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5 More Bubbling Solutions

This chapter of the thesis is based on the result reported in publication [75],
in which we construct families of asymptotically flat, smooth, horizonless so-
lutions with a large number of non-trivial two-cycles (bubbles) of N = 1
five-dimensional supergravity with an arbitrary number of vector multiplets.
They may or may not have the charges of a macroscopic black hole and contain
the known bubbling solutions as a sub-family. We do this by lifting various
multi-center BPS states of type IIA compactified on Calabi-Yau three-folds,
discussed in detail in section 4, and taking the decompactification (M-theory)
limit. We also analyse various properties of these solutions, including the
conserved charges, the shape, especially the (absence of) throat region and
closed timelike curves, and relate them to the various properties of the four-
dimensional BPS states. We finish by briefly commenting on their degeneracies
and their possible relations to the fuzzball proposal of Mathur et al.

5.1 Introduction

The four-dimensional multi-center BPS solutions of type II string theory com-
pactified on a Calabi-Yau three-fold have been derived in [82, 54, 77, 83, 80],
and their lift to M-theory was, after the indicative work [59, 60], explicitly
written down in [57] (see also [84]). Recently, this idea of the 5d lift of 4d
multi-center solutions have contributed to the understanding of black ring en-
tropy [57, 85, 86], the relationship between the Donaldson-Thomas invariants
and topological strings [34], and the OSV conjecture [30]. Indeed, with dif-
ferent choices of charges and Calabi-Yau background moduli, one can expect
to have a large assortment of BPS solutions to N = 1 (8 supercharges) five-
dimensional supergravity with various different properties by simply lifting
various multi-center solutions to five dimensions.
On the other hand, Mathur and collaborators have proposed a picture of
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108 5. More Bubbling Solutions

black holes different from the conventional one. According to this proposal,
the black hole could actually be a coarse-grained description of a large num-
ber of smooth, horizonless supergravity solutions (“microstates”, “proto-black
holes”) which have the same charges as that of a “real black hole”. (see [87],
[88] and references therein). A question one might then ask is, do there exist
some solutions in the zoo of the lifted multi-center solutions which possess this
property? If yes, how many of them are there? And how to classify them?
To construct a solution like this via the 4d-5d connection, first of all in order

to have the right global feature at spatial infinity (that it should approach
Rt×R

4 but not Rt×R
3×S1), one would need to take the decompactification

limit in which the M-theory circle is infinitely large at spatial infinity. In this
limit the five-dimensional description is also the only valid one. Furthermore,
for the smooth and horizonless feature we have to restrict ourselves to D6
or/and anti-D6 branes as the centers in 4D. To obtain non-trivial charges
we then turn on the world-volume fluxes on these centers. Finally we lift
the solutions with these charges and background to five dimensions. In this
way we have indeed obtained a large number of asymptotically flat, smooth
and horizonless solutions, to five-dimensional supergravity theories with an
arbitrary number of vector multiplets, which may have the total charge of
that of a black hole. Actually, if we restrict to the STU Calabi-Yau and
make a special Ansatz of the Kähler moduli, we retrieve the known bubbling
solutions of [89, 90, 91].1 In a recent paper, through a more explicit study of
the above-mentioned solutions, Bena, Wang and Warner [94] have constructed
the first smooth horizonless solutions with charges corresponding to a BPS
three-charge black hole with a classical horizon. Indeed, to understand this
recent development has been the original motivation of the present work.
To be able to have a solution like this in the case of a general Calabi-Yau

compactification further heightens the contrast between the picture of a black
hole of Mathur et al and the conventional one . Unlike the torus case, a general
Calabi-Yau with its complicated topological data is generically the biggest
origin of a large black hole entropy [95, 96]. As we have mentioned, to have
a horizonless solution lifted from four dimensions forces us to consider only
rigid centers, i.e., those without any (classical) internal degrees of freedom
associated to them. To reconcile these two pictures therefore seems to be
much more challenging in the case of a general Calabi-Yau compactification.
The authors of [92] have proposed a following picture: while the system is

1In [92] it has been observed that, if one adds a constant term to one of the harmonic
functions in the Bena-Warner et al bubbling solutions, which corresponds to de-decompactify
the extra dimension, and then reduce it, one would get a 4D multi-center solution. See also
[93] for a related discussion.
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described by a D-brane bound state at weak string coupling, it expands into
a multi-particle system when we turn on the gs and is thus described by a
multi-centered supergravity solution, and further grows into a five-dimensional
system when the string coupling is increased even further. While this picture
has been carefully studied and tested in the case with the total charge not
corresponding to that of a classical black hole [97], we don’t seem to have
much evidence to argue the same for the case with black hole total charges.
In other words, a priori we don’t see the reason why the D-brane bound state
must open up into a multi-center configuration instead of staying together and
form a black hole in the conventional sense, as gs is slowly turned on. To sum
up, how one would be able to reconcile the two pictures of black holes remains
mysterious.
This part of the thesis is organised as follows: in section 5.2 we repeat

some definitions and and collect the formulas pertaining to the type IIA com-
pactification moduli space, the 4d multi-hole solutions and their lift to five
dimensions, as discussed in the previous part of the thesis. In section 5.3‘ we
construct our bubbling solutions in 3 steps. First we work out the 4d solu-
tion in the M-theory ⇔ large IIA Calabi-Yau volume limit, and lift it to five
dimensions. Secondly we rescale the five-dimensional coordinates to make it
commensurable with the five-dimensional Planck units. Finally we put in the
charge vectors of D6 and anti D6 with fluxes and arrive at the final form of
the bubbling solutions.
In section 5.4 we analyse in full details the various properties of these so-

lutions. A large part of the analysis holds also for generic lifted multi-center
solutions in the decompactification limit, and some furthermore also holds for
generic values of background moduli. Therefore, along the way we have also
derived various properties of all the lifted multi-center solutions; or to say,
the properties of various configurations of charged objects in type IIA string
theory in the very strong coupling limit. Specifically, in 5.4.1 we work out the
asymptotic metric, read off the five-dimensional conserved charges, including
the electric charges of the M-theory C-field, and the two angular momenta JL
and JR, for generic centers. In 5.4.2 we focus on the metric part and first study
the condition for the absence of closed timelike curves (CTC’s). Here we find
a map between diseases: a CTC pathology in 5D corresponds to an imaginary
metric pathology in 4D. We also analyse the possibility of having a throat-like
(i.e. AdS-looking) metric in some part of the space. We conclude, also inde-
pendent of the details of how the charges get distributed, that a multi-center
configuration with charges not giving any black hole can never have a region
like that, at least in the regime where supergravity is to be trusted. We also
check that, for our specific fluxed D6 and anti-D6 composition, the metric
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is smooth (at worst with an orbifold singularity when there are stacked D6)
and horizonless everywhere, and we do this by establishing that the metric
approaches that of a(n) (orbifolded) flat R

4×Rt in the vicinity of each center.
In 5.4.3 we briefly discuss the role of the large gauge transformation of the
M-theory three-form potential in our setting. We end this part of the thesis
with discussions about future directions and some more speculative discussions
about the degeneracy of “black holes” or ”proto-black holes”.

5.2 The Lift of Multi-Center Solutions

The lift [57] to five dimensions, reviewed in section 2.2.2, of the multi-center
solution described in the previous chapter, is the starting point of our con-
struction of the new bubbling solutions. In this section we will collect the
relevant definitions and equations regarding the N = 2, D=4 stationary BPS
solutions and their lift to five dimensions. In the present part of the thesis we
will describe these theories as the low-energy effective theories of type IIA and
M-theory compactified on a Calabi-Yau manifolds, although strictly speak-
ing we do not need to know the microscopic origin of these lower-dimensional
supergravity theories.
Our basic strategy is as follows. First we recall that, using the basis (2.2.19)

of the second cohomology H2∗(X,Z) and the symplectic product 〈 , 〉 on them
given by (2.2.13), in terms of the components (4.4.1) and (4.4.2), the general
multi-hole solutions in four dimensions are given by (4.1.1), (4.4.8)-(4.4.12),
or equivalently (4.4.14)-(4.4.17), with the harmonic functions given by the
charges and the asymptotic moduli as (2.2.17) and (4.1.9). Using the dictio-
nary of lifting a four-dimension solution to five dimensions (2.2.33), we can
then write down the corresponding five-dimensional solution.
Anticipating a rescaling of coordinates later when the M-theory limit is

taken, we will begin with writing the four-dimensional quantities in a boldface
font and with an explicit subscripts “(4)” whenever it is needed. Especially,
the harmonics functions are written as

H = HΛαΛ + HΛβ
Λ =

N∑
i=1

Γi
|�x−�xi| + h (5.2.1)

h = hΛαΛ + hΛβ
Λ = −2Im

(
(e−iαΩ)|∞

)
, (5.2.2)

where α|∞ is the phase of the total central charge at spatial infinity , Z(Γ =∑
i Γi)|∞=

(
eiα|Z(Γ)|) |∞ (4.1.12). Using the lift dictionary (2.2.33), the met-
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ric part of the five-dimensional solution is given by

ds25d = 22/3(V(s))2(dψ −A0
4D)

2 + 2−1/3(V(s))−1ds24d (5.2.3)
= −(22/3Q)−2[ (dt+ ω(4) + 2L(dψ + ω0

(4))]
2

+(22/3Q)[
1
H0

(dψ + ω0
(4))

2 + H0dxadxa] , (5.2.4)

where the 4d and 5d warp factors S(�x), Q(�x) and the 5d rotation parameter
L(�x) appearing here are functions of the R

3 coordinates xa and are given by
the above harmonic functions as

S = 2π
√

H0Q3 − (H0L)2

L = −H0

2
− HAHA

2H0
+
DABCHAHBHC

6(H0)2

Q3 = (
1
6
DABCyAyByC)2

DABCyByC = −2HA + DABCHBHC

H0
, (5.2.5)

and the cross terms in the 5d metric are determined up to coordinate redefi-
nition by

dω(4) = �3
(4)〈dH,H〉

dω0
(4) = �3

(4)dH
0 ,

where the �3
(4) is the Hodge dual operator w.r.t. the flat R

3.
Furthermore, as discussed in the previous chapter, for the four-dimensional

solution to be physical we have to require the integrability condition (4.3.2)
and the positivity of the entropy function (4.3.7). As we will show later, in the
five-dimensional picture the latter condition manifests itself as the condition
of the absence of closed timelike curves.

5.3 Construct the Bubbling Solutions

After reviewing the formulae we need, now we can construct the bubbling
solutions in three steps: first taking the limit, second rescaling the solution,
and finally specifying the centers.

5.3.1 M-theory Limit

First of all, in order to get an asymptotically flat metric in 5d, it is clear that
one should take the decompactification limit in which the M-theory radius
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RM goes to infinity. From the expression of the radius in the five-dimensional
Planck unit (2.2.32), we see that we should take the type IIA decompactifica-
tion limit J (s) →∞, while keeping

J (M) ∼ J (s) 	
(11)
P

RM

∼ J (s)
( 	s
RM

)2/3

finite.
Therefore, we will now stipulate the background moduli to be

BA|∞ ≡ bA finite
JA(s)|∞ ≡ jA →∞ .

In this limit the constant terms h in the harmonic functions take a especially
simple form (the general expressions can be found in Appendix B):

h0 , hA → 0 (5.3.1)

hA → − p0

|p0|
(j2)A√

4
3 j

3
(5.3.2)

h0 → 1
|p0|

DABCp
AjBjC√

4
3 j

3
= −p

A

p0
hA . (5.3.3)

5.3.2 Rescale the Solution

It seems that we are done with the background moduli and all still left to
be done is to choose the appropriate charges and fill them in the harmonic
functions. But there is a subtlety which is a consequence of the large (IIA)
Calabi-Yau volume limit that we are taking. One can see this already from the
expression for the constant terms in the harmonic functions (5.3.2), (5.3.3):
these remaining constants go to infinity in this limit! Indeed, as a result, the
three-dimensional (apart from the time and the 5th dimension) part of the
metric goes to (H0Q)|∞dxadxa →∞ dxadxa

|�x| at spatial infinity, while it goes to

zero in the timelike direction: −gtt = 2−4/3 1
Q2 → 0.2 This is a clear signal

that we are using a set of coordinates not appropriate for the five-dimensional
description.
To find the right coordinates, let’s remind ourselves that the four-dimensional

metric is measured in the four-dimensional Planck units, while the extra warp
factor V−1 rescale the metric to be measured in the five-dimensional Planck

2See the next section for detailed asymptotic analysis.



5.3 Construct the Bubbling Solutions 113

length when the the solution gets lifted (see (5.2.3) ), whose ratio (2.2.32) goes
to infinity in the present large-IIA-volume limit. Therefore, in order to obtain
a coordinate system natural in five dimensions, we should rescale all the coor-
dinates with a factor Λ ∼ (V (s))1/6 and accordingly the harmonic functions as
well. Let’s define

Λ ≡ 1
2
(
4
3
j3)1/6

xa ≡ Λxa

t ≡ 1
2Λ

t

{H,L,Q, ω} ≡ 1
Λ
{H, L,Q, ω(4)}

S ≡ 1
Λ2

S

One can easily check that the lifted five-dimensional metric (5.2.4) can be
written in the above rescaled coordinates and functions in exactly the same
form:

2−2/3ds25d = −Q−2 [dt+
ω

2
+ L(dψ + ω0)]2

+Q[
1
H0

(dψ + ω0)2 +H0dxadxa] . (5.3.4)

The only difference the rescaling makes to the metric is that the warp factor
Q(�x) approaches a finite constant (= ±1) even in the decompactification limit
we are working in.
Let’s now pause and summarise. What we have done so far is to obtain a

large number of BPS solutions of five-dimensional supergravity with n-vector
multiplets, by lifting the four-dimensional solutions in the limit that the extra
direction is infinitely large. These solutions might have singularities or/and
horizons, depending on the charges of each center and their respective lo-
cations. For later use, we will now spell out explicitly the five-dimensional
solutions.
The metric part of the solution is given by (5.3.4) and (4.4.8)-(4.4.9), (4.1.6)

and (4.4.4)

dω0 = dA0
d = �dH0 , (5.3.5)

where � is again the Hodge star with respect to the flat R
3 base given by xa.

The harmonic functions are given by, in their most explicit form:
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H0(�x) =
∑
i

p0
i

ri

HA(�x) =
∑
i

pAi
ri

HA(�x) =
∑
i

qA,i
ri

+ hA ; hA = −|p
0|
p0

2 (j2)A
(4
3j

3)2/3
(5.3.6)

H0(�x) =
∑
i

q0,i
ri

+ h0 ; h0 = −p
A

p0
hA =

2
|p0|

DABCp
AjBjC

(4
3j

3)2/3

where ri = |�x− �xi|.
Notice that now the remaining constant terms hA, h0 are insensitive to the
rescaling of j. We can therefore as well interpret the j to be the M-theory
asymptotic Kähler moduli jA = lim|�x|→∞ JA(M)(�x), which we keep as finite.
Since the integrability condition (4.3.2) is going to play an important role

in the analysis in the following section, we also rewrite it as

〈Γi, Hi〉 = 0⇔
∑
j

〈Γi,Γj〉
rij

= −hAp̃Ai , (5.3.7)

where

Hi ≡ (H − Γi
ri
)|�x=�xi

(5.3.8)

p̃Ai ≡ pAi − p0
i

pA

p0
; rij = |�xi − �xj | . (5.3.9)

Notice that the right hand side of (5.3.7) would in general have a much more
complicated dependence on the charges of the centers, if we hadn’t taken the
M-theory limit.
Now we turn to the vector multiplets. Using the 4d solution (4.4.10) and

(4.4.12), the 4d-5d dictionary (2.2.33) now gives the lifted solution

Y A =
yA

Q1/2
(5.3.10)

AA5D = − yA

Q3/2
(dt+

ω

2
) + (

HA

H0
− L

Q3/2
yA)(dψ + ω0)−AAd (5.3.11)

where AAd again denotes the Dirac monopole part of the gauge field

dAAd = �dHA . (5.3.12)
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In a form more familiar in the five-dimensional supergravity literature, these
solutions can be equivalently written as

2−2/3ds25D = −Q−2 e0 ⊗ e0 +Qds2base (5.3.13)
FA5D = dAA5D = −d(Q−1Y Ae0) + ΘA , (5.3.14)

where

ds2base = H0dxadxa +
1
H0

(dψ + ω0)2 (5.3.15)

e0 = dt+
ω

2
+ L(dψ + ω0) (5.3.16)

ΘA = �baseΘA = d[
HA

H0
(dψ + ω0)]− �3dH

A . (5.3.17)

For example, taking one D6 charge the base metric becomes that of the
Taub-NUT space (1.3.7). Taking two D6 charges at different points the base
metric is that of the Eguchi-Hanson gravitational instanton (1.3.19).

5.3.3 Specify the 4D Charges

Now we would like to know what kind of 4d charges for the centers we should
take, in order to obtain an asymptotically flat, smooth, horizonless solution
when lifted to five dimensions. We now argue that the only possibility is the
multi-center configurations composed of D6 and anti-D6 branes with world-
volume fluxes turned on, and with the constraint that the total D6 brane
charge equals to ±1.3 This can be understood as the following: if we take D2
or D4 branes or their bound states with other branes, the uplift to M-theory
will have also M2, M5 brane sources and thus won’t have the desired smooth
and horizonless virtue. In other words, the uplifted metric near a D2 or D4
center will not be flat. One might also wonder about the possibility of adding
D0 branes into the picture. First of all, in contrast to the usual scenario [98],
a D0-D6 bound state doesn’t exist in the large volume J (s)|∞ → ∞ limit we
are taking, irrespective of the (finite) value of the background B-field. But
one could still imagine a multi-center KK monopole-electron-antimonopole-
positron juxtaposition living in the large coupling limit. But this time the
metric near the D0 centers is not smooth; more specifically, the metric in the
5th direction blows up while remaining flat in the R

3 direction. In summary,
in order to get a smooth and horizonless solution, we have to restrict our
attention to D6 and anti-D6 branes with world-volume fluxes.

3Furthermore, each center must have D6 charge ±1, if one also wants to exclude orbifold
singularities at the center. But we will keep the formulae as general as possible and do not
specify the D6 charges of each center.
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From the part of the D6 world-volume action coupling to the RR-potential
[99, 100] ∫

Σ7

eB+F ∧ C ; C ∈ H2∗(X,R) , (5.3.18)

one sees that the world-volume flux induces a D4-D2-D0 charge. Specifically,
neglecting the B-field which can always be gauged into world-volume fluxes
locally on the six brane, the charge vector of a center of p0

i D6 and with

world-volume two-form flux fi

p0i
= fA

i

p0i
αA turned on is

Γi = p0
i e

fi
p0
i = p0

i + fi +
1
2
f2
i

p0
i

+
1
6
f3
i

(p0
i )2

. (5.3.19)

Thus the total charge vector is4

Γ = p0 + pAαA + qAβ
A + q0β

0

=
N∑
i=1

Γi =
N∑
i=1

p0
i +

N∑
i=1

fi +
N∑
i=1

1
2
f2
i

p0
i

+
N∑
i=1

1
6
f3
i

(p0
i )2

. (5.3.20)

As mentioned earlier, we are especially interested in the case p0 = ±1, since
this condition ensures asymptotic flatness. More specifically, only for the case
p0 = ±1 the metric approaches that of Rt × R

4 in spatial infinity without
identification.
Simply filling these charges into the harmonic functions in the last sub-

section gives us, as we will verify later, a metric that is asymptotically flat,
smooth and horizonless everywhere, and may or may not have the conserved
charges of those of a classical black hole.

5.4 The Properties of the Solution

5.4.1 The Conserved Charges

4D and 5D Charges

When lifting a four-dimensional solution to five dimensions, the charged ob-
jects in IIA get mapped into charged objects in M-theory. The Kaluza-Klein
monopoles and electrons, namely the D6 and D0 charges, show themselves as

4In the case of stacked D6 branes, we only turn on the Abelian fluxes. The reason for
this restriction is that for non-Abelian F , the induced D4-D2-D0 charges are proportional
to TrF , TrF ∧ F and TrF ∧ F ∧ F respectively. In this case one can easily see that the
corresponding solution will in general develop a singularity or a horizon.
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Taub-NUT centers and the angular momentum in the five-dimensional solu-
tion. Especially we expect q0 ∼ −JL. The (induced) D4 charges, as can be
seen in (5.3.14), parametrize the magnitude of the part of the field strength
that is self-dual in the Gibbons-Hawking base. In the type IIA language, in the
case with non-zero D4 charges, one also has non-zero B-field in various regions
in space. When lifted to M-theory they give a new contribution to the vector
potential and we expect those to modify the definition of the electric charges.
Therefore, as suggested in [58], qA,(5D) and JL will get extra contributions
involving pA through the Chern-Simons coupling and the Poynting vectors of
the gauge field. An inspection of the five-dimensional attractor equation for a
5d black hole

S5D = 2π
√
Q3 − J2

L (5.4.1)

Q3 = (
y3
(5D)

6
)2 ; DABCy

B
(5D)y

C
(5D) = −2qA,(5D) , (5.4.2)

and comparing it to the four-dimensional ones (5.2.5) with p0 = 1 suggests
that, when pA becomes non-zero, qA,(5D) and JL must get an extra contribution
as

− 2qA,(5D) → −2qA,(5D) +
(p2)A
p0

(5.4.3)

JL → JL − pAqA
2p0

+
p3

6 (p0)2
. (5.4.4)

We will now verify this through explicit asymptotic analysis, while more
discussion related to the role of pA charges can be found in section 5.3.

The Asymptotic Analysis

Now we would like to work out the asymptotic form of the solution. We are
interested in it for the following two reasons. First of all we would like to verify
that our metric is indeed asymptotically flat; secondly we would like to read off
all the conserved charges of these solutions. The following asymptotic analysis
applies to all the solutions in the form of that presented in the end of the last
section, i.e., to all the solutions of the N = 1 five-dimensional supergravity
obtained by lifting four-dimensional solutions in the decompactification limit.
5

5Apart from the fact that we are assuming in this subsection that the sign of the total
D6 charge is positive, to avoid messy phase factors everywhere. The adaptation to the case
in which p0 < 0 is straightforward.
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Let’s first look at the metric part. In the limit r = |�x| → ∞ we have the
various quantities in the metric approaching6

Q = 1 +O(r−1)

H0 =
p0

r
+O(r−2)

ω0 = p0 cos θdφ+O(r−1)

L =
1
r
[ (−q0

2
− pAqA

2p0
+
DABCp

ApBpC

6(p0)2
) +

r̂

p0
· (

N∑
i,j=1

〈Γi,Γj〉
4

(�xi − �xj)
|�xi − �xj | )]

+O(r−2) ,

where the second term in the last equation is derived from the dipole term in
the expansion and we have used the integrability condition (5.3.7) to put it in
this form.
We have now a natural choice of coordinates of the R

3 factor of the metric.
This is because the dipole term picks out a unique direction in the spatial
infinity. Let’s now choose the spherical coordinate in such a way that the
vector

�JR =
∑
i,j

�Jij =
∑
i,j

〈Γi,Γj〉
4

�xi − �xj
|�xi − �xj | (5.4.5)

points at the north pole. The second term in L can then be written as 1
p0
�JR·r̂ =

1
p0
JR cos θ.
Finally, solving the ω equation asymptotically gives us

1
2
ω =

1
r
JR sin2 θdφ+O(r−2) , (5.4.6)

up to trivial coordinate transformations.
After a change of coordinate r = ρ2/4, the metric at infinity now reads

2−2/3ds25D = −{dt+ 4
ρ2
[p0JL(

1
p0
dψ + cos θdφ) + JR(dφ+

1
p0
cos θdψ)] +O(ρ−4)}2

+ p0{dρ2 +
ρ2

4
[dθ2 + sin2 θdφ2 + (

1
p0
dψ + cos θdφ)2] +O(ρ−2)} , (5.4.7)

6One has to be a bit careful with the order of taking the two limits r → ∞ and jA → ∞.
Here we restrict ourselves to the range 1 � r � RM

�
(5)
P

→ ∞, in other words, where the

spacetimes remains appearing to be five-dimensional. In this range one can indeed ignore
the extra constant terms h0, hA (see Appendix B).
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with

JL = −q0
2
− pAqA

2p0
+
DABCp

ApBpC

6(p0)2
(5.4.8)

JR = |
∑
i<j

〈Γi,Γj〉
2

�xi − �xj
|�xi − �xj | | (5.4.9)

being the two angular momenta, corresponding to the U(1)L exact isometry
and the U(1)R asymptotic isometry, generated by ξ3L = ∂ψ and ξ3R = ∂φ
respectively, as the unbroken part of the SU(2)R×SU(2)L isometries (1.3.14)-
(1.3.15) .
Indeed we see that, the metric approaches that of a flat space without

identification when |p0| = 1. In that case it can be more compactly written as

2−2/3ds25D = −[dt+ 4
ρ2
(JLσ3,L + JRσ3,R)]2

+ (dρ2 +
ρ2

4
(σ2

1,L + σ2
2,L + σ2

3,L)) + ... (5.4.10)

= −[dt+ 4
ρ2
(JLσ3,L + JRσ3,R)]2 + (dρ2 +

ρ2

4
(σ2

1,R

+ σ2
2,R + σ2

3,R)) + ... (5.4.11)

where the σ’s are the usual SU(2)L and SU(2)R invariant one-forms of S3

(1.3.11)-(1.3.12).
After working out the angular momenta we now turn to the electric charges

of the 5d solutions. From the gauge field part of the action of N = 1 5d
supergravity (2.2.29), we see that the conserved electric charges are then given
by the Noether charge

qA(5D) = −16πG
(5)
N

VS3

∫
S3∞

∂L

∂FA

=
1
VS3

∫
S3∞

aAB �5 F
B − 1

3
DABC F

B ∧AC ,

where the gauge coupling aAB is given by the scalar solution by (2.2.30) and
VS3 denotes the volume of a unit 3-sphere.
We need to know the asymptotic behaviour of the vector potential and the

field strength in order to compute the charges. They are given by

AA5D =
pA

p0
dψ − jA

(1
6j

3)1/3
dt+O(ρ−2) (+gauge transf.) (5.4.12)

FA5D = −d( y
A

1
6y

3
) ∧ dt+O(ρ−2)dσ +O(ρ−3)dρ ∧ σ . (5.4.13)
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From these equations it is clear that the Chern-Simons term does not con-
tribute to the charges, and from

aABF
B
5D = −1

2
d
( yB

y3/6

){
∂

∂yB

((y2)A
y3/6

)}
| y3

6
=1
∧ dt+ ...

= −1
2
d(y2)A ∧ dt+ ...

= (qA − (p2)A
2p0

) (
ρ

2
)−3dt ∧ dρ... . (5.4.14)

we get after integration

qA(5D) = qA − (p2)A
2p0

. (5.4.15)

This finishes our analysis of the conserved charges of our solutions. As
mentioned earlier, the expressions for the charges and for the the asymptotic
metric (5.4.7), (5.4.8), (5.4.9) and (5.4.15) apply to all solutions lifted from
four dimensions in the infinite radius limit, i.e., all the solutions presented in
section 5.3.2. For the specific case we consider in the last section (let’s focus
on the case p0 = +1), they are given simply by the D6 charge and the flux of
each center as

qA(5D) = qA − (p2)A
2p0

=
∑
i

(f̃2
i )A
2p0
i

(5.4.16)

JL =
∑
i

f̃3
i

6(p0
i )2

(5.4.17)

JR = |1
4

N∑
i,j=1

p0
i p

0
j

f3
ij

6
�xi − �xj
|�xi − �xj | | (5.4.18)

where

f̃Ai ≡ fAi − p0
i (
∑
j

fAj ) (5.4.19)

fAij ≡ fAi
p0
i

− fAj
p0
j

=
f̃Ai
p0
i

− f̃Aj
p0
j

. (5.4.20)

As we will see later, f̃Ai has the physical interpretation as the quantity
invariant under the gauge transformation, and p0

i p
0
jf

A
ij has the interpretation

as the fluxes going through the ij-th “bubble”.
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5.4.2 The Shape of the Solution

After analysing the solution at infinity, now we would like to know more about
the metric part, i.e. the shape, of these solutions. First of all we would like
to spell out the criterion that the metric is free of pathological closed timelike
curves. Having black hole physics in mind, we would also like to see if the
solution exhibits a throat (AdS-looking) behaviour in some region. These
two parts of the analysis, unless otherwise stated, apply to general solutions
presented in section 5.3.2.
There is another region of special interest here. Namely, we would like

to explicitly verify our claim that the metric, provided that the CTC-free
condition is satisfied, is smooth and horizonless near each center. As discussed
in section 5.3.3, this property only pertains to the special charges (D6 or anti-
D6 with fluxes) that we have chosen.

Closed Timelike Curves

Before jumping into the equations, let’s first make a detour and look at the
four-dimensional metric (4.1.1) we started with. Apart from the integrability
condition (5.3.7), it’s apparent that we also need to impose the condition

(
S(�x)
2π

)2 = H0Q3 − (H0)2L2 > 0 , (5.4.21)

in order to have an everywhere real metric in four dimensions. Indeed, in the
case this is not satisfied, the volume of the internal Calabi-Yau goes through
a zero and things stop making sense in all ten dimensions.
A look at the 5d metric:

2−2/3gψψ = (
S(�x)
2π

)2(
1

H0Q
)2 , (5.4.22)

makes it clear that as long as the 4D metric is real everywhere, the lifted
metric has its 5th direction always spacelike. Furthermore, from

(
S(�x)
2π

)2 = H0Q3 − (H0)2L2 > 0⇒ H0Q > 0 , (5.4.23)

it also ensures that the warp factor in front of the R
3 part of the metric is

always positive, and therefore another danger for CTC is also automatically
eliminated. In more details, this is because the harmonic functions are real by
default, and it’s really the Q, or rather the yA, attractor flow equations that
are not a priori endowed with a real solution.
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Now we can worry about the more subtle −Q−2(ω2 )
2 part of the metric.

Looking at the equation for ω

dω = �3〈dH,H〉 , (5.4.24)

one sees that the danger zone is the region very close to a center, since it’s the
only place where dH and H blow up. But as we will see later, the integrability
condition always guarantees that ω actually approaches zero at least as fast
as the distance to the center under inspection. We can therefore believe that
this term poses no threat. To sum up, what we find is

4d metric real ⇔ 5d metric no CTC . (5.4.25)

Of course, mapping one problem to the other does not really solve anything.
Indeed, at the moment the author does not know of any systematic way of
checking this condition. Especially, the integrability condition, while often
ensures the real (4d) metric condition (5.4.21) to be satisfied near a center, is
in general not sufficient to guarantee that it is satisfied everywhere.7 On the
other hand, this is how it should be, since: given N centers, the naive moduli
space of their locations grows like (R3)N , the number of distances between
them grows like N2, but the number of integrability condition grows only like
N . Given the possibility that one can always a priori add one more pair of
centers with opposite charges while still keeping the total charge unaltered, it
seems extremely unlikely to be able to obtain a reasonable moduli space for
BPS states with a given total charge, if there are no rules of the game other
than the integrability condition.
We finish this subsection by noting that our discussion here about the closed

timelike curves, especially the conclusion (5.4.25), applies to all 4D-5D lift so-
lutions irrespective of the background moduli. That is, it applies even without
taking the decompactification limit.

The Throat Region

In section 5.4.1 we have seen that, when we look at the asymptotic region:

h
 1
r

 rij

r2
, (5.4.26)

7In the four-dimensional context, a conjecture about the equivalence between the ex-
istence of a solution with an everywhere well-defined metric with given background and
charges, and the existence of a split attractor flow connecting the asymptotic moduli and
the attractor points of all the centers, has been proposed and studied in [83], [101], and
[30]. If this conjecture is indeed true, it provides us a more systematic way of studying the
existence of multi-centered solutions.
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the harmonic function can be expanded, in the order of decreasing magnitude,
as

H = h+
Γ
r
+ dipole terms + quadrupole terms + ... , (5.4.27)

where the non-vanishing constant terms h are of order one in our renormal-
ization (see section 5.3.2 ).
If the (coordinate) distances rij of each pair of centers are all much smaller

than one, namely rij � 1 ∀ i, j, one can consider another region in which
1
r

 h ,

1
r

 rij

r2
. (5.4.28)

In other words, when the centers are very close to each other, one can zoom
in a bit more from the asymptotic region so that the constant terms become
subdominant, while still not getting substantially closer to any of the centers
than the others, and can still see the conglomeration of centers (the blob) as
an entity without seeing the structure of distinct centers.
In this region, the harmonic functions are expanded, again with descending

importance, as

H =
Γ
r
+

(
h+ dipole terms

)
+ quadrupole terms + ... , (5.4.29)

and attractor flow equation is given by

DABCy
ByC =

1
r
(−2qA + (p2)A

p0
) + ... . (5.4.30)

Define yAbh to be the solution to the equation (y2
bh)A = −2qA + (p2)A

p0
and

Q3
bh = (y

3
bh
6 )2, one arrives at

Q =
Qbh
r

+ .... (5.4.31)

At the same time,

L =
1
r
JL + ... =

1
r

(
−q0
2
− p · q
2p0

+
p3

6(p0)2

)
+ .... . (5.4.32)

Notice that, unlike in the asymptotic region, the dipole contribution to L is
sub-leading because now 1

r 
 h. Again using the integrability condition to
relate the dipole contribution of L to the magnitude of ω, one sees that ω as
well is of minor importance in this region.
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Now the 5th dimension part of the metric reads

gψψ = 22/3 (
Q

H0
− L2

Q2
) =

1
(p0)2Q2

bh

(
Sbh
2π

)2 + ... , (5.4.33)

where
Sbh = 2π

√
p0Q3

h − (p0)2J2
L (5.4.34)

is a constant equal to the (classical) black entropy with the charges corre-
sponding to that of the total charges of our multi-center configuration.
Putting everything together, we find that the metric in the region (5.4.28)

looks like8

2−2/3ds25D = −( r
rbh

)2dt2bh + (
rbh
r
)2dr2 + 2r (

JL
r3bh

) dtbh σ3,L

+ r2bh

(
σ2

1,L + σ2
2,L + σ2

3,L − (
J2
L

r3bh
)2σ2

3,L)
)
, (5.4.35)

where rbh ≡
√
Qbh and we have rescaled the time coordinate tbh = t√

Qbh
.

One can now readily recognise this metric as the AdS2 × S3 near horizon
metric of a BMPV black hole9 [103]. Therefore we can identify the region
(5.4.28) as a sort of near horizon region of the multi-center BPS solution.
So far it all seems very satisfactory: the 5D solutions obtained from lifting

multi-center 4D solutions have a throat region which looks like the near horizon
limit of a classical black hole with charge given by the total charge of the 4D
centers via the prescription we give in section 5.4.1. But we should not forget
that the analysis here depends on the existence of the region (5.4.28). Indeed,
it’s obvious that this region cannot exist for all choices of charges: when the
total charge does not give a classical black hole, namely when S2

bh < 0, the
existence of this region together with (5.4.33) would imply the presence of a
CTC, or equivalently, an imaginary metric in 4D, in this region. One thus
conclude that the region (5.4.28) can only exist when the total charge of all
the centers together corresponds to that of a black hole. This also justifies our
notation ybh, Qbh, tbh, rbh.
In other words, when the total charge doesn’t give a black hole, at least one

pair of the centers must be far away from each other:

∃ i, j s.t. rij ∼ h or rij > h if S2
bh < 0 .

8For the readability we have imposed in the this equation that the total monopole charge
p0 = 1. It’s trivial to put back all the p0 factors, and the metric one obtains in the case of
|p0| �= 1 is that of an orbifolded BMPV near horizon geometry.

9Or, more precisely, an identification of AdS3 × S3 which leaves a cross term dt σ3,L

behind [102]. Also the S3 is squashed in such a way that its area again gives the black hole
entropy.
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This argument applies actually not only to multi-center solutions in the
large volume limit with arbitrary charges, but also to those with arbitrary
background moduli j, b, with the only difference being that we have to include
in general much more complicated constant terms in the harmonic functions
(see Appendix B) to estimate the lower bound on the distances between the
centers. Therefore we conclude that, for a choice of charges such that the
total charge doesn’t give a black hole, the centers cannot get arbitrarily close
to each other, at least as long as we stay in the regime where the supergravity
description is to be trusted RM

�
(11)
P


 1, J (M) 
 1 ⇔ gs 
 1 ,J (s) 
 1, apart

from other conditions discussed in section 2.2.3. What happens to these multi-
center configurations with total charge of no black holes, when RM

�
(11)
P

= g
2/3
s is

lowered beyond the supergravity regime is described in terms of microscopic D-
brane quiver theory and the higgsing thereof in [97]. From the five dimensional
point of view, it would be interesting to refine the result of [34] in a similar
spirit.
We finish our throat examination with two remarks. First of all, the re-

verse of what we just said is not always true: when the total charge does
correspond to that of a classical black hole, the centers don’t have to sit very
close to each other. We can also imagine them to be far apart and still have
a well-defined metric. For example, the centers can split themselves up into
two blobs far away form each other, with each blob having its throat region
and can therefore be coarse-grained as an AdS-fragmentation kind of scenario
[104],[105]. Furthermore, it should be clear that our analysis given above does
not exclude the presence of any kind of throat other than the “common throat”
encompassing all the centers as we discussed here. Especially, when the total
charge of a subset of the centers corresponds to the charge of a black hole, one
might also expect the presence of a “sub-throat” encompassing just the subset
in question, given that the other centers are sufficiently far away. The most
well-known example of this phenomenon is that of the black ring geometry,
which can be seen as the uplift of a D6 and a D4-D2-D0 center in the M-
theory limit[86, 57, 85]. In the case that the total charge corresponds to that
of a D6-D4-D2-D0 black hole (the case of small D0 charge), one has indeed a
common throat of the BMPV type we discussed above. But apart from that,
if one zooms in further near the D4-D2-D0 center there is another AdS3 × S2

“sub-throat” region, which is locally the same as the uplift of the D4-D2-D0
near horizon geometry and which gives the Bekenstein-Hawking entropy of
the black ring10. For the special case of T 6 compactification, a related issue is
discussed in the dual D5-D1-P language in [106, 59].

10which is the same as the entropy of the D4-D2-D0 blak hole.
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Finally, the presence of a throat region opens the possibility to learn more
about the CFT states these solutions correspond to: by treating the throat
region as an asymptotically AdS spacetime, we can employ the AdS/CFT
dictionary to read off the relevant vevs of these proto-black holes, see for
example [107]. It will be interesting to see what kind of CFT states our
bubbling solutions (including the known ones of Bena-Warner et al) correspond
to.

Near a Center

While much of the discussion above applies generally to all the lifted solutions
in the large radius limit and depend only on the total charges, the solution
near a center is of course strongly dependent on how the charges are allocated.
Indeed, as we discussed in section 5.3.3, we’ve chosen the specific D6 and anti-
D6 with Abelian world-volume fluxes as our centers because we’d like the
metric to be free from horizons and singularities. Now we will explicitly verify
this by analysing the metric near a center. Therefore, unlike most of the
equations in the previous subsections, our discussion here applies only to the
charges we described in section 5.3.3:

Γ =
N∑
i=1

Γi = 1 +
N∑
i=1

fi +
N∑
i=1

1
2
f2
i

p0
i

+
N∑
i=1

1
6
f3
i

(p0
i )2

. (5.4.36)

In the region very close to the ith center, where

1
ri

 1

rij
, h0, hA ,

we can expand the harmonic functions as

H =
Γi
ri
+Hi +O( ri

r2ij
) , (5.4.37)

with Hi defined below (5.3.7).
If we plug this into the attractor flow equation, and notice that the possible

1
ri
term cancels because our choice of charges has the virtue

− 2qA,i +
(pi)2A
p0
i

= 0 , (5.4.38)

we get
DABCy

ByC = −2cA,i +O( ri
rij
) , (5.4.39)
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where

cA,i = HA,i +
1
p0
i

H0
i qA,i −

1
p0
i

DABCp
B
i H

C
i

= hA +
∑
j

p0
j

rij

(f2
ij)A
2

is a constant.
The condition that the R

3 part of the base metric is positive QH0 > 0 can
be satisfied if

p0
i cA,i < 0 . (5.4.40)

Assuming that our choice of locations and fluxes satisfies this condition, we
have a solution

yA = yAi +O(
ri
rij
) where

(y2
i )A
2

= −cA,i

⇒ Q3 = Q3
i +O(

ri
rij
) = (

y3
i

6
)2 +O( ri

rij
) .

With a similar expansion and exploit the integrability condition (5.3.7) at
the ith center and the explicit expression of the charges (5.3.19), we get

L = O( ri
rij
)

ω0 = p0
i cos θdφ+O(

ri
rij
)

dω = �3〈dH,H〉 = �3driO( 1
ri
)

⇒ ω = O(ri) .

Notice here that the first equation guarantees that (5.4.40) is enough to
ensure that there is no closed timelike curve near this center.
With everything put together, we obtain the metric near the ith center:

2−2/3ds25D = −dt′2+dρ2+
ρ2

4
[dθ2+sin2 θdφ2+(

1
p0
i

dψ+cos θdφ)2]++O( ri
rij
) ,

where we have rescaled the coordinates as t′ = t
Qi
, ρ2 = 4p0

iQiri. Therefore we
conclude that metric approaches that of a C

2/Zp0i
orbifold, and has nothing
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more singular than a usual orbifold singularity. Specifically, the solutions with
only p0

i = ±1 for all the centers will be completely smooth everywhere.
Furthermore, one sees that the U(1)L isometry generated by ξ3L = ∂ψ has a

fixed point at the center. Thus a non-trivial two-cycle which is topologically a
sphere (the bubbles) is formed between any two centers and therefore the name
“bubbling solutions” (or rather the “sausage network” solutions). These two-
cycles can support fluxes and indeed, the fluxes going through the ijth bubble
is p0

i p
0
jf

A
ij , with f

A
ij defined as (5.4.20) [89]. Furthermore, the amount of fluxes

going through the bubbles constrains the distance between them through the
integrability condition (5.3.7), which in this case reads

∑
j

1
rij

p0
i p

0
j

f3
ij

6
= −hAp̃Ai = −hAf̃Ai . (5.4.41)

5.4.3 Large gauge Transformation

It is well known that there is a redundancy of description, namely a gauge
symmetry, in type IIA string theory or equivalently M-theory, which is related
to the large gauge transformation of the B-field and the three-form potential
C(3) respectively. Physically, this large gauge transformation can be incurred
by the nucleation of a virtual M5-anti-M5 pair and thus the formation of
a Dirac surface in five dimensions [108]. This shift of C(3) also shifts the
definition of the charges, but leaves all the physical properties of the solution
intact.
While this is a generic feature for all choices of charge vectors and all back-

ground moduli one might begin with, what we are going to do here is just to
check this gauge symmetry explicitly for our bubbling solutions.
Indeed, in our case, the transformation

fAi → fAi + p0
i a
A ; aA ∈ Z

b2(X) (5.4.42)

will in general change the charges (5.3.19) of the configuration, especially the
total D4 charge will transform like

pA → pA + aA (5.4.43)

in the case p0 = 1. Especially, one can always exploit this symmetry to put
pA = 0. It’s trivial to check that the quantities Q,L, ω, ω0 in the metric
are also invariant under this transformation, since all the combinations of
harmonic functions involved can equally be written in terms of the “invariant
flux parameters” f̃i and fij defined in (5.4.19) and (5.4.20). Especially, all
the conserved charges are invariant under the transformation. On top of that,
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we see that the right hand side of the integrability condition (5.3.7) is also
invariant.11 We can therefore conclude that the metric part of the solution
has a symmetry (5.4.42).
Furthermore, a look at the gauge field (5.4.12) tells us that this trans-

formation indeed corresponds to a large gauge transformation of the AA5D;
equivalently, in the full eleven and ten dimensions, it corresponds to

C(3) → C(3) + aAdψ ∧ αA (M-theory) ; B → B + aAαA (IIA) . (5.4.44)

Indeed, a look at the D6 brane world-volume action (5.3.18) makes it clear
that the transformation (5.4.42) can be seen as turning on an extra integral
B-field. This explains the origin of this extra symmetry.

5.5 Conclusions and Discussion

What we have done in this part of the thesis is to motivate and present a large
number of asymptotically flat, smooth, and horizonless solutions to the five-
dimensional supergravity obtained from the Calabi-Yau compactification of M-
theory. We also analysed their various properties and along the way described
various properties of generic five-dimensional solutions obtained from lifting
the multi-center four-dimensional solutions.
A natural question to ask is the degeneracies of such solutions. From

our analysis it is obvious that these bubbling solutions we describe have the
same degeneracies as their four-dimensional counterparts. Especially, these
are charged particles without internal degrees of freedom; their degeneracies
have to come from the non-compact spacetime.
Relatively little is known about the degeneracies of such states, though.

The core of this supergravity problem is really that, although we have the
integrability condition (5.3.7) to constrain the type of the solutions we can
have, generically it is not enough. Indeed, while in many cases this condition
alone can exclude the existence of a bound state of given charges and back-
ground moduli, generically the fact that it can be satisfied does not mean that
the solution has to exist. Another criterion a valid solution has to conform
to is the real metric condition (5.4.21), which gets translated in five dimen-
sions as the no CTC condition. Though the integrability condition helps to
exclude the presence of an imaginary metric near a center, in general it does
not guarantee anything. For the purpose of counting bubbling solutions and

11In general, in the four-dimensional language, this also implies that the existence of a

BPS bound state of given, fixed charges such that p̃A
i = pA

i − pA

p0 p0
i �= 0 for every center, is

insensitive to the shift of B-field in the large volume limit.
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also for the greater ambition of counting multi-center degeneracies in general,
it would be extremely useful to have a systematic way to see when the inte-
grability is enough and when we have to impose additional conditions, and
of what kind. Please see section 4 for a conjecture (the split attractor flow
conjecture) pertaining to this issue.
For the case that is of special interest, that is the case in which the total

charge is that of a black hole, the problem is also of special difficulty. The
situation is described in [97] as the following: if we tune down the string
coupling, at certain point the distances between the centers will be of the
string length (recall that 	(4)

P ∼ lsgsr
(
(J(s))3

6
)

) and the open string tachyons will

force us to end up in a Higgs branch of the D-brane quiver theory and thus
a wrapped D-brane at one point in the non-compact dimensions. But in the
other direction, for the case with a black hole total charge at least, things are
much more complicated. As one increases the gs, a priori the state doesn’t
necessarily have to open up, but rather it can just collapse into a single-
centered black hole, or any other kind of possible charge splittings. Therefore,
seen from this cartoon picture, the D-brane degeneracy really has to be the sum
of degeneracies of all of the allowed charge splittings. While at the same time,
if the total charge doesn’t give a black hole, from the real metric condition
(5.4.21) we see that the system has to split up when gs is tuned up, since these
charges only have multi-centered configurations as supergravity embodiments.
Now let’s come back to the quest of smooth, horizonless solutions with black

hole charges. We have argued that the bubbling solutions we presented seem
to be the only kind of solutions which can be lifted from four dimensions
with these virtues. In any case it would be interesting to find explicit BPS
solutions to the 5D supergravity of M-theory on Calabi-Yau without any exact
U(1) isometry. For example, some wiggly ring structure or other things our
imagination permits. These can of course never be obtained by lifting 4D
solutions.
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5.6 Appendix 1: Reproduce the old Bubbling Solutions

The known bubbling solutions are given by (See [89, 90, 91, 94])

ds25d(b) = −( 1
Z1Z2Z3

)
2
3 (dt+ k)2

+ (Z1Z2Z3)
1
3 { 1
V
(dψ +Ω0)2 + V dxadxa} (5.6.1)

where

V =
N∑
i=1

p0
i

ri
; ri = |�x− �xi| ;

N∑
i=1

p0
i = 1

LA = 1− 1
2
DABC

∑
i

1
ri

fBi f
C
i

p0
i

KA =
∑
i

fAi
ri

M = −1
2

∑
i

∑
A

fAi +
1
12

∑
i

1
ri

f3
i

(p0
i )2

dΩ0 = �3dV

k = μ(dψ +Ω0) + Ω

ZA = LA +
1
2V

DABCK
JKK ; DABC = |εABC |

μ = M +
1
2V

KALA +
1
6V 2

K3

∇× Ω = V∇M −M∇V +
1
2
(KA∇LA − LA∇KA) (5.6.2)

Let’s now see how our solutions contain these as a special case.
Firstly, apply the formulae to the special 3-charge (STU) case

DABC = |εABC | A,B,C = 1, 2, 3 .

In general, the attractor flow equation (5.2.5) is difficult to solve, but not
in this case:
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Q3 = (
1
6
DABCy

AyByC)2 = (y1y2y3)2

y2y3 = −H1 +
H2H3

H0
and permutations

⇒ Q3 = (−H1 +
H2H3

H0
)(−H2 +

H1H3

H0
)(−H3 +

H1H2

H0
) . (5.6.3)

Secondly we take the special Ansatz that the Kähler form is the same in
the asymptotics for all the three directions:

J1|∞ = J2|∞ = J3|∞ = j →∞ , (5.6.4)

and that the background B-field is finite

BA|∞ = bA � j . (5.6.5)

In this case we have

HA =
1
2

∑
i

1
ri

(fi)2A
p0
i

− 1 A = 1, 2, 3

H0 = −1
2

∑
i

1
ri

(fi)3

(p0
i )2

+
∑
i

(f1
i + f2

i + f3
i ) .

Now, if we rename the coordinates and quantities appearing in our solution
as

V = H0

LA = −HA

KA = HA

M = −H0

2

Ω =
1
2
ω

Ω0 = ω0

μ = L

⇒ Q3 = Z1Z2Z3 ,

one can easily check that our solution (5.3.4) reduces to

ds25d = 22/3ds25d(b) ,

and the equations for and relations between quantities defined in our solutions
correctly reproduce those appearing in the known bubbling solutions.
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5.7 Appendix 2: Constant Terms for General Charges
and Background

Z = < Γ,Ω >

=
1√
4
3J

3

(
p0 (B + iJ)3

6
− p · (B + iJ)2

2
+ q · (B + iJ)− q0

)

h = −2Im
(
(e−iθΩ)|∞

)

=
2√
4
3j

3

1

|p0 (b+ij)3

6 − p·(b+ij)2
2 + q · (b+ ij)− q0|

Im{

[p0 (b− ij)3
6

− p · (b− ij)2
2

+ q · (b− ij)− q0]

·[ (b+ ij)3

6
+
(b+ ij)2

2
+ (b+ ij) + 1]}

h0 =
2√
4
3j

3

1

|p0 (b+ij)3

6 − p·(b+ij)2
2 + q · (b+ ij)− q0|

{p
0

6
(j3 − 3jb2) + pjb− qj} (5.7.1)

hA =
2√
4
3j

3

1

|p0 (b+ij)3

6 − p·(b+ij)2
2 + q · (b+ ij)− q0|

{bA [p
0

6
(j3 − 3jb2) + pjb− qj]

+ jA [
p0

6
(b3 − 3j2b)− p(b2 − j2)

2
+ qb− q0]} (5.7.2)

hA =
2√
4
3j

3

1

|p0 (b+ij)3

6 − p·(b+ij)2
2 + q · (b+ ij)− q0|

{(b
2 − j2)A
2

[
p0

6
(j3 − 3jb2) + pjb− qj]

+ (jb)A [
p0

6
(b3 − 3j2b)− p(b2 − j2)

2
+ qb− q0]} (5.7.3)
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h0 =
−2√
4
3j

3

1

|p0 (b+ij)3

6 − p·(b+ij)2
2 + q · (b+ ij)− q0|

{b
3 − 3j2b

6
(pjb− qj)

− j3 − 3jb2

6

(
−p(b

2 − j2)
2

+ qb− q0
)
} (5.7.4)


