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3 K3 Compactification

After discussing the Calabi-Yau compactification of string theories in details,
we will be brief in the K3 compactification since many of the basic ideas are
fairly similar to the Calabi-Yau case. By discussing the M-theory/type II
string theory compactification on K3 manifolds, we will also introduce the
toroidally compactified heterotic string theories, which are related to K3 com-
pactified M-theory/type II string theory by dualities.
This chapter is organized as follows. First of all, we assume some basic

knowledge about the generic topological properties of K3 manifolds. The
readers who are not familiar with them can resort to Appendix A. In the
first section we again begin with a world-sheet perspective, introducing the
(4,4) superconformal field theory which is relevant for describing the internal
CFT with K3 as the target space. With the knowledge that the marginal
deformation of the CFT is given by the moduli space of the target space, in
section 3.2 we derive the form of the moduli space using a spacetime viewpoint.
In section 3.3 we dimensionally reduce type II string theory on K3× T 2 and
study the low-energy effective theory in four dimensions. From the form of the
charge lattice and the moduli space we motivate the existence of a toroidally
compactified heterotic string theory which is dual to type II superstring on
K3 × T 2, and spell out the correspondence of conserved charges in different
frames on the heterotic-IIA-M-IIB chain connected by various dualities.

3.1 (4,4) Superconformal Field Theory

As we mentioned earlier, a Calabi-Yau manifold with n complex dimensions
can be defined as a Kähler manifold with SU(n) holonomy. In particu-
lar, a K3 manifold has SU(2) holonomy and is therefore also hyper-Kähler.
By decomposing the four dimensional spinor in representations of SO(4) =
SU(2) × SU(2), we see that the holonomy preserves 1/2 of the total thirty-
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80 3. K3 Compactification

two supersymmetries, as opposed to 1/4 in the case of Calabi-Yau three-folds.
From our experience with the relationship between spacetime and world-sheet
supersymmetry, it is therefore not surprising that the relevant superconformal
field theory now turns out to have (4, 4) instead of (2, 2) world-sheet super-
symmetries.
The action of the non-linear sigma model is again given by (2.1.2), sup-

plemented with the coupling to the B-field (2.1.4). Instead of the N = 2
superconformal algebra (2.1.1), we have now the following (small) N = 4
superconformal algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1) δm+n,0

[J i
m, J j

n] = −2iεijk Jk
m+n +

c

3
m δm+n,0 δij

[Ln, J i
m] = −m J i

m+n

[Ln, G±±r ] = (
n

2
− r)G±±r+n (3.1.1)

[J i
n, Gα+

r ] = σi
αβ Gβ+

r+n , [J i
n, Gα−

r ] = −Gβ−
r+n σi

βα

{Gα+
r , Gβ−

s } = 2 δαβLr+s + (r − s)σi
αβ J i

r+s +
c

3
(r2 − 1

4
) δr+s,0 δαβ ,

where α, β = ±, i = 1, 2, 3, σi are the Pauli matrices and the superscripts
“±±” of the fermionic currents G±± denote the way they transform under the
R-symmetry group SU(2). Again we have two possible periodic conditions for
the fermions ⎧⎪⎨

⎪⎩
2r = 0 mod 2 for R sector

2r = 1 mod 2 for NS sector .

(3.1.2)

This N = 4 superconformal algebra shares some important features with
the N = 2 superconformal algebra (2.1.1). First of all, there is a natural
embedding of the N = 2 algebra into the N = 4 algebra given by

Jm → J3
m , G+

r → G++
r , G−r → G+−

r . (3.1.3)

As for the representation, a highest weight state is again defined by

G±±r |h, q〉 = J i
n|h, q〉 = Ln|h, q〉 = 0 for all r, n > 0

L0|h, q〉 = h|h, q〉 , J3
0 |h, q〉 = q|h, q〉 . .

As before, a special is played by the “massless representation”, meaning
states which are in addition annihilated by

J+
0 , G±±0 (3.1.4)
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for states in the R-sector and

J+
0 , G−+

−1/2, G+−
−1/2 (or J−0 , G++

−1/2, G−−−1/2 ) (3.1.5)

for states in the NS-sector, where we have defined J± = 1√
2

(
J1∓ iJ2

)
. These

are the counter-part of the R-ground states and the chiral primaries in the
N = 2 case respectively, and it can again be seen from various commutation
relations that an unitary massless representation satisfies

0 ≤ h =
c

24
, |q| ≤ c

6
in the R-sector (3.1.6)

and
0 ≤ h =

|q|
2
≤ c

6
in the R-sector . (3.1.7)

Finally, there is again an automorphism of this N = 4 algebra which gen-
eralises the spectral flow of the N = 2 algebra (2.1.24) to

Ln → Ln + ηJn + η2 c

6
δn,0

J3
n → J3

n + η
c

3
δn,0 , J±n → J±n±2η (3.1.8)

G±+
r → G±+

r±η , G±−r → G±−r∓η .

This in particular implies that the elliptic genus has again the theta-function
decomposition as in (2.1.38).
There are of course also differences between the N = 4 and N = 2 non-

linear sigma models. One important distinction is that, unlike the case for
the Calabi-Yau three-folds, the Ricci flat metric is now an exact solution but
not just in the leading order of α′, due to the non-renormalisation theorem
brought to us by higher supersymmetries. In the N = 4 case there is again a
notion of mirror symmetry, but since now the complex structure and Kähler
moduli are in the same cohomology H1,1(X, R), the discussion of the mirror
symmetry becomes more involved and we will not include it in the present
thesis. See [66] for some discussions of N = 4 superconformal algebras and
[67, 68] for its representations relevant in the present context.

3.2 Moduli Space of K3

Two major differences between the moduli space of Calabi-Yau two-and three-
folds are that for the K3 case, first of all there is no clear separation between
the complex and Kähler moduli space; now both of them are in the same
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cohomology class H1,1(S, R). Secondly, as we have mentioned before, a K3
manifold is not only Kähler but also hyper-Kähler, which means it has not
only one complex structure but a whole S2 of possible complex structures,
rotated to each other by elements of SU(2).
Keeping these facts in mind, a simple counting gives the dimension of the

moduli space of the non-linear sigma model:

dimMσ = dimH1,1(S, Z) + 2dimH1,1(S, Z) + dimH2(S, Z)− 2 = 80 ,

where the first three terms account for the moduli space for the Kähler mod-
uli, the complex structure moduli, and the B-field respectively, and the 2 is
subtracted to account for the fact that each metric comes with a sphere of
complex structures.
To see the structure of this 80-dimensional moduli space, let’s first concen-

trate on the complex structure and Kähler moduli. From
∫

S
J ∧ J,

∫
S
Ω ∧ Ω > 0

∫
S
Ω ∧ Ω =

∫
S

J ∧ Ω = 0 ,

where J is the Kähler form and Ω = Ω1+ iΩ2 is the complex structure, we see
that J , Ω1 and Ω2 are three vectors that are all mutually perpendicular, with
respect to the bilinear (A.0.18) on the space H2∗(S, R) ∼= R

4,20 (A.0.21)

(α, β) =
∫

S
α ∧ β (3.2.1)

and that are all spacelike. In other words, J , Ω1 and Ω2 defines a three-
dimensional plane inside H2(S, R) ∼= R

3,19. Furthermore, a rotation of the
three vectors corresponds to a rotation of the S2 possibilities of complex struc-
tures and therefore does not correspond to a change in the geometry. In other
words, the complex structure and Kähler moduli space of K3 is locally a Grass-
mannian times the positive half of a real line representing the volume V of the
K3. Globally, the moduli space is

O(Γ3,19)\O(3, 19, R)/(O(3, R)×O(9, R)
) × R+ ,

where O(Γ3,19) is the automophism group of the lattice Γ3,19.
Now we want to incorporate the moduli space for the B-field, which is not

considered in the above discussion. Given a choice of B-field two-form and the
volume V , define a map ξ : H2(S, R) ∼= R

3,19 → H2∗(S, R) ∼= R
4,20 and an
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additional vector ξ4 by

ξ(α) = α− (B, α)α0

ξ4 = α0 +B +
(
V − 1

2
(B, B)

)
α0 ,

where α0, α0 are the dual basis for H0(S, Z), H4(S, Z) introduced in (A.0.21).
It can be checked easily that ξ4 is perpendicular to all ξ(α) with α ∈ H2(S, R)
and that ξ(J), ξ(Ω1), ξ(Ω2) are again three mutually perpendicular space-
like vectors, but now in the larger space R

4,20. Furthermore, the spacelike
four-dimensional plane spanned by ξ(J), ξ(Ω1), ξ(Ω2) and ξ4 contains the
same information as the three-dimensional plane spanned by J, Ω1, Ω2, when
a choice of B, V and α0 is given. On the other hand, the B-field moduli can
be thought of as the moduli of embedding R

3,19 ∼= H2(S, R) into the larger
space R

4,20 ∼= H2 ∗ (S, R).
Let’s now consider an integral shift of the B-field

B → B + β , β ∈ H2(S, Z),

which must be a symmetry of the theory. Equivalently, it can be seen as a
change in the choice of α0

α0 
→ α0 + β − (β, β)
2

α0

together with the following shift of the two-form

α 
→ α− (α, β)α0 .

In other words, when the B-fields are incorporated, the symmetry group in-
volves the whole automorphism group of the larger lattice H2∗(S, Z) ∼= Γ4,20.
Putting the above together, we then conclude that the moduli space of the
K3 non-linear sigma model given by a Grassmannian as

Mσ = O(Γ4,20)\O(4, 20, R)/(O(4, R)×O(20, R)
)

. (3.2.2)

See [69, 70, 71] and references therein for discussions about the above moduli
space.

3.3 Four-Dimensional Theories and Heterotic String Du-
alities

As mentioned before, the SU(2) holonomy of K3 leads to the breaking of
half of the supersymmetries. At the low energy limit, type II string theories
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compactified on a K3 manifold therefore yield six-dimensional supergravity
theories with sixteen supercharges. However, we will be interested in four-
dimensional theories instead of six-dimensional ones.
For concreteness, we will begin with considering type IIA string theory com-

pactified on the internal manifold K3×T 2 down to four dimensions. The torus
has trivial holonomy and thus does not break supersymmetry any further. The
four-dimensional theory has now N = 4 supersymmetry and we anticipate to
obtain some N = 4, d=4 supergravity theory at low energy. We will there-
fore begin this section by discussing the generalities of these N = 4, d = 4
supergravity theories.

3.3.1 N = 4, d = 4 Supergravity

There are two kinds of supermultiplets relevant in N = 4, d = 4 supergrav-
ity theories, namely the supergravity and the matter multiplets. From their
bosonic field contents we then expect the bosonic field content of our low
energy effective action to be

(
gμν , A

m=1,···,6
μ , λ

)
and n× (

Aμ, φm=1,···,6) ,

where λ is a complex scalar and m is an SU(4) = SO(6) R-symmetry index.
Furthermore, the 2 and 6n scalars parametrise the scalar manifold [72]

SL(2)
U(1)

× SO(6, n)
SO(6)× SO(n)

.

To study the supergravity theory obtained by the IIA/K3× T 2 compactifi-
cation, first we would like to determine the number of matter multiplets in the
theory. We will do this by counting the number of scalars by dimensionally
reducing the massless fields of type IIA string theory (Table 1.1) using the
harmonic forms of the internal manifold. The result is

80 g, B on K3
4 g, B on T 2

2 C(1)

44 C(3)

2 C(3) to spatial one-forms and dualize to scalars
2 Φ, Bμν (axion-dilaton)

134 = 2 + 6× 22 ,
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which implies in this case n = 22, namely that the massless field content of the
four-dimensional theory is one N = 4 supergravity multiplet together with 22
matter multiplets.
One can easily check that there are 28 vector fields upon compactification,

which again decompose into a supergravity multiplet together with 22 matter
multiplets. With respect to these vector fields, there are 28 electric and 28
magnetic conserved charges, forming a charge lattice

(
P
Q

)
∈ Γ6,22 ⊕ Γ6,22 . (3.3.1)

The Grassmannian part of the scalar manifold

SO(6, 22)
SO(6)× SO(22)

can be thought of as the moduli space of different ways to separate the above
charges into the “left-moving” and “right-moving” parts, such that

P 2
L − P 2

R = P 2 (3.3.2)

and similarly for the electric charges. Explicitly, we can therefore parametrise
this part of the moduli space by a 28× 6 matrix μm=1,···,6

a=1,···,28, such that

Pm
L = μm

a P a (3.3.3)

and similarly for the Q’s. Notice that μ is only defined up to rotations which
leave all P 2

L invariant.
For a very simple example of a moduli space which is a Grassmannian, let’s

consider string theory compactified on a circle with radius R and consider the
states with winding number w and momentum k along the circle. Then the
left- and right-charges are

PL = k/R+ wR

PR = k/R− wR , P 2
L − P 2

R = P 2 = 4kw .

Notice that P 2
L − P 2

R does not depend on the radius R while both PL and PR

do.
The Grassmannian SO(1, 1, R) is an one-dimensional space parametrised by

a real number η as
(

PL

PR

)
=

(
cosh η sinh η
sinh η cosh η

)(
k + w
k − w

)
. (3.3.4)



86 3. K3 Compactification

Then we see that the modulus of the compactification circle, in this case the
radius R, is related to η by

cosh η =
1
2
(R+

1
R
) , sinh η = −1

2
(R− 1

R
) . (3.3.5)

Finally let’s turn to the first factor of the scalar manifold

SL(2)
U(1)

∼= H1 . (3.3.6)

As discussed in section (1.3.5), this is nothing but the upper half-plane and
we will parametrise it by τ ∈ C, Imτ > 0 as in (1.3.41).
In our present setting of IIA/K3×T 2 compactification, this complex scalar

λ is the complexified Kähler moduli of the torus. As we will see in the follow-
ing subsection, it becomes the complex structure moduli in the IIB/K3× T 2

compactification and the axion-dilaton moduli in the heterotic/T 6 compacti-
fication, when we apply a chain of dualities.
In terms of these scalars (λ, μ) and the conserved charges (P,Q), we can

now write down the solutions to this supergravity theory. We will leave the
details for the Part V of the thesis.

3.3.2 Heterotic String Dualities

In the previous subsection we have seen that the low-energy supergravity the-
ory obtained from compactifying type IIA string theory on K3 × T 2, has a
scalar manifold which contains the Grassmannian SO(6, 22)/SO(6)×SO(22).
This is exactly how the moduli space of a conformal field theory compactified
on a Γ6,22 lattice looks like locally. Notice that there is one unique (up to
isomorphism) lattice of this signature (or any Γσ+,σ− with σ− − σ+ = 0 mod
8) which is even self-dual , or sometimes called unimodular. And an even,
self-dual lattice is exactly the kind of lattice required for the one-loop mod-
ular invariance of the conformal field theory. Including four free bosons on
both sides corresponding to the four non-compact dimensions, this putative
conformal field theory should have (10, 26) bosons on the left- and right- mov-
ing sector respectively. Notice that they are the critical dimensions, namely
the required number of free bosons in order to have total central charge zero
with the ghosts included, for N = 1 and N = 0 world-sheet supersymmetry
respectively. We therefore conclude that only the left-moving sector of this
putative conformal field theory has world-sheet supersymmetry. Such confor-
mal field theories are called heterotic string theories. One way of interpreting
such a conformal field theory geometrically is to say that it has ten spacetime
dimensions and the rest of the 16 right-moving bosons are always compactified
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on an internal sixteen dimensional even self-dual lattice. In this language, the
observation is that the massless fields of type IIA string theory compactified
on K3×T 2 is the same as that of heterotic string compactified on T 6. In more
details, one can see from matching the low-energy supergravity theory that the
complex scalar λ in the supergravity multiplet is now the axion-dilaton field
of heterotic string, and the 28 vectors are the 16 gauge bosons present in the
massless spectrum of the heterotic string theory and the other 12 coming from
compactifying the metric and the B-field on the six-torus.
This motivates the conjecture of the following string duality [73, 74]

IIA/K3× T 2 is dual to heterotic/T 6 .

The U-duality group of the theory is conjectured to be

SL(2, Z)× SO(6, 22, Z) ,

where the presence of the first factor can be seen from the presence of the
modular group of T 2 in the type IIA picture, which then translates into the
S-duality (strong-weak-coupling duality) of the heterotic string. This is very
reminiscent of the interpretation of the S-duality group of type IIB string
theory as the torus modular group in the type M-theory as we saw in section
1.3.5. This group acts on the charges and moduli as(

P
Q

)
→

(
a b
c d

)(
P
Q

)
, λ→ aλ+ b

cλ+ d
;

(
a b
c d

)
∈ PSL(2, Z)

(3.3.7)
while leaving the Grassmannian moduli μ invariant.
The second group, on the other hand, is nothing but the T-duality group of

the Γ6,22 compactification of the heterotic string, or equivalently the automor-
phism group of the charge lattice Γ6,22. In particular, this group rotates the
electric and magnetic charges separately and does not create a mix between
them. For convenience we will refer to them in the heterotic language as the
S- and the T-duality group respectively in the future.
Of course, one can combine the dualities between M- and type IIA, IIB

string theories discussed earlier in section 1.3.1 and 1.3.5 with the above new
IIA-heterotic dualities and thereby construct a new web of dualities: [73, 74]

IIA/K3× T 2 ∼ IIB/K3× T 2 ∼ M-theory/K3× T 2 × S1 ∼ heterotic/T 6 .

For later reference we will now write down the charged objects giving the
charges

(
P
Q

) ∈ Γ6,22 ⊕ Γ6,22 in the above different duality frames. Seperating
the charge lattice into four parts

Γ6,22 ∼= Γ3,19 ⊕ Γ1,1 ⊕ Γ1,1 ⊕ Γ1,1 ∼= H2(K3, Z)⊕ Γ1,1 ⊕ Γ1,1 ⊕ Γ1,1 (3.3.8)
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magnetic and electric charges (P,Q) ∈ Γ6,22 ⊕ Γ6,22

het/ IIA/ M-th/ IIB/
S1
(2)×S1

(3)×S1
(4)×T3 S1

(2)×S1
(3)×K3 S1

(1)×S1
(2)×S1

(3)×K3 S1
(1)×S1

(3)×K3

Γ1,1 p(4) D0 p(1) F1(1)
F1(4) D4 (K3) M5(1,K3) NS5(1,K3)

Γ1,1 p(2) p(2) p(2) D1(1)
F1(2) NS5(2,K3) M5(2,K3) D5(1,K3)

Γ1,1 p(3) p(3) p(3) p(3)
F1(3) NS5 (3,K3) M5(3,K3) KKM(1̂)

Γ3,19 qA D2(αA) M2(αA) D3(1, αA)

Γ1,1 NS5(4̂) D2(2,3) M2(2,3) F1(3)
KKM(4̂) D6 (2,3,K3) TN(2,3,K3) NS5(3,K3)

Γ1,1 NS5(2̂) F1(3) M2(1,3) D1(3)
KKM(2̂) KKM(2̂) KKM(2̂) D5(3,K3)

Γ1,1 NS5(3̂) F1(2) M2(1,2) p(1)
KKM(3̂) KKM(3̂) KKM(3̂) KKM(3̂)

Γ3,19 pA D4(2, 3, CABαB) M5(1, 2, 3, CABαB) D3(3, CABαB)

Table 3.1: A chain of dualities relating the charged objects in the different N = 4, d = 4
string theories, where αA’s are a basis of the twenty-two dimensional lattice H2(K3, Z) ∼=
Γ3,19 with the bilinear given by CAB =

R
K3

αA ∧ αB .

with respective bilinear form given by CAB =
∫
K3 αA ∧ αB , A,B = 1,· · · , 22

and U =
(

1 0
0 1

)
(A.0.20), and using the duality relations between charged

objects summarised Table 1.3 and Table 1.4, we obtain the following Table 3.1
of charged objects of the theory (3.3.8) in its different frames.
Since different duality frames gives different perspectives in counting states,

we will use this table extensively when we later derive the microscopic degen-
eracies of BPS states of this theory.


