Downloaded from UvA-DARE, the institutional repository of the University of Amsterdam (UvA)
http://dare.uva.nl/document/122305

FileID 122305
Filename Chapter 6 Single intersection in isolation

SOURCE (OR PART OF THE FOLLOWING SOURCE):

Type Dissertation

Title Solving large structured Markov Decision Problems for perishable inventory management and
traffic control

Author R. Haijema

Faculty Faculty of Economics and Business

Y ear 2008

Pages xiv, 357

ISBN 9789036101011

FULL BIBLIOGRAPHIC DETAILS:
http://dare.uva.nl/record/292130

Copyright

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author (s) and/or
copyright holder(s), other then for strictly personal, individual use.

UVA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

http://dare.uva.nl/document/122305
http://dare.uva.nl/record/292130
http://dare.uva.nl

Chapter 6

Single intersection in isolation

In this chapter we focus on the dynamic control of a signalized intersection in isolation.
We introduce some new control policies based on an MDP formulation. By simulation the
new policies are tested and compared to other control policies for a number of isolated
intersections. Some signalized intersections are part of a network, but often the control
of the lights can be done for each intersection in isolation. The approach is extended in

the next chapters. In Chapter 8 we consider networks of intersections.

6.1 Modeling the problem at a single intersection

In Section 5.1.1 we have introduced the problem of minimizing the overall average waiting
time at a single intersection in isolation. Our definition of waiting time is the time
spent in the queue, hence the time between joining a queue and passing the stopping
line. Throughout this (first) chapter we assume cars to have zero length to ease the
analysis. This assumption corresponds to vertical queueing. Our definition of waiting
time corresponds then to the definition of waiting time that is common in queueing theory.
In the Chapters 7 and 8, we do acknowledge queued cars to take space. As we will see
this slightly affects the waiting times reported by the simulation model since then cars

sooner hit the tail of a queue, when the queue length increases.

In this section we formulate the problem in more detail, introduce the notations that we

use in this and the next chapters and we discuss some modeling assumptions.

182 CHAPTER 6. SINGLE INTERSECTION IN ISOLATION

6.1.1 Infrastructure

Figure 8.4 shows two typical cases that we are interested in. We refer to these cases by code
names: F4C2 for an intersection of F' = 4 traffic flows grouped in C' = 2 combinations and
F12C4 an intersection with F' = 12 flows grouped into C' = 4 combinations. The set of
F flows is thus divided in C disjoint subsets C(1),C(2),...,C(C), called combinations. In
We abbreviate specific queues and combinations: Q refers to the queue of cars in traffic
flow f and C, abbreviates combination s consisting of flows C(s). The flows, queues, and
combinations are numbered clockwise (rather than using the more detailed notation that
is common in traffic engineering). Both F4C2 and F12C4 consist of four approaches or
directions from which traffic comes. We refer to these directions by North, East, South,
West, as if the top of each figure faces North. North and South are opposite approaches,

and so are East and West.

At F4C2 each approach consists of a single lane. Cars are not allowed to turn left and thus
flows 1 and 3 are not in conflict and constitute Cy, flows 2 and 4 constitute C,. Ongoing
or through-traffic is referred to as ‘thru’ traffic. At F12C4 each of the four approaches
consists of three separate lanes for right-turning, thru, and left-turning traffic. The left-
turning traffic of two opposite approaches are served at the same time. The right-turning
and thru traffic of two opposite approaches are served together in a combination of four
flows. The 12 flows are thus grouped in 4 combinations (C; to C;). C; and Cj are

composed of four flows each, whereas C, and C4 have only two flows:
C(1) ={1,2,7,8}, C(2)={3,9}, C(3)=1{4,5,10,11}, C(4) = {6,12}.

We assume that these combinations are given and fixed. The order in which the combi-
nations are served (=get right of way) maybe cyclic or acyclic. Under cyclic control the

combinations are visited in the order: 1, 2, 3, 4, 1, etcetera.

Summary of notations — An intersection consists of F' flows of car arrivals; each flow
f has a single lane and a single queue Qy. The vector q = (g1, . .., ¢r) stores the numbers
of cars waiting in each queue. The set of all flows F = {1,..., F'} is partitioned into C
disjoint subsets C(1) — C(C') of combinations of non-conflicting flows that will receive green,
yellow and red together. We call a subset of flows a combination (of flows). The set of the
C' combinations, S = {1, ..., ('}, is given and hence not part of the optimization problem.
Flows in the same combination will always receive green, yellow and red together. If one
combination has green or yellow, all other lights show red. We assume that conflicting

traffic flows are not part of the same combination.

6.1. MODELING THE PROBLEM AT A SINGLE INTERSECTION 183

1
Cl Cl Cl CQ
1 \ 1 b b
S | ‘cuI“—Cs
SIE——C U mEC
\4 i Cu:—amﬂ ,EIIII<—'*—C4
CQ—\ _
3 T
8 |7
Cl 2C1Cy
(a) "F4C2” serve 4 flows in 2) ?F12C4” serve 12 flows in 4

symmetric combinations asymmetrlc combinations

Figure 6.1: Two base-case infrastructures.
6.1.2 Discrete time modeling assumptions

The (automated) controller of the traffic lights periodically takes decisions about how to
adjust the lights. When switching from green for one set of flows to green for another
set, a fixed switching time is to be acknowledged. This suggests to model the problem in

discrete time which calls for some simplifications of the processes.

Discrete time

The time unit or slot is taken to be the (average) time a car needs to pass the intersection
when the light is green. We fix the slot length to two seconds, which corresponds also to a
safe driving distance between cars at different speeds. When car drivers keep all the time
a safe driving distance of exactly 2 seconds, then either 0 or 1 cars passes the stopping

line within a slot.

Signal process

Changing from green for one combination to green for another combination of flows takes
(v =) 3 slots (6 seconds): (5 =) 2 slots of yellow and (7 — 3 =) 1 slot in which all lights
show red to clear the intersection. This switching time is assumed to be independent of the
two sets of flows involved. In addition a minimum green time, of say 1 slot, applies such
when a combination is served it signals shows green for at least 1 slot. (In our model all
slots are of identical length. Although notations become more involved, the approach can

be extended to different slot lengths and to different, flow-dependent switch-over times.)

184 CHAPTER 6. SINGLE INTERSECTION IN ISOLATION

Arrival process

In the basic model of this chapter cars are not observed until they arrive at the stopping
line at which they are queued vertically. The position of the tail of a queue corresponds
thus with the stopping line, as if cars take zero length. It is assumed that the arrival of cars
at the queues occur uniformly over time rather than in platoons that may be formed at
any upstream signalized intersection. Arrivals at different queues and in different slots are
independent. Per flow the number of car arrivals in a slot is either 0 or 1. The probability
of an arrival in flow f is As: the arrival rate at queue f. (Instead of a Bernoulli arrival
process one could assume Poisson arrivals but having more than 1 car arrival within a slot

at a single queue does not happen when cars keep a safe traveling distance of one-slot.)

Departure process

When a signal shows green or yellow and as long as cars are present, every slot (exactly)
one car passes the stopping line in a deterministic fashion. Remember car drivers ac-
knowledge a safe driving distance of 1 slot. In countries where yellow officially means
‘stop-when-safe-to-do-so’ it might be more realistic to say that during the first yellow slot
the probability that a car passes is still (close to) 1, but during the second yellow slot it

is less than one !

. The model allows for this, as it allows for any Markovian stochastic
departure process, but notations would become more involved. Assuming deterministic
departure processes with an inter-departure time of 1 slot (2 seconds) is quite common in

the practice of traffic engineering ([119]).

In the cases that are studied, conflicting traffic flows do not get simultaneously right
of way. In practice conflicting flows might have green at the same time, in which case
(regular) basic traffic rules apply. As will be discussed at the end of this chapter, the

models we present can be extended at this point.

Queueing process

A car arriving at an empty queue that has right of way passes the stopping line without
delay. Therefore we assume new arrivals to take place at the beginning of the slot (just
after observing the state of the queues and the lights). When one or more cars are queued
a new arrival joins the end of the queue. Departures from the queues take place at the
end of the slot prior to the observation of the new state. In Figure 6.2 we depict the

modeling of the course of events and actions.

In most countries, the sequence is red (stop), green (go), amber (prepare to stop). In the UK and
Canada, amber officially means ‘stop’ (unless it would cause an accident to do so), but in practice amber
is treated as ‘prepare to stop’. [Source: http://en.wikipedia.org/wiki/Traffic_light.]

6.1. MODELING THE PROBLEM AT A SINGLE INTERSECTION 185

1. Inspect state (x,q): 4. Cars depart:
— state of lights x, and If present, 1 car/slot
— queue lengths q from each flow that has

green or yellow lights.
2. Action a: adjust lights

3. Cars arrive.

l i |

[{

\/_y

1 slot = 2 seconds

Figure 6.2: The queueing process: modeling the course of events in the MDP model

Workload

The workload that a flow brings to an intersection is the (long-run) fraction of time the
light of flow f to serve all cars. Since a departure takes exactly 1 slot. The workload of
flow f equals A\;. The workload p, that combination s brings to the intersection is the

maximum of Ay over all flows part of that combination:

s = A 6.1
ps = max As. (6.1)

The workload of the intersection is the sum of the workload over all combinations:

c
p= Z Ps = Z }gcax Af. (6.2)
s=1

The workload p does not include the all-red time needed to clear an intersection.

We restrict our attention to under-saturated cases where queues are stable: p < 1.

Remark Note that the effective workload is in general higher than p, since the effective
workload includes the fraction of time all lights are red for switching from green to one
combination to green to another combination. For example, consider the F4C2 case, with
Ar = 0.3 for all flows. From (6.2) it follows that the workload is p = 0.3 + 0.3 = 0.6.
When FC grants green for 3 slots to C; and for another 3 slots to Cs, then the cycle
length equals 12 slots. During a single cycle on average 0.3 - 12 = 3.6 cars arrive at each

queue. On average 7.2 slots in a complete cycle are actually used for and two slots are

186 CHAPTER 6. SINGLE INTERSECTION IN ISOLATION

used for switching between the two combinations to clear the intersection. The effective
workload is thus 9.2/12 ~ 0.77. The residual 12 —9.2 = 2.8 slots are used to deal with the
uncertainty in car arrivals; since cars arrive at different flows independently some queues

of a combination may be empty while cars depart from other queues of that combination.

Remark — Thickness of a combination — The workload py of a combination can be
used to find an indication of how much green time a combination requires. In addition,
we define the ‘thickness’ of combination s: 3 co(Ay- The thickness of a combination is
the mean number of cars that arrives at the intersection by flows in combination s. (The

thickness of flow f is simply A;.

6.1.3 Outline

In the next section the problem is formulated as an MDP. For large intersections the
number of possible queue states becomes tremendously large, prohibiting straightforward
optimization of the MDP. Starting with a (nearly) optimal fixed cycle policy, a one-step
policy improvement approach is proposed in Section 6.3. The approach is demonstrated
and tested in Section 6.4 assuming cyclic control. Acyclic control and more advanced
rules are introduced in Section 6.5 and tested in Section 6.6. Finally we report some

conclusions in Section 6.7.

6.2. FORMULATION AS A MARKOV DECISION PROBLEM 187

6.2 Formulation as a Markov Decision Problem

As argued the problem is modeled in discrete time. We refer to Figure 6.2 for the order
in which we model the inspection of the state, the change of the lights, and the arrivals
and departures of cars. The states are inspected at the beginning of a slot, next an action
is selected and accordingly the lights are adjusted. Cars arrive at the beginning of a slot
and may leave the very same slot, when the lights show green or yellow and no cars are
waiting in front of it. At the end of a slot a number of cars have left their respective
queues. Waiting costs are incurred over the number of cars present at the start of a slot;
a car that arrives and passes the stopping line in the very same slot does not contribute

to the cost over that slot since it has not experienced waiting time.

To formulate the MDP model, next the states, the decisions, the transitions and the costs

are specified in detail.

6.2.1 States

The arrival and departure processes are assumed to be Markovian (i.e. memoryless), so
the state of the traffic flows and related queues is described by the vector q = (¢1, . . ., qr),
with g; the number of cars in flow f present at the beginning of a slot. For the moment
we do accept an infinite state space, in Section 6.2.6 we discuss the truncation of the

queues in the MDP model.

The state space is completed by the state of the lights x. To allow both cyclic and acyclic

control, we define z as a tuple (s,7), which indicate that the lights of combination s:

e are green when ¢ = 0,
e are at the first yellow slot when i = 1,
e are at the second yellow slot when i = 2,

e are red as all other lights when 7 = 3.

Note that the ‘all red’ state (s,7 = 3) also marks that combination s was most-recently
served. The total number of signal states x is thus 4C'. For acyclic control this number

can be reduced to 3C' + 1, since then a single ‘all red’ state suffices.

The states at the start of a slot are thus denoted by the vector (x,q) = ((s,1),q).

188 CHAPTER 6. SINGLE INTERSECTION IN ISOLATION

6.2.2 Decisions

Decisions are taken at the beginning of a slot and executed instantaneously. Thus, if a
decision grants green to a combination, cars of that combination can leave in the very
same slot. The set of feasible decisions one may consider in state ((s,%),q) depends at

least on the traffic light state (s,7) and maybe also on the number of queued cars q.

e If the lights are green for combination s, i.e. if i = 0, there are two feasible decisions:

— keep the lights as they are, or
— change from green to the first yellow slot to combination s.
e When the lights show yellow there is no choice, since the signaling process may not
be interrupted:
— At the end of a first yellow slot continue to the second yellow slot,

— After the second yellow the only decision is to change into red for all flows.
e If all lights are red the feasible decisions are

— to keep all lights red (if all queues are empty this might be optimal because

switching takes 3 slots), or

— to give green to one of the combinations. If the cyclic order is to be kept, we
only allow to skip a combination if all queues for that combination are empty.
When skipping a combination the cycle is resumed with the next non-empty
combination: as a result of skipping combination 2 two successive green periods

of combination 2 are far apart: 1, 2, 3, 1, 3, 1, 2, 3, etc.

The decision space in state (x,q) = ((s,4),q) is thus:

[{(5,0),(s,1)} ifi=0 (lights of s show green),

(s,i+1) if i =1,2 (lights of s show yellow),

A((s,1),q) =
(all lights show red,

{(s,3),(s',0)} ifi=3 s’ € 8, but under cyclic control

s’ = next non-empty combination).

6.2. FORMULATION AS A MARKOV DECISION PROBLEM 189

Remark — According to the given definition of A((s,7),q), the action space does not
depend on q. In the cases on which we report in this thesis, the action space does depend
on the queue lengths as follows. To allow a fair comparison of the MDP policy against
exhaustive control, we copy a special action that applies when no cars are present at
the queues. Under exhaustive control, we suggest to freeze the signals when no cars are
queued. The state of the lights (if not yellow) are frozen when the system is empty: green

lights stay green and red lights stay red during the coming slot.

In some cases this may be optimal, but it is suboptimal in general. We do not bother
about the optimality of this action, since, in the cases that we are interested in, it happens

rarely that all queues are empty at the same time.

6.2.3 Transition probabilities

Action a implies an instantaneous change of the lights from state x into state a. If action
a implies red to flow f, then the transition probability with respect to the queue length

are

pgr,qrla) =1 —Xp, and pg(gs, qr + 1la) = Mg (6.3)

If, instead, flow f receives, as a result of action a, green or yellow during the coming slot,

the transition probabilities for the length of queue f are given by (with y* = max{y, 0}):

prlay, (gr — DF|a) =1 = Xf, and pr(qr, grla) = Ay (6.4)

Note that in Equations (6.3) and (6.4) we have assumed that within a slot 0 or 1 car
arrives at each queue, and, if present, 1 car departs from each queue whenever the lights

shows green or yellow.

The transition probability from state (z,q) to state (a,q’), denoted by p(z,q;a,q’), is
simply the product of the py(qy, ¢}|a)’s:

F
plz.qia,q) = [[prar. dfla) - (6.5)
f=1

190 CHAPTER 6. SINGLE INTERSECTION IN ISOLATION

6.2.4 Criterion and costs

The criterion is the minimization of the long-run average waiting time per car. According
to Little’s law this is equivalent to minimizing the average number of cars waiting at all
queues. Therefore we apply a linear cost structure with one unit of costs for every car
present at the beginning of a slot. Let ¢(q) denote the one slot costs or direct costs in
state (z,q), then

clq) =Y q . (6.6)

Note that waiting costs are incurred no matter the light shows green or yellow. The
cost structure thus relates to the time spent in the queue assuming queued cars to have
length 0. When cars have non-zero length and are queued horizontally, as in the next
chapters, then waiting time (in slots) is measured also for queued cars that move forward

one position per slot when the lights show green or yellow.

6.2.5 Successive approximations

In order to obtain an optimal policy, one may apply an SA algorithm. Therefore let
V. (x,q) denote the expected minimal costs over an horizon of n slots when starting in
state (z,q). In principle the following DP relation holds between V, . (z,q) and V,(-,-)
for all states (x,q):

Vo (z,q) = c(q) + min prq, a,q)V,(a,q') . (6.7)

a€A(z,q)

Since the state space is infinite, (6.7) cannot be used directly in an SA algorithm. There-
fore the state space is truncated to a finite one. To compensate for any errors so-called

externality costs are defined.

6.2. FORMULATION AS A MARKOV DECISION PROBLEM 191

6.2.6 Reduction to a finite state space and Externality costs

In the MDP model we truncate each queue to a maximum of () cars, such that all com-
putations can be done in finite time. The bound on the queue length @) is preferably high
enough such that overflow happens rarely. In the SA algorithm one thus only considers

state vectors q with all elements ¢, in {0,1,...,Q}.

In the evaluation of the transition from q to q’, arrivals at queues that are full are rejected
in the MDP model. In the real system cars cannot be rejected: q} may exceed () for one
or more queues f. When a car is not admitted at queue f in the MDP model, one needs to
compensate for the waiting time and the additional delay the car would give to all other
cars: already present or still to arrive in the real system. Therefore so-called externality

costs, E(a,q’), are included in the (expected) direct cost function.

Let EC(a,q) denote the expected cost to incur in state (a,q). EC(a,q) is the sum of the

direct waiting costs ¢(q) and the expectation over the externality costs E(a,q’):
EC(a,q) = ¢(q) + Y p(z,q;0,q) E(a,q). (6.8)
q/

When the externality costs E(a, q’) are known or approximated, one may apply successive

approximations using Equation (6.9) for all states (z,q) with q < @ - 1:

Vi (z,9) = min (EC(a,q)+Zp(x,q;a,q’)Vn(a>qT)>, (6.9)

acA(z,q) q

where q}; = min{q}, Q}.

A simple expression or approximation for the externality cost E(a, q) is only available for
some queueing models [61], but is not present for the complex queueing system that we
are dealing with. A wrong approximation of the externality costs may affect the optimal
strategy. On the one hand, when these costs are estimated too high, the optimal policy
tries to stay away from the border () and thus the systems tends to switch too early
from green to yellow. On the other hand, when one underestimates the costs, it may be
optimal to serve a queue that is ‘full’, only when all other queues are empty. We thus
need a numerical scheme to (accurately) approximate the externality costs. A relatively
easy way, which we explain below, is to approximate the costs by extrapolation of the

value function in an SA algorithm.

192 CHAPTER 6. SINGLE INTERSECTION IN ISOLATION

Computation of externality costs by SA algorithm

Under an optimal policy for the stationary infinite horizon MDP, the externality costs are

by definition of the value vector V,,:

E(a,q') = lim [V,(a,q) — Vi(a,q")], (6.10)

n—oo

where q' is the truncation of the vector q: q' = (min{q},Q},..., min{¢y, Q}). In

addition we define the overflow, q° = ¢ — q".

This definition suggest to approximate F(a,q’) in iteration n of an SA algorithm by

E.(a,q) = Va(a,d) = Va(a,q") (6.11)

Clearly, E,(a,q') is 0, whenever all ¢y < Q. Since V,,(a,q’) is unknown when ¢} exceeds
(@ for one or more flows f, V,,(a,q’) is estimated by quadratic extrapolation based on the
three values V,(a,qT —2q°), Vi.(a,q* —q®), and V,,(a,q"). In Appendix E one reads how
to extrapolate multi-dimensional tabulated functions. Here we simply state the resulting

formula for quadratic extrapolation of V:

Vala,q') = 3-V,(a, qT) — 3 Vu(a, ql — qO) + Vi (a, ql — ZqO), (6.12)

Note that this extrapolation is feasible when q" — 2q° contains no negative elements, i.e.
when Vf : ¢ < 5Q). In the SA algorithm the overflow is at most 1 per flow, since at
most 1 car arrives per flow. Furthermore, quadratic extrapolation works well, since the

direct cost structure is linear in q.

In (6.12) one reads the n-th approximation of the direct externality costs, F,(a,q’), when

making a transition from q to q' instead to q':

En(aa q/) =2- Vn(a7 qT> -3 Vn<a7 qT - qO) + Vn<a7 qT - qu) (613)

Since in the infinite horizon MDP, the direct cost must be stationary, the approximation
of E(a,q’) is fixed after a large number of, say M, iterations. For the dynamic control of

traffic lights M is set to 100 slots (or more than 3 minutes in real time).

6.2. FORMULATION AS A MARKOV DECISION PROBLEM 193

6.2.7 An SA algorithm with extrapolation of Externality costs

A complete successive approximation scheme to compute an optimal policy is the follow-

ing:

Step 1.

Step 2.

Step 3.

Step 4.

First, select a sufficiently large value of M, such that the externality costs are
approximated over an horizon of sufficient length of M slots.

Next, for n = 0 to M —1 successively compute for all states (x, q) with q < @Q-1:

Vo 1(z,q) =c(q) + min (Zp r,q;a,q) En(a,q’)+Vn(a,qT)]> (6.14)

a€A(z,q)

starting with V,(z,q) =0, and E,(a,q’) as defined in (6.13).

Store the resulting value vector Vj; and compute the expected direct cost:
EC(a,q) = c(a) + Y _p(z,q;0,q) - E(a,q) (6.15)

using the following approximation of the externality costs

E(a, ql) ~2- VM(G, qT) -3 VM(aa qT - qO) + Vu(a, qT - 2(10)- (6-16)

Starting with n = M and V), the value vector lastly computed in Step 1.,
recursively compute for all states (x,q) with q < @Q - 1:

Vipa(z,q) = min (EC(a,q)Jer(w,q;a,q’) Vn(a>qT)> (6.17)

acA(z,q) "

until the span(V, ., —V,,) is sufficiently small, say smaller than e.

Suppose this happens at the N-th iteration. (One may show that convergence
is guaranteed as the system empties every now and then, so that all states

communicate.)

If no optimizing actions are stored in Step 3., then a (nearly) optimal stationary

strategy 7 is obtained from:

7(x,q) = arg min <]EC(a, q) + Zp(x, a;a,q) Vi (a, qT)>) (6.18)

acA(z,q) -
q

The average costs under 7 can be approximated by any element of Vi, =V,

which estimates the minimal long-run average number of cars in the system.

194 CHAPTER 6. SINGLE INTERSECTION IN ISOLATION

6.2.8 Computational complexity

Since we have made the state space finite, in principle the computations in (6.14) to
(6.18) can be done in finite time. However, the multi-dimensionality of the system (one
dimension per flow) usually leads to tremendous state spaces so that in general a straight-
forward dynamic programming approach is not possible in a reasonable amount of time.
The computational complexity is primarily set by the number of queue states, which is
exponential in the number of flows F'. When no more than) cars are admitted to each
queue, then the number of queue states is (1 + Q). The number of traffic light states is
C'- (1 + 3) (under cyclic control).

When the workload of the intersection is not so high, a reasonable bound on the queue
lengths might be 9 cars. Then, for an intersection with 12 flows, one has to consider
thus 10'2 queue states. When the flows are served in 4 combinations, the total number
of states, including the 4 - (1 + 3) traffic light states, thus becomes 1.6 103, which is far
too many to solve the MDP in a reasonable time. Another limitation in implementing
the successive approximation scheme may be the available RAM memory: for all states
(z,q) with g < @ - 1 at least the values of V (z,q), V,

n

+1(2,q) need to be stored.

Although we compensate in the MDP model for overflow of the queues, () must be high
enough such that overflow happens rarely. Furthermore, () should be high enough since
the SA algorithm derives in principle no optimal actions for states were one or more
queues do overflow. When the overflow is limited to at most %Q, nearly-optimal actions
can be derived by extrapolation of the value function using known values of the value

vector. The quality of such estimates cannot be guaranteed.

6.3. ONE-STEP POLICY IMPROVEMENT (RV1) 195

6.3 One-step policy improvement (RV1)

Clearly the computational complexity of the MDP makes it practically impossible to
solve many real-life MDPs. Therefore we suggest to apply a one-step policy improvement
approach that is based on the decomposition of the state space. As outlined in Chapter
5, over the years such an approach has been applied successfully to a number of multi-
dimensional decision problems (see [105], [165], [80], [81], [17], [18], and [124]).

Approach

The one-step policy improvement approach improves an initial policy for which the relative
values are known. Under FC the relative values of the states can be determined after the
decomposition of the state space. Therefore FC is taken as the initial strategy that will
be improved through a one-step policy improvement algorithm. The following four steps

are distinguished in our approach:

Step 1. Obtain a good FC:
Find a FC with cycle length D and effective green times dg that results in a
low overall long-run average waiting time per car. Therefore an incremental
search algorithm is used in which the average waiting costs per car is computed
flow-by-flow by evaluation of the underlying Markov chains. The Markov chain

is thus decomposed into F' periodic Markov chains, one for each flow.

Step 2. Derive the relative values of the D slots within the fixed cycle:
For each of the F' Markov chains, one computes the relative values of the states
under FC. Summing the relative values for all flows for given numbers of queued

cars q, one obtains the relative appreciation of each slot within the cycle.

Step 3. Set an improvement rule (RV1):
Formulate a one-step policy improvement rule using the relative values of the

states under FC. We call the resulting policy RV1, with RV for relative value.

Step 4. Evaluate RV1 by Simulation:
Finally, RV1 is evaluated by simulation, and compared to a number of basic

traffic light control strategies and, where possible, to the optimal MDP policy.

The four steps are discussed in greater detail in the next subsections. The simulation

results of Step 4 are reported in Section 6.4.

196 CHAPTER 6. SINGLE INTERSECTION IN ISOLATION

6.3.1 Step 1 — Fixed Cycle control (FC)

The reason for choosing FC as initial control strategy is that the relative values of states
under FC can be computed flow-by-flow. In the next subsection the numerical computa-
tion of the relative values is discussed for a single flow. In this section we focus on finding

a good configuration of FC that results in a low average waiting time per car.

The Optimal-fixed-cycle algorithm

At this point we are just interested in setting a good or (nearly) optimal fixed cycle.
For this we use a simple incremental search algorithm: the Optimal-fixed-cycle algorithm,
which is reported in detail in Appendix D.2. The search starts with calling the Minimum-
cycle-length algorithm to find a cycle of minimum length by which all queues are just stable
under FC: all queues get assigned just enough green and yellow slots to be stable. The
Minimum-cycle-length algorithm is reported in Appendix D.1. A configuration of FC is
evaluated by numerically solving a set of F' Markov chains. How each Markov chain (MC)

is formulated and how it is solved is discussed in the next section.

The Optimal-fixed-cycle algorithm increases successively the cycle length D by 1 slot,
according to the best increase of the effective green period for one of the combinations.
This process of incremental search is stopped when the last-so-many increases did not
yield a better FC. The best FC so far is considered as the (locally) optimal FC.

Numerical example

In Figure 6.3, the search process of the Optimal-fixed-cycle algorithm is illustrated for
the F12C4 intersection of Figure 6.1(b)) with identical arrival rates (Vf : Ay = 0.2). The
Minimum-cycle-length algorithm as reported in Appendix D.1 indicates that the cycle
length must be at least 24 slots: during 4 different slots all lights show red. The effective
green time is 5 slots for each combinations: the lights show green for 3 slots and yellow
for 2 slots.

The Optimal-fixed-cycle algorithm successively increases the cycle length, starting with
a cycle of length D = 24 slots. The length of the green period for a single combination
is extended by one slot, such that the cycle length becomes 25 slots. Consequently, the
red period for all other combinations increased by 1 slot, which may cause some queues

to become instable. Whereas all queues are (just) stable when D = 24, some queues are

6.3. ONE-STEP POLICY IMPROVEMENT (RV1) 197

instable at D is 25, 26, and 27 slots?. At D = 28, the best FC is the one where the green
periods of all four combinations are extended by 1 slot compared to the FC with D = 24.

The long-run average waiting times reported in Figure 6.3 are for the best FC given
cycle length D. The figures are accurate up to 4-5 decimals and obtained by numerically
solving MCs. Clearly the response curve, depicting the relation between the long-run
overall average waiting time and the cycle length, is far from convex and contains many
local optima. When one would only connect the local optima in Figure 6.3(a) one obtains
a curve that is quite flat for high values of D. Apparently it is better to end-up with a FC
with a relatively high cycle length, than with a FC with a cycle length that is relatively
short. In Figure 6.3(b) we have zoomed to show that cycle length 40 and 44 give the best
results, although 52 slots still yields a low average waiting time. We deliberate on the

sensitivity with respect to the chosen cycle length in Section 6.4.5.

Since in this example the arrival rates are identical, a locally optimal FC appears to
have green periods of identical length. Locally optimal FCs are thus found for D being a
multiple of C' = 4. This is not the case when the arrival rates differ, as will be illustrated in
Figure 8.12 in Chapter 8. This complicates the stopping criterion of the search algorithm.
The incremental search algorithm can be stopped when £ successive increments do not
yield an improved FC. When all arrival rates are identical, k£ can be set to C'. But,
when some combination(s) have a higher workload than others, it may be necessary to
set k higher depending on the skewness in the arrival rates. We do not guarantee the
algorithm to end in the global optimum, but numerical experiments have shown that the

Optimal-fixed-cycle algorithm generates a good FC.

°In the evaluation of a Markov chain for an instable queue the iterative process is cut-off at some
maximum number of iterations.

198 CHAPTER 6. SINGLE INTERSECTION IN ISOLATION

200 —
180 |
160 |
140 |
120 [
100 +
80 |
60 |

40 |

Overall average waiting time (in slots of 2 sec.)

20 | E|

0:...|...|...|...|...|...|...|...'
24 28 32 36 40 44 48 52 56

D = cycle length in slots (of 2 seconds)

(a) Sensitivity of the waiting time under FC when the cycle length ranges from 36 to 56 slots.

Overall average waiting time (in slots of 2 sec.)

40 44 48 52

D = cycle length in slots (of 2 seconds)

(b) Sensitivity around the optimal value of the cycle length.

Figure 6.3: Application of the Optimal-fixed-cycle algorithm to find optimal value of the
cycle length for F12C4 with identical arrival rates (Ay = 0.2). (The average waiting times
are computed by solving a Markov chain for each flow. For an instable queue the iterative
process is cut-off at some maximum number of iterations.)

6.3. ONE-STEP POLICY IMPROVEMENT (RV1) 199

6.3.2 Step 2 — Relative values of FC

Under FC each flow perceives a periodic green-yellow-red cycle of fixed length, indepen-
dent of the queue lengths of the various flows. Let D be the duration of a cycle or the
cycle length. Then the effective green time or the departure time of flow f is, under FC,
a fixed number of d; slots during which the lights of flow f show green or yellow. The
last yellow slot is followed by r; = D — d; red slots. Since cars depart from a queue only

during green or yellow slots, we call these dy slots departure slots.

Thus for flow f the fixed cycle results in a periodic MC with dy departure slots and 7y
red slots. The state of the chain can be described as a pair (t,q) with ¢ the number of
cars present at the beginning of a slot and ¢ the number of the slot within the cycle,
t € {1,...,D}. Whereas in the MDP model the traffic light state was x = (s, 1), the state
of the lights under FC is simply the slot number ¢.

The equilibrium distribution, and thus the average costs per time unit, can be computed
using a generating function approach, see Darroch [33] and Van Leeuwaarden [153]. But
what we need are the relative values of the states to compare some time slot 7 against
slot t. The analysis of such a periodic MC and in particular the computation of these
relative values can be done numerically by stochastic dynamic programming (SDP). As
the state space for one flow is small (only 2-dimensional), one may set the bound on the
queue length) high enough such that the probability of rejecting an arrival plays hardly

any role.

The total number of feasible states in each of the F' MCs is D-(1+@Q), which is considerably
less than the number of states in the MDP model. Hence the relative values of states
under FC can be computed quickly by value iteration. The immediate costs in state (¢, q)
is simply the number of cars present: ¢. In addition, one may incur expected externality
costs to compensate for the error involved with the truncation of the queue lengths at
(). Although externality costs are computed in the programs developed, we omit the
computation of any externality cost in the discussion below: when () is set very high,
such that the number of queued cars in the real systems stays virtually always well below

@, externality costs play hardly any role.

Let v (t,q) be the total expected costs (=number of cars waiting) at queue f over n
slots when starting in (¢,q). For the evaluation of the MC for a single flow and for the

computation of the relative values of states, one proceed as follows.

200 CHAPTER 6. SINGLE INTERSECTION IN ISOLATION

Computation of relative values under FC

For all flows f =1,..., F execute the following four steps: Step 2a — Step 2d.

Step 2a. Define U(J;(t, q) =0 for all £ and ¢ and let ¢ take a very small value, e.g. 10710,

Step 2b. For all t and ¢ recursively compute v,]; +1(t,q) as follows:

e if t is a departure slot for f:

vl) =g+ vl + 1)+ (1= Xp)-vl(t+1,(g—1)7F), (6.19)

e if tis a ‘red slot’ to flow f:

npa(t,0) = q + Ap- vt +1g+ 1) + (1= Ap) - vf(t+1,9) . (6.20)
where v/ (D + 1, -) should be read as v/(1,").

until span(v£ D= vl) < e. Suppose this happens at first at the N-th iteration.

For all ¢ and ¢ the difference (v/ L p(t,q) —vi(t,q)) converges exponentially fast
to the long-run average costs per cycle (¢\f)), as the D-step Markov chains are

all irreducible.

Step 2c. Compute the long-run average waiting time (EWy) at queue f in slots by ap-
plying Little’s law: EW; = EL¢/\¢, with EL; = the long-run average number

of cars present at the start of a slot:

 (hp(t) — vkt)
EL; = 5 .

The overall average waiting time (EW) is simply the weighted sum:

EW — 2 A EWy _ > ELy _ Zf(vljif—i-D(ta(D - UJ(/(taQ))/D
Zf)‘f Zf)‘f Zf)‘f

(6.21)

6.3. ONE-STEP POLICY IMPROVEMENT (RV1) 201

Step 2d. Choose a fixed reference state, (D,0), and compute the relative value vector

f

Vrel :

;o Vit v o(D0)+ -+ vl (D, 0)
Viel = D - D -1, (622)

where 1 is a vector with all elements equal to 1.

Given the reference state (D, 0), the relative values are unique. As discussed in
Section 1.3.2 and Appendix B, the relative value definition in (6.22) is correct.
The differences vj{,(q, t) — v%(D, 0) cannot be used for this purpose as FC is a

periodic policy and consequently these differences change periodically with V.

Example — Consider the F4C2 intersection of Figure 6.1(a) where 4 flows are served in

two combinations: flows 1 and 3 constitute C;, and flows 2 and 4 constitute Cy. Suppose

both combinations get green during 3 slots. Switching takes another 3 slots, so the

duration of a cycle is 12 slots: D = 12. A typical relative value curve of flow 1 is depicted

in Figure 6.4 for the case that 4 cars are waiting at queue 1. Slots 1 to 5 are departure

slots for flow 1, the next 7 slots the signals of flow 1 show red. The worst position in the

cycle is the start of slot 6, since all 4 cars have to wait for at least 7 slots. Apparently, the

best position is the start of slot 1, because then the remaining green period last longest.

relative value

130 T T T T T T T T — ; ;
4 cars waiting at flow 1 ——=—
120 | _

110 F -
100 1
90 |- N .
80 | o]
70 .
60 | o “m i
50 |- ~ i
0 b - .
30 | i
0f " e
10

slot number

Figure 6.4: Relative value curve when 4 cars are waiting at flow 1.

202 CHAPTER 6. SINGLE INTERSECTION IN ISOLATION
130 T T T T T T T T LI T T
4 cars waiting at flow 1 —-m---
120 ¢ 2 cars waiting at flow 2 -2 ---
110 2 cars waiting at flow 3 ---¢--
- 1 cars waiting at flow 4 ----e---
100 - e
9 i i
80 | - -
5 70 F ‘/// '\.\\ 4
® /./ S~ 1
> 60| n .
R ~. i
K] . Lo
o 40 u’ ~o E
0 - e o S A
20 —'//,‘/L/‘ A ‘/O'/ N ',A'" = .\}_
10 " Al o °
[N 2 S8
or g A, e p N ° 1
L S S SR S-S S B Tl
107 4 G G y YRR R R R R R
_20 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12
slot number
Figure 6.5: Relative value curves for flows 1 to 4 when q = (4,2,2, 1) cars are waiting.
Similar curves can be drawn for all flows and any number of cars in {0,1,...,Q}. In

Figure 6.5 the relative value curves for all four flows are drawn when q = (4,2,2,1) cars
are waiting. Each flow has it own optimal slot number, which is usually at (or close to)
the start of its green period. The curves of flow 2 and flow 4 show the difference in relative

values between having 2 cars queued and only 1 car queued.

6.3.3 Step 3 — One-step policy improvement rule (RV1)

Now let us return to the system as a whole. Under FC the system’s state is described by
the pair (t,q), with q = (q1,. .., qr) the numbers of queued cars and ¢ the slot within the
cycle. Related to t are the colors of the lights. In the example of the previous section,
t =1 is the first green slot of Cq, t = 4 is the first yellow slot of C;y, and ¢ = 7 is the first
green slot to Cy. Note that ¢ = 6 and ¢ = 12 relate to an all-lights-red slot. Slot 13 does
not exist, since after slot t = D = 12 the cycle resumes at ¢ = 1. During any slot ¢ at

most one combination has green or yellow, all other combinations have red.

Under FC the slots are thus visited in the order 1,2,..., D, 1,2,.... When this order is
interrupted, the state and color of the lights are changed accordingly. Now, let us return
to the numerical example. Suppose ¢ = 2 at the start of a slot (hence C; has right of way),
then one may change the state of the light ¢ from 2 into 4, such that the green period of
C; is ended. In fact by allowing the dynamic adjustment of the state of the traffic lights

6.3. ONE-STEP POLICY IMPROVEMENT (RV1) 203

t, one may choose to resume FC at some slot 7 rather than at slot £. The decision that
one selects immediately affects the traffic lights and has indirectly impact on the number

of cars waiting at each queue.

The one-step policy improvement rule looks for the best time jump within the cycle from
t to 7. In state (t,q), only time jumps to a slot 7 € 7(¢,q) are allowed. The set 7 (t,q)
contains all feasible time jumps when q cars are waiting at the start of slot t. 7C(¢,q)
denotes the action space when the policy has to be cyclic. The action spaces are similar
to A(z,q) in the MDP model. When ¢ is a green slot to C°, one may choose any 7 that
keeps the lights green to C?, or to the 7 that indicates the first yellow slot to C*. The
action space consists of a single element, i.e. ¢, when t refers to the start of the second
yellow slot for some flow or to the start of an all-red slot. When ¢ indicates that a new
green period is about to start for combination s, one has to distinguish cyclic from acyclic

control:

e Under cyclic control any 7 that grants green to combination s, or set 7 to t — 1 such
that the all-red period is extended by 1 slot;

e under acyclic control any 7 that grants green to any combination may be selected,

next to slots that imply red to all flows.

Selection of best time jump

In state (¢,q) every 7 € 7 (t,q) is evaluated by summing the relative values related to 7:
Z}ll Uf;l(T, qr). Immediately thereafter, the lights are adjusted according to the value of
7 that minimizes the sum of the relative values under FC. When evaluating a time jump,
one assumes that after the jump FC is resumed at slot 7, although this will not be the

case when decisions are revised at the start of every slot.

Hence the one-step optimal decision (time jump) in state (¢, q), follows from:

F

o(t,q) = arg min vl (7, qp) . (6.23)
T€T (t,q) —

These o(t,q) for all states (¢,q) together constitute the improved strategy RV1 that is
hopefully close to optimal. Since a decision is updated every slot, RV1 breaks FC: the
green periods under RV1 are not of a fixed length, but their lengths change dynamically.

204 CHAPTER 6. SINGLE INTERSECTION IN ISOLATION

Example — Revisit the previous example, in Section 6.3.2. To illustrate the concept, we
show in Figure 6.6 the sum of the relative value curves over all flows with q = (4,2,2,1)
cars are waiting at flows 1 — 4. The best position in the cycle (yielding the lowest sum of
relative values) is slot 1: the start of green to Cy. Although switching to this point seems
to be best, it is not reachable from all points in the cycle. When C, has green the best
feasible decision is to switch from green to yellow, since the curve has a local minimum
at slot 10.

130 T T T T T T T T T L T
Sum when (4,2,2,1) cars waiting -—--4---
120 A 4

110 F 7
100 F i
90 | i
80 - .
70 F 4
60 - A A
50 e o .
40 | "
30 F ' .
20 | .
10 b .

O 1 1 1 1 1 1 1 1 1 1 1

relative value

slot number

Figure 6.6: Sum of the relative value curves when q = (4,2,2,1) cars are waiting at flow
1 to 4.

6.3.4 Step 4 — Simulation of RV1

To check the performance of RV1 one may in principle formulate a MC. For most in-
tersections, the MC of RV1 cannot be analyzed, since the number of states (t,q) =
(t; q1,q2,-..,qr) is far too large. Since the actions and transitions do depend on the en-
tire state description, the state space under RV1 cannot be decomposed; hence the flows

cannot be analyzed in isolation of each other.

For large problems we can only evaluate RV1 by Simulation. Therefore a simulation
model is developed and implemented in Delphi-Pascal. The process of cars arriving and
leaving the queues and the control of the traffic lights is simulated in discrete time with

time jumps equal to one slot (=2 seconds). At the start of every slot the number of cars

6.3. ONE-STEP POLICY IMPROVEMENT (RV1) 205

waiting at the queues (q) is observed as well as the state of the traffic lights (¢). Next,
a decision 7 is taken according to the policy under consideration, e.g. FC, RV1, or any

exhaustive control policy. (Under FC 7 = ¢, under RV1 7 = o(t,q).)

The decision 7 is implemented instantaneously. Any cars arriving during a slot are as-
sumed to do so at the beginning of that slot, any departures from a queue are modeled
at the end of that slot. A car arriving at an empty queue and facing a green or yellow
light passes the stopping line during the very same slot and hence contributes no waiting
costs. At the start of the next slot the state of the traffic light is 7 4+ 1, and the above

process repeats based on the new state of the queues.

Before the start of the simulation of RV1, the relative value curves for each flow and for
all possible queue lengths are computed and stored. This takes hardly any time compared
to solving the MDP, since the F' Markov chains are of a much lower dimension: each MC
has only 2 dimensions under FC compared to F' + 1 dimensions for the MDP. When the
simulation is started, every decision epoch the F' relative value curves are summed based
on the actual state (t,q), as in Figure 6.6. Although based on FC, the improved policy
RV1 is no longer a fixed cycle, since the green periods are interrupted (lengthened or

shortened) every slot.

Remark — Since the relative values are computed flow-by-flow, the computation time
remains low even when the upper bound) on the queue lengths is very high: say 100
cars or even more. In the simulation model we assume that queues may contain an
infinite number of cars. Although not likely when @ is set high enough, it may happen,
at least theoretically, that the number of cars waiting at a queue exceeds (). In that case,
we need to estimate the relative value of that state since the relative value curves are
known only for queues lengths ¢ < 100. Then the relative value is estimated by quadratic

extrapolation, see Appendix E.

206 CHAPTER 6. SINGLE INTERSECTION IN ISOLATION

6.4 Test cases and results

To assess the quality of RV1, its performance is compared against FC, and some ex-
haustive control policies. For small problems the optimal MDP policy can be evaluated.
Throughout this section we stick to cyclic control, hence 7 (¢, q) in Equation (6.23) should
be replaced by the action space for cyclic control 7¢(¢,q). Acyclic control is studied in
Sections 6.5 and 6.6.

6.4.1 Test cases — Infrastructures

Throughout this and the next chapters, the different policies are applied to two infras-
tructures: the F4C2 and F12C4 intersections that are displayed in Figure 6.7. These
intersection were already introduced in Section 5.1.1. Whereas the F4C2 intersection
may be realistic but simple, the F12C4 intersection has some interesting features. F12C4
has separate lanes for left turning traffic and non-identical numbers of flows per combi-
nation (C; and Cj consists of twice as many flows as Cy and Cy4). Other infrastructures
are studied in [54] and [55]. Instead of reporting results for many infrastructures, we
believe its is at least as insightful to answer specific question for the FA4C2 and F12C4

intersections under different workloads.

For each infrastructure, we consider different scenarios concerning the workload of the
intersection and the symmetry in the arrival rates. In Table 6.1, we introduce the following
terminology: fully-(a)symmetric and partly-(a)symmetric. In a, what-we-call, ‘symmetric’

case, all combinations consist of an identical number of flows. FAC2 is thus a symmetric

1
Cl Cl Cl CQ
1 \ 1P B
1 ‘*ﬂIEJ—@
— R
:EIIE Cl ‘ IIlE_._C’s
. T Cw—am"4 ,EIIII<—ﬁ—C4
Gl 4,
3 E
8 I
i 201 Cy
(a) "F4C2” serve 4 flows in 2) ?F12C4” serve 12 flows in 4
symmetric combinations asymmetrlc combinations

Figure 6.7: Two typical infrastructures.

6.4. TEST CASES AND RESULTS 207

Table 6.1: Terminology regarding the symmetry of test case with respect to the number
of flows per combination and the arrival rates.

flows per combination

Identical for all C, Non-identical for all C,
Arrival rates | ‘symmetric’ intersection | ‘asymmetric’ intersection
Identical ‘fully-symmetric’ case ‘partly-asymmetric’ case

Vf)\fi)\

Non-identical | ‘partly-symmetric’ case | ‘fully-asymmetric’ case

case, whereas F12C4 is asymmetric. When, in addition, the arrival rates in a symmetric
case are identical for all flows, we deal with a fully-symmetric case; whereas when the
arrival rates differ between flows, we speak of a partly-symmetric case. Asymmetric cases
with identical arrival rates are called partly-asymmetric cases. When the arrival rates

differ between flows, we call an asymmetric case a fully-asymmetric case.

For each infrastructure we formulate test cases in which the arrival rates are identical for
all flows. In addition, we investigate a few cases with non-identical arrival rates, to find
out whether ‘thin’ combinations are overruled by ‘thick’ combinations, given the definition
of thickness in Section 6.1.2.

In the next section we report results for the two infrastructures under different work loads
p (=04, 0.6, and 0.8), as defined in (6.2). Note that, as explained in Section 6.1.2, the
effective workload is higher than p, since definition (6.2) does not include the all-lights-
red time when switching to another combination. We do not consider cases where the

effective workload is 1 or higher.

Simulation horizon

The accuracy of the results presented in the next subsections is primarily set by the
number of simulation runs and the length of each run. All reported simulation results
are based on 100 runs of 72,000 slots per run, corresponding to 4,000 hours in the real
system. At the start of each run a warming-up period of 450 slots (=15 minutes) applies.
The reported mean waiting times are accurate up to (at least) 2 to 3 figures; to safe space

we do not report confidence intervals.

208 CHAPTER 6. SINGLE INTERSECTION IN ISOLATION

6.4.2 Simple intersection F4C2
Identical arrival rates (F4C2)

In Table 6.2 the results are presented for the fully-symmetric F4C2 intersection at varying
workloads. In the cases p = 0.4,0.6,0.8 all flows have identical arrival probabilities per
slot of 0.2, 0.3, 0.4 respectively. The Optimize-fixed-cycle algorithm suggests cycle lengths
of 8, 12 and 22 slots respectively, as reported in seconds in the next-to-last row. The
departure times are the lengths of the effective green period under FC. RV1 is based on
FC with these cycle lengths and departure times.

Table 6.2: Overall mean waiting time (in sec.) for the fully-symmetric F4C2.

Rule p=04 p=0.6 p=08
RV1 5.06 7.01 14.2

FC 5.43 +7% | 827 +18% | 17.0 +20%
XC 576 +14% | 8.82 +26% | 19.9 +40%
XC-1 5.03 1% | 721 +3% | 155 +9%
XC-2 5.09 +1% | 7.31 +4% | 14.2 +0%
MDP cyclic 4.89 -3% | 6.95 -1% | 135 -5%
FC cycle length (in sec.) and 16 24 44
departure times per combination (6, 6) (10, 10) (20, 20)

The performance of the cyclic RV1 strategy obtained by the one-step policy improvement
algorithm, is close to that of the optimal cyclic MDP strategy. Next to the average
waiting times, we report the relative difference compared to RV1. The cyclic MDP policy
performs only a few percent better. FC and XC yield on average 15% and 27% higher
waiting times; when the load is high (p = 0.8) the differences are greatest. On average
RV1 is just a little bit better than the anticipating exhaustive variants (XC-1 and XC-2),

but the difference is small for this simple fully-symmetric case.
Non-identical arrival rates (F4C2)

Two F4C2 cases with non-identical arrival rates are considered:

Case 1. The flows within the same combination have identical arrival rates, but C, is

three times as thick as Ci: Ay = A3 = A and Ay = Ay = 3. (Hence py = 3p;.)

Case II. Flow 1 is a third as thick as the other flows: A\; = A\/3 and Ay = A3 = \y = A\
(Hence py = p1.)

6.4. TEST CASES AND RESULTS 209

Table 6.3: Mean waiting times (in sec.) for two partly-symmetric F4C2 cases at p = 0.6.

Rule EW % above RV1 | EW; EW, EW3; EW,
Case I

(A1,-..,Ap) = (0.15,0.45,0.15,0.45)

RV1 5.9 10.5 4.4 10.4 4.4
FC departure times 6, 14 sec. 6.9 +17% | 11.2 54 11.2 5.4
XC 7.5 +27% | 11.0 6.3 11.0 6.3
XC-1 6.6 +12% | 8.6 5.9 8.6 5.9
XC-2 7.3 +24% 7.7 7.2 7.7 7.2
MDP (cyclic) 5.9 0% | 104 44 104 44
Case 11

(A1,...,Ap) = (0.1,0.3,0.3,0.3)

RV1 6.5 6.1 5.6 8.3 5.7
FC departure times 10, 10 sec. 8.0 +23% 5.2 8.3 8.3 8.3
XC 7.7 +18% | 6.8 7.4 8.7 7.4
XC-1 6.5 +0% 5.4 6.2 7.3 6.2
XC-2 6.7 +3% | 4.7 6.7 7.6 6.7
MDP (cyclic) 6.3 3% | 5.2 5.9 7.5 5.9

The results are reported in Table 6.3 for a workload of p = 0.6 (hence for Case I A = 0.45
and for Case II holds A = 0.3). The average waiting time, EW/, is presented in the last
four columns for each flow f. The overall average waiting time per car is reported in
the second column. Again, next to the overall average waiting time per car, the relative
differences compared to RV1 are reported. FC yields a waiting time that is for Case I and
IT respectively 17% and 23% above that under RV1. The overall average waiting time

under all policies has reduced in both cases compared to the fully-symmetric case.

The impact of the arrival rates on the best configuration of FC, is read through the
reported departure times: in Case I the cycle length remains 6 + 14 + 2 - 2 = 24 seconds.
In Case II both the cycle length and the departure times are unaffected, since both

combinations are equally thick.

By comparing the results for the two cases, we observe that flows that are part of a thicker
combination experience a lower waiting time. This might seem counterintuitive, but a
thicker combination gets a better treatment since it puts more weight to the scale. If a
thin flow and a thick flow are together in one combination, then the thin flow benefits but

the thick flow suffers a bit compared to when it would be part of a thicker combination.

210 CHAPTER 6. SINGLE INTERSECTION IN ISOLATION

6.4.3 Computation times on F4C2: MDP versus RV1

The computation complexity of the SA algorithm for computing an optimal MDP strategy
is O(C?(1+ Q)*"). The complexity order is much lower for evaluating the Markov chains
under FC, which is input to RV1. The computation of the relative values for all F' flows

is O(F-D-(1+Q)>).

To illustrate the difference in complexity order, we report some running times on an
in-2007-modern PC, an Intel Pentium 2.8GHz processor and 2Gb RAM- memory. The
RAM-memory is sufficient to registers about 10® states. Depending on the implementation
and the available time one can execute a successive approximation scheme for cases with
millions of states. We discuss the running time for a simple example using the program,

written in Delphi-Pascal, developed to generate results that are included in this thesis.

Consider the F4C2 intersection. When the load of the intersection is high, say 80%,
the number of waiting cars virtually never exceeds 18, as may be checked by simulation.
Hence we truncate queues at () = 18 cars. The total number of states is about a million
(or to be precise (1 + 18)%- (2 (1 4 3)) = 1,042,568). The computation of the optimal
cyclic MDP policy takes about 12 hours for 520 iterations, or 86 seconds per iteration
of the SA algorithm. The computation time can be reduced significantly, by setting the
upper bound) somewhat lower. This is only possible because we accurately compute the
externality costs by quadratic extrapolation. Further, one may note that a nearly optimal
MDP policy is found far before iteration 520, but the SA algorithm continues iterating

until the gain of the related Markov chain is closely approximated.

Computing for all flows the relative values of all states under FC takes only a few seconds,
depending on the required accuracy. The computation time needed to obtain a nearly

optimal MDP policy is thus much higher for a problem of the same size.

6.4. TEST CASES AND RESULTS 211

6.4.4 Complex intersection F12C4

For the F12C4 intersection the optimal MDP strategy cannot be computed because the
number of states is prohibitively large. Even when in the MDP model queues are truncated
at 2 cars, the total number of states is still very large: 8.510° states (= (1 + 2)'2 queue
states times 16 traffic light states). F12C4 is not only computationally more complex
because of the number of states, but also because the combinations are asymmetric: C;
and Cj consist of 4 flows, whereas Cy; and C, consists of two flows only. It seems to
be more profitable to under-serve combinations Cy and Cy, since serving the other two
combination results in more departures per time slot as long as cars are present at the

respective queues.

The asymmetry makes it more difficult to define simple rules that perform well. We keep
the same definition of exhaustive control: all queues must be empty before the green
signals are turned into yellow. Under XC-2 (and XA-2), green lights are turned into red

as soon as at each of the flows that have right of way 2 or less cars are queued.

We consider both a partly-asymmetric and a fully-asymmetric F12C4 case. For the partly-

asymmetric case (where all arrival rates are identical), we discuss consecutively:

e the impact of the asymmetry and the workload on the overall average waiting time,

and

e how the asymmetry of the combination affects the waiting time distribution and the

queue length distribution.

For the fully-asymmetric F12C4 case (with non-identical arrival rates), we test whether
a very thin combination is getting under-served under a high workload. Therefore we

assume that Cy is 6 times as thin as C; and Cs, and three times as thin as Cj.

In Section 6.4.5, we discuss the impact of the sub-optimal cycle lengths D on the perfor-
mance of FC and RV1.

Identical arrival rates (partly-asymmetric F12C4)

In Table 6.4 the results for varying workloads at a F12C4 intersection are presented for
the case where all flows have identical arrival intensities (0.1, 0.15, and 0.2 for p = 0.4, 0.6
and 0.8 respectively). RV1 outperforms all other strategies. When the workload of the
intersection is low (0.4) XC-2 performs equally well. At a high load XC-2 is too simplistic.
At p = 0.8 XC-2 yields an average waiting time that is 28% higher than under RV1. Then
FC performs even better than XC-2.

212 CHAPTER 6. SINGLE INTERSECTION IN ISOLATION

Table 6.4: Overall mean waiting time (in sec.) at different loads for F12C4 (A\; = p/4).

Rule p=04 p=20.6 p=08
RV1 13.5 19.3 41.8

FC 15.0 +11% | 23,7 4+23% | 50.5 +21%
XC 19.2 +42% | 334 +73% | 89.8 +115%
XC-1 14.9 +10% | 25.1 +30% | 70.1 +68%
XC-2 13.5 +0% | 19.6 +2% | 53.3 +28%
FC cycle length (in sec.) 32 40 88

FC departure times (in sec.) (6, 6, 6, 6) (8, 8,8, 8) (20, 20, 20, 20)

In Table 6.5, we study the waiting time at the different flows when the workload is 0.8.
Although the arrival rates A; are identical for all flows, the mean waiting times differ per
combination. Combinations C; and Cs are ‘thicker’ than combinations Cy and Cy, since
the latter two combinations have only two flows each, whereas C; and Cj consists of four
flows each. Therefore C; and Cj experience a lower waiting time than combinations C,
and Cy under all policies except FC. The average waiting times per car under FC are
identical since all flows experience a departure time (or an effective green time) of 20

seconds (10 slots) per cycle.

Although FC seems to be most fair in the sense that the flows experience the same average
waiting time, RV1 performs much better: the average waiting time to flows of C; and Cs
is 13 seconds (or 26%) lower than under FC, while the average waiting times to Cy and
C, are virtually the same as under FC. Further observe that both XC and anticipative-
exhaustive control (XC-1 and XC-2) perform even worse than FC, when the workload is
high.

Table 6.5: Mean waiting times (in sec.) for symmetric F12C4 at p = 0.8.

Rule EW overall EW Cq, C3 EW C,, Cy
RV1 41.8 37.4 50.6
FC dep. times 20, 20, 20, 20 sec. | 50.5 +21% 50.5 50.4
XC 89.8 +115% 88.5 92.4
XC-1 70.1 +68% 68.9 72.4
XC-2 53.3 +28% 52.1 55.8

6.4. TEST CASES AND RESULTS 213

Waiting time and queue length distribution (partly-asymmetric F12C4)

Waiting time distribution

Although our primary criterion is the average waiting time, we are also interested in the
distribution of the waiting time. From the waiting time distribution one reads the fraction
of cars that experience a waiting time above some level. Therefore we have computed the
inverse cumulative distribution or the tail distribution of the waiting time based on the
individual waiting times that are registered by the simulation program. Related to the
distribution of the waiting time is the distribution of the queue length at the start of
a slot: the more often a high queue length is observed the more cars experience a high

waiting time.

In Figures 6.8 and 6.9 we show the tail distributions of both the individual waiting time
and the queue length at the start of a slot under the various control strategies: RV1, FC,
and XC, XC-1, XC-2. Since the arrival rates are identical at all queues the only difference
between flows is whether they are part of a thick or a thin combination. The distributions
are computed after having simulated the policies for 4,000 hours (100 runs of 72,000 slots
each), during which on average 1.44 million cars arrive at each flow. On the horizontal
axis of Figure 6.8(a) and 6.8(b) one reads the individual waiting time which is an integer
number of slots ranging from 0 to 90 slots (3 minutes). Vertically one reads the fraction of
cars experiencing a waiting time greater than or equal to the value read at the horizontal

axis.

Figure 6.8(a) depicts the waiting time distribution for the 8 flows part of the thick com-
binations. The probability of excessive waiting time, is lowest under RV. For example
only 17% of the cars arriving at combination 1 or 3 experience a waiting time exceed-
ing 1 minute (30 slots), while under FC still about 36% of the cars has to wait for at
least 1 minute. Under pure-exhaustive control about 65% has to wait for 1 minute and
often much more. Although the differences are smaller we conclude from Figure 6.8(b)
that flows part of thin combinations do favor RV1 since it avoids excessive waiting times

better than all other strategies.

Hence RV1 is superior not only in its mean waiting time but also in its distribution.
A great reduction in the average waiting time at most of the queues is observed, while

excessive waiting times at the other queues occur less frequently than under FC.

214 CHAPTER 6. SINGLE INTERSECTION IN ISOLATION

fraction of cars

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Waiting time in slots (of 2 seconds)

(a) Tail distribution of waiting time of cars in thick combinations: f € C(1) UC(3).

fraction of cars

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Waiting time in slots (of 2 seconds)

(b) Tail distribution of waiting time of cars in thin combinations: f € C(2) UC(4).

Figure 6.8: Inverse cumulative distributions (tail distributions) of the waiting time for
flows f of thick and thin combinations of partly-asymmetric F12C4 (p = 0.8 and Ay = 0.2).

6.4. TEST CASES AND RESULTS 215

Queue length distribution

In Figure 6.9 we show for the several policies the tail distributions of the queue lengths at
the start of a slot. Based on the queue length distribution Figures 6.9(a) and 6.9(b), we
draw similar conclusions: the queues of thick combinations are shorter under RV1 than
under any of the other policies. At the other queues there is only a small difference in

queue lengths between FC and RV; again the tail under RV1 is less heavy than under FC.

When comparing the waiting time curves of the FC policy to the queue length distribution
under FC, we observe that the waiting time curve shows a bend at 35 slots, while the
queue length distribution does not show a similar irregularity. This bend is explained by
noting in this case an all-red period lasts 34 slots. Cars that that could not be served
during the first green period that they encounter, need to wait at least another 34 slots
higher for the start a next green period. The curves under the dynamic control policies
do not show such an bend, since the all-red period has no fixed length under dynamic
control. The queue length distribution under FC does also not show such an irregularity

since cars arrive uniformly over time.

Non-identical arrival rates (fully-asymmetric F12C4)

To study the impact of non-identical arrival rates in combination with an asymmetric
number of flows per combination, we study the fully-asymmetric F12C4 intersection with
workload 0.8. We assume Cs, which consists only 2 flows (flow 3 and 9) to have an arrival
rate that is only a third of all other 10 flows. The arrival rates are thus 0.08 for flows
3 and 9 and 0.24 for all other flows. Then the overall load is again 0.8. Thus, C, is
(4-0.24)/(2-0.08) = 6 times as thin as C; and Cs, and Cs is three times as thin as Cj.
Since Cy adds little weight to the scale, one may expect Cs to suffer high waiting times.

In Table 6.6 the average waiting time per car is reported for all flows.

Table 6.6: for F12C4 at p = 0.8: Cs is six times as thin as C; and Cs.

Rule EW overall EW C1,C3 EW Cy EW Cy4
RV1 39.4 34.9 66.6 48.7
FC dep. times 22, 8, 22, 22 sec. | 47.1 +20% 45.6 69.4 45.6
XC 85.1 +116% 82.8 107.8 86.9
XC-1 66.6 +69% 64.6 84.8 68.3
XC-2 50.5 +28% 48.8 65.0 52.6

216 CHAPTER 6. SINGLE INTERSECTION IN ISOLATION

T T

FC - queueinC10orC3 -4

XC -queuein C1orC3 -—--a--
XC-1-queueinC1orC3 --o--
XC-2-queuein C1orC3 o -
RV1 - queue in C1 or C3 --m-

fraction of time

.\Q .
\“Q A -
“ .
SN .
LN Q R Ta _
A z €} e i ““Ax
- ~~2:;1_} O g e,
0 1 L oy g g 7:\“."'"“- - g o o A A b-8--u
0 5 10 15 20 25 30

Queue length (in cars)

(a) Tail distribution of queue length of queues in thick combinations: f € C(1)UC(3).

T . T T Tt T
FC - queuein C2orC4 ----&---
XC -queueinC2orC4 —a-—-
XC-1-queueinC2orC4 ---o-- |
XC-2 - queue in C2orC4 ----e -
RV1 - queueinC20orC4 --m-

fraction of time

N Ta
L 'S
\\\A;‘ . .\‘\.L]
RUI— ® 28, Do el
P I - 1 SEPU-i - it~ - S
0 5 10 15 20 25 30

Queue length (in cars)

(b) Tail distribution of queue length of queues in thin combinations: f € C(2)UC(4).

Figure 6.9: Inverse cumulative distributions (tail distributions) of the queue lengths for
flows f of thick and thin combinations of partly-asymmetric F12C4 (p = 0.8 and Ay = 0.2).

6.4. TEST CASES AND RESULTS 217

The waiting time of cars in Cy is (considerably) lower than under FC, XC and XC-1,
although the waiting time at Cs is indeed higher than at all other flows. Apparently, C,
is not under-served. XC-2 performs marginally better for Cs, but the average over all
queues is 28% higher than under RV1. Pure-exhaustive control performs very bad, since
it does not anticipate departures during the yellow slots. FC performs better than XC-2
but yields a waiting time that is still 20% above that of RV1.

We conclude that, also when arrival rates are non-identical, RV1 is superior, and that

RV1 does not result in excessive waiting times at queues of thin combinations.

6.4.5 Sensitivity regarding the cycle length D

In Section 6.3.1, we have observed already that the curve of the average waiting time
as a function of the cycle length D, is quite flat around the optimal value of D. For
the partly-asymmetric F12C4 case we have seen that the local minima are where D is a
multiple of C' = 4 slots. We now return to that example and show that RV1 is even less

sensitive to the chosen cycle length of the underlying FC.

In Figure 6.10 we have plotted the average waiting times for D ranging from 24 to 56 slots
with increments of 4 slots. Although the overall long-run average waiting time under FC
is high when D is set low, say D = 24, the average waiting is much lower under RV1. It
appears that RV1 is almost insensitive to the cycle length of the underlying FC for which

the relative values are computed.

55 T T T T T T T T

FC —+—

Overall average waiting time (in slots of 2 sec.)

15 1 1 1 1 1 1 1 1 1
24 28 32 36 40 44 48 52 56 60 64

Cycle length in slots (of 2 seconds)

Figure 6.10: Sensitivity of FC and RV1 policy to cycle length for F12C4 at workload 80%

218 CHAPTER 6. SINGLE INTERSECTION IN ISOLATION

6.4.6 Conclusions

The optimal dynamic control of traffic lights, given the number of cars waiting at each
queue, involves a high-dimensional state space. Therefore an optimal MDP policy can
only be found for small intersections such as the F4C2 intersection. For more complex
intersections such as the F12C4, one relies on heuristic and approximate solutions, such
as RV1.

The newly developed policy RV1 is based on a one-step policy improvement algorithm
over FC. Since RV1 improves FC, first one needs to determine a good configuration of
FC, i.e. nearly optimal departure times and the related nearly-optimal cycle length D.
Even when the selected FC is sub-optimal, RV1 shows very good improvements; it is quite

robust for a broad range of cycle lengths D.

RV1 improves FC and exhaustive control policies at varying loads. At a high workload
of the intersection, the control scheme has to be sophisticated. RV1 shows the greatest
improvement over the other policies when the workload is high, say 0.8. Also when the
intersection is asymmetric in the number of flows in each combination, like in F12C4,
the control rule has to be more sophisticated than FC or exhaustive control. The F4C2
and F12C4 cases show that RV1 reduces the waiting time under FC by about 20%. For
the F4C2 infrastructure, we have shown that RV1 performs nearly optimal. Especially
for the F12C4 infrastructure, (anticipative) exhaustive control policies may perform even
worse than FC. Clearly the definition of when to switch green lights into yellow should be
refined when multiple queues can be served simultaneously. RV1 is refined at this point,

and easy to implement.

6.5. MORE-ADVANCED IMPROVEMENT RULES 219

6.5 More-advanced improvement rules

Although the results for RV1 are promising, we are interested in more advanced policies
that make use of the relative values of the states under FC. First, we develop a variant
called RV2 in which two decisions are evaluated simultaneously to find a best time jump.
Next, three acyclic control policies RV1S, RVIM and RV2M are constructed.

6.5.1 Adjust two green periods (RV2)

The new policy RV1, developed and tested in the previous sections, performs very well,
while it is based on only a single improvement step over FC. RV1 adjusts the length of
the actual green period by making a time jump in the cycle: to evaluate a time jump
one assumes that FC is resumed from that point onwards. In order to select a time jump
RV1 ignores future time jumps that will be taken in the real system. Although for the
F4C2 infrastructure, we have checked that RV1 performs nearly optimal, this cannot be
checked for the F12C4 infrastructure. For the F12C4 infrastructure, decisions based on
the queue lengths are more refined, therefore one may expect to get better decisions when

a time jump is evaluated by also taking a next time jump into account.

A one-step policy improvement over RV1 cannot be executed, because the relative value
vectors cannot be derived for RV1 since the state space under RV1 cannot be decomposed.
Therefore we propose to include a second time jump, which plans where to resume FC
after the next switching phase. In the evaluation of a first time jump, the second time
jump allows thus to shorten the length of the next green period. We refer to this new
policy as RV2. In Figure 6.11 the two time jumps are depicted. Suppose at time ¢ the
lights are green to some combination. Then an immediate time jump to 7 is evaluated
by assuming that the next green period will be started at slot 7, instead of at slot r. (e
and r denote respectively the end of the green period and the end of the next all-red slot,

which is the start of the next green period under FC.)

Expected waiting costs over Expected relative value as if
m =r — 1 slots FC is resumed at 7

yellow | yellow all-red

t e r

Figure 6.11: Setting RV2 actions requires evaluating two jumps 7 and 7

220 CHAPTER 6. SINGLE INTERSECTION IN ISOLATION

RV2 adjusts the lights according to a time jump 7, but for the evaluation of the time
jump, RV2 optimizes over the length of the next green period by selecting a second time
jump 7o. Given the actual state (t,q) at the start of a slot, RV2 derives the best pair
(71, T2) that minimizes the long-run average waiting cost assuming that FC is resumed at
To. When evaluating a time jump RV2 assumes FC to continue from slot 7; to the end
of the next all-red slot, after which a second time jump 75 is selected, as illustrated in
Figure 6.11. The end of the all-red slot coincides with the start of slot r at which a next
green period would start (if not interrupted by 7). RV2 thus implements only the first
time jump from ¢ in to 7. The second time jump in RV2 is introduced solely to obtain a

more accurate evaluation of jumping from ¢ to 7.

For example, 71 = t—1 implies to lengthen the current green period by one slot for the flows
that have right of way at slot . Under RV1 all cars queued at the other combinations need
to wait one more slot. Under RV2 however, the next green period may be shortened, just
as what may happen in the real system, and consequently the red period of combinations
visited thereafter may be shortened. A time jump that may look not beneficial under
RV1 could thus be beneficial in the real system. RV2 better resembles the real system

since it may anticipate the action taken at the end of the next all-red slot.

Computations of RV2 actions

The process depicted in Figure 6.11 can be modeled as a MC. Except for the jump from
r to T, the process resembles an MC of FC. The MC is characterized by the state (¢, q),
and the time jump 75. The process at queue f is independent of the arrival and departure
processes at the other queues. The relative values for this MC may be computed flow-by-
flow. Let uf (71, ¢y, 2) denote the relative value for flow f of starting, m slots before the
start of the next green period, the MC in slot 7 with gy cars queued and breaking FC at

the start of a next green period by jumping to slot 7.

For the computation of the relative values for the interrupted FC, one may use the ap-
proximation of the relative values, erl, of FC. In words, vfel(TQ, ¢fm) is used as terminal
costs when ending in state (72, ¢f,m); ¢fm is a stochastic variable indicating the number of
cars waiting at queue f after m slots. We add to U{el(’TQ, ¢fm), the expected waiting costs
over the first m slots. Since we have truncated the (in principle) infinite horizon in the
approximation of the relative values by vfel, we need to compensate for unequal horizons

by subtracting m times the average costs per slot under FC, ¢(/).

6.5. MORE-ADVANCED IMPROVEMENT RULES 221

RV2 algorithm — The following algorithm is used to derive RV2 actions: Steps 1 —
3 can be computed off-line. Step 4 is executed run time: every slot a best RV2 action
is read from Equation (6.27). The algorithm implicitly computes the relative values of

states for Markov chains similar to the one presented in Figure 6.11.

f

rel’

Step 1. Approximate for all flows f, the relative values of the states under FC, v
and the gain, ¢\, of the MC for flow f.
Step 2. Set for all flows f, for all ¢f € {0,1,...,Q}, and for all 7,7 € {1,...,D}:
u£(7-1>Qf77-2) = Uvjfel(T%qf)' (624)

Step 3. Compute recursively for for all flows f, for m =1 to dy + 1:
for 7 :=1to D, for all ¢f € {0,1,...,Q}:

e if 7 implies red to flow f:

U{n(’ﬁ, qf7T2) = g + >\f ug’b—l(’]—l + 17 qf + 17 7_2) +
+ (1 - /\f) ufnfl(Tl +1, qf77—2)
— gth) (6.25)

(when ¢f = @, then uf;_l(ﬁ + 1,95 + 1, 72) is approximated by quadratic
extrapolation),

e if 7 grants green or yellow to flow f:

ul (r,qp,m) = g5+ Nyl (m+1,q57)
+ (1 -)‘f) ufn—l(Tl + 17 (qf - 1)+77-2)
— g, (6.26)

Step 4. An optimal RV2 action 77 in state (t,q) is online computed by:

F
g w3l () 621
T1 € T(t7q) f=1
7 €T (r,q)

(with r = slot number at which a next green period would start when FC would

be continued).

Before presenting results for RV2 (in Section 6.6), we first introduce a few more-advanced

acyclic RV policies.

222 CHAPTER 6. SINGLE INTERSECTION IN ISOLATION

6.5.2 More-advanced acyclic RV policies (RV1IM and RV2M)

In Section 6.4 we have studied results for cyclic control policies. By using action space
T (t,q) instead of T¢(t,q), acyclic control policies are considered. In the evaluation of
a feasible time jump 7, RV1 assumes FC to resume at 7. Hence RV1 does not allow to
evaluate a decision by assuming a different cyclic order in which the combinations receive

green.

Therefore we have developed another RV policy: RVIM. Under RVIM a time jump to 7 is
evaluated more carefully by allowing to modify the cyclic order in which the combinations
receive green. RV1M selects the best 7 based on the best cyclic order at which FC may

resume. Since decisions are updated every slot, only decision 7 is implemented every slot.

Below we deliberate on the acyclic counterpart of RV1, and on RVIM.

Acyclic RV1

For example, consider the F12C4 case and the green period of C3 has just ended. Now,
the controller needs to select a combination to serve next. When 7 grants green to Cy,
FC is resumed in the order C;-Cy-C3-C, - C1-Csy-etc. Hence under RV1 Cy is skipped and
thus served after all other combinations are visited. Since this might be too bad to Cy4, a
jump to 7 might be rejected under RV1, although it could be optimal to serve C; before
Cy.

RV1IM

Under RVIM we may modify the cyclic order to better evaluate the jump to 7. (The ‘M’
in RV1M stands for Modify the cyclic order.)When 7 grants green to C;, RV1M not only
considers the cyclic order C;-Cy-C3-Cy - C1-Coy-ete. Instead RV1IM evaluates 7 as if FC
continues at the best of the ((C'— 1)! = 3! =) six possible cyclic orders:

Cyclic order 1: C1-Cq-C3-Cy - Cy-Cyp-. ..
Cyclic order 2: C1-Cq-Cy-C5 - C1-Cy-. ..
Cyclic order 3: C1-C3-Co-Cy - C1-Cs-. ...
Cyclic order 4: C1-C3-Cy-Cy - C1-Cs-. ...
Cyclic order 5: C1-Cy-Cy-C35 - Cy-Cy-. ..
Cyclic order 6: C1-Cy4-C3-Cy - C1-Cy-. ..

6.5. MORE-ADVANCED IMPROVEMENT RULES 223

For the selection of the best 7 from the relative values of the states under FC, we need
to consider in this case six potential new intended cycles ¢. The set of all possible cycles,
is denoted by ®(7) and depends on the slot number 7 in the base cycle C;-Cy-C3-Cy.
In principle RV1IM is still a one-step policy improvement based on the relative values of
states under FC, but next to 7 one selects a best cyclic order, ¢, of combinations by which
FC resumes. Under RVIM the best decision is thus the best pair (7, ¢), with ¢ € ®(7)

being the new intended cyclic order.

In order to value a decision (7, ¢), one needs the relative values of the states under FC.
The relative values of states under FC with cyclic order ¢ can be derived from the relative
values (6.22) of states under FC with cyclic base order C;-Cy-C3-Cy4. Instead of saving
(C — 1)! relative value tables, we suggest to save on memory usage, using the fact that

the relative values of states for different ¢ are only shifted in the slot number t.

The relative values v/, in Equation (6.22), relate to the original cycle (C;-Ca-Cs-Cy).
Suppose that under this cyclic order flow f receives green from slot ¢ = r; to slot ey.
When the cyclic order changes, f receive green at other slot numbers: the start of a green
period may not no longer be at slot s, but say at slot 77+ d(¢). The relative value curve

of flow f is shifted by a constant d; which depend on the new intended cycle ¢.

Example — Consider a case where C' = F' = 4 (one flow per combination) and 7 grants
green to Cy. The cyclic base order is (C1-Cy-C3-Cy), and the green period of flow f starts
at slot 7y. When one evaluates the cyclic order ¢ = (C;-C3-Cy-Cy), then the green period
of Cy is postponed by ds = 74 — 73 slots: which is the effective green time of Cs plus one
all-red slot. Cs gets green r3 — 79 slots earlier than under the cyclic base order. The delay
03 is thus negative for Cs, since the time until it receives green is shortened: d3 = ro — r3.

The order of C; and Cy is preserved, hence d; = d4 = 0.

For this particular order ¢ the delays are thus d(¢) = (0,74 — r3,re — r3,0), which are the

shifts for looking up the right relative values.

Actions under RVIM — The optimal actions under RVIM follow from Equation
(6.28), where 7 4 07(¢) should be read as [(D + 7+ d;(¢)) mod D] whenever 7 + (o)
falls not in {1,2,...,D}.

F
RV1IM _ . . f
o t,q) = arg min min vl (T+0 ,) 6.28
(t.q) & &Tta) <¢eq>(T) = rel 1(9):45)> (6.28)

224 CHAPTER 6. SINGLE INTERSECTION IN ISOLATION

RV2M

Similarly one may investigate multiple cyclic orders ¢ under RV2: we call the resulting
policy RV2M. Under RV2M one thus selects the best triple (71,72, ¢). We skip a formal

definition of RV2M since it involves complicated notations.

Complexity of RV1M and RV2M

When a feasible time jump is to be evaluated over all possible cyclic orders, the computa-
tional complexity grows exponentially in the number of combinations. The combination
to serve first is set by the time jump (7 or 77). The remaining C'— 1 combinations can be
visited in (C'—1)! different orders. (If the combination that has been served most recently
has to wait until all other combinations are served, then the number of cyclic orders to
consider is (C' — 2).)

For the F12C4 intersections one deals with C' = 4 combinations. The number of possible
cycles is small enough for considering all permutations. As a result simulating RV2 takes
considerable more time than simulating RV1. For cases where the number of combinations
is (much) larger, one could save time by considering not all permutations of the C' — 1
combinations, but only those in which two combinations are pulled forward in the intended
cycle. Then instead of (C' — 1)! permutations only (C' — 1) - (C' — 2) possible cycles
are considered. The simulation program in which we test RVIM and RV2M allows for

considering a subset of all permutations.

6.6. EVALUATION OF ADVANCED RV POLICIES 225

6.6 Evaluation of advanced RV policies

With the introduction of the new policies we are interested in comparing cyclic against
acyclic control. Furthermore, we question whether the more advanced rules RV2, RVIM
and RV2M yields much lower average waiting time than RV1. In this section we investigate
the quality of these policies and compare them against FC and a number of (anticipative)
exhaustive control policies. For the F4C2 case acyclic policies are not of interest, since
F4C2 consists of only two combinations. Therefore the focus is on the infrastructure
F12C4, under different loads. Again all results are obtained by simulating each policy for
4,000 hours (100 runs of 72,000 slots), such that the results reported are accurate up to
2 or 3 digits.

6.6.1 F12C4 with identical arrival rates

In Table 6.7 one reads for varying workloads at a partly-asymmetric F12C4 intersection,
the long-run average waiting time per car overall flows. The top part of the table, con-
taining the results for the cyclic policies, greatly coincides with Table 6.4, except that the
results for RV2 are added. RV2 appears to perform equally well as RV1: although RV2

is based on a more accurate evaluation, it hardly improves RV1.

When the control of the lights may be acyclic, RV1 shows an improvement of 7.7%
over cyclic RV1, when the workload is low (0.4). However when the workload is low,
anticipative-exhaustive control XA-2 performs even better. (Remember: under XA, XA-
1, and XA-2 one switches to the combination with the longest queue at the end an all-red
slot.) The lowest waiting time at p = 0.4 is obtained under RV1IM and RV2M: 12.4%
below RV1. Apparently, modifying the cyclic order is important when the workload is

low.

When the workload is high (p = 0.8), the more advanced acyclic rules perform hardy any
better than RV1. When the load is high it becomes critical not to waste much time on
switching or on serving queues at which not much traffic is waiting. The best anticipative

exhaustive control policy yields a waiting time that is about 28% above that of RV1.

Conclusions — One may conclude that when the workload is low one needs to select
carefully which combination to serve next, while when the workload is high one should
take care in formulating when to switch. For the best results RVIM (or RV2M) is favored,
but when the control has to be cyclic RV1 is favored because of it requires less and more

simple computations than RV2.

226 CHAPTER 6. SINGLE INTERSECTION IN ISOLATION

Table 6.7: Overall mean waiting time (in sec.) at different loads for F12C4 (A\; = p/4).

Rule p=04 p=0.6 p=0.8
Cyclic policies:

RV1 13.5 19.3 41.8

RV2 13.5 0.0%| 19.4 +0.1%| 41.6 —0.5%
FC 15.0 410.9%| 23.7 +23% 50.5 +20.8%
XC 19.2 4+41.9%| 33.4 +73% 89.8 +114.8%
XC-1 149 +10.1%| 25.1 +30% 70.1 +67.2%
XC-2 13.5 +0.0%| 19.6 +2% 53.3 +27.6%
FC cycle length (in sec.) 32 40 88

FC departure times (in sec.) (6, 6, 6, 6) (8, 8,8, 8) (20, 20, 20, 20)
Acyclic policies:

RV1 12.5 —7.7%| 18.9 —2.1%| 41.7 —0.2%
RVIM 11.9 -12.4%| 18.3 —5.3%| 41.7 —-0.2%
RV2M 11.9 —12.4%| 18.3 —5.4%| 40.9 -2.1%
XA 187 +37.9%)| 33.4 +72.6%| 90.0 +115.4%
XA-1 14.0 +3.1%| 25.1 +29.7%| 70.2 +68.1%
XA-2 12.3 —-9.1%| 19.1 —1.0%| 53.8 +28.8%

Waiting time per flow

Although the arrival rates per flow are identical (0.1, 0.15, 0.2 when the workload is 0.4,
0.6 and 0.8 respectively), the mean waiting times may differ per combination. C; and Cj
are ‘thicker’ than Cy and Cy, since the latter two combinations have only two flows each
whereas C; and Cjs consists of four flows each. Under a policy that takes the number of
queued cars into account, such as the RV policies, we may expect that car drivers in C;

and Cj experience a lower waiting time than car drivers in Cy and Cjy.

In Table 6.8 detailed results are reported for p = 0.8. RV1 and RV2 yield a much lower
overall average waiting time than FC, but not at the expense of a high average waiting
time at the queues of the thin combinations Cy and C4. Under cyclic control, the average
waiting times at Cy and Cy are just as high as under FC. The waiting time at the other

queues is reduced by more than 25% from 50.5 seconds to about 37 seconds.

Under acyclic control, thin combinations may be skipped or their service may be ended
too early, in favor of serving a thick combination. Nevertheless, RV1, RVIM and RV2M
yield average waiting times that do not differ much from those under FC. The waiting

time at Cy and C, stays very close to that under FC, while the waiting time at the other

6.6. EVALUATION OF ADVANCED RV POLICIES 227

Table 6.8: Mean waiting times (in sec.) for F12C4 at p = 0.8 (Vf : Ay = 0.2).

Rule EW overall EW Cq, C3 EW C,, C4
Cyclic policies:

RV1 41.8 374 50.6
RV2 41.6 —0.5% 37.1 50.3
FC dep. times 20, 20, 20, 20 sec. | 50.5 +20.8% 50.5 50.4
XC 89.8 +114.8% 88.5 92.4
XC-1 70.1 +67.2% 68.9 72.4
XC-2 53.3 +27.6% 52.1 55.8
Acyclic policies:

RV1 41.7 —0.2% 37.3 50.6
RVIM 41.7 —0.2% 36.2 52.9
RV2M 40.9 —2.1% 35.2 52.5
XA 90.0 +115.4% 88.0 94.0
XA-1 70.2 +68.1% 68.3 74.1
XA-2 53.8 +28.8% 51.8 57.7

queue is as low as 35.2 seconds: a reduction of 31%. Compared to acyclic exhaustive
control the waiting times at all queues is much lower under the RV policies. Even the
best anticipative acyclic exhaustive control policies yield waiting times that are higher
than under FC.

The difference between cyclic and acyclic control, in terms of the average waiting times,

is very small.

6.6.2 Non-identical arrival rates (F12C4)

Hypothesis

Flows that contribute little to the total workload may suffer high waiting times under
acyclic control, since they may be skipped or their green period is ended too early in
favor of serving thick combinations. Under the RV policies, we hope and expect that
this will not happen too much, since letting many cars waiting at a thin combination is

penalized by the definition of the relative values.

Ending a green period too early implies that all cars left behind at that queue need to
wait for the next green period. A thin combination has a shorter green period in FC than

a thick combination. Letting say 5 cars waiting at a thin combination is consequently less

228 CHAPTER 6. SINGLE INTERSECTION IN ISOLATION

Table 6.9: Mean waiting times (in sec.) for fully-asymmetric F12C4 at p = 0.8 — Cy is six
times as thin as C; and Cs.

Rule EW overall EW C1,C3 EW Cy EW Cy
Cyclic policies:

RV1 39.4 34.9 66.6 48.7
RV2 39.3 —0.2% 344 66.3 48.9
FC dep. times 22, 8, 22, 22 sec. | 47.1 +19.5% 45.6 69.4 45.6
XC 85.1 +115.9% 82.8 107.8 86.9
XC-1 66.6 +68.9% 64.6 84.8 68.3
XC-2 50.5 +28.1% 48.8 65.0 52.6
Acyclic policies:

RV1 38.7 —1.7% 33.6 75.8 46.5
RVIM 38.3 —2.9% 32.5 82.5 46.9
RV2M 37.6 —4.5% 31.8 79.8 46.4
XA 82.7 +109.7% 73.8 201.9 78.7
XA-1 64.8 +64.4% 57.7 158.1 62.3
XA-2 49.7 +26.2% 44.0 121.1 48.8

desirable according to the relative values than letting 5 cars waiting at a thick combination.
Since under FC some cars may have to wait for even two or more cycles before getting

served, when some queue become long, the RV policies aim at keeping all queues short.

We expect thus very thin combinations not to be skipped under the RV policies, although
they may experience higher waiting times than cars at the other queues. We test this
hypothesis for the F12C4 case with the arrival rates of the queues in Cs being only a third
of the arrival rate at the other ten queues. The workload of C; and Cj is thus six times
as high, since these combinations consist of four flows each. When the total work load (p)
is 0.8 the arrival probability for the flows in C, is 0.08, for the other ten flows it is 0.24.
The results are reported in Table 6.9.

Results

Under cyclic control a thin combination has to be served before a next thick combination
can is helped, but it service may be stopped (well) before its queues become exhausted.
Nevertheless, the long-run average waiting time at a thin combination is not very high
under RV1 or RV2. The long-run average waiting time at C, is higher than at the other
queues, but it is (considerably) lower than under FC, XC and XC-1. Indeed the relative

6.6. EVALUATION OF ADVANCED RV POLICIES 229

values prevent long queues at the thin combinations. The lowest waiting time to C, is
experienced under XC-2, but the difference with cyclic RV1 and RV2 is small. The overall
average waiting time under XC-2 is 28% above that under cyclic RV1 and RV2.

Under acyclic control the service of Cy may be postponed in order to serve a thicker
combination. Since the visiting order is no longer cyclic, the service of a thin combination
is no longer enforced in the action space. Because of this, one observes a higher average

waiting time at C,, than under cyclic control.

The difference in the average waiting time between cyclic and acyclic control is more
visible, now that not all combinations have identical loads. Moreover RV2M yields a
somewhat lower waiting time than RV1. Compared to FC the waiting time under RV2M
at the eight queues of C; and Cjz has dropped by more than 30% (14 seconds), while the
waiting time at Cy has increased by only 15% (8 seconds). Acyclic anticipative-exhaustive
control XA-2 performs very bad, since C, is only served when the length of one it’s queues
is the longest over all 12 queues; due to the low arrival rate this may take a relatively

long time during which any cars present have to wait.

All RV policies yield thus fairly low waiting times even at the thin flows, apparently the

relative values avoid queues to become very long.

6.6.3 Conclusions for F12C4 cases:

e The relative values used in the RV policies prevent queues to become long, even for

a thin combination, which contributes little to the total workload.

e When the total workload is low, acyclic control may be preferred; when the total
workload is high the difference between cyclic RV policies and acyclic RV policies is

small.

e RV1 is the preferred policy for cyclic control, since RV2 is more complicated while

it does not lead to significantly lower average waiting times.

e For acyclic control the best option seems to be RV2M, although RV1 or RVIM may

be may be favored for requiring less computations.

230 CHAPTER 6. SINGLE INTERSECTION IN ISOLATION

6.7 Conclusions and Discussion

6.7.1 Conclusions

The dynamic control of traffic lights, such that the long-run average waiting time over all
flows is minimized, can be formulated as an MDP. However an optimal solution can be
computed only for intersections where the number of queues is small. For most realistic
intersections, one relies on heuristics such as FC, and vehicle actuated control, which is a
mixture between exhaustive control and FC. Under FC the system has a well-structured
state space, which can be decomposed into subspaces for each flow. The relative values
of states under FC can thus be computed numerically for each flow in isolation of all
others. These relative values are used to develop what we call RV policies, in which a

best position (slot number) in the cycle is determined given the queue lengths.

RV1 is based on a one-step policy improvement algorithm with FC as the initial policy.
RV2 optimizes every slot over two successive time jumps, although only the first time
is implemented. RV1IM and RV2M do allow to modify the cyclic order while evaluat-
ing the time jumps in a fixed cycle. Based on a number of test cases for two different

infrastructures we conclude:

e RV1 yields a great improvement of FC and exhaustive control policies.

e RV1 is robust in the chosen cycle length for the underlying FC: RV1 performs also
very good when based on a sub-optimal FC. This is important since finding an

optimal FC is in general difficult.

e When the workload is high, the more advanced RV policies (such as RV2, RV1M,

and RV2M) show only a minor improvement compared to RV1.
e When the workload is low, acyclic control, e.g. by RV1M, is favored.

e The one-step policy improvement algorithm, which results in policy RV1, is promis-

ing for reducing the waiting times at signalized intersections.

6.7. CONCLUSIONS AND DISCUSSION 231

6.7.2 Discussion

The quality and robustness of the RV policies have been investigated and compared based
on several interesting cases. In this section we briefly discuss how the RV policies can

deal with additional objectives and with a number of complexities that arise in practice.

Different objectives in cost function

We have focussed on minimizing the overall long-run average waiting time. Another
criterion, commonly studied in traffic light engineering, is to minimize the number of
stops made by the cars. The cost structure can easily capture this criterion by including
cost for each stop a car makes in the queue. The question to minimize the number of

stops may be more prevalent when dealing with networks of intersection.

Serving pedestrians and cyclists

In the cases that we have studied we excluded flows of pedestrians and cyclists. The
departure process of pedestrians and also that of cyclists differ from the departure process
of cars, since when the light turns green all pedestrians waiting at a cross walk start
crossing the street more or less at the same time. Furthermore, the number of pedestrians
may not be known to the controller: the controller only receives information about whether
there are any pedestrians are waiting. The same may hold to cyclists: the number of
cyclists waiting at an intersection may not be known to the controller and cyclist do
not leave one-by-one. At some intersections cameras or induction loops are present to
count or estimate the number of cyclists waiting, but usually their waiting time cannot
be estimated accurately, since only the first moment of pressing a button to call for service

is registered.

Therefore cyclists and pedestrians require a special treatment. In practice the green period
is fixed to a pre-specified time that a cyclist or pedestrian needs to cross an intersection,
which is independent of the actual number of cyclists or pedestrians waiting at a light.
The service of cyclists or pedestrians can be included in FC as special combinations. In
FC fixed periods are then included during which cyclists or pedestrians are served. These
fixed period may be skipped only when no cyclist or pedestrian is present. Furthermore,

the RV policies are not allowed to shorten the green period of these special combinations.

Under acyclic dynamic control we may need to specify a ‘soft’” bound b on their wait-

ing time; when pedestrians or cyclist are waiting more than b slots, they are the next

232 CHAPTER 6. SINGLE INTERSECTION IN ISOLATION

combination to get green. The process of serving car traffic is then continued until some
pedestrian(s) or cyclist(s) wait for more than (at least) b slots. Then, as soon as a green

period to car traffic ends, the respective lights for pedestrians and cyclists turn green.

Public transport

Trams and busses often drive on separate lanes in Dutch cities, and at some places they
get priority over car traffic for political and environmental reasons. Green periods to
cars are ended instantaneously when a bus or tram approaches an intersection. The RV
policies can of course be interrupted in this way, but for the minimization of the waiting
time we suggest to let RVIM decide about when to end a green period based on the
number of cars waiting at the queues. Public transport thus gets priority as soon as an
all-red slot is visited. Such a priority setting fits better to the objective of minimizing the

long-run average waiting time, while it still provides priority to public transport.

When at an intersection busses and trams arrive very frequently one may want to include
one or more special combinations in FC, just as for cyclists and pedestrians. When
queueing of trams and busses is allowed, one may even compute relative values of the
queue lengths for public transport. To give buses and trams a higher weight one may
incur (much) higher cost for busses and trams for each slot that they are queued. One
may even introduce a cost structure that is progressive in the number of queued busses

and trams.

More complex cycles and sub-cycles in FC

In the cases that we have studied, the set of flows F was split into C' mutually exclusive
subsets, called combinations. Under cyclic control each flow is visited once every cycle,
and an all-red slot applies when switching between two combinations. In general, a flow
may be part of multiple combinations, and the lights of one or more flows may stay green
while switching form one combination to another. The cyclic RV1 and RV2 policies can
easily be modified to cases where a flow is visited multiple times in a cycle, since one only

needs to know during which slots of FC its lights are green, yellow, and red.

In the practice of traffic light engineering, a cycle may contain two (or more) sub-cycles:
e.g. in both sub-cycles all or just a part of the flows is served, but the first sub-cycle may
be longer than the second. The RV policies can easily be extended to make time jumps

in a cycle of multiple sub-cycles: one then allows to jump from a short cycle to a longer

6.7. CONCLUSIONS AND DISCUSSION 233

cycles. Since RV1 is hardly sensitive to changes in the cycle length we do not expect great

improvements of considering sub-cycles.

Serving conflicting flows simultaneously

Thus far we have presumed that conflicting traffic flows are not in the same combination
and thus do not get right of way simultaneously. In practice, some conflicting flows may
receive green simultaneously, in which case basic traffic rules apply to solve any conflicts.
For example, left-turning traffic flow f may be served together with opposite thru traffic
originating from flow h. Flow f than needs to give right of way to flow h, whenever cars

leave queue h.

In deriving the relative values of states, one thus needs to acknowledge that the departure
process of f depends on the number of cars present at queue h. The transitions become a
bit more involved. Suppose that only flow A has priority over f, and no flow in the same
combination has priority over h. When slot ¢ grants green to flows f (and h), Equation
(6.19) then becomes:

Vit an) = a + Af s An C VIt 1 g+ 1,qn)
+ A (1=Ap) . [an(t+1,Qf+17Qh_1)'](qhZ1)
+VI(t+1,q7,0) - I(gn =0)]
+ (I=Xp)-(1=X) - [V(t+1qm0—1) - I(gn>1)
+ VIt +1,(¢—1)",0) - I(gn = 0)]
+ (=) - VI L1 (e - 1)),

The value vector of flow h can be computed as before as, using Equation (6.19), since its
departure process does not depend on any other flow. The state space is thus decomposed
in a somewhat different way. The relative values are computed in a very similar way as
before, but the relative value vector of flow f is three-dimensional, while that of A is two

dimensional: Uffel(t, qr, qn) versus v, (¢, qp).

Outlook

In the next chapters, the RV policies are extended to include information on near future

arrivals, and the policies are applied to networks of intersections.

