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2 Theoretical background

2.1 Introduction

This chapter provides some theoretical background to the subsequent experimental
chapters. The main focus is on the magnetic potentials, both static and rf-dressed,
in which we trap and manipulate ultra cold atoms.

This chapter is organized as follows. In Sec. 2.2.1 we present the basic principles
behind magnetic trapping and expressions for the field of the Ioffe-Pritchard trap.
In Sec. 2.2.2 we discuss the scaling laws that govern the magnetic field gradient in
microtraps and show why the use of microtraps is favorable. We present our specific
microtrap geometry: an atom chip structure with two separate wires. Sec. 2.2.3
contains expressions for several approximations to the static magnetic field generated
by the atom chip. We continue in Sec. 2.3 by characterizing the rf-dressed potential
that comes about when a radio-frequency magnetic field is added to the static field.
The expression for the potential is presented in Sec. 2.3.1 after a brief description
of the derivation. A detailed derivation is contained in Appendix A. We describe
the way we generate the rf field on our chip and present expressions for the rf field
strength in Sec. 2.3.2. Section 2.3.3 describes the transverse shape of the rf-dressed
potential ranging from single well, double-well to Mexican hat. We discuss the
influence of electrostatic fields on the trapped atoms in Sec. 2.4 and conclude the
chapter with a description of the in-trap density distribution for both a (quasi-)BEC
and a thermal cloud (Sec. 2.5).

2.2 Magnetic trapping

2.2.1 Basic principles

The idea of magnetic trapping [89] is that in a magnetic field B, a neutral atom with
a magnetic moment μ will have quantum states whose Zeeman energy increases with
increasing field and states whose energy decreases, depending on the orientation of
the magnetic moment compared to the field. The increasing-energy states, called
low-field seekers, can be trapped in a region where the magnitude of the magnetic
field has a minimum. The decreasing-energy states, called strong-field seekers cannot
be trapped because it is impossible to create a static magnetic field maximum in
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10 Theoretical background

free space. For a proof, see Wing’s theorem [90] which is specifically about magnetic
fields while the similar Earnshaw theorem [91] only deals with electrostatic fields
(see also [92] and [93]).

In this thesis, we restrict ourselves to relatively modest magnetic fields, where
the Zeeman shift is linear in |B| and the magnetic interaction energy can be written
as

Umag = −μ ·B = mFgFμB|B|, (2.1)

where mF is the magnetic quantum number of the atomic state (with angular mo-
mentum F), mF = −F, . . . , F , gF is the Landé factor and μB the Bohr magneton.
Low-field seekers have gFmF > 0 while the strong-field seekers have gFmF < 0. Of
course the mF = 0 state can also not be trapped magnetically since its potential is
independent of the magnetic field. In all our experiments we work with 87Rb that
in the electronic ground state has either F = 1 or F = 2. We use F = 2.

For stable trapping it is necessary that the kinetic energy of the atom is lower
than the depth of the magnetic potential well, and that the magnetic moment
must move adiabatically in the magnetic field. The latter condition means that
the changes in B (due to movement of the atom through the field) must be slow,
such that the orientation of the magnetic moment can follow and stay unchanged
with respect to the field. This adiabaticity condition can be expressed as

dωL

dt
� ω2

L, (2.2)

with the Larmor frequency, ωL, the frequency at which the magnetic moment pre-
cesses about the magnetic field direction, (corresponding to the Zeeman-level spac-
ing), given by

ωL =
gFμB

�
|B|. (2.3)

The adiabaticity condition is violated in regions where the magnetic field is too small.
In such a region the spin cannot follow the changing direction of the magnetic field
and might flip its orientation relative to the field, changing mF in Eq. (2.1). A spin
flip like this is named after the Italian physicist Majorana and the associated loss of
atoms from a magnetic trap is known as Majorana losses [94]. Sukumar and Brink
have studied Majorana spin flips in detail [95]. It is the task of the experimentalist
to construct his magnetic trap such that even in the magnetic field minimum the
field is sufficiently large to prevent losses.

Ioffe-Pritchard trap

The standard magnetic-field configuration used nowadays for magnetostatic trap-
ping of ultracold gases has a non-zero minimum field, and is known as the Ioffe-
Pritchard trap [39,40]. Near the minimum of the potential, the field can be expressed
in cylindrical coordinates (r, φ, z) as [89,96]

Br = −Gr sin 2φ− Crz,
Bφ = −Gr cos 2φ,
Bz = B0 + Cz2 − 1

2
Cr2,

(2.4)
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where G is the transverse field gradient and C the curvature of the longitudinal
field. Note that the field is realistic in the sense that it is divergence- and curl-free,
satisfying the two relevant Maxwell equations

∇ ·B = 0, (2.5)

∇×B = 0. (2.6)

Close to the field minimum, the field strength B = |B| may be expanded yielding

B = B0 + Cz2 +
1

2

(
G2

B0

− C

)
r2, (2.7)

which is rotationally symmetric.
This expression is based on the conventional configuration in which the longitu-

dinal confinement is generated by coils positioned such that their axes coincide with
the axis of the trap. Although useful as a first approximation for chip-based Ioffe-
Pritchard traps, the expression is often not sufficient, because of the close proximity
and non-symmetric positioning of the field-producing currents on atom chips. In
the following we will present a number of useful expressions for the magnetic field
generated by atom chips based on current-carrying wires.

2.2.2 Atom-chip magnetic traps

The standard way to calculate the magnetic field of a current-carrying structure is
to integrate the Biot-Savart law [97], i.e.,

dB =
μ0I

4π

dl× r

r3
, (2.8)

where dB is the magnetic field generated by a piece of wire dl, I is the current in
the wire, μ0 the permittivity of free space, r the position vector connecting dl and
dB, and r = |r|.

For instance, by integrating the Biot-Savart law [Eq. (2.8)] in one direction we
find the well-known result of the magnetic field of an infinitely long, thin, straight
wire through which a current I runs. In cylindrical coordinates the only non-zero
component is

Bφ =
μ0I

2πr
, (2.9)

where the radial coordinate r is the distance from the wire. In fact, this result is
also valid for a cylindrical wire with radius R, as long as r > R. The gradient in
magnetic field strength is

∂|B|
∂r

= − μ0I

2πr2
. (2.10)

The latter result can be used to illustrate the power of microfabricated atom chips
over other (cm-sized) traps based on current-carrying wires. Consider the magnetic
field at the distance r ≥ R from an infinitely long cylindrical wire with radius R.
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Figure 2.1: Geometry of the two most important field-generating wires in our magnetic trap. Di-

mensions of the wires are not to scale. The upper wire has a rectangular cross section and lies on a

substrate. It has a Z-like shape. The wire underneath the substrate has a circular cross section. The

coordinate system is also indicated.

Decreasing the wire radius decreases the minimum r. Reducing r from cm-scale
to μm-scale increases the magnetic field gradient by orders of magnitude, allowing
for much tighter traps, in which in it possible to perform rapid evaporative cooling
because the collision rate is so much larger. In reality the scaling is often some-
what less favorable than suggested by Eq. (2.10), because the allowed current also
depends on r [49,88,98]. For instance, when heat removal is the limiting factor, the
following scaling is relevant: The generated power in the wire per unit length Pgen

is proportional to I2/R2. The power has to be removed via the outside area of the
wire, thus the removed power per unit length Prem is proportional to R. Equating
Pgen and Prem yields Imax ∝ R3/2, so that the maximum achievable gradient scales
as R−1/2, showing it is still favorable to reduce the wire diameter [99].

Wire geometry

A sketch of the geometry of two key wires in our atom chip assembly is shown in
Fig. 2.1 together with the coordinate system used. These two wires are closest to
the ultracold atoms in our static magnetic trap. In order to accurately describe the
magnetic trapping potential, we will need accurate expressions for the magnetic fields
they generate. The wire on top has the shape of a Z. It is part of the atom chip that
was made using micro-fabrication techniques (see Ch. 3). It lies on a flat substrate
and has a rectangular cross section and the central part has a length L. The two
ends of the chip wire are perpendicular to the central section. Such Z-shaped wires
are commonly used on atom chips [49,51], because (as we will see), when combined
with a homogeneous external field they generate a robust and strongly confining IP
trap, trapping the atoms at the center of the central section.

Intuitively it is easy to see why the Z-shaped wire gives a three-dimensional trap.
The central section, together with an external bias field in the y direction, provides
confinement in the y-z plane of Fig. 2.1, resulting in a waveguide along x. The field
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of the waveguide, together with a uniform field in the x direction, BI , is conveniently
described by

B =

⎛
⎝ BI

Gz
Gy

⎞
⎠ , (2.11)

where G the local field gradient of the wire and BI is the ‘Ioffe’ field, the field in the
direction of x that offsets the magnetic field minimum from zero. The expression
for the absolute field strength

|B| =
√
B2

I +G2 (y2 + z2), (2.12)

clearly shows the confinement in the y-z plane and the lack of confinement in the x
direction.

The two ends of the Z contribute to the longitudinal bias field, with the largest
contribution directly over the wire ends. As a consequence the middle of the central
section has lower longitudinal field, providing confinement longitudinally.

The second wire we call the miniwire. It lies underneath the substrate, has
a circular cross section and runs parallel to the two ends of the chip wire. The
miniwire generates an additional spatially varying field in the longitudinal direction
and allows to tune the longitudinal confinement of the Z trap. The exact details of
the trapping field will be calculated in the following sections.

We are interested in the field above the central part of the chip wire as this is the
place where we will trap and manipulate cold atoms. Thus the precise details of the
current paths in the wires beyond the edges of the sketch in Fig. 2.1 will be ignored
for now. The details of the wire ends do not substantially change the field geometry
near the atoms because these wire segments are so much further removed from the
atoms [cf. Biot Savarts law, Eq. (2.8)]. In order to obtain analytical expressions
we will assume that the wire ends extending beyond the edges of Fig. 2.1 continue
straight to infinity.

2.2.3 Realistic trapping fields

This section is devoted to finding realistic descriptions of the static trapping fields
of the two wires in Fig. 2.1. We will derive a useful expression by going from the
simple thin wire formula to increasingly complicated expressions. We start with the
miniwire, and take it to be aligned along y, infinitely long, and at a depth d below
the chip surface. Expressing Eq. (2.9) in Cartesian coordinates yields

B(x, y, z) =
μ0I

2π
(
x2 + (z + d)2

)
⎛
⎝ z + d

0
−x

⎞
⎠ . (2.13)

To find the gradients and curvatures that will be relevant later, we expand this
around (x = 0, z = z0 + d) to 2nd order in α = z−z0

z0
and β = x

z0
. This yields

Bx =
μ0I

2πz0

[
1− α+ α2 − β2

]
, (2.14)
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Bz =
μ0I

2πz0
β [1− 2α] . (2.15)

Long broad wire

In atom chip experiments the conductors often have rectangular cross section (cf.
Chap 3). Normally the width w of the wires is significantly larger than the thickness
h (w � h). In most experiments the distance of the trapped atoms to the conductor
is of the order of the width of the wire. Under these conditions it is inappropriate to
approximate the conductors as being cylindrical. A better approximation is that of
the infinitely long, thin broad wire. From integration of Biot-Savart for such a wire
centered at (y = 0, z = 0) and current flowing in the positive x direction we find:

By(x, y, z) = − μ0I

2πw

[
arctan

(
y + w/2

z

)
− arctan

(
y − w/2

z

)]
, (2.16)

Bz(x, y, z) =
μ0I

4πw
ln

[
(y + w/2)2 + z2

(y − w/2)2 + z2

]
. (2.17)

The field straight above the wire is

By(0, 0, z) =
μ0I

πw
arctan

( w
2z

)
, (2.18)

with a gradient along z of [49]

∂By

∂z
=

μ0I

π

2

w2 + 4z2
. (2.19)

Realistic Z wire

Modelling the central part of the Z wire as an infinitely long broad wire gives accurate
expressions for the transverse field and transverse gradient, but is in error when it
comes to the longitudinal confinement. To include the longitudinal confinement we
have to reduce the length of the central part of the Z and add the two ends extending
to plus and minus infinity in the y direction. One way to calculate this is to calculate
the field of an infinitely thin Z-shaped wire and integrate the result along a finite
width w in the y direction. This yields the magnetic field BZ of a Z wire with a
central section along x with length L = 2a and width w = 2b centered at the origin
and thin, infinitely long ends.

4π

μ0I
BZ(x, y, z) =

1

(x+ a)2 + z2

⎛
⎝ z

0
−x− a

⎞
⎠+

1

(x− a)2 + z2

⎛
⎝ z

0
−x+ a

⎞
⎠+

1

2b
[f(x+a,y−b, z)− f(x+a,y+b, z) + f(x−a,y+b, z)− f(x−a,y−b, z)] ,

(2.20)
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with the auxiliary vector f(x, y, z):

f(x, y, z) =
r

x2 + z2

⎛
⎝ z

0
−x

⎞
⎠+arctan

(xy
zr

)⎛⎝ 0
1
0

⎞
⎠+arctanh

(x
r

)⎛⎝ 0
0
1

⎞
⎠ , (2.21)

where r is:
r =

√
x2 + y2 + z2.

To describe our complete trapping field we have to add to this the field of the
miniwire, Eq. (2.13) at a depth d underneath the chip surface and the uniform field

Bbias =

⎛
⎝ Bbias,x

Bbias,y

0

⎞
⎠ , (2.22)

produced by external coils.
Equations (2.13), (2.20) and (2.22) yield a very accurate analytical approxima-

tion of the magnetic field that can serve as alternative for a full numeric simulation
of the trapping field. The most important simplifications in this analytical approach
are the thickness of the Z wire that is set to zero and the width of the two ends of
the Z wire, that is also taken to be zero. The influence of these simplifications can
be neglected in our experiment as the distance between the Z wire and the trap-
ping region is much larger than the thickness of the Z wire and the distance of the
trapping region to the ends of the wire is much larger than the widths of these ends.

Although suited to replace numerical simulations, the expression (2.20) is not
very useful for manipulation by hand. For this purpose it is better to approximate
the magnetic field near the trap center as

B(x, y, z) =

⎛
⎝ Bx,0 + C(x2 − z2)

Gz
Gy − 2Cxz

⎞
⎠ , (2.23)

where the coordinate system has been shifted in the direction of z such that the
origin coincides with the magnetic field minimum. The constant C relates to the
longitudinal trapping frequency like

ω‖ =

√
mFgFμB

m

d2Bx

dx2
=

√
mFgFμB

m
2C, (2.24)

while the gradient G, together with the longitudinal field Bx, corresponds to the
transverse trapping frequency

ω⊥ =

√
mFgFμB

m

G

Bx

. (2.25)

The actual values of the bias field gradient and curvature in Eq. (2.23) depend
on the precise geometry and respective currents in the two wires of Fig. 2.1 and
the applied bias field. For instance, comparison of (2.23) and (2.14) shows that the
contribution of the miniwire to the curvature is C = − μ0I

2π(z0+d)3
while the contribu-

tion of the Z wire to C and G follows from Eq. (2.20). G is approximated nicely by
Eq. (2.19).
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2.3 Radio-frequency dressed potentials

We have described static magnetic potentials in which neutral atoms can be trapped
if they are in a low-field seeking state [positive mF in Eq. (2.1)]. These states have
higher energy than the mF ≤ 0 states, but as long as the adiabaticity criterion
is satisfied the energy separation is large and no transitions to the lower energy
states occur at the timescale of experiments. In the following section we look at the
influence of a radio-frequency magnetic field with which we couple the spin states.
We assume a linear Zeeman effect such that there is only one resonance frequency
to couple all states. The atoms are not necessarily lost from the trap due to the
induced spin flips. Instead a new effective potential arises in which they can remain
trapped.

Figure 2.2 illustrates the principle. Fig. 2.2(a) shows the potential of the 5
Zeeman states of an F = 2 atom around the static magnetic field minimum of a
waveguide [Eq. (2.12)]. The arrows indicate the position where the rf is resonant
with the energy spacing between the levels. Because the Zeeman effect is linear, the
position of the resonance is independent of the level. Fig. 2.2(b) shows the resulting
potential including the rf. The potential for m̃ > 0 has two minima separated by a
barrier with finite height, while the m̃ < 0 states see a single, shallow potential well.

The resulting effective potential is called rf-dressed potential. The name refers
to the dressed atom picture that was developed in the 1960s by Haroche and Cohen-
Tanoudji [36, 100]. It gives a full quantum mechanical treatment of an atom in a
radiation field, quantizing both the radiation field and the atom. We will show in
Sec. 2.3.1 that such a rigorous treatment is not essential in our case. We can also
describe the potential by treating the radiation field classically. Still these potentials
are referred to here as rf-dressed potentials.

In 2001 Zobay and Garraway proposed the use of rf-dressed potentials in neutral
atom trapping and cooling experiments, not for evaporation, but to modulate the
trapping potential [101,102]. They showed that by adding a static and rf magnetic
field a new, two-dimensional, trap is created in which neutral atoms can be loaded
and trapped. The idea was soon validated in a first experiment [78] that was followed
by others [79, 82]. Although rf-dressed potentials are not limited to atom chips,
especially in combination with chips they have been very successful in the creation
of double-well potentials and matter-wave interferometers and the study of (nearly)
1D systems [72,103].

Strictly speaking the use of rf-dressed potentials was not new to the field in 2001.
The established technique of forced rf evaporation also combines a static and an rf
magnetic field but with the goal to remove atoms from a trap. Radio-frequency
evaporation was first suggested in 1989 [104] and used in the mid-1990s to achieve
BEC [19–21]. Nowadays forced evaporative cooling [43, 105, 106] is the standard
method employed in numerous atomic physics experiments to deliver the final in-
crease in phase space density before reaching quantum degeneracy. The difference
between rf evaporation and the rf-dressed potentials that we are considering here
depends on the dressed state quantum number m̃ which is −F in the usual rf evap-
oration scheme, while it is +F for the split double-well potential. The quantum
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Figure 2.2: Comparison of the bare spin states in a static magnetic trapping potential for an atom

with F = 2 (a) and the states in an rf-dressed potential (b). The static magnetic field is that of a

waveguide [Eq. (2.12) with r =
√
y2 + z2]. Plotted is the potential U against the spatial coordinate

r. The arrows in (a) indicate the position where the rf is resonant with the energy spacing between the

levels.

number in turn is determined in practice by the frequency at which the rf field is
switched on.

2.3.1 The rf-dressed potential

Here we present an expression for the rf-dressed potential and give a brief outline of
the derivation. The complete derivation for linearly polarized rf is treated in more
detail in Appendix A.

The Hamiltonian for a neutral atom with a magnetic moment experiences in a
time-dependent magnetic field B(t) is

Ĥ = −μ̂ ·B(t), (2.26)

which is the same as in the static case apart from the time dependence of the
magnetic field. The total B(t) field can be divided in a static part Bs and an
oscillatory part Brf(t).

Classically, in the absence of an oscillatory field, the magnetic moment will pre-
cess around the static field with an angular frequency given exactly by the Larmor
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frequency Eq. (2.3), which also gives the spacing of the quantum-mechanical energy
levels. The part of the time-dependent field Brf that is perpendicular to the static
magnetic field can now be decomposed into two rotating components: one rotating
with the precessing atom, and another component rotating against the direction of
precession. A key step that can now be made is the so-called rotating-wave ap-
proximation (RWA) [108]. It consists of only taking into account the co-rotating
component. This approximation is particularly good when the oscillation frequency
of the rf field is close to the Larmor frequency. In that case, the co-rotating compo-
nent will appear as a (nearly) static term in the frame rotating with the precessing
atom. Physically, in the rotating frame the atom will actually see a reduced static
longitudinal field together with the slowly-varying co-rotating component mentioned
above. The magnetic moment will now precess around the (nearly) static field in this
frame. Other (non-co-rotating) terms will oscillate so rapidly in this rotating frame
that their effect averages out as long as these non-RWA terms are weak enough.

In short, if we take a linearly polarized, sinusoidally time-dependent rf field with
frequency ωrf, and strength brf perpendicular to Bs, the effective static magnetic
field in a frame rotating at a frequency ωrf is

B̃ =

(
Bs − �ωrf

|gFμB|
)
ez +

1

2
brfex. (2.27)

The factor of two lowering in the effect of brf is directly related to the fact that only
the co-rotating part of the linear rf field contributes to the effective magnetic field.

Thus, the new potential can be expressed as

U = m̃�
√
Δ2 + Ω2, (2.28)

with m̃ = −F, . . . , F , where Δ2 is called the resonance term with Δ the detuning of
the rf frequency with respect to the Larmor frequency

Δ = ωrf − ωL = ωrf − |gFμB|
�

|B|. (2.29)

The other term, Ω2, is referred to as the coupling term. The position-dependent
Rabi frequency is given by the circularly polarized rf-field component referenced to
the local direction of the static magnetic field:

Ω =
|gFμB|

�

|brf ×B|
2|B| . (2.30)

In general the RWA fails for Δ,Ω � ωL/3. Above these values non-RWA, also
called beyond-RWA, contributions must be taken into account to accurately describe
the potential. In experiments characterizing the potential with rf spectroscopy the
non-RWA contributions show up as a shift of resonances and the appearance of new
resonances [109,110].
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Figure 2.3: Sketch of both wires producing the static magnetic trap and the rf wires. The rf wires are

positioned symmetrically with respect to the central Z wire. See Fig. 2.1 for the geometry without the

rf wires.

2.3.2 RF magnetic field

We generate the radio-frequency field which we need to create radio-frequency po-
tentials using two on-chip wires. The geometry is shown in Fig. 2.3. We use two
wires, positioned symmetrically with respect to the central Z wire producing the
static magnetic trap. The rf wires also have an overall Z shape. The close proxim-
ity of these wires to the trapped atoms (∼200 μm) allows us to achieve large field
strength (∼1 G) with minimal effort (10–100 mA). To create such an rf field with a
coil inside the vacuum system (or worse, outside the vacuum system) would require
much more effort.

A consequence of the use of wires that are close to the atoms instead of larger
coils is the existence of field gradients that we have to deal with. These gradients
complicate our experiments because we have to compensate for the differences caused
by different rf field strengths at various heights of the trap above the wire. On the
other hand the rf field gradient also helps us since it can be used to compensate the
effect of gravity on the trapped atoms. The effect of gravity and its compensation
is treated in more detail in Sec. 5.4.3.

The use of two separate chip wires to produce the rf field give us the possibility
to vary the rf polarization. By tuning the rf amplitude ratio in the two wires and
setting the phase difference to either 0 rad or π rad we can produce linearly polarized
rf in any direction in the y-z plane (note that the central parts of the rf wires run in
the x direction, so that Brf is predominantly in the y-z plane around the center of
the trap). The direction of the linear polarization we denote by θ, the polarization
angle in the y-z plane with respect to the y axis, such that:

Brf =

⎛
⎝ 0

brf cos θ
brf sin θ

⎞
⎠ , (2.31)

where brf is the amplitude (> 0) of the rf magnetic field Brf. The Rabi frequency
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Figure 2.4: RF dressing field strength (a) and RF dressing field gradient (b) as a function of z

coordinate. The fields were calculated using Eq. (2.33) for a sinusoidal current with an amplitude of
100 mA in both wires and yrf=150 μm. The solid line corresponds to the case that both currents have

equal phase and the direction of the rf field is in the y direction (θ=0). The dashed line corresponds

to currents in counter-phase and the rf field in the z direction (θ=π/2).

now becomes

Ω =
|gFμB|

�

brf

√
B2

x + (By sin θ −Bz cos θ)
2

2|B| , (2.32)

where Bx, By and Bz are the components of the static magnetic field.
To obtain an expression for Brf in the trapping region in terms of the rf wire

currents I1 and I2 and the wire spacing |y1| = |y2| = yrf, we consider only the
central section of the two rf wires and model them as infinitely long, thin, straight
wires. This approximation is reasonable since the distance between these wires and
the atoms is much larger than the width of the wires, while on the other hand the
distance is small compared to the length of the central section of the Z. The phase
difference φ between rf currents is included by taking I1 and I2 with equal sign for
φ = 0 rad and with opposite sign for φ = π rad. We arrive at

brf(0, 0, z) = − μ0

2π (y2rf + z2)

⎛
⎝ 0

z(I1 + I2)
yrf(I1 − I2)

⎞
⎠ , (2.33)

by using Eq. (2.9) for each wire and taking the superposition of the two fields. We
see that we can indeed set any value of θ by tuning the rf current ratio.

Figure 2.4 shows the rf magnetic field strength and gradient for realistic numbers
(|I1| = |I2| = 100 mA, yrf = 150 μm). Notice that the rf magnetic field gradient in
the direction of z is positive for θ=0 and negative for θ=π/2.

It is also possible to apply a phase difference of ϕ = π/2 or ϕ = 3π/2 to the rf
currents. In that case the field will have elliptical polarization because in general the
two field components of the two wires are not perpendicular. Only at one specific
height, z = yrf, the fields are perpendicular and the polarization is circular for equal
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Figure 2.5: Cross-sections of 4 (rf-dressed) potentials at x = 0. Lighter color denotes higher potential;
atoms are trapped in the dark-colored potential minima. The 4 plots are for identical static magnetic

fields. The rf-dressing field is different in the 4 plots. In (a) the rf-dressing field is absent and we are

left with the bare magnetic potential. In (b) the rf field polarization is circular, rotating in the y-z

plane. The potential has the shape of a Mexican hat. In (c) the rf field vector is oriented vertically

(direction of z) and the potential minimum splits in the direction of y. In (d) the splitting is in the

direction of z, while the rf field vector is along y. See the text for more details.

currents, I1 = I2. In most of the experiments described in this thesis we limited
ourself to linear polarization.

2.3.3 Character of the rf-dressed potential

RF-dressed fields can be used to modulate the trapping potential in ways that are
not allowed for static magnetic potentials because of Maxwell’s equations. Before
looking in detail at one specific rf-dressed potential, the double-well, we will first
look at the general shape of these potentials.

Figure 2.5 shows cross-sections of 4 different potentials in the y-z plane at x = 0.
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Because the x dependence of the static magnetic field is generally weak and because
the rf field is only weakly dependent of x the most interesting features of these
potentials can best be observed in the y-z-plane.

For low rf frequency (ω � ωL), the detuning is large and the resonance term in
Eq. (2.28) dominates over the coupling term. In this case the rf dressed potential
looks just like the bare potential [Fig. 2.5(a)]. For increasing rf frequency, the
resonance term first decreases to zero (ωrf = ωL) and then starts to grow again. But
while the resonance term in the center is growing again, parts outside the center
with a larger static field amplitude are at resonance. The resonance term defines a
resonance surface that is an ellipsoid in three dimensions and to first approximation
a circle in the y-z plane. The coupling term in Eq. (2.28) further structures the
potential minimum at the resonance surface. Note that in the static field minimum
the rf field vector is perpendicular to the static field aligned along x and the coupling
term is maximum. Moving from the center outward, the static field vector turns
away from x and also has components in the y-z plane. Moving from the center
outward along z, the field has a growing By and the field vector rotates toward
y [see Eq. (2.11) or Eq. (2.23)]. On the other hand moving from the center in
the direction of y the static field has an increasing Bz and the field vector turns
into the direction of z. Now assume a linearly polarized rf field with field vectors
along z. Moving from the center in the direction of z, the static field vector rotates
but always stay perpendicular to the rf field. The magnitude of the coupling term
in Eq. (2.28) is constant. Moving in the direction of y something else happens.
There the static field vector aligns in the direction of the rf field vector reducing the
coupling term. So the resonance term makes that the minima are on a ring and the
coupling term makes that, for this particular rf field, they are in the plane z = 0.
This is the situation of Fig. 2.5(c). A rf field directed along y produces minima at
y = 0 [Fig. 2.5(d)].

Fig. 2.5(b) shows the potential for a circularly polarized rf field. In this case
the rf field vector is rotating in the y-z plane and the angle of the static field with
respect to the rotating field is the same everywhere along the resonant circle. The
contribution of the coupling term to the potential is equal everywhere along the
circular resonance surface. The potential minimum thus remains circular resulting
in a Mexican hat potential.

In the x direction the potential varies only slowly due to the relatively weak
longitudinal confinement. As a consequence the resonance circle in the y-z plane
slowly gets smaller when moving along x away from the trap center. At some
distance from the center the ring merges in one point, closing the 3D ellipsoid that
describes the resonant surface.

2.4 Electrostatic manipulation

In the preceding sections we have only discussed potentials formed by magnetic
fields. Electrostatic fields can also be used to trap and manipulate neutral atoms [50,
98]. For the Rb atom, with its single unpaired electron, the electric polarizability α is
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a scalar. The polarizability of 87Rb atoms in the 5s 2S1/2 state is 5.3×10−39 Cm2/V
[111]. The interaction energy of the induced dipole d and the electric field E is:

Uel(r) = −d · E = −1
2
αE2(r). (2.34)

The electrostatic interaction can be used to enhance the functionality of magnetic
atom chips for instance with beam splitters or a ‘motor’ to transport atoms along a
magnetic guide [56].

Given the typical dimensions of the wires on the atom chip and the distance of
the trapped atoms to the surface (both tens of μm) voltages of ∼ 200 V are needed
to make the strength of the electrostatic and magnetic interaction comparable for
87Rb in the F = 2 state. This is also roughly the value of the voltages used in [56].

2.5 Properties of trapped ultracold gases

2.5.1 In-trap longitudinal density distributions

The past sections have dealt with the precise details of the trapping potential V (r).
This trapping potential determines to a large extent the density distribution of the
atoms in a (quantum) gas. The two simplest cases that are usually considered for
a Bose gas are (i) a “classical” gas, where effects of quantum degeneracy can be
ignored, and (ii) a “condensate” near zero temperature, where the effects of a finite
(non-zero) temperature can be ignored.

In the elongated trapping geometry that is typical in atom traps these two
regimes are separated not only by the phase transition associated with Bose-Einstein
condensation, but also by various cross-overs, for example going from 3D to 1D. An
extensive overview of the cross-overs that are typically encountered for a Bose gas
on an atom chip can be found elsewhere (Ch. 2 of [88] and references therein). Here,
we limit ourselves to two cases that will be relevant in the subsequent chapters,
and discuss how one can extract the potential shape from the observed longitudinal
density distribution in both cases.

First, for a “classical” gas, when temperature is sufficiently high and density
sufficiently low that effects of degeneracy and interactions are negligible, the density
distribution is given by Boltzmann’s law

n(r) = n0 exp (−V (r)/kBT ) , (2.35)

where kB is Boltzmann’s constant and T is the temperature. In Ch. 3 we will want
to infer the longitudinal potential from the observed density distribution. If the
3D potential V (r) can be written as a sum over a radial potential Vrad(y, z) and a
longitudinal potential Vl(x), this can be done by radially integrating over the above
density distribution and inverting the result, yielding

Vl(x) = −kBT ln [nl(x)/nl,0] , (2.36)

with nl(x) the measured longitudinal linear density.
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Second, in the opposite extreme of near-zero temperatures, the physics of the re-
sulting condensate is dominated by the interaction energy, which in turn determines
the chemical potential μ. In 3D, for a weakly interacting gas this is summarized by
the simple relation

μ = gn0, (2.37)

with g the 3D coupling constant,

g =
4π�

2a

m
, (2.38)

with a the scattering length (5.24 nm for 87Rb in the F = 2, mF = 2 state). In
1D a similar equation holds near zero temperature, with an effective 1D coupling
constant [112].

A simple analytical description for the density distribution found by Gerbier [113]
that works well throughout the 3D-1D crossover for sufficiently low temperatures
will be useful in the following Chapters. Assuming harmonic confinement in the
radial directions with a frequency ω⊥, he found

μ = �ω⊥
(√
1 + 4anl − 1

)
, (2.39)

with nl the linear density along the longitudinal direction. The latter result can
also be used to infer the longitudinal potential from the measured linear density, by
using a local-density approximation

μ(x) + V (x) = μ, (2.40)

where μ(x) is the local chemical potential, referenced to the local potential energy
V (x) and the global chemical potential μ. This yields

V (x) = −�ω⊥
(√

1 + 4anl(x)− 1
)
. (2.41)


