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General Discussion

General Discussion

After the completion of the first genome sequence, which was from the bacteriophage phi X-
174, in 1977, more than 1800 genomes have been sequenced with two important milestones;
first, the completion of the first eukaryotic genome (Saccharomyces cerevisiae) and, then, in
2001 the completion of the human genome. Data from the genome sequencing projects have
now been used for high throughput methods like transcriptomics, proteomics and
metabolomics. These methods, also called functional genomics, have changed molecular bi-
ology from a relatively data-poor to a data-rich field. Especially, the use of the micro-array tech-
nique that enables researchers to simultaneously measure the abundance of all transcripts
has grown exponentially. For example, the Gene Expression Omnibus (GEO)[152], a reposi-
tory for microarray data that started in 2000 now contains 168,222 single microarray data sets.
Before the genomics revolution, biologists were mainly analyzing the individual components or
aspects of an organism. Nowadays, researchers are able to focus on the systematic study of
the complex interactions in biological systems. A new field of study called systems biology has
emerged. Systems biology can be defined as the study of an organism, viewed as an inte-
grated and interacting network of genes, proteins and biochemical reactions that give rise to
life (www.systemsbiology.org). The scope of this thesis is the development, implementation
and use of gene expression profile (and fithess profile) data analysis tools, which can be re-
garded as systems biology methods.

T-profiler; analysis of gene expression profiles using pre-defined gene groups
At the start of this thesis, microarray data were mainly analyzed using clustering [75] algo-
rithms and only a limited number of data analysis tools were available. Since then, the num-
ber of data analysis tools has, in parallel with the number of datasets, grown exponentially.
The majority of these tools measure enrichment of a selection of genes from a gene expres-
sion profile in a pathway or a functional group. To this end, statistical methods like the hyper-
geometric distribution or Fischer’s exact test are applied. Onto-express [75] and Pathway
processor [78] were the first tools that used this method for the analysis of gene expression pro-
files; since then dozens of similar tools were developed (www.geneontology.org).

A disadvantage of such tools is that significantly up- or down-regulated genes have to be se-
lected. Since microarray experiments are relatively expensive, the number of experimental du-
plicates is limited. In yeast expression data an arbitrary up- or down regulation of 2-fold for the
selection of genes with an altered expression level has often been used. However, the re-
mainder of these expression profiles could still contain useful information and therefore meth-
ods have been developed that do not use prior selection of genes but instead analyze the
whole gene expression profile.

Pavlidis et al. [102] was one of the first who used class scores for gene expression analysis
on whole expression profiles; later, Quontology [81] the forerunner of T-profiler, followed. An-
other tool is named PAGE (Parametric Analysis of Gene set Enrichment)[82] that, like Quon-
tology, calculates the significance of the difference between the average expression in a gene
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set and the genome mean. Although the statistics of T-profiler and PAGE are similar, the t-sta-
tistic performs better when using large gene groups. A disadvantage of both PAGE and T-pro-
filer is that they assume that the datasets are normally distributed, which is not always the
case. Statistical tests like hypergeometric distribution and Fischer’s exact test are non-para-
metric and therefore make no assumptions about the distribution of data. One of the currently
most used pathway analysis tools is Gene Set Enrichment Analysis (GSEA), which is devel-
oped at the Broad Institute. GSEA uses the non-parametric Kolmogornov-Smirnoff (KS) test to
identify significant changes of predefined gene sets. However, since non-parametric tests use
ranks instead of measured values, they tend to be less powerful and flexible than correspon-
ding parametric tests [82]. An advantage of PAGE and T-profiler above GSEA is that the t-
value or z-value of gene groups can be used to compare multiple gene expression profiles.
Such flexibility is for example demonstrated in Chapter 4 where we discuss the development
of T-base, a database in which we compare multiple gene expression profiles analyzed by T-
profiler. An obvious disadvantage of all gene group-based analysis methods is the limitation of
predefined gene groups. Although T-profiler combines Gene Ontology, MIPS, motif and ChIP-
chip based datasets, novel transcriptional responses that are not described in one of the gene
sets are missed in the analysis.

Large-scale analysis of gene expression profiles using T-profiler

Since the introduction of the microarray technique in 1995 [22] its use has become more and
more common. In many of these studies the analysis of the microarray data was far from com-
plete. Fortunately, most research groups make their data available in public repositories for
microarray data like GEO [207] or ArrayExpress [92]. Bioinformaticists are then able to use
these datasets for re-analysis and meta-analysis. Standard clustering methods have limited use
in the analysis of large-scale expression data, mainly owing to their assignment of a gene to a
single cluster [208].

One of the first methods that approached this problem was developed by lhmels et al. [208].
Applying their method on a large-scale expression data set revealed modular organization of
the transcriptional network of Saccharomyces cerevisiae. Other methods used integration of
TF ChlIP-chip data and large-scale gene expression data to identify the true target genes of TFs
[89, 180]. Zhang et al. [209] applied network analysis that combined protein-protein interac-
tion, ChIP-chip, gene expression, fitness and sequence homology data to decompose an in-
tegrated yeast interaction network into modules [68]. Another approach called SANDY
(Statistical Analysis of Network DYnamics) extended this analysis to reflect the dynamic prop-
erties of the transcriptional network under various environmental conditions. Finally, Tanay et
al. [210] used a biclustering algorithm to extract biological modules from large-scale hetero-
geneous omics data, varying from gene expression, protein-protein interaction, ChlP-chip and
fitness profiling data.

Although these methods perform well in integrating all kinds of —omics data, it is important to
realize that the physiological meaning of the modules obtained in this way may differ. For ex-
ample, it is important to make a distinction between the modules obtained by using transcript
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profiling data and the modules obtained from fitness profiling data as there often is no obvious
relationship between the response of transcriptional modules to stress and the fitness modules
identified under the same stress conditions. We initially analyzed large-scale expression data
using T-profiler to make a distinction between general and specific transcriptional responses.
To this end we created T-base (Chapter 4). Basically, T-base could be considered as a gene
expression and fitness profile interpretation database. In this thesis we present three more
specific applications of T-base.

(1) Condition-specific activation of gene sets

In chapter four we demonstrate that gene groups can be queried for their specific activation.
As an example we showed that the specific activation of the Hac1p- (TFO) gene group occurs
specifically in gene expression conditions resulting in the accumulation of defective protein in
the ER. Thus, the experimental conditions provide information about the physiological role of
the activated gene group; in this case, most of them are expression profiles of cells with par-
tially repressed genes that function in the ER. The context of such defined conditions also
gives information about similar expression profiles obtained using less well defined conditions
(such as uncharacterized genes or treatments with compounds that have an unknown mode
of action). Thus, T-base may also be queried to gain insight into the mode of action of com-
pounds via their expression profiles. A similar method was applied by Lamb et al. [70], who cre-
ated a reference collection of gene-expression profiles from cultured human cells treated with
bioactive small molecules together with pattern-matching software to mine these data. This
“Connectivity Map” resource can be used to find connections between expression signatures
of mode of action of compounds, physiological processes, or diseases.

Our method also enables to separate specific and general responses. T-base revealed that the
STRE (AGGGG/CCCCT) gene group is active in almost 50% of the expression profiles and
therefore can be regarded as a general response. Zakrzewska et al. (Thesis 2007, chapter 4)
showed that this approach is not limited to gene expression profiles only. She applied it to a
set of fitness profiling experiments and found that the GO-term of vesicle-mediated transport
is active in the majority of the fithess profiles and therefore could be regarded as a general fit-
ness feature.

(2) Co-modulation network of Transcription Factor activity

Secondly, we present a novel approach that we used to build a co-modulation network. This
approach is based on the assumption that the t-value of the TFO (transcription factor occu-
pancy) gene group might be considered as a proxy for the activity of a TF. Other approaches
make networks that are based on the correlation of individual genes. In Chapter 4 we built
such a network by using correlation analysis of the activation profiles of the TFO gene groups.
Our method differs in two important ways from that of Luscombe et al. [175]. First, their net-
work is created based on the relation between TF activity (measured by the differential tran-
scription of a TF) and their gene targets, whereas our network is based solely on the gene
targets of a TF. Since the activity of many transcription factors is regulated on the posttran-
scriptional level rather than on the level of transcription, our approach seems more generally
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useful. Secondly, Luscombe et al. (arbitrarily) separate their experiments in five different
classes based on the conditions used whereas our approach does not need this.

(3) Prediction of gene functions

An important goal after sequencing the genome of S. cerevisiae is to complete the functional
description of all yeast genes [6]. In Chapter 5 we used the information from T-base in combi-
nation with correlation analysis of the modulation of individual genes to make predictions of
poorly annotated genes. The results of this method are presented in a web-application named
FunKey. In this analysis we combine gene expression and fitness profile datasets but also
present the predictions based on the separate data. This combination allows making predic-
tion of genes that are not transcriptionally regulated but show a clear fitness effect. For exam-
ple, genes that are involved in DNA repair show clear fitness effects but are poorly regulated
on a transcriptional level [211]. Secondly, genes that show different relationships in genomic
transcription and fitness experiments could be multifunctional genes. The TCA cycle gene
ACO1, shows for example high correlations to the TCA cycle GO-term based on gene ex-
pression data but the GO-term of mitochondrial maintenance gives the highest score based on
fitness profiles. Just recently it has been shown that ACO1 indeed is multifunctional and par-
ticipates in both functions [206].

T-profiler, T-base, FunKey and future perspectives

Gene expression profiles can be considered as a snapshot of the physiological state of a cell
under a certain condition at the moment of sampling. The interpretation of this snapshot, the
list of genes that are up- or down regulated, sometimes reflects a Rorschach figure; depend-
ent on the researcher, genes that are useful to explain a certain hypothesis are used while oth-
ers that are not are neglected. Bioinformatic approaches like T-profiler can help researchers
to interpret their data in an objective way.

T-profiler analysis has already been applied in several studies: Zakrzewska et al. [69] used it
to analyze the transcriptional response to the plasma membrane perturbing compound chi-
tosan. T-profiler analysis predicted activation of the cell wall integrity pathway, the calcineurin
pathway and a Cin5p-mediated response. All these predictions could be validated using bio-
logical assays. A similar experimental set-up was used to measure the response to chitosan
by fitness-profiling analysis [65]. A comparison between this study and the one based on gene
expression profiling revealed a poor comparison on the gene level but a much better compar-
ison on the gene group level. Furthermore, T-profiler analysis was used to study the tran-
scriptional effects of strains mutated in the glucose regulatory network [212], the transcriptional
response to a heat shift (30°C to 39°C) in a time series experiment (Mensonidis, Thesis chap-
ter 5; manuscript in preparation) and the transcriptional response to sorbic acid (Resende et
al., unpublished results). In collaboration with Unilever, T-profiler was also adapted to work
with gene expression profiles from Bacillus subtilis. Ter Beek et al. (submitted) used this T-pro-
filer version to study the transcriptional response to sorbate in B. subtilis.

T-profiler is also used within the Netherlands Toxicogenomics Centre (NTC) at TNO and the
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University of Maastricht to study the effect of toxic compounds in mouse, rat and humans both
in vivo and in vitro (Kuper et al., submitted; van Leeuwen et al., submitted). Interestingly, T-pro-
filer can also be used to make an interspecies comparison between the transcriptional re-
sponse to acetaminophen (paracetamol) in rat livers, in vivo and in vitro and in human in vitro
liver cells on the pathway level (Kienhuis et al., unpublished).

Compared to other bioinformatics tools the ones presented in this thesis are conceptually sim-
ple, powerful and easy to implement. As mentioned before, T-profiler is already used for the
analysis of rat, mouse and human transcription data and the Bussemaker lab plans to extend
this to every organism with GO annotations. For the moment, FunKey is only developed for S.
cerevisiae genes but, if enough transcription data become available, the method can also be
applied to other organisms. Finally, it would be highly useful to extend T-base with data from
other organisms. If meta-data of such data sets would be given proper descriptions like sug-
gested by MIAME (Minimal Information of A Microarray Experiment), this would also allow cou-
pling of such a database with other data sources. Together, this would create a higly relevant
gene group based interpretation database.
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