosing A is higher whebecomes larger in casas between -2
and 2. In the ADCD the effect ofis very small. Simple dynamics establish wheg 0. In

case is not equal to 0 the dynamics is more complicated

As was the case with the effect ob is similar only in the systems of the RD and the R
When the value db increases, then also the fraction of the populatimosing A increases.
In the system of the ADCD again a 2-cycle app€Hmsre is no influence df on the

dynamics, wheib is close to O or 1.

The effects of and are comparable and this is intuitive. Both repnésiee fraction of the
population that doesn’t update his strategy orbtmas of the fithess measure. This fraction
uses the same strategy as was used in the prepaoiosl (in case of the ACDC) or is even
divided between the 2 strategies (for the RD). dyx@amics become more stable, wheand

got closer to 1.

The parameter is only part of the ADCD. Whenis small, a 2-cycle is observed in the
system. If gets larger, first some different kind of dynamace seen, but whenkeeps

increasing the dynamics become stable ardund

The effects of and are specific for the RL. The effect ofs similar to that of. The effect

of is difficult to describe and is probably hardlyticeable.

The effect of is similar for all three behavioural models. Whelmecomes closer to 1, the
fraction of the population choosing A will converigeb. Because then the performances of
the past becomes more important and any fluctusatidthe performances in the present do

not influence the dynamics any more.

We have seen what the effects of the differentmpatars are in the systems of the three
behavioural models. With this knowledge about tifieces we will simulate in the next capter

the behavioural models again, but now applied ¢oUdkiA experiment of Chapter 4.
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Chapter 7 Experiment and Behavioural Models

In this chapter the behavioural models and the E@xperiment will be combined. First the

experiment will be rebuild without the possibildy switching between strategies. This is

done to see which strategies will give a bettecdpgon of the UvA experiment results:

choice strategies or prediction strategies.

The strategies that are optimal are used in thalaitons with the behavioural models. These

simulations are used to answer the questions opt€ha:

1. Which equilibrium will be reached in the El Far@rge under an evolutionary
framework?

2. Which strategies will survive the evolutionary caetipon?

3. What are the differences between the three behalimodels?

4. What is the effect of different parameters of thedels on the outcome of the questions

above?

7.1 Choice Strategies versus Prediction Strategies
In this paragraph the strategies found in Chapteill4oe compared to the experiment. In

Chapter 4 some strategies are based on the chbeearticipants made (choice strategies)
and some strategies are based on the predictigrattieipants made (prediction strategies).
In this paragraph the experiment will be rebuildcty first using the choice strategies and
next using the prediction strategies. By doing Wéscan see which strategies will be
performing better in the sense that its dynamioggamost similar to the dynamics of the

UVA experiment. The best performing strategies balused in the next paragraph.

In deciding which strategies are optimal we wilhguare the following variables in both
versions of the rebuild model with the variables from the UvA experiment:

- fraction of the population choosing sector A

- payoff (choices)

- number of changes

These variables will be presented per group irbketavhere the outcome of the variables for
the UVA experiment, the prediction strategies grang the choice strategies group will be

given and also the mean of the group will be shown.
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A strong assumption of using the prediction strigegs, that when the participant predicts a
wage that is higher than the wage of sector B¢hasce will be sector A and vice versa.
Keep in mind that in paragraph 4.8 we noted thairaber of participants in the UvA
experiment did not always keep satisfy assumptl®¥4 of the total number of choices was

inconsistent).

In Appendix 3 Table A.3 gives, for every group,aerview of which prediction and choice
strategies are used. The yellow numbers in thige tapresent the differences between the
two groups. When the numbers are not yellow, tr@h Qroups use the same strategy. The
strategy which is used in that case is dependemthoch group is not having a strategy for

the participant.

For each group the variables that are to be cord@eecalculated. These calculations are the
mean of 5 simulations. We also looked at the méd® gimulations, but this did not differ
significantly. We used the mean of 5 simulationstieo reasons. First because of the way the
choice payoff is formulated, namely with noise. S hieans that the results can vary
considerably, so to diminish this effect we takeamarage. The second reason is the mixed
strategy, which is a random process and also hasiderably large differences between

simulations.

Next we will discuss for each group what happerth@se simulations and which strategies is
performing the best.

Group 1
group 1 Number choosing A Fraction choosing A Payb{choice) # changes
pred | choice
Subject | exp| pred strat | choice strat | exp pred strat | choice strat | exp | pred strat | choice strat | exp strat | strat
1p| 17 50 50| 0.3400 1.0000 1.0000| 4,881 3,897 4,166 21 0 0
2| 36 11 9] 0.7200 0.2200 0.1760| 5,166 4,736 4,813| 25| 16 16
3-c| 24 29 28] 0.4800 0.5840 0.5560| 4,945 4,221 4,320| 28| 26 26
4] 45 50 50| 0.9000 1.0000 1.0000] 5,345 3,897 4,166 8 0 0
5-c|] 28 31 27| 0.5600 0.6240 0.5400] 5,061 4,340 4,360 22 25 24
6 2 41 0| 0.0400 0.8240 0.0000] 4,951 3,955 5,000 4 16
7| 49 41 50| 0.9800 0.8280 1.0000| 5,441 3,930 4,166| 2| 13
Mean 29 36 31) 0.5700 0.7257 0.6103| 5,113 4,140 4,427| 16 14

Table 7: Descriptive statistics of UvA experiméhidiction Strategies and Choice Strategies faugr1 mean
and per participant. Italics means the same stratisgused for both groups with “-p” the predictistrategy

and “-¢” the choice strategy.
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Theitalic participants use the same strategy in each ditb@pproaches (the prediction and
the choice strategies). When the subject has “ghiiid its subject number in the first
column, this means the prediction strategy is dsefioth groups. When there is “-c¢” behind
the number the choice strategy of the participsuisied for both groups. The non-italic
participants have different strategies in both ggou

In the mean the choice strategies are performitigio@ all categories except "# changes”.
The better performance of the prediction stratemiég changes” is misleading. In the mean
the prediction strategies have a number of chaafyg4, while the choice strategies have a
number of changes of 9. In the UvA experiment theaber of changes is 16. So just looking
at the mean the conclusion is, that the predicticategies are performing better.

We now look at the individual level. Participanbds 21 number of changes in the UvA
experiment. Both the prediction strategy as thecghstrategy give a number of changes of 0.
So both strategies are performing poorly and g thas the only poor performance, the mean
would be lower than the mean of the UvA experiment.

Participant 6 and 7 have as number of changesiJth\ experiment 4 and 2. The prediction
strategy gives 16 and 13 for participants 6 andhich is a lot higher. In the choice strategy
the number of changes for both participants 6 aisd07 which is a lot closer to the actual
number of changes than the prediction strategiggesi.

So because in the prediction strategies the nuofieranges of participant 1 is lower and of
participants 6 and 7 is higher than the numbehahges of these participants in the UvA
experiment, the mean is almost the same for bodltegfies. But in fact the prediction
strategies is performing worse than the choiceegjras group.

It is remarkable, that the actual payoff of theemment is outperforming both simulations at
the aggregate level. Individually the payoff of #ageriment is not always higher. For
example, for participant 6 the payoff of the chatmtegy simulation is 5000, while the
payoff of the UVA experiment is 4951, but this msexception.

Group 2

In this group it is not so easy to see in Tablehictv strategies are performing better. It could
even be said, that both strategies are perfornmagly especially on an individual level. It
can be seen that for participants 1, 2, 4 and @tneber of times choosing A (“#a”) is for

both strategies not even close. So no optimalegfie$ can be chosen.

68



It is remarkable that again the payoff of the expent is higher than the payoff of the

simulations.
group 2 #a # al periods Payoff (choice) # changes
pred | choice
Subject | exp| pred strat | choice strat | exp pred strat choice strat | exp | pred strat | choice strat | exg strat | strat
1-p| 40 13 18| 0.8000 0.2640 0.3680] 5,479 4,668 4518 3 22 33
2-p| 11 43 41| 0.2200 0.8640 0.8240| 4,897 4,235 4,289 7 13 17
3] 5 41 0] 0.1000 0.8200 0.0000| 4,915 4,145 5,000| 10 15
4-p| 42 21 1| 0.8400 0.4200 0.0200]| 5,364 4,465 4,972| 14 34
5-p| 43 31 29| 0.8600 0.6240 0.5800] 5,434 4,627 4,858 9 32 33
6| 19 38 45| 0.3800 0.7560 0.9000| 4,925 4,059 4,368 11 21 10
7| 48 50 50| 0.9600 1.0000 1.0000] 5,508 4,224 4,492| 4 0 0
Mean 30 34 26| 0.5900 0.6783 0.5274| 5,217 4,346 4,642 8 20 13
Table 8: Descriptive statistics of UvA experimélrediction Strategies and Choice Strategies forugr@ mean

and per participant. Italics means the same strptisgised for both groups with “-p” the predictictrategy

and “-c” the choice strategy.

Group 3

group 3 #a # al periods Payoff (choice) # changes
pred | choice

Subject | exp| pred strat | choice strat | exp pred strat | choice strat | exp | pred strat | choice strat | exg strat | strat
1| 50 49 50| 1.0000 0.9840 1.0000| 5,267 3,871 4,101 O 2 0
2| 24 47 31| 0.4800 0.9320 0.6120| 4,884 3,937 4,348| 22 6 23
3] 31 50 33| 0.6200 0.9920 0.6560| 4,930 3,914 4,285| 15 1 21
4| 34 23 27] 0.6800 0.4600 0.5440| 4,931 4,409 4,392| 24| 32 27
5-p| 16 48 47| 0.3200 0.9640 0.9480| 4,804 3,900 4,095| 20 1 3
6-c| 32 26 30| 0.6400 0.5280 0.6000| 4,979 4,378 4,308 19| 24 26
7p| 9 31 30| 0.1800 0.6200 0.6040| 4,851 4,258 4321 9| 29 30
Mean 28 39 35| 0.5600 0.7829 0.7091] 4,949 4,095 4,264| 16| 14 18

Table 9: Descriptive statistics of UvA experiméhgdiction Strategies and Choice Strategies faugr3 mean

and per participant. Italics means the same strptisgised for both groups with “-p” the predictictrategy

and “-¢” the choice strategy.

In this group the choice strategy is performingdreas is illustrated in Table 9. All values of

the variables of the choice strategies are clastrd values of the variables of the UvA

experiment.

Only the simulations of participants 5 and 7 aréating a lot from the UvA experiment. But

this holds for both the prediction strategies grand the choice strategies group and for the

other participants the choice strategies grougrfopming much better.

Again the payoff of the experiment is the highe@sthe mean and individually.
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Groups 4,5 and 6

In these three groups the choice strategy is paifay much better and similar, so that is why

we discuss them together. The choice strategiegeaferming better individually and on

group level for (almost) all participants and ategories, as can be seen in Table 10.

It is again remarkable that the payoff of the expent is more than in the simulations at

aggregate level.

group 4 #a # al periods Payoff (choice) # changes
pred | choice
Subject | exp| pred strat | choice strat | exp pred strat | choice strat | exp | pred strat | choice strat | exg strat | strat
1] 31 50 30| 0.6200 1.0000 0.6000| 4,954 3,828 4,467| 14 0 23
2| 49 39 50| 0.9800 0.7800 1.0000| 5,341 3,999 4532 2 19 0
3| 29 50 32| 0.5800 1.0000 0.6400| 4,87 3,828 4,446 26 23
4| 9 48 0] 0.1800 0.9640 0.0000) 4,838 3,779 5,0001 7 0
5| 34 22 30| 0.6800 0.4360 0.6000| 4,995 4,448 4,402| 29| 22 24
6| 44 48 50| 0.8800 0.9560 1.0000| 5,316 3,837 4,532| 11 2
7-C 1 0 0| 0.0200 0.0000 0.0000| 4,951 5,000 5,000 2 0
Mean 28 37 27| 0.5600 0.7337 0.5486| 5,038 4,102 4,626 13 7 10
group 5 #a # al periods Payoff (choice) # changes
pred | choice
Subject | exp| pred strat | choice strat | exp pred strat | choice strat | exp | pred strat | choice strat | exq strat | strat
1] 29 41 30| 0.5800 0.8280 0.5960) 5,051 4,030 4,553 23| 10 25
2| 35 50 33| 0.7000 1.0000 0.6520| 5,118 3,797 4,532| 24 0 22
3| 32 49 30| 0.6400 0.9800 0.5920] 5,190 3,827 4,554| 13 1 25
4 3 5 0| 0.0600 0.0960 0.0000| 4,946 4,867 5,000 7 0
5-c| 37 49 49| 0.7400 0.9800 0.9800) 5,257 3,827 4,575 1
6| 29 50 28| 0.5800 0.9960 0.5680| 5,073 3,803 4,486| 35 0 26
7] 35 8 32| 0.7000 0.1520 0.6480)| 5,244 4,804 4,529| 14 6 24
Mean 29 36 29| 0.5700 0.7189 0.5766| 5,126 4,137 4,604| 17 4 18
group 6 #a # al periods Payoff (choice) # changes
pred | choice
Subject | exp| pred strat | choice strat | exp pred strat | choice strat | exp | pred strat | choice strat | exg strat | strat
1p| 38 48 49| 0.7600 0.9640 0.9880| 5,158 3,788 4,362 12 2 1
2| 33 50 29| 0.6600 1.0000 0.5880| 5,089 3,731 4,367| 12 0 24
3] 25 35 30| 0.5000 0.6960 0.6040| 5,049 4,128 4,390 17| 20 22
4| 23 50 28| 0.4600 1.0000 0.5680| 4,933 3,731 4,451| 23 0 22
5-c 1 0 0] 0.0200 0.0000 0.0000| 4,982 5,000 5,000f 2 0 0
6| 35 50 27| 0.7000 1.0000 0.5440| 5,087 3,731 4,433| 16 0 26
7-p| 39 50 50| 0.7800 1.0000 1.0000] 5,367 3,731 4,376| 16 0 0
Mean 28 40 31| 0.5500 0.8086 0.6131] 5,095 3,977 4,483| 14 3 14

Table 10: Descriptive statistics of UvVA experimé&hrediction Strategies Group and Choice Strate@esup

for group 4, 5, 6 mean and per participant. Italimeans the same strategy is used for both groitpsg”

the prediction strategy and “-c” the choice strajeg
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Summarizing, the choice strategies are almost awwayforming better than the prediction
strategies. Only for group 2 there are no optirtrategies. For the other groups, the choice
strategies are performing better.

In the next paragraph the choice strategies willsed to see what happens when we let the
participants also have the ability to switch betwéee different strategies in a simulation
surrounding. This switching between strategies by using the behavioural models
discussed in Chapter 5. In the next paragraph Welso focus on answering the thesis

questions stated in Chapter 1 and at the begirofitigs chapter.

7.2 Behavioural models and the experiment

In the previous paragraph we decided to use theelstrategies in this paragraph. Using
computer simulations and the three behavioural isatiscussed in Chapter 5 we will
investigate what happens if agents are alloweavttzls between strategies.

The different groups of the experiment will be dissed in the following order. Group 5 will

be first discussed, because in this group onlyrthe@d and the pessimistic strategies are used.
Then groups 4 and 6 will follow. In group 4 theiogstic strategy and in group 6 a FOH-
prediction strategy is added. Group 3 will be labk to compare with group 6 since in this
group instead of the pessimistic strategy the dptimstrategy is used.

Then groups 2 and 1 will be looked at: group 2F@si-prediction, optimistic, pessimistic

and naive strategies. Group 1 also has the mixategly and therefore has all strategies

discussed. In appendix 3 these strategies areraestioned per group.

For each group our three behavioural models willliseussed: the Replicator Dynamics
(RD), the Adaptive Discrete Choice Dynamics (ADGIDH the Reinforcement Learning
model (RL). The different rules for each group usethe simulation program E&F Chaos

are stated in Appendix 4.

7.2.1 Group 5 (mixed and pessimistic)
In this group only 2 different strategies are usdtk results of the experiment (see Chapter 4)

showed that one participant was using neither &elsirategy nor a prediction strategy.
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Because the majority of the group is using the ohisteategy, we assume that this participant
also will be. There are 6 participants in this grénaving the mixed strategy, therefore the
initial condition of fraction of the population ugj the mixed strategy is 6/7 and 1/7 is the

initial condition of the fraction of the populatiarsing the pessimistic strategy.

The mixed strategy that is used here can be ir@egras follows. Of the fraction of the

mixed strategy-followers 0.5759 is choosing seétand (1-0.5759) is choosing sector B.

Let us first look at the time series of the fraatighich is choosing sector A ) in Figure

33:
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RD: time series of®® with =0.5and =0.5 ADCD: time series ok with =0.5, =1and =0.5
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RL: time series ok with =0.5, =0.01 and =0.05

Figure 33: Time series ok®® for the three behavioural models

The dynamics of the RD and the RL both look stale they are stable at different levels.

The dynamics of the ADCD has more fluctuations. BBetgeneral conclusion is, that the

total

dynamics ofx,”® is converging to a constant. For the RL and ADGB value seems to be

the symmetric mixed strategy Nash equilibrium. ther RD it doesn’t look like a Nash

equilibrium.
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We will look at whether one strategy is going tordoate the other. By dominating we mean
that the fraction of the population using the gggtis bigger than the other fractions. We will

put and to O for a reason. This prevents that, in spita b&ad performance, still a fraction

of the population will be using the strategy. Fg#4 only showx™*’, because

mixed

tieS — l_ XI

100 125 150 175 200 100 123 150 173 200

RD: time series of™*with =0.5 and =0.5 DCD:time series of™*‘with =0, =1and =0.5

RL: time series ok™*‘with =0.5, =0.01 and =0.05

Figure 34: Time series ok™* for the three behavioural models

For the RD and the RL it is clear that the mixedtsigy is dominating the pessimistic one,

mixed

becausex™*" is 1 or converging to 1. For ADCD the dynamicsxdf is fluctuating, but

still the mean of the mixed strategy is higher ttimean of the pessimistic strategy.

This can be explained as follows. The payoff of gleesimistic strategy is the wage of sector
B, which is 100 for every period. The payoff of tineed strategy is dependent on how large
the fraction of the population is that choosesoacA. The fraction of the population choosing
A is only using the mixed strategy, because thsipestic strategy will never result in letting
the participant choose action A. As said: of tleefiion of the population using the mixed

strategy only 0.5759 will choose action A and (37®9) will choose B. So the payoff of the

mixed

mixed strategy ig," = wage of sector A x 0.5759 + wage of sector B-0.8759). From

this equation we can conclude that the payoff efrthixed strategy is higher than the payoff
of the pessimistic strategy, when the wage of sekts higher than the wage of sector B,

which is 100. The wage of sector A is lower thamwage of sector B, when the fraction
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choosing sector A is less than 0.5714. The wageatbr A is equal to the wage of sector B

when the fraction of population using the mixedtggy is 0.5759 x™*'= 0.5714, so when

mixed — %: 0.9592. When the fraction of the population using the edistrategy is

lower than 0.9592, the wage of sector A will behigigthan the wage of sector B. So in that
case the payoff of the mixed strategy is highen i payoff of the pessimistic strategy and
therefore will the fraction of the population usitigg mixed strategy grow at the expense of

the fraction of the population using the pessinistrategy.

We are interested in whether the mixed stratedjybgtidominating, when and are not
equal to 0. The effects ofand on the fraction of the population choosing the edistrategy

is illustrated in Figure 35.
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RD: bifurcation diagram of™* and / [0,1]  ADCD: bifurcation diagram o™ and / [0, 1]
with =0.5 with =0.5
Figure 35: Bifurcation diagrams o™’ for two behavioural models: RD and ADCD

In the RD a positive, nonzeramplies that there is always a fraction playing gessimistic
strategy. When = 1 half of the population will be playing the peesistic strategy and half of
the population will be playing mixed.

For the ADCD it is more difficult to see. In thigsdem (1 - ) of the population is updating its
strategy, but of the population is not. The part of the popwaatwhich is not updating its
strategy just uses the same strategy as in théopieperiod. So whenis close to 1 and the
mixed strategy was performing well in the past,ftiaetion using this strategy get a positive

push in the next period.

Now we will look at Figure 36 to see whether themoey-parameter has an effect on the
fraction of the population using the mixed strategy
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RD: bifurcation diagram ofx™® with =0 DCD: bifurcation diagram ofx™*!with =0

T

0

RL: bifurcation diagram ofx™* with =0.01 and =0.05
Figure 36: Bifurcation diagrams o£™* with / (0, 1) for RD, ADCD and RL

The mixed strategy is clearly still dominating iretsystems of the RD and the RL for every
value of . For ADCD the bifurcation diagram is more diffictd explain. In the system of
ADCD the fraction of the population using the mixsthtegy fluctuates more than in the
other two systems. When the memory parametemot 0 any more, these fluctuations will
be ‘remembered’ longer by the system, so that ig thhbre are more fluctuations in the

fraction of the population choosing the mixed stggtwhen is not close to 0.

Finally we will look at the dynamics of the systeaighe three behavioural models to see
whether the dynamics will converge to an equilibriand if so, which equilibrium will it be.
We are using descriptive statistics (see Figureé@determine this.

The fraction of the population choosing A seemsdioverge to the symmetric mixed strategy
Nash Equilibrium for the systems of the RD andRe This makes sense, because for these
systems the mixed strategy is dominating the pessastrategy.

We are testing the hypothesis, that the mean ofykems of the behavioural models is the
same as the symmetric mixed strategy Nash equilibrivVe already tested this hypothesis in
Chapter 4.6 for the dynamics of the UvA experiméihie 95 %-confidence interval for this
testis (0.523; 0.629). When the mean lies inititirval, then the null hypothesis of the
symmetric mixed strategy Nash equilibrium cannotdjected.
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RL, descriptive statistiog® with =0.5, =0.01 and =0.05

Figure 37: Descriptive statistics of** for three behavioural models: RD, ADCD and RL

.Notice thatb (is 0.6) lies in this interval, so when the mesglose td, this will not reject

the null hypothesis of the symmetric mixed stratBigygh equilibrium. In Figure 37 the means
of the dynamics of the three behavioural modelstmaseen. The means for the dynamics of
the RD, the ADCD and the RL are respectively 0.507/2848 and 0.5579. This means, that
the null hypothesis of the symmetric mixed stratBigygh equilibrium is only rejected for the
ADCD. The null hypothesis is not rejected for thaction of the population choosing A of the
RD and the RL.

Now we will go further with groups 6 and 4. Groupd&s the same strategies as group 5, but
there is also a FOH-prediction strategy addedisdhoup. Group 4 has an optimistic strategy
added.

7.2.2 Group 4 (pessimistic, optimistic and mixed)

In Chapter 6 we have seen the dynamics of therdiifedoehavioural models with the
pessimistic and optimistic strategy. In group 4sthewvo strategies are present, but as extra

third strategy the mixed strategy is used. We rterésted whether the mixed strategy will
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still be dominating and whether the symmetric misgdtegy Nash equilibrium will be the
equilibrium the dynamics of the different modeldlweach, just like in group 5.

The initial conditions are that 3/7 (3 participamtghis group have the mixed strategy) of the
population is using the mixed strategy, 2/7 (2ipgrants in this group have the pessimistic
strategy) of the population is using the pessimistiiategy and 2/7 (2 participants in this

group have the optimistic strategy) of the popolais using the optimistic strategy.

First we will look at the time series of the dynamof the systems of the three behavioural
models, shown in Figure 38.
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RD, time series ok with = 0.5 and =0.5 ADCD: time series ok®® with =0.5, =0.5 and =1
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RL: time series ok with =0.01 and =0.05

Figure 38: Time series o;t[“"a' for the three behavioural models

In comparison with group 5, discussed in paragfagtl it looks like the minimum of the
dynamics is higher than the minimum of the dynamicgroup 5. This can be explained by
the fraction of the population using the optimigicategy. Furthermore we see in Figure 38,
that the dynamics of the systems of the RD and\IDED have more fluctuations than the

dynamics of the RL.

In group 5 the mixed strategy was dominating theostrategy. We will now see whether

this also happens in group 4. Agaitof the RD) and (of the ADCD) are O for the same
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reason these parameters were 0 in group 5. Wetagnévent that, in spite of the
performance, still a fraction of the populationaié using all three strategies.

First the fraction of the population using the thetrategies will be looked at for the

dynamics of the RD (see Figure 39).
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Figure 39:RD, time series ok™?, x* and x> with =0.5 and =0

The mixed strategy clearly gets dominated by therogtic and the pessimistic strategy. The
fraction of the population using the mixed strateggeen in the left graph of Figure 39 and is
almost O.

We will now look whether this dominating of the ratkstrategy also happens in the
dynamics of the system of the ADCD (see Figure 40).
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Figure 40 :ADCD, time series of™*’, x"* and x> with =0.5, =0.5and =1

The fractions of the population using the threatstyy has, just like in group 5, many
fluctuations, so it is less clear than in the gysté the RD, which strategy is dominating. But
when we look at the mean of the dynamics, we caclade that the mixed strategy is
dominated by the optimistic and the pessimistiategies.

Finally we look at the fractions of the three stpés in the system of the RL by looking at
Figure 41.
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Figure 41: RL, time series of™, x"* and x with =0.01, =0.05and =0.5
In this dynamics of the RL the mixed strategy isndwating the pessimistic and optimistic
strategy. The fraction of the population usingtiiged strategy is larger than the fractions of
the population using the optimistic or the pesdiimstrategy. So in the dynamics of the RL

another strategy is dominating than in the dynamidbe RD and the ADCD.

The effect of the memory parametewill be examined. For all systems of the three

behavioural models a bifurcation diagram is givefrigure 42.

1] 02 0.4 0.8 03 1 a 0.2 04 0.8 08 1

0.5 ADCD: bifurcation diagram ok®® with  =0.5

RD: bifurcation diagram of®®' with

0 0.2 0.4 0.6 03 1

RL: bifurcation diagram ofx®® with =0.01 and =0.05
Figure 42:Birfurcation Diagrams o£<f°‘a' with 7 (0,1) for the three behavioural models

The three graphs of Figure 42 are different, betdbnclusion for the systems of the three
behavioural models is the same. It seems the dlués of no importance on the fraction of
the population choosing A, except whers close to 0 (see ADCD) or wheris close to 1
(RD).
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We will now investigate the parameters, that aecdj for the behavioural models{RD)
and (ADCD). We set memory parametent 0.5. We will first look at the effect of

0 02 04 05 08 1

Figure 43: RD, Bifurcation diagram ox®® with 7 (0, 1) and =0.5

The dynamics seen in Figure 43 can be explaine&nVNtIs 1, the strategies are divided
evenly among the three strategies. The optimistategy gets 1/3 of the population and this
strategy let its fraction always choose sector e pessimistic strategy also gets 1/3 of the
population. The followers of this strategy neveoase sector A. Only a part of 0.5759 of the
fraction of the population using the mixed strategjgo 1/3, will choose sector A. So when
is 1, the fraction of the population choosing seétas 1/3 (optimistic) and 1/3*0.5759
(mixed), which is 0.5352.

Note that when is 1, no strategy will be dominating or dominateed¢cause every strategy

gets 1/3 of the population as followers.

Now we will see, that whether the effect oin the system of ADCD is the same as the

system of RD. In Figure 44 the bifurcation diagrain = with T (0, 1)is shown

=0 =0.5 =1

Figure 44: ADCD, Bifurcation diagram ok with 7 (0, 1) and =0.5

The dynamics of ADCD here looks more complicateahtthe dynamics of the RD. The

dynamics of the system are easy to explain whesnl. Then the fraction of the population
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using the different strategies is equal to thedahdonditions. The fraction at time 0 of the
optimistic strategy (0.2857) and the fraction atdiO of the mixed strategy (0.4286) times
that part of the fraction of the mixed strategy@$iag sector A (0.5759) is 0.5325. When we

look at Figure 44 we see the dynamics converge382% when becomes closer to 1.

Finally we will show whether the dynamics of thedets will converge to an equilibrium.
We will do this by looking at Figure 45 and testthg null hypothesis of the symmetric
mixed strategy Nash equilibrium, just like we telsie paragraph 7.2.1.
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Figure 45: Descriptive statistics otf“a' for three behavioural models: RD, ADCD and RL

Looking at Figure 45 again we can see that the miycgof the RD and the RL are in the
neighbourhood of the symmetric mixed strategy Neghilibrium.

The 95 %-confidence interval for testing whether ean of the dynamics is different from
the symmetric mixed strategy Nash Equilibrium iS#3; 0.629). When the mean lies in this
interval, then the null hypothesis of the symmetniged strategy Nash equilibrium cannot be
rejected. In figure 44 the means of the systenthethree behavioural models can be seen.
The means for the dynamics of the RD, the ADCD thiedRL are 0.5753, 0.4913 and 0.5756.
This means, that the null hypothesis of the symimatixed strategy Nash equilibrium is only
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rejected for the system of the ADCD. The null hyasis is not rejected for the systems of
the RD and the RL.

7.2.3 Group 6 (mixed, pessimistic and FOH)

Instead of adding the optimistic strategy, as wasedn group 4, in group 6 two FOH-
prediction strategies are added to the mixed amghéssimistic strategy of group 5. This is the
first group, where a prediction strategy is usesl sfated before, when the prediction rule
predicts a higher wage in sector A then the styaddgp let its user makes the choice for
sector A. When the prediction is lower than the &vafjsector B, the strategy will choose
sector B.

In Appendix 3 we show, that 4 participants in tieup have the mixed strategy, 1 has the
pessimistic strategy and 2 participants have 2gifit kind of FOH-prediction strategies.
Therefore the initial conditions in this group & of the population is using the mixed
strategy, 1/7 of the population is using the pesdimstrategy, 1/7 of the population is using
the first FOH-prediction (see Appendix 3, participd) and 1/7 of the population is using the
second FOH-prediction rule (see Appendix 3, paréot 7).

First we will look at the time series of*® for the systems of the three different behavioural

models, which is seen in Figure 46.

RD, time series ok®* with = 0.5 and =0.5 ADCD: time series ok®* with =0.5, =0.5 and =1

0
DE\//\/\NW\/\/\/\/\/WMHUU\
04

RL: time series ok®* with =0.01 and =0.05

Figure 46: Time series o;tf"‘a' for the three behavioural models
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It is remarkable, that the mean clearly seems hititea in the two groups before.
Furthermore the dynamics of the system of the ADE€8mooth and the dynamics of the

system of RL shows more fluctuations.

Also for this group we will look whether there is@ategy dominating or dominated.

Figure 47: RD, time series ok™ " with =0and =0.5

For both the dynamics of the RD and the ADCD theedistrategy is dominating the other

strategies. In Figure 47 the time series of thetiiva of the population using the mixed
strategy is shown for the system of the RD. Thetimries ofx™* for the dynamics of the

ADCD looks the same, so that is why there is n@lgraf this model in Figure 47.

In the system of the RL the mixed strategy is datiing, but not as convincing as the
strategy was dominating in the system of the RDtaedADCD. Figure 48 shows the time
series of the fraction of the population usingrhiged strategy in the system of the RL. The
fraction is around 0.6, while the same fractiothia systems of the RD and the ADCD was

near 1.
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Figure 48: RL, times series ok™*" with =0.01, =0.05 and =0.5

The effect of , and is the same as discussed in paragraph 7.2.2, sallwefer to that
paragraph for an extensive specification of theaff of these parameters on the dynamics of

the fraction of the population choosing A.
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The last question remaining is, whether the dynamfdhe models of the three behavioural
models in this group will converge to a Nash eguilim.

In Figure 49 with the time series of the differembddels it already looked like the dynamics
are around the symmetric mixed strategy Nash dxjiuitn.

For the testing whether the mean of the differgmiaghics is the same as the symmetric
mixed strategy Nash equilibrium we use the santeatethe one that was used in paragraphs
7.2.1 and 7.2.2. For a full description we willeefo these paragraphs. The 95% confidence-
interval of the test is (0.523; 0.629). We will ube descriptive statistics of Figure 49. The
means of the fraction of the population choosingaeA in the three models are 0.5817
(RD), 0.5825 (ADCD) and 0.6102 (RL).

This means, that the null hypothesis of the symimatixed strategy Nash equilibrium is

never rejected for the systems of the three behaaionodels.
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Figure 49: Descriptive statistics of* for three behavioural models: RD, ADCD and RL
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7.2.4 Group 3 (optimistic, mixed and FOH)

This group is discussed after group 6 on purpass.like group 6 group 3 has 2 FOH-
prediction strategies (see Appendix 3, participdrasid 6) and the mixed strategy. But
instead of the pessimistic strategy this groupgains the optimistic strategy.

The initial conditions in this group are that 447participants in this group have the mixed
strategy) of the population is using the mixedtstgg, 1/7 (1 participant in this group has the
optimistic strategy) of the population is using timistic strategy, 1/7 of the population is
using the first FOH-prediction (see Appendix 2 tiggvant 4) and 1/7 of the population is
using the second FOH-prediction rule (see Appe@dparticipant 6).

First we will look at the time series of* for the three different behavioural models, which

is shown in Figure 50.

RD, time series ok®® with = 0.5 and =0.5 DCD, time series ok®® with =0.5, =0.5 and =1

.
o PN AP gAY
04

RL, time series ok*® with =0.01, =0.05and =0.5

Figure 50: Time series of*® for the three behavioural models

Compared with the time series of the fraction @f population choosing sector A in group 6,
the time series of group 3 for the different bebaval models shows more fluctuations.
However the mean fraction of the population chogsiector A is not higher then in group 6,

although we expected this because we changed Hsepstic strategy in an optimistic one.

We will now see by looking at Figure 51, whethe thixed strategy also dominates in this

group.
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In the dynamics of the RD the mixed strategy is ohating the other strategies completely.
The fraction of the population using the mixedtstgy is 1. In the other two models (ADCD

and RL) the mixed strategy is also dominating.

RD: time series o™ with =0 and =0.5 ADCD: time series ofk™*with =0 and =0.5

RL, time series ok™®® with =0.01, =0.05and =0.5

Figure 51: Time series oitmixed for the three behavioural models

The difference is that the fraction of the popwatusing the mixed strategy is not 1. So the

mixed strategy is not dominating the other strategiompletely.

The effects of the other parameters are similgreoip 6. That is why, we won’t discuss them

for this group.

Finally we will test whether the dynamics of thedets of the three behavioural models in
this group will converge to a Nash equilibrium.

For testing whether the mean of the different dyiearis the same as the symmetric mixed
strategy Nash equilibrium we use the same tesefmsdwith the 95% confidence-interval of
(0.523; 0.629). We will use the descriptive statssbf Figure 52. The means of the fraction
of the population choosing sector A in the threedats are 0.5817 (RD), 0.6816 (ADCD) and
0.6625 (RL).

This means, that the null hypothesis of the symimatixed strategy Nash equilibrium is not
rejected for the RD. For the ADCD and the RL thé hypothesis is rejected.

86



o7 Statisti
Series stotaal
4 Serieg hotaal
L Number of D ata points 100 057
Mean 0581689 Mumber of Data points 100
032 Median 0575313 Mean DE1EsD
043 Median 0.505924
Maximum 0576181
0553338
0224 HMinimunn 0575610 . G
Standard Deviation 0005792 0147522
Wariance 0.000034 0.021763
0114 i
Skewness -0.385474 1142290
Kurtosis 0961253 2.856953
[ o
0576 0576 0576 0576 0576 0576 0576 0660 0745 0@30 0§15 1000
1At icti total i —_ — Tt icti total H — —
RD, descriptive statisticg,”* with =0.5, =0 ADCD, descriptive statisticg,”* with =0.5, =0 and
0.34 Statistics
Series totaal
2] Number of Data points 100
Mean 0662438
0.20 tedian 0705233
Maimum Q731077
014 Hinimurm O50R5E2
Standard Deviation 0021684
Vaiiance 0.006672
o7
Skewness 0871420
Kurtosis 1.862125

0
0507 0551 053 0641 08636 0731

RL, descriptive statistiog® with =0.5, =0.01 and =0.05

Figure 52: Descriptive statistics of* for three behavioural models: RD, ADCD and RL

7.2.5 Group 2 (optimistic, pessimistic, naive and®H)

Groups 1 and 2 are different than the other grotips.difference with the other groups is
that groups 1 and 2 have much more strategies.pGr@ven has all discussed strategies: the

mixed, the optimistic, the pessimistic, the naind EOH-prediction strategies.
We will start with discussing group 2. This grougsh FOH-prediction strategies (see
Appendix 2, participants 1, 2, 5 and 6), the omimistrategy, the pessimistic strategy and the

naive strategy.

The initial conditions in this group are 1/7 forchastrategy.

First we will look at the time series of*® for the dynamics of the three different

behavioural models. The time series is shown infeid3.
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RD, time series ok®® with = 0.5 and =0.5 ADCD, time series o£°® with =0.5, =0.5and =1
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RL, time series 0k with =0.01, =0.05and =0.5

Figure 53: Time series o;tf"‘a' for the three behavioural models

In Figure 53 the dynamics of the ADCD has morettiations than the other two behavioural
models. All three fractions of the population chiagsA of all three behavioural models seem
to be aroundb. As was stated befoteis in the 95% confidence interval of the symmetric
mixed strategy Nash equilibrium abds close to the symmetric mixed strategy Nash

equilibrium. So the dynamics of the models can Aksaround the Nash equilibrium.

The interesting part of this group is that thisugra@loesn’t have the mixed strategy unlike the
other 5 groups. We will look whether another sggteill be dominating.

In Figure 54 the three most important time serfressaown of the fraction of the population
choosing some strategy in the dynamics of the RD.

In the dynamics of the RD will one of the FOH-piitin strategies and the optimistic
strategy be dominating. The naive strategy is cetapyl dominated, which can be seen in
Figure 54, because the fraction of the populatlorosing the naive strategy is 0.

The other 3 FOH-prediction strategies and the p@s8c strategy have fractions around 0.1.
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Figure 54: RD: time series off"*, x™ and x"" with =0 and =0.5

Furthermore in Figure 55 the three most importane tseries are shown of the fraction of the

population choosing some strategy in the dynami¢seoADCD.
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Figure 55: ADCD: time series off°"*, x™ and x"" with =0, =0.5and =1

Just like in the dynamics of the RD have one FOeHijmtion strategy and the optimistic
strategy the highest fraction of the populatiomgghe strategy. The other strategies, so

including the naive strategy, have dynamics lookikegthe graph ofc" in figure 55.
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Now we have discussed which strategy is dominatirige dynamics of the RD and the
ADCD, so that leaves us the dynamics of the RL.

06
04
02

Figure 56:RL: time series o™ with =0.01, =0.05, =0.5

In Figure 56 only the fraction of the populationngsthe optimistic strategy is shown,
because this was the only strategy with a higleatifon than the other strategies. So in the

dynamics of the RL the optimistic strategy is doating.

We will look what the effect of the memory parametés. Figure 57 gives bifurcation

diagrams of the three different behavioural models.

0 0.2 0.4 0.6 03 1 o 02 0.4 06 ng 1

RD: bifurcation diagram ofx®® with =0 ADCD: bifurcation diagram ofx® with =0

] 0.2 04 08 03 1

RL, bifurcation diagram ok®® with =0.01 and =0.05

Figure 57: Bifurcation diagrams 0)‘<t‘°ta' with 7 (0,1) for RD, ADCD and RL

For the three graphs in Figure 57 the influence isfthat when gets larger the bifurcation
diagram becomes more scattered. This is a differéatt than we saw in Chapter 6 and in
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the paragraphs before. We find it difficult to eadpl why the dynamics become more
scattered when gets closer to 1.

Finally we will test whether the dynamics of thedets of the three behavioural models in
this group will converge to a Nash equilibrium.

We use the same test as before for testing wh#tkanean of the different dynamics is the
same as the symmetric mixed strategy Nash equilibriThis test has a 95% confidence-
interval of (0.523; 0.629). We will use the destivip statistics of Figure 58. The means of the
fraction of the population choosing sector A in theee models are 0.5736 (RD), 0.5103
(ADCD) and 0.5849 (RL).
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Figure 58: Descriptive statistics of* for three behavioural models: RD, ADCD and RL

The null hypothesis of the symmetric mixed stratBiggh equilibrium is only rejected for the

dynamics of the ADCD. The null hypothesis is ngéceed for the RD and the RL.

7.2.6 Group 1 (mixed, optimistic, pessimistic, nae&zand FOH)

As stated before group 1 contains all the strasegigcussed: the mixed strategy, the
optimistic strategy, the pessimistic strategy,rtbhé/e strategy and one FOH-prediction

strategy.
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In Appendix 3 we see at group 1 that there is arégypant with the FOH-prediction

strategy, one with the naive strategy, one withpgsimistic strategy, two participants with
the mixed strategy and 2 with the optimistic siggtel herefore the initial conditions are 1/7
for the fraction of the population choosing the FPiddiction strategy, the naive strategy and
the pessimistic strategy and 2/7 for the fractibthe population choosing the mixed strategy

and the optimistic strategy.

First we will look at the time series of*® for the dynamics of the three different

behavioural models. The time series is shown 9.

100 125 150 175 200 100 125 150 175 200

RD, time series ok®® with = 0.5 and =0.5 ADCD, time series ok** with =0.5, =0.5and =1

100 125 150 175 200

RL, time series oK with =0.01, =0.05and =0.5

Figure 59: Time series of*® for the three behavioural models

This is the first group where the time series bffake behavioural models have fluctuations.
It looks like the dynamics are aroubdNote thatb lies in the 95% confidence interval of the

symmetric mixed strategy Nash equilibrium.

Next we will look at which strategy will be domiirag in this group with all strategies. In
Figure 60 the time series of the three most imporategies are shown.
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Figure 60: RD, time series of™’, x* and x°*with =0.5 and =0
The mixed strategy is again dominating. Although plessimistic and optimistic strategies do
not disappear entirely. The fraction of the popalausing the naive and the FOH-prediction

strategies are 0.

Furthermore in Figure 61 the time series of thetfoas of the population choosing the

different strategies are shown for the ADCD.

EOH 1 mixed naiv
X, X

100 123 150 173 200 100 125 150 175 200

pes opt
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Figure 61: ADCD, time series of o1, x™e!, xrav, xP* and x**with =0, =0.5and =1

It is remarkable, that the mixed strategy is nohaating at all. In these dynamics of the

ADCD the optimistic and pessimistic strategiesdominating.

In Figure 62 the time series of the fractions @ flopulation choosing the different strategies

are shown of the dynamics of the RL.
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Figure 62: RL, time series of fractions of the eli#int strategies with=0.01, =0.05 and =0.5

In the RL the mixed strategy has the highest foactif the population. The pessimistic and
the optimistic strategy have substantial fractiohpopulation, but not as high as the mixed
strategy. What is left of the population is notnsach, so the naive and the FOH-prediction

strategies don’t have many followers in the popaoiat

Finally we will test whether the dynamics of thedets of the three behavioural models in
this group will converge to a Nash equilibrium.

We use the same test as before for the testinghehtte mean of the different dynamics is
the same as the symmetric mixed strategy Nashilequih. This test has a 95% confidence-
interval of (0.523; 0.629). We will use the destivip statistics of Figure 63. The means of the
fraction of the population choosing sector A in theee models are 0.5781 (RD), 0.5485
(ADCD) and 0.5845 (RL).

The null hypothesis of the symmetric mixed stratBiggh equilibrium is only rejected for the

dynamics of ADCD. The null hypothesis is not regetctor the all dynamics.
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Figure 63: Descriptive statistics of* for three behavioural models: RD, ADCD and RL

7.2.7 Summary
At the beginning of this chapter and also in Chaptere formulated four research questions,

which we wanted to answer in this chapter.

The first question was: which equilibrium will beached in the El Farol game under an
evolutionary framework? We have seen that the mstetegy symmetric Nash equilibrium
gives a good description for the fraction of th@ylation choosing sector A, for most cases.
At the end of each group we tested whether the roétdre dynamics of the three behavioural
models was the same as the symmetric mixed strétegly equilibrium. In 12 of the 18 tests
(6 groups x 3 behavioural models) the null hypathetthe symmetric mixed strategy Nash
equilibrium was not rejected. Now we could concltitkee symmetric mixed strategy Nash
equilibrium is a good predictor of the fractiontb&é population choosing sector A in this El
Farol game.

This would be a bit short sighted however. Testmgther the mean doesn’t deviate from the
equilibrium, doesn’t implicate the dynamics lookdithe symmetric mixed strategy Nash
equilibrium completely. There can be done morestdiite autocorrelation test. When the

mean is around the symmetric mixed strategy NasHilegum, but there is autocorrelation
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the test is not valid. We will illustrate this poinith an example. Figure 64 is a fragment of

Figure 59 from paragraph 7.2.6 (groupl, RD).

Figure 64: RD, time series of®® with = 0.5 and =0.5

Although the null hypothesis of the symmetric mixedchtegy Nash equilibrium of the RD in
this group was not rejected in Figure 64 we cleselg some autocorrelation, because the

fluctuations are looking dependent on each other.

The second question was: which strategies willigarthe evolutionary competition. Will the
fraction choosing sector A" ) go to a Nash Equilibrium?

We have seen in this chapter, that for many caseésredels the mixed strategy will
eventually dominate. This is illustrated in Table for parameter values=0.5, =0, =0,

=0.01 and =0.05. In Table 11 per group and per behaviouralehthe dominating strategy
is given.

A strategy is called dominating, when the fractodthe population playing this strategy is
higher than any of the fractions of the populataying another strategy. When in Table 11
the dominating strategy is with *, then the fraotf the population choosing this strategy is
more than 0.5. When there is ** the fraction isreeenverging to 1.

It is interesting to see, that only the fractiortied population playing the mixed strategy is in
some cases converges to 1. With no other stralegystthe case.

Table 11 shows that for the RD the mixed stratezgpaime the dominating strategy 4 out of 6
times, for the ADCD 3 out of 6 times and for the Rbut of 6 times.
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Group RD ADCD RL
1 Mixed* Opt & Pes* Mixed
2 FOH & Opt FOH & Opt Opt
3 Mixed** Mixed* Mixed**
4 Opt & Pes Opt & Pes Mixed
5 Mixed** Mixed* Mixed**
6 Mixed** Mixed** Mixed*

Table 11: Dominating strategies per group and bébaral model with =0.5, =0, =0, =0.01, =0.05. When
a strategy is followed by a star (*) this means fitaetion of the population choosing this strategyigher than

0.5. When there is a double star (**) this fractiemen converged to 1.

The third question was: what are the differencewéen the three behavioural models? The
dynamics of the RD shows a lot of symmetric mixedtegy Nash equilibrium behaviour.
Also the mixed strategy is often dominating. The@Dshows more fluctuations in the
dynamics of the population choosing sector A. Atgiking at table 11 the mixed strategy is
less dominating than in the other two behaviouratiets. The dynamics of the RL looks
often like the dynamics of the RD. Although it seetime dynamics of the system of RL

converges slower.

The last question was: what is the influence ofdifferent parameters of the behavioural
models on the questions above?

The memory parameter, which was present in all three behavioural modalyg, has
influence on the dynamics when it is near O or heW is not near O or 1, the dynamics of
the models are qualitatively the same. This efféctwas also seen in the article of Bottazzi
and Devetag (2003), discussed in Chapter 3.1.4veSget this parameter often at 0.5.

The two parameters used in the dynamics of the RD, andised in the dynamics of the
ADCD, have a similar effect on the fraction of fhgpulation choosing sector A. It makes
sure all strategies get some fraction of the pdfmriaWhen these parameters converge to 1
the effect of a dominating strategy will vanishdaminish.

Finally the effects of and in the systems of the RL are discussed. We hace shificulty to
see what would happen to the dynamics of this systaen the values of the parameters

and would change. Because when there are more thaat2gies, we had to make sure the

s

s )
summation of the fractions was 1. And this was dhé/case when/—"t‘ was small

enough. So to make sure we set the valuesaofl at 0.05 and 0.01.
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Chapter 8 Summary and Conclusion

In this thesis we used the El Farol game to exanvimat happens when we assume bounded

rationality of the agents instead of assumingrafilonality which is the benchmark in many

theoretical models. Bounded rationality is examibgdising an experiment with human

subjects (see Chapter 4) to find strategies anadmrhavioural models (see Chapter 5) to

model the switching between the strategies. The memearch questions were:

1. Which equilibrium will be reached in the El Far@rge under an evolutionary
framework?

2. Which strategies will survive the evolutionary caetipon?

3. What are the differences between the three behalimwodels?

4. What is the effect of different parameters of tleédwioural models on the outcome of the
questions above?

In Chapter 2 we calculated the pure strategy anthsstric mixed strategy Nash equilibria,

under the assumption of full rationality. Theseikla are used to see when we relax the

assumption of rationality whether the dynamics stduld converge to these equilibria.

In Chapter 3 we investigated this relaxing of tesuamption of rationality by looking at

different kind of articles. These articles discuks@nority games, which were played with

real human beings and looked at the outcome oétgames. Summarizing these articles the

symmetric mixed Nash equilibrium seemed to giv@adgdescription when looking at the

aggregate level. However on the individual leveidglly no convergence to a symmetric

mixed strategy Nash equilibrium is observed.

In Chapter 4 we looked at a UVA experiment to filiifierent strategies to use later. We made
the difference between choice strategies and predistrategies, because both groups
couldn’t find strategies for all participants. It&pter 7 we compared these two strategy
approaches by rebuilding the UvA experiment witingshe found strategies and doing
simulations on the computer. We found that the @hsirategies were performing much
better than prediction strategies and so we useskthktrategies later on.

In Chapter 5 we showed three standard behaviourekis, which describe how agents in a
simulation can switch between different strategies game.

In Chapter 6 we started with simulation, but weduso simple strategies: optimistic and
pessimistic strategies. We did these simulatiorsetowhat would happen with the dynamics.
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In the second part of Chapter 7 we did the simurtestiwith the strategies found in Chapter 4
and the three different behavioural models in théd @xperiment game, which was El Farol

like. We found that the four questions asked eaclelld be answered as follows:

The first question was: which equilibrium will beached in the El Farol game under an
evolutionary framework? We have seen, that almlesiys the mixed strategy symmetric
Nash equilibrium was reached, under certain circanmtes. At the end of each group we
tested the mean of the dynamics of the systentseathree behavioural models whether it
was the same as the symmetric mixed strategy N@shbeium. In 12 of the 18 tests (6
groups x 3 behavioural models) the null hypothesihe symmetric mixed strategy Nash
equilibrium was not rejected.

The second question was: which strategies willigarthe evolutionary competition? We
have seen in this chapter that the mixed strategyiinany cases and models the dominating
strategy.

The third question was: what are the differencewéen the three behavioural models? The
dynamics of the system of RD shows a lot of symimetixed strategy Nash equilibrium
behaviour. Also the mixed strategy is often domntatThe ADCD shows more fluctuations
in the dynamics of the population choosing sectofie dynamics of the RL looks often like

the dynamics of the RD. Although it seems the dyioarof the RL converges slower.

The last question was: what is the influence ofdifferent parameters of the behavioural
models on the questions above?

The memory parameter, which was present in all three behavioural modalyg, has
influence on the dynamics when it is near 0 or heW is not near O or 1, the dynamics of
the models are qualitatively the same. So we septrameter often at 0.5.

The two parameters used in the dynamics of the RD, andised in the dynamics of the
ADCD, have a similar effect on the fraction of fhgpulation choosing sector A. It makes
sure all strategies get some fraction of the pdfmriaWhen these parameters converge to 1
the effect of a dominating strategy will vanishdaminish.

Finally the effects of and in the systems of the RL are discussed. We hace shificulty to
see what would happen to the dynamics of this systaen the values of the parameters

and would change. Because when there are more thaat2gies, we had to make sure the
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summation of the fractions was 1. And this was dhé/case Whel’—{ﬁ was small
enough. So to make sure we set the valuesaofl at 0.05 and 0.01.

The influence of the parameters on the dynami¢eemodels looks not so surprising. Partly
this was caused by the restrictions on some paembecause of how the UVA experiment-
game was made. Partly because the parametersitlefb@vrestrictions were not that
surprising to predict how their influence woulddiethe dynamics, like memory parameter

( ) and part of the population not choosing the updatnodel (parametersand ) .

Finally we want to make some recommendations fahér research. First we looked at three
standard behavioural models. There are a lot madeis to use, like the Ants model of
Kirman (1993).

Second the standard models could be adjustedxéngge in the RL model there is no
fraction of the population not using the updatiakpr like the parameteris causing in the

RD model.

Third we could also look at different payoff furanis then at the one used in the UvA
experiment or chapter 6.

Fourth different kind of games can be examinedudher research and examine whether
also with other games the symmetric mixed strateégsh equilibrium or other equilibria can
be good predictors.

Fifth and finally we want to notice the testingtbé symmetric mixed strategy Nash
equilibrium and also testing of the mixed strateglgich in this thesis was only based on the
mean of the dynamics (symmetric mixed strategy Naghlibrium) or the mean of the
number of choosing sector A (symmetric strateghjskind of testing is easy, but also has
its short comings, because for example autocoroela not looked at in these kinds of tests.
So we recommend to test this and see whether thikdwehange the answers of the thesis-

questions
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Appendix 1 Table of descriptive statistics of UvA xperiment

Payoff
(choices
#al Payoff Payoff |  without # changes | Inconsistent
Group 1 #a| # periods| (predictions)| (choices) error) | # Changes|  (# periods - 1) Choices| Mixed?
part 1 17 0.34 2,225 4,881 4,925 21 0.4286 2 0
part 2 36 0.72 3,033 5,166 5,100 25 0.5102 2 0
part 3 24 0.48 2,855 4,945 4,950 28 0.5714 4 1
part 4 45 0.90 3,165 5,345 5,275 8 0.1633 7 0
part5 28 0.56 2,850 5,061 5,050 22 0.449 0 1
part 6 2 0.04 3,117 4,951 4,950 4 0.0816 4 0
part 7 49 0.98 3,155 5,441 5,375 2 0.0408 0 0
Mean 28.71 0.57 2,914 5,113 5,089 16 0.3207 2.71 1
Payoff
(choices
#al Payoff Payoff |  without # changes | Inconsistent
Group 2 #a| #periods| (predictions)| (choices) error) | # Changes| (# periods - 1) Choices| Mixed?
part 1 40 0.80 3,390 5,479 5,400 3 0.0612 20 0
part 2 11 0.22 3,359 4,897 4,925 7 0.1429 25 0
part 3 5 0.10 3,510 4,915 4,925 10 0.2041 26 0
part 4 42 0.84 3,765 5,364 5,300 14 0.2857 8 0
part5 43 0.86 3,607 5,434 5,425 9 0.1837 2 0
part 6 19 0.38 3,505 4,925 4,875 11 0.2245 19 0
part 7 48 0.96 3,521 5,508 5,450 4 0.0816 0 0
Mean 29.71 0.59 3,522 5,217 5,186 8 0.1691 14.29 1
Payoff
(choices
#al Payoff Payoff |  without # changes | Inconsistent
Group 3 #a| #periods| (predictions)| (choices) error) | # Changes| (# periods - 1) Choices| Mixed?
part 1 50 1.00 2,537 5,267 5,200 0 0 19 0
part 2 24 0.48 3,015 4,884 4,900 22 0.449 9 1
part 3 31 0.62 2,992 4,930 4,875 15 0.3061 1 1
part 4 34 0.68 2,743 4,931 4,900 24 0.4898 1 1
part 5 16 0.32 2,844 4,804 4,800 20 0.4082 0 0
part 6 32 0.64 2,929 4,979 4,900 19 0.3878 15 1
part 7 9 0.18 2,614 4,851 4,875 9 0.1837 0 0
Mean 28 0.56 2,811 4,949 4,921 16 0.3178 6.43 1
Payoff
(choices
#al Payoff Payoff |  without # changes | Inconsistent
Group 4 #a| # periods| (predictions) | (choices) error) | # Changes|  (# periods - 1) Choices| Mixed?
part 1 31 0.62 3,259 4,954 4,925 14 0.2857 5 1
part 2 49 0.98 3,058 5,341 5,275 2 0.0408 10 0
part 3 29 0.58 2,819 4,870 4,775 26 0.5306 10 1
part 4 9 0.18 2,236 4,838 4,825 7 0.1429 25 0
part 5 34 0.68 3,129 4,995 4,950 29 0.5918 8 1
part 6 44 0.88 3,216 5,316 5,250 11 0.2245 14 0
part 7 1 0.02 2,188 4,951 4,975 2 0.0408 0 0
Mean 28.14 0.56 2,844 5,038 4,996 13 0.2653 10.29 1
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Payoff
(choices
#al Payoff Payoff |  without # changes | Inconsistent

Group 5 #a| # periods| (predictions) | (choices) error) | # Changes|  (# periods - 1) Choices| Mixed?
part1 29 0.58 3,467 5,051 4,975 23 0.4694 7 1
part 2 35 0.70 3,432 5,118 5,125 24 0.4898 0 1
part 3 32 0.64 3,367 5,190 5,150 13 0.2653 4 1
part 4 3 0.06 3,214 4,946 4,925 6 0.1224 30 0
part5 37 0.74 3,388 5,257 5,175 7 0.1429 2 0
part 6 29 0.58 2,972 5,073 5,075 35 0.7143 8 1
part 7 35 0.70 3,166 5,244 5,175 14 0.2857 0 1
Mean 28.57 0.57 3,287 5,126 5,086 17 0.3557 7.29 1

Payoff

(choices

#al Payoff Payoff |  without # changes | Inconsistent

Group 6 #a| # periods| (predictions)| (choices) error) | # Changes|  (# periods - 1) Choices| Mixed?
part 1 38 0.76 3,550 5,158 5,150 12 0.2449 9 0
part 2 33 0.66 2,934 5,089 5,025 12 0.2449 0 1
part 3 25 0.50 3,333 5,049 5,025 17 0.3469 14 1
part 4 23 0.46 3,397 4,933 4,875 23 0.4694 11 1
part 5 1 0.02 3,441 4,982 4,975 2 0.0408 1 0
part 6 35 0.70 3,289 5,087 5,075 16 0.3265 1 1
part 7 39 0.78 3,617 5,367 5,275 16 0.3265 0
Mean 27.71 0.55 3,366 5,095 5,057 14 0.2857 5.14 1

Table A.1: Summary of different groups. “#a” is ttedal amount of A a subject has chosen in the gaiagt

periods is the column #a divided by 50. Payoff dpo#ons) is the payoff a subject would get wheingighe

expectation payoff function. Payoff choices shdwsayoff of a subject when using the choice pdyafition.

Payoff (choices without error) is the same functiomt without the stochastic term Total changes are the total

of changes a participant makes during all periddéchanges / (# periods — 1) is the total changeddiiby

50 — 1 = 49. A choice is strange when they paréinippredicts a wage in sector A lower than 1004ilit

chooses sector A or when he predict a wage hidteer 100, but chooses sector B. In the last colurerrésult

of the mixed strategy test is shown with 1 asmyplothesis is not rejected and 0 is rejected.
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Appendix 2 Results of OLS estimations of the predimn

Group | C PG | P | PSS | RS | PSS | Py | P, | Ps | P, | Ps | R AC
1 102.6 0 0 0 0 0 -0.114 0 0 0 0.105 0.324 no
2 74.2 0 0 0 0 0 0.314 0 0 0 0 0.722 np
3 91.2 0 0 0 0 0 0.080| 0 0 0 0 0.083 np
4 91.8 0 0 0 0 0 0.160 0 0 0 0 0.143 np
5 107.6 0 0 0 0 0 0 0 0 0 0 0 nag
6 109.3 0 0 0 0 0 0 0 0 0 0 0 ng

Group 1 c e e e e e R? AC

Subject P P> P.s Py P.s Py P> P.s P4 P.s
1 119.5 0 0 0 0 0 0 -0.2238 0 0 0 0.085 no
2 56.4 0 0 0 0 0 0.444 0 0 0 0 0.681 np
3 127,6 0 0 0 0 0 0.163 -0.3711 -0.2( 0 0.2116 0.69310
4 102.3 0 0 0 0 0 0 0 0 0 0 0 nag
5 84.2 0 0 0 0 0 -0.164 0 0 0 0.317 0.383 rjo
6 81.6 0 0 0 0 0 0.141] 0 0 0 0 0.464 np
7 36.4 0.377 0 0 0 0 0.2643 0 0 0 0 0.548 no

Group 2 e e e e e

amioet | € | PG| P% | PSS | P | P | Pa| Po| Pa| Pg| Ps| R | AC
1 15.9 0 0 0.318 0 0 0.769 0 0 -0.232 0 0.893 no
2 124.0 0 0 0 0 0 0.204 0 -0.32 0 0 0.281 no
3 63.7 0.380 0 0 0 0 0 0 0 0 0 0.142 np
4 48.2 0 0 0 0 0 0.588| 0 0 0 0 0.728 np
5 82.4 0 0 0 0 0 0.249 0 0 0 0 0.304 np
6 15.2 0.379 0 0 0 0.272 0.19Y 0 0 0 0 0.411 no
7 33.0 0.496 0 0 0 0.202 0 0 0 0 0 0.309 no

Group 3 e e e e e

amat | C L P P | PSP | PSS | Py | P, | Ps| Pu| Ps| R|AC
1 65.2 0.311 0 0 0 0 0 0 0 0 0 0.097 np
2 101.8 0 0 0 0 0 0 0 0 0 0 0 ng
3 125,5 0 0 0 0 0 -0.22¢ 0 0 0 0 0.147 no
4 84.6 0 0 0 0 0 0.164| 0 0 0 0 0.084 np
5 98.1 0 0 0 0 0 0 0 0 0 0 0 ng
6 82.5 0 -0.238 0 0 0 0.38§ 0 0 0 0 0.803 no
7 74.6 0 0 0 0 0 0.238 0 0 0 0 0.189 np

Group 4 e e e e e

suject | € | PG| PG | PG| P | PSS | Pa| Py | Ps| P | Ps | R |AC
1 59.6 0.419 0 0 0 0 0.12(q -0.103 0 0 0 0.270 no
2 115.5 0 0 0 0 0 0 0 0 0 0 0 ng
3 111.2 0 0 0 0 0 0 0 0 0 0 0 nag
4 109.9 0 0 0 0 0 0 0 0 0 0 0 Yes
5 119.6 0 0 0 -0.321 0 0.213 0 0 0 0 0.313 no
6 146.9 0 -0.397 0 0 0 0 -0.139 0.14 0 0 0.267 no
7 113.4 0 0 0 0 0 0.379 0 -0.41 0 0 0.198 no

Group 5 e e e e e

sujecr | € | PG| PG | PG| P | PSS | Pa| Py | Ps| P | Ps | R|AC
1 108.1 0 0 0 0 0 0 0 0 0 0 0 na
2 108.8 0 0 0 0 0 0 0 0 0 0 0 ng
3 91.6 0.329 0 0 0 0 -0.224 0 0 0 0 0.6116 no
4 21.2 0 0 0 0 0 0.455 0 0 0.30b 0 0.288 rio
5 53.8 0.269 0.362 0 0 0 -0.131 0 0 0 0 0.441 no
6 114.1 0 0 0 0 0 0 0 0 0 0 0 na
7 110.8 0 0 0 0 0 0 0 0 0 0 0 Yes

Group 6 e e e e e

suject | € | PG| P | PG| P | PSS | P | Po| Ps| P | Ps | R|AC
1 108.9 0 0 0 0 0 0 0 0 0 0 0 ng
2 138.1 0 0 -0.320 0 0 0 0 0 0 0 0.107 no
3 86.4 0 0 0 0 0 0.204| 0 0 0 0 0.284 np
4 107.7 0 0 0 0 0 0 0 0 0 0 0 ng
5 52.4 0 0 0.478 0 0 0 0 0 0 0 0.228 np
6 124.4 0 0 0 0 0 0 0 0 0 0 0 ng
7 110.4 0 0 0 0 0 0 0 0 0 0 0 Na

Table A.2: The results of the OLS estimations arery first for the groups in total and then pepgp for each

participant. First all 5 lags were estimated. Sulpsently the least significant variable was elimigguntil all

remaining variables were significant at 5%. Theifgiven in column 13. We tested for serial autmalation

(see last column) with the Q-statistic at 5%, tcshee that there is no specification error.
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Appendix 3 An overview of prediction and choice sttegies

group 1 FOH Prediction Choice
Subject 1 2 Strategy Strategy

1 -0,311 0,138 0,205 FOH FOH

2 0,468 0,079 -0,003 FOH Naive

3 X X X Mixed Mixed

4 -0,107 0,288 0,072 FOH Optimistic

5 X X X Mixed Mixed

6 0,18 -0,065 -0,039 FOH pessimistic

7 0,22 0,456 0,045 FOH Optimistic
group 2 FOH Prediction Choice
Subject 1 2 Strategy Strategy

1 0,843 -0,064 -0,043 FOH FOH

2 0,08 0,23 0,216 FOH FOH

3 0,223 0,351 -0,134 FOH Pess

4 0,545 -0,057 0,056 FOH Naive

5 0,302 0,106 -0,689 FOH FOH

6 0,236 0,316 -0,064 FOH FOH

7 0,009 0,317 0,035 FOH Opt
group 3 FOH Prediction Choice
Subject 1 2 Strategy Strategy

1 -0,004 0,355 0,079 FOH Opt

2 0,087 0,199 0,031 FOH Mixed

3 -0,281 -0,078 0,047 FOH Mixed

4 0,243 -0,098 -0,091 FOH Mixed

5 -0,224 0,132 0,092 FOH FOH

6 X X X mixed Mixed

7 0,14 0,075 0,108 FOH FOH
group 4 FOH Prediction Choice
Subject 1 2 Strategy Strategy

1 0,017 0,419 0,103 FOH Mixed

2 0,104 0,195 0,144 FOH Opt

3 -0,045 0,001 0,041 FOH Mixed

4 0,025 0,411 0,191 FOH Pess/ naive (pess)

5 0,248 0,075 -0,025 FOH Mixed

6 0,029 0,065 0,117 FOH Opt/ naive (opt)

7 X X X pess Pess
group 5 FOH Prediction Choice
Subject 1 2 Strategy Strategy

1 0,232 0,047 -0,076 FOH Mixed

2 0,076 0,013 -0,032 FOH Mixed

3 -0,286 0,045 0,26 FOH Mixed

4 0,645 -0,069 -0,185 FOH Pess

5 X X X Fundamentalist Fundamentalist

6 -0,34 -0,085 0,259 FOH Mixed

7| 0.298783 0,347 -0,148 FOH Mixed
group 6 FOH Prediction Choice
Subject 1 2 Strategy Strategy

1 0,189 -0,084 -0,084 FOH FOH

2 -0,025 0,145 0,015 FOH Mixed

3 0,162 0,259 0,055 FOH Mixed

4 -0,035 0,148 0,072 FOH Mixed

5 X X X Pess Pess

6 -2,15 -0,068 0,803 FOH Mixed

7 -0,019 0,122 -0,05 FOH FOH

Table A.3: FOH-estimations and prediction and clecstrategies per participant. Yellow means diffiére

strategies between prediction and choice strategies
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Appendix 4 Formulas of simulation of different groups

Formulas Group 1

Predictions FOH

wy, =-0.224" wj,_, +0.132" w,_, + (1+0.224- 0.132)" 10935+ 0.092" (W, , - W,

Choice:

whenw, 3 100 thens™"* = (p/°"* 1- p/°") = (10)
and Whenwft < 100 thens™"* = (p/°"* 1- p/*") = (0)

=(p™ 1- p™) = (10" t
= (1 pi) = ()" t

When reve = (L0)and u3¥*< 100 thens™"* = (0)
when " = (01) and u/3"*> 100 thens™"* = (10)
naive _ naive
elsest =S5
mlxed - (pmlxed mlxed) - (O 57590 424:0 "
Utility
FOHl — (1 n)uFOHl + mld:OHl
- (1 n)UOpt + m[q)pt
pes — (1 n)u pes 4 mlqpes
nalve — (l n)unalve + mldlaive
mlxed — (1 n)umlxed + mldnixed
mean _ FOH1 opt pes naiv mixed
u o= (u T Hu U o +u™) 15
RD
FOH1 -  FOH1
u
XIFOHl = (1- 9) FOH1 - FOHl opt X[ pes~ :Jes naiv - naiv mixed~ mixed
R SV G THa S TR S Uy
Xpes' u pes
XIPES: (l- e) FOH1 - FOHl opt - opt+ ;es' :Jes naiv - naiv+ mixed - | mixed
XU EXTT UTTEX U X Uy
Xopt' Uopt
opt _— t t
XT - (1- e) FOH1 - FOHl opt - opt + y Pes” pes 4 naiv - | naiv + mixed - | mixed
X U EXTT UTTEXT U X Uy
onaiv - | naiv
; u
tha'V = (1- e) FOH1 - FOH1 opt ties' ;es naiv -, naiv mixed -~ | mixed
XU XS U U M
mixed -~ , mixed
. u
X'[mlxed: (1- e) FOH1 - FOHl opt -, opt Xt pes~ [t)es naiv - naiv mixed - | mixed
XU XU XU M
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ADCD

FOHl
exp
XIFOHl = (1- a) FOHl mixed naiv pes a XtF?Hl
eXp ) + eXp(J ) + eXp(J )+ EXp(u )+ eXp(J
uopt
exp( tb )
t — opt
= (1- a) uFOHl uopt umixed lJnalv u, pes +ta’ X pl
exp(‘T)+exp( tb ) +exp(— , ) rexpt, ‘ )+exp( )
pes
exp( lb )
ties = (1 - a) FOH 1 U OPt y mixed y nav U Pes ta’ Xt’?elSt
EXIO(l )"‘exp(l )"‘exp(t )"‘EXIO(l )+exp(‘b)
exp( tb )
tha"’ = (1 B a) u FOH 1 opt U mixed U naiv u pes ta ’ Xln'ajl-v
exp(" ) + exp(" , ) exp(= ) +exp(= )+ exp(— )
mixed
| exp(“‘ ) |
Xtmlxec' = (1_ a) FOH 1 opt umlxed una|v u.Pes ta’ Xtrt“i(ed
exp(" ) + exp( , ) rexp(= ) +exp(= ) +exp(— - = 5)
RL
XFOHL 4 t(uo™ :'Loll(;mea/n)(l' Pi) ® uFoHI . ymeana g xFOH13 7
tuo™ - u™(p,) FOHL , mean FOH1
xFOrL = xFOH1 4 Z L u ) ® ufoHt .y < 0, X! </
100 éu FOHL _ | meam)
t’ ! ® else
100
X’[oplt [(utopt _1lgr;e,an3(1_ pit ® uopt mean3 0, X, opt3 1. /
£ (U - U™ ( p.
Xtopt — tiis (Ut 100t, S )( p|t) ® uopt mean <0, Xtopt
opt _  mean
4 M ® else
100
t naiv _ meal 1- ! ) )
the;.lv (ut 1(l;t0' r;)( p|t) ® utne;uv _ utmean3 0, thalv 31- /
naiv naiv 4 (utnaiv B utmean)( pt) i
- + it) ® ynav - mean<0 naiv
X X1 100" / %
A Ch )® else
100

108



F(UPE - u™a(1- p.
ties+ (Ut u, )( p|t) ® utpes_ utmeang 0, ties 31-/

-t 100" /
t pes _ | mea !
)(tpes = Xt;?eis_l_ (Ut 103& /n)(plt) ® utpes_ utmean< 0, ties </
pes _ mean
t’ Ch U )® else
100

mixed mean
Xtmixed + f(ut - ut )(1' pit) ® utmixed mean3 O Xt mixed 3 1-/

! 100" /

_ l‘(umixed _ umean)(p‘ ) ) )
mixed = pes t t it ® umlxed _ umean < O, mixed
X, X3 100/ ) ) X;
R Gl ) ® else
100

Total choosing sector A:
total _ ,FOH1 -

X=X

mixed ~

X%

naiv -

FOH1 opt - opt pes~ pes
P X PptEXTT POtX

nalv

P
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Formulas Group 2

Predictions FOH

WS, =0.843 W - 0.064 W, , + (1- 0.843+0.064) 11135- 0.043 (W, -
Wi, =0.080° W, , +0.230" w_, + (1- 0.090- 0.230) 11135+ 0.216 (W, , -
WS, =0.302 W, +0.106" w_, +(L- 0.302- 0.106)" 11135- 0.689" (W, -

e

Choice:
When Wft 3 100 then FOH1 _ (ptFOHl,l pFOHl) — (:LO)

and whenw, <100 thens™®"** = (p/*"** 1- pf°*) = (0]
whenwg, 3 100 thens™"? = (p°*? 1- p°"%) = (10)
and whenws, < 100 thens " = (pf°*? 1- p°*?) = (03
whenws, 3 100 thens™"® = (p/*"*1- pf°*®) = (10)
and whenws, < 100 thens™"* = (p/*"**1- p/***)= (01
whenwg, 3 100 thens™®"* = (p/"* 1- p/***) = (10)
and Whenwjt <100 thens™"* = (p/°"* 1- pf°"*)= (0))
=(p*1- p™) = @Oy" t

sP° = (pf1- p) = 0" t

When reve = (1,0)and u?*°< 100 thens™"* = (0))

when " = (01) and u/3"*> 100 thens™"* = (10)
else Stnalve —_ Stna;.lve

Utility

FOHl - (1 n)UFOHl +/m OH1

FOH2 —_ (1 n)UFOHZ +m OH 2

FOH3 —_ (1 n)uFOHS + mﬁfOHS

FOH4 = (1 n)uFOH4 + mﬁfOH4
- (1 IT)UOpt + mlqopt

pes = (l mu pes+ md)es

nalve — (l ”)unalve + mﬁ’]aive

Wi, =0236 W, +0.316 w,, + (L- 0.236- 0.316)" 11135- 0.064" (W , -

Vvt—2)+et
W.o) t €
Wt—2)+et
Vvt—2)+et

umean_(uFOHl uFOHZ+uFOH3+uFOH4+uopt+upes+unalve)/7
RD
FOH - | FOH
e
XIFOH:(]'_ 6) FOH - | FOH FOR2 - FORR FORB - FOI—;(t FO}—ll;llt FOH4 t- opt es” es naiver naive+7
XU XU X U T U T WP X U Ut 7
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FOR2 - [FOR2

X0 = (1- ¢ X U +€
FOH. - | FOH FOR2 -~  FOR2 FOR8 - | FORB FOHt -~ | FOHA pt- , opt pes” , ,pes aiver | naive
X X T AT U X Y AT P U g 7
FOH3 ~ | FOH3
X = 1. ¢ X Y +€
FOHL -~ |, FOHL FOH2 - | [FOH2 FOH3 -~ , \FOH3 FOH4 - | FOH4 pt- , opt pess , pes naiver | naive
X U +X U +x U X T S e T o S Tt 7
FOH4 - FOH4
FOH: - (1_ @ XI u[ +§
Xt X[FOH - u[FOI—l FOH2 - FOR2 FORB - , [FORB

X

_'_)g L{ _'_)g U[ +XIFOHL' L{FOH!I +>§opv u[opt_i_)gpes' u[pes_i__'_xnaive' L{naive 7

opt- , opt
p P! e

=(- 9 AR +£
FOHI.' u[FOHI. FOR2 »  FOR2 FOH3 - | FOH3 FOH4 - FOH4 pes” naiver | naive 7

X XU AT U T U T U Yy

es pes
¥ (- X

X

e
){OI-]' L{FOI-l ){OB LfOE[ ){OB’ L{FOB ){OI-A' L{FOH ){)pt' qopt_'_){pes l'{pes_'__'_){‘ualve lI\auve 7

aive. a_ 8 ){)nalve Lralve
)(Ol-l' L[FOI-l )(OI{' l’{IEOHE XFOH, l’{FOH XFOHL' L[FOHL ){)pt' L[opt_l_){pes' L{pes_'__'_){]alve l’{wnve 7

ADCD
FOHl
exp
XTFOHl = (1- a) uFOHl FOH2 FOH3 FOH4 opt pes mlxed +a XIF?Hl
exp tb )+exp(J )+exp(J )+exp(J )+exp(J )+exp(J ) +exp - )
FOH2
exp%)
XTFOHZ = (1- a) FOH1 FOH?2 FOH3 FOH4 opt pes mlxed ta’ XTFCl)HZ
exp(u‘b ) +exp( tb )+exp%)+exp( a )+exp( - )+exp(J )+exp(J
FOH3
expf—)
XtFOHs = (1- a) FOHL FOH2 FOH3 FOH4 opt pes mixed ’ XI'?HS
expl’, ) rexptt ) rexptt ) vexpt ) vexpl’ ) +expl )+ epr—)
| FoH4
exp%)
XTFOH4 = (1- a) FOH1 FOH?2 FOH3 FOH4 opt pes mlxed ta’ XTFCl)H4
exp(u‘b ) +exp( tb )+exp%)+exp( a )+exp( - )+exp(J )+exp(J
opt
exp( )
Xtopl =(-a) FOH1 FOH 2 FOH3 LFoHa RS uPes mixed +ta’ Xtoplt

)+exp( t

exp(‘T)+exp(utb )+8XIO(t )+8XIO(t )+8XIO(t ) +exp( tb )

111



y.Pes

eXpH)

FOH1 FOH 2 FOH3 FOH 4 opt pes mixed

eXpLHeXpL)*‘eXp\‘ )+e><|0\‘b )+e><IOL)+e><|OgJ )+9XPL)

x*=(1- a)

nalv

exp( )
nalv = (1 a) FOH1 FOH 2 FOH3 FOH4 opt pes mlxed
exp Ib )+eXp\‘b )"'eXp\lb )+exp61 )+exp(u )+exp(u )+exp(u
RL
[(u FOH1 _ umean)(l_ p )
FOH1+ t t it ® uFOHl_ umeang O, FOH1 3 1_ /
X1 F &BO, / t t X
FOH1 FOH1 l‘ (ut B tmean)( p't ) FOH1 mean FOH1
= + —~® u - U <0, </
X X1 100° 7 . t t X
g WU o grge
100
[(u FOH2 _ umean)(l_ p )
FOH 2 + t t it ® uFOHZ _ umean3 O, FOH2 3 1_ /
X1 FongO, / t ¢ X
FOH 2 FOH 2 l‘(ut B utmean)(p‘t) FOH 2 mean FOH 2
= + —~®u - U™ <0, </
X X1 100° 7 . t t X
R A JE
100
l‘(u FOH3 _ umean)(l_ p )
FOH3 + t t it ® uFOH3 _ umean3 O, FOH3 3 1_ /
X1 FOZ,LQO, / : ¢ X
FOH3 FOH3 [ (ut B utmean)( p't ) FOH3 mean FOH3
= + —~®u - U™ <0, </
X X1 100° 7 . : ¢ X
o LU g e
100
[(u FOH4 _ umean)(l_ p )
FOH 4 + t t it ® uFOH4 _ umean3 O, FOH4 3 1_ /
X1 FO%BO' / t ¢ X
FOH 4 FOH 4 l‘ (ut - tmean)( p‘t ) FOH 4 mean FOH 4
= + —~®u - U™ <0, </
X X1 100° 7 N t t X
R ) FE
100
[(uopt _ umean)(l_ p )
Opt t t it ® uopt _ umean3 O, opt 3 1_ /
X1 100" / : ¢ %
l‘ (uopt _ umean)( p )
opt — pes 4 t t it ® uopt mean < O opt
X X1 100° t X
opt _ | mean
t’ " - u™) ® else
100

-y pest
X1

naiv

+a’ X1
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naiv

l‘ meam (1. n. ) )
naiv (ut ut ")( plt) ® utnalv _ utmean3 0, thalv 3 1_ /

%1 100" /
naiv. — naiv [(U o - umean)(pi ) naiv mean naiv
M= X+ tloof/ = ® U™ - u™<0,x;
- (U 1-0(l;t ) ® else
pes _ mean _ )
ti_nis + f(Ut ll(J)tO, /)(1 p|t) ® utpes _ utmean 3 0, ties 31-/
t(u pes _ mea !
XIPES = Xt;?eis_l_ ( t 100t, /n)(plt) ® utpes_ utmean< 0, ties </
pes mean
ac 10?; ) ® else
Total choosing sector A:
X;(otal = XtFOHl ptFOHl XtFOHZ ptFOH2 +XtFOH3 ptFOH3 XtFOH4' ptFOH4 +Xtopt ptopt+xtpes' ppes+)(tna|v' ptnaw

113



Formulas Group 3

Predictions FOH

W, =-0224" WS, +0.132 w,, + (1+0.224- 0132 10435+ 0.092 (W, , -
Wg, =0.140° W5, +0.075  w,, + (1- 0.140- 0.075)" 10535+ 0.108 (W, , -

Choice
when w;, 3 100 thens™"" = (p/°™ 1- p/°™) = (L0)

and whenw;, < 100 thens’®™ = (pf®™ 1- pf®™) = (01

whenwg, 3 100 thens™®"? = (p/°"* 1- p/*"?) = (10)
FOH 2

and WhenW§t < 100 thens™"? = (p/°"? 1- p°"?)= (0))
— opt opt — n
=(p, ) = (10)
m|xed — (pm|xed m|xed) — (O 57590 4243 n
Utility
FOHl — (1 n,)uFOHl + md:OHl
FOH2 — (l ”)uFOHZ +m OH 2
- (1 IT)UOpt +m, pt
m|xed — (1 n)umlxed + mldnixed
umean = (UFOHl + uFOH2 + uopt + um|xed)/4
RD
FOH1 - | | FOH1
FOH1 - (1_ e) X’[ ut E
XT FOH1 - utFOHl +XIFOH2 FOH2 X,[Opt utopt +X{m|xed utmixed 4
FOH2 FOH2
FOH 2 = (1_ e) X’[ ut E
XT FOH1 - utFOH1 +X'[FOH2 FOH2 Xtopt utopt +Xtm|xed utmixed 4
"= (- o) o + 8
FOH1 UtFOH1+XtFOH2 FOH2 Xtopt utopt +X{m|xed utmi><ed 4
mlxed mixed
Xtmixed — (1_ e) X’[ ut E
FOH1 - utFOH1 +XIFOH2 FOH2 Xtopt utopt +Xtm|xed utmi><ed 4
ADCD
FOHl
exp
FOH1 _ FOH1
X =@-a) FOHl FOH 2 mlxed ta’ X,

el )+expﬁt

exp

Yrexpl

Wt—Z) + et

Wt—Z) + et
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FOH 2

exp
FOH2 _ FOH?2
X =(@-a) FOH1 FOH 2 opt mlxed ta’ X1
exp ) + expr )+ expr )+ exp(l
exp(u : )
ties =(@-a) FOHl FOH2 mlxed +ta’ ties
exp ) + eXp(u )+ eXp(u ) + eXp(J
mlxed
exp
mixed _ mixed
1-
X - ( a) FOHl FOH 2 mlxed +ta’ X1
exp ) + expr )+ expr ) + exp(l
RL
FOH1 4 (UtFOHl B utmean)(l' p't) FOH1 _ mean FOH1
+ L~ ® u 30, 31-/
X1 F &BO / i %
FOH1 For1 , L (ut - utmean)( p't) FOH1 mean FOH1
= + “~® u -u <0, </
% X1 100° / . L h %
g WU o ee
100
Fomz L (utFOH2 - utmean)(l' p‘t) FOH?2 mean FOH 2
+ = ® u - u ™" 3 0, 31-/
X1 Fongo / t t X
FOH 2 Fonz , L (u mean)( pt FOH?2 mean FOH?2
= + = ® u -u <0, </
% Xea 00/ - t .
t’ U - u™) ® else
100
HU - U™ A- py)
Opt t t it ® uopt _ umean3 O, opt 3 1_ /
X1 100 / i i X
l«.(uopt _ umean)(p )
opt — pes 4 it ® uopt mean< O opt
% X1 100° 7/ t X
opt _ , mean
t’ M ® else
100
mixed f(utmixed - utmean)(l_ pt) mixed _ mean mixed
+ L~ ® u 30, 31-/
X1 190, / L X"
mixed mixed t (utmlxe - utmean)(p't) mixed mean mixed
= + “~® u -u <0, </
% X1 100 / d L i X
t ’ M ® e|se
100
Total choosing sector A:
Xttotal —_ XtFOHl pFOHl + XTFOHZ ptFOH2 + Xtopt opt + Xtm|xed ptmlxed
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Formulas Group 4

Choice:
%= (pP1- pI*) = (O)™ t
m|xed —_ (pm|xed m|xed) - (0 57590 424:D|||
opt — (popt Opt) - (110) n t

Utility

upes — (1 n)u pes 4 mlqpes
m|xed —_ (1 n)umlxed + mldnixed
— (1 ﬂ)UOpt

utmean — (utpes + utmlxed + utopt)/3
RD
pes- | pes
U,
tieS = (1- 6’) pes - pes )n(1t|xed mixed opt -, opt +£
XPETufE ™ UM P w3
ixed - d
Xtmixed _ (1- e) Xtmlxe utm|xe +£
pes - pes mixed ~ mixed opt - opt
UPSs + M U™ U 3
opt ~ , opt
ties = (1- e) pes ~ pes r)::xed thmixed opt -~ , opt +£
ut Xt ut + X’[ ut 3
ADCD
pes
exp
pes — M _ pes
Xt - (1 a) pes mixed opt +a Xt
t
expl’ )+ expeJ el )
mlxed
exp
mixed _ mixed
X - (1- a) pes mixed opt +ta’ X1
exp(” )+ exp(‘ ) +exp(™ )
exp(* )
Pt — 1. s opt
- (1 a) pes mixed opt ta Xo
exp(” ) rexp(™, ) rexp(” )
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RL
pes _ mean _ )
Xt[_)is + [ (ut ut )(1 plt) ® utpes _ utmean 3 O' ties 3 1_ /

100" /
U - ™) (p,)
pes — pes 4 t t it ® upes_ umean< O, pes</
X X1 100 / h t %
pes _ , mean
t’ W™= u™ ® else
100
_ t mixed _ A mean 1- ] _ )
rﬂxed + (ut ut, )( pn) ® utm|xed _ utmean3 0, XtmIXEd 31-/
100" /
. ) [(umlxe _ umean)(p_ ) . )
mixed = mixed + t t it ® umlxed _ umean< 0, mixed </
X X1 100 / d h t %
t’ M ® else
100
[(uopt _ umean)(l_ p )
opt + t t it ® uopt _ umean3 O, opt 3 1_ /
X1 100" / : ¢ %
l«.(uopt _ umean)( p )
opt — opt + t t it ® uopt _ umean< O, opt </
X, X1 100° 7/ : ¢ %
opt _ , mean
t’ " - u™ ® else
100
Total choosing sector A:
)(fotal — ties' ptpes + Xtmixed' ptmixed + Xtopt 4 ptopt
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Formulas of group 5

Choice:
== (1 )= 01 "
m|xed = (pm|xed m|xed) - (O 57590 4243 n

Utility

upes — (l /7)U pes+ mlqpes
mlxed — (1 ”)umlxed + mldﬂixed

utmean — (utpes + utmlxed) /2

RD
pes -~ pes
X (e ) L8
pes - pes 4 mixed -, mixed
XU X 2
mixed -, mixed

i u e
X'[mlxed = (1- e) pes - ties mfxed mixed +§
TR

ADCD
pes

exp

X'[pes = (l- a) pes mlxed a tiis
EXP&I )"'EXP&I
m|xed

exp

Xtm|xed = (1_ a) - m|xed a Xtm|lxed
exp(”, )+exp(“
RL
es 4 [(U e umean)(l_ P; ) es mean es
Xt‘.)]_ : 10to, / = ® utp - U 20, ti $1-/
es es 4 l‘(U Pes- umean)(pi ) es mean es
A 100‘,/ L ® uPe- um™ < 0, xPe < /
pes _ . mean
t’ - U ® else
100
mixed mean
Xtrﬂxed + l‘(ut :_]-(;J(t) /)(1' pit) ® umixed mean3 0, Xt mixed 3 1 _ /
mixed _ mea

Xtmixed _ Xtr?ilxed + l'(Ut o n)(pn ® um|xed utmean< 0, Xtmixed </

(U mixed _ utmean)

100

t’ ® else

Total choosing sector A:
total — |, pes~ pes mixed - mixed
S S b i
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Formulas Group 6

Predictions FOH
w;, =0.189" w;,, -

Choice:
When Wft 3 100 then FOH1 _ = (ptFOHl,l pFOHl) = (:LO)

and whenw;, < 100 thens’®™ = (pf®™ 1- pf®™) = (01
whenwg, 3 100 thens™"? = (p°*? 1- p©"%) = (10)
FOH 2 _(p pFOHZ)_ (O,l)

and whenw;, < 100 thens FoRz

pes — (ptpes,l' ptpES) = (0,1)"" t
mlxed — (p mlxed) - (O 57590 424:0 n

mlxed

Utility
FOH:L - (1 n,)uFOHl +m OH1
FOH2 —_ (1 n)UFOHZ +m OH 2

upes — (1 n)u pes 4 mlqpes
m|xed = (1 n)umlxed + mldnixed

umean — (U FOH1 + utFOH2 + utpes + utmixed) /4

0.084" w,_, + (1- 0.189+0.084)  10934- 0.084," (W, -
We, =-0.019 w2, +0.122" w,, + (1+0.019- 0.122)" 10934- 0.050° (W, , -

RD
FOH1 - | FOH1
XtFOHl — (1_ e) Xt ut
FOH1 - FOH1 FOH2 - FOH 2 pes - pes mixed - mixed
U+ XU A XM
FOH2 - FOH?2
XtFOH2 - (1_ e) Xt ut
FOH1 - FOH1 FOH2 - FOH 2 pes - pes mixed ~ mixed
U=+ X% XU X Uy
pes - pes
X =(1- e) Xt
t FOH1 - FOH1 FOH?2 - FOH 2 pes - pes mixed ~ mixed
U+ X +XPET U+ ™ ]
mlxed mixed
Xtmixed = (1_ e) Xt ut
FOH1 - FOH1 FOH2 - FOH 2 pes - pes mixed - mixed
u = +X XU X Uy
ADCD
FOH1
exp
FOH1 _
X =(@-a) FOHl FOH 2 pes mlxed +ta’
exp ) + exp(’ )+ exp(’ )+ exp(’
FOH2
exp
FOH2 _
X =(@-a) FOHl FOH2 pes mlxed ta’
exp ) + eXIO(u )+ eXIO(u )+ eXIO(u

e
4
e

+ =
4

e
4

e

W)+ €&

W)+ €

4

FOH1

X1

FOH 2

X1

119



pes

exp(*, )

x> =@1- a) FOHl FOH 2 pes mlxed +a’ X7
exp ) + exsz )+ exsz )+ exsz
mlxed
exp
Xtmlxed =(@-a) FOHL FOH2 pes mlxed +a’ Xtmllx b
eXp ) + eXp(J )+ eXp(J )+ eXp(J

RL
[(UFOHl _ umean)(l_ p )
FOH1+ t t it ® uFOHl meang O FOH1 3 1_ /
X1 F &EO, / h X
t(u - U (py) FOH1 , mean FOH1
XtFOHl — XtF_cl)Hl 4o\ t ® u - U™ < 0, X, </
100 éu FOH l -u mean)
t’ ® else
100
FOH 2 [(utFOHZ B utmean)(l_ pt) FOH 2 mean FOH 2
+ . ®u - U3 0, 31-/
X1 FongO / t t X
£ (u u" ") (py)
FOH2 _ FOH 2 |t FOH 2 mean FOH 2
X=Xy ® u - uTT <0 <
100 éu FOH2 _ umean)
- : ® else
100
f(U pes _ umean)(l_ P )
pes 4 t t it/ ® yPes . ymeans 0, Pes3 q_ /
X1 100° 7 t t X
f(U pes _ umean)(p_ )
pes — pes 4 t t it ® uPes- ymean < 0, pes « /
X X1 100° / t t X
pes _ | ,mean
t’ W™ - U ® else
100
. f(umixed _ umean)(l_ p ) .
mixed + t t it ® umlxed mean3 O mixed 3 1-/
X1 1(30, / t X"
mixed mixed [(utmlxe B utmean)(p't) mixed mean mixed
= + —~® u - u <, </
X X1 100 / d h t %
P Gl ) ® else

100

Total choosing sector A:
total FOH1 - FOH1 FOH2 - FOH 2

Xt = Xt p + Xt pt + ties pes + Xtm|xed ptm|xed
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