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Chapter 9

Abstract

A strategy is presented for the statistical validation of discrimination models in
proteomics studies. Several existing tools are combined to form a solid statistical basis for
biomarker discovery that should precede a biochemical validation of any biomarker. These
tools consist of permutation tests, single and double-cross validation. The cross-validation
steps can simply be combined with a new variable selection method, called rank products.
The strategy is especially suited for the low-samples-to-variables-ratio (undersampling)
case, as is often encountered in proteomics and metabolomics studies. As a classification
method, Principal Component Discriminant Analysis is used; however, the methodology
can be used with any classifier. A data set containing serum samples from Gaucher patients
and healthy controls serves as a test case. Double cross-validation shows that the
sensitivity of the model is 89% and the specificity 90%. Potential putative biomarkers are
identified using the novel variable selection method. Results from permutation tests
support the choice of double cross-validation as the tool for determining error rates when
the modelling procedure involves a tuneable parameter. This shows that even cross-
validation does not guarantee unbiased results. The validation of discrimination models
with a combination of permutation tests and double cross-validation helps to avoid
erroneous results which may result from the undersampling.
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Introduction

One area of interest in the study of disease is the proteomics based search for disease
markers. Theoretically, proteomics considers all proteins in an organism, but usually only
part of the proteome is measured. Surface-enhanced laser desorption ionization time-of-
flight mass spectrometry (SELDI-TOF MS) is a relatively new technique. It combines
absorption of a subproteome on a chip with time-of-flight mass spectrometric detection. A
subset of the protein complement of the sample is bound to the chip and measured. The
advantage of SELDI-TOF MS over conventional techniques is the possibility of applying
complex body fluids such as saliva, urine and blood directly to the chip. Mass spectra of
samples of diseased and (healthy) control individuals are measured with the objective of
distinguishing between the control and diseased groups. Data analysis methods are used to
find differences, which can be single protein markers or different patterns in the protein
profiles [1-5]. When these differences prove to be statistically valid, their biochemical
meaning can be ascertained, so that they may be put to use in the clinic. The focus of this
paper is on data analysis and statistical validation.

The data analysis may start by building a discrimination model that separates the groups
as well as possible and that describes for which (combination of) variables they are most
distinct. The large number of variables in the proteomics setup generates modelling and
validation challenges commonly referred to as the curse of dimensionality [6] or
undersampling. In short, the curse of dimensionality means that the number of samples
needed to accurately describe a (discrimination) problem increases exponentially with the
number of dimensions (variables) measured. Due to the limited availability and/or cost of
measurement the number of samples is usually relatively small, in the tens or hundreds.
The number of samples is then too small to accurately describe the groups. If that is the
case, good discrimination results for the original control-diseased problem are possibly not
significant. A permutation test can evaluate this possibility and can help to decide whether
to look further into the biochemical validity of these differences between the control and
diseased groups.

A permutation test gives information about the discrimination performance of the model,
but the model should also be able to correctly classify new samples as diseased or control
preferably using a low number of variables. Due to the limited number of samples, it is
often not possible to test the ability of the model to classify new samples on a masked test
set. The test data cannot be incorporated in the model and as a result the model would be
trained on insufficient data. Additionally, the test set would contain very few samples, and
the error in assigning only a few samples would not give a reliable indication of the
prediction error. Cross-validation is often the validation method of choice, because it
makes better use of the data. As Ambroise and McLachlan [7] and Simon et al. [8] have
shown, cross-validation only gives a reliable error rate when the complete modelling
procedure is cross validated. Failure to do so results in optimistic error rates. When the
model requires the determination of a tuneable parameter (for example the number of
components in principal component analysis) this has to be incorporated in the cross-
validation.
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In this paper, cross-validation is used for determination of a tuneable model parameter
and for candidate biomarker selection in a proteomics example. The discrimination and
classification performance of the model is assessed with (double-) cross-validation in
combination with a permutation test [9,10]. The example of choice is Gaucher disease.
Gaucher disease is a rare inherited enzyme deficiency disorder that results in enlarged
spleen and liver and bone disease. Gaucher disease is chosen because previous studies
have demonstrated that several proteins show elevated blood levels in Gaucher patients.
Plasma levels of tartrate-resistant acid phosphatase 5b, B-hexosaminidase, angiotensin
converting enzyme and lysozyme are increased in Gaucher patients [11]. Also two specific
Gaucher cell markers are known: chitotriosidase and CCL18. Chitotriosidase shows a
thousand-fold increased activity in serum of symptomatic Gaucher patients [12]. Plasma
CCLI18 levels are elevated ten to fifty-fold in symptomatic Gaucher patients [5]. SELDI-
TOF MS is used to create protein profiles of the serum of 20 Gaucher patients and 20
controls. Due to the measuring conditions, the protein profiles do not contain proteins that
are known to be differentially expressed in Gaucher patients. Nevertheless, the groups of
serum protein profiles are expected to differ, due to the large clinical differences between
the groups.

Principal component discriminant analysis (PCDA) is used to discriminate between the
groups of protein profiles. The significance of the discrimination is evaluated in a
permutation test. Double cross-validation is used to estimate the error of the model in
classifying unknown samples. The cross-validation procedure generates several models.
From these models discriminating proteins are selected using the rank products procedure
as described by Breitling [13]. Combining PCDA, permutation tests, double cross-
validation and variable selection with rank products results in a strategy for the discovery
and rigorous statistical validation of candidate biomarkers.

Materials

Patients

All patients with Gaucher disease (type I) studied (10 males and 10 females; 15-65 years
old, at the initiation of therapy) were known by referral to the Academic Medical Center.
Of the 20 patients, 18 received enzyme replacement therapy (alglucerase, imiglucerase,
[individualized dosing], Genzyme, Cambridge, MA) and 2 patients received substrate
reduction therapy (chronic oral administration of an iminosugar inhibitor of
glucosylceramidesynthesis, N-butyldeoxynojirimycin, Oxford Glycosciences, Abingdon,
United Kingdom). The control group consisted of 7 male and 13 female healthy volunteers,
23-68 years old.

Serum samples

Blood samples were collected from patients (between 1991 and 2001) and healthy
volunteers (between 1994 and 2002) in 7 mL, BD Vacutainer, ‘red-top’ tubes (BD #
367625), and sera were prepared. Collection protocols were the same for both groups.
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Blood samples were allowed to clot at room temperature for 30 minutes. Subsequently,
blood samples were centrifuged at 1300 RCF for 10 minutes at room temperature. All
serum samples were stored at -20°C until required. Serum samples of Gaucher patients
were obtained before initiation of therapy. Approval was obtained from the Ethic
Committee. Informed consent was provided according to the Declaration of Helsinki.

SELDI-TOF MS

Serum samples were surveyed for basic proteins with SELDI-TOF MS making use of the
anionic surface of CM10 ProteinChip® Arrays (Ciphergen Biosystems Inc., Fremont, CA,
USA). Serum samples (10 pL) were first mixed with 90 pL of denaturation solution (9 M
urea [Sigma Chemical Company, St Louis, MO, USA], 2% CHAPS [Fluka Biochemika,
Buchs, Switzerland], and 1% DTT [Sigma Chemical Company, St Louis, MO, USA]) and
incubated at room temperature for 1 hour. An aliquot (10 pL) of this solution was mixed
with 90 pL binding buffer (50 mM Tris [Sigma Chemical Company, St Louis, MO, USA]
+ 0.1% Triton X-100 [BHD Laboratory Supplies, Poole, Dorset, UK], adjusted to pH 7
with hydrochloric acid [Merck, Darmstadt, Germany]). Before application of the sample
to a CM10 ProteinChip® Array, all spots were equilibrated. To equilibrate the CM10
ProteinChip® Array, spots were washed with 200 pL of binding buffer (2 times, 5 minutes
on a platform shaker) by using a Ciphergen Biosystems 96-well bioprocessor. After
equilibration, buffer was removed and samples were added. Gaucher and control samples
were applied in random order. The samples were allowed to bind to the anionic surface for
40 minutes at room temperature on a platform shaker. Subsequently the ProteinChip®
Arrays were washed with 200 pL binding buffer (2 times, 5 minutes on a platform shaker).
Next the ProteinChip® Arrays were washed with 200 pL binding buffer without Triton X-
100 (2 times, 5 minutes on a platform shaker). After a brief wash with deionised water (to
remove salts) ProteinChip® Arrays were dried on air. Prior to SELDI-TOF MS analysis,
matrix was added to each spot (2 times 0.5 uL of sinapinic acid [Fluka Biochemika, Buchs,
Switzerland] (10 mg/mL) in 50% aqueous acetonitrile [Merck, Darmstadt, Germany]
containing 1% TFA [Fluka Biochemika, Buchs, Switzerland]). After co-crystallization of
the (bound) proteins with the matrix molecules, a pulsed nitrogen laser was used for
ionization of the samples. ProteinChip® Arrays were analyzed using a PBSIlc
ProteinChip® Reader (Ciphergen Biosystems Inc., Fremont, CA, USA), a linear laser
desorption/ionization time-of-flight mass spectrometer equipped with time-lag focussing.
The result is a mass spectrum composed of the mass to charge ratios (m/z values) and
intensities of the desorbed (poly)peptide ions. All spectra were acquired in the positive-ion
mode.

Preprocessing of SELDI-TOF MS data for further analysis
External calibration

Spectra were externally calibrated against a mixture of known peptides (All-in-1 Peptide
Standard, Ciphergen Biosystems Inc., Fremont, CA, USA). The pre-mixed peptide
standard includes arg®-vasopressin (1084 Da), somatostatin (1637 Da), porcine dynorphin
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(2147 Da), human adrenocorticotropic hormone (1-24) (2933 Da), bovine insulin B-chain
(3495 Da), human insulin (5807 Da), and hirudin BHVK (7033 Da).

Spot-to-spot calibration

Spot-to-spot calibration is a feature of the ProteinChip® Software that accounts for the
spot to spot variation that can occur on an individual array. To determine the correction
factors for the different positions on an array we used a set of peaks that is always present
in our spectra. The correction factors for the different positions on an array are applied to
the corresponding mass spectra and used in the recalculation of the masses.

Baseline subtraction

The ProteinChip baseline algorithm removes offsets in the spectra that are the result of
how the signal is collected electronically and of chemical noise contributed from the
energy absorbing molecules in the matrix. The algorithm is a modified piecewise convex-
hull that attempts to find the bottom of the spectra and correct the peak height and area.
Baseline subtraction is applied to all spectra.

Peak detection

Peaks were detected with Biomarker Wizard™. Biomarker Wizard™ is a feature of the
ProteinChip® Software that is used for preparing data generated by ProteinChip® Software
for further analysis. Biomarker Wizard™ performs the peak picking across the samples.
The resolution of a peak at m/z 100 is 300, where the resolution R= m/Am, m the mass of
the ion and Am is designated as the full width at half-maximum. An example of the
obtained spectra can be found in Fig. 1.
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Figure 1. Four spectra, two controls and two patients, after the pre-processing steps.

Methods

Principal component discriminant analysis

Differences have to be found between the SELDI-TOF MS protein profiles of serum of
controls and Gaucher patients to classify individuals as healthy or diseased. A simple
method for discrimination between two groups is Fisher's linear discriminant analysis
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(FLDA). Good discriminating directions are directions in m/z space in which the
differences between the groups are large compared to the differences within the groups. In
the two-group case, this direction is given by the vector d that maximizes the ratio R:

R = -dBd

dwd

where W is the pooled within class sample covariance matrix and B is the between class
sample covariance matrix. The discriminating direction is the eigenvector of W-B
corresponding to its largest eigenvalue [14]. Because there are more m/z values than
samples, the matrix W is singular. This means that W-! does not exist and FLDA cannot be
applied directly. This problem can be overcome by using principal component analysis
(PCA), which finds new "variables" or principal components to describe the data. These
components are linear combinations of the original m/z values. The first principal
component (PC) describes as much of the variation in the data as possible, the second
describes as much of the remaining variation as possible, etc. By keeping only a few of the
principal components the dimensionality of the data can be reduced to a point where FLDA
is applicable, while preserving most of the information in the data. The number of
components in the model is a tuneable metaparameter the value of which can be decided
upon using cross-validation, which will be described shortly. The combination of FLDA
with PCA yields principal component discriminant analysis (PCDA) [15-18].

Permutation test

Once a PCDA model is found that discriminates between the healthy and diseased groups,
what can be said about the significance of the discrimination? Because of the size of the
data set — there are many more m/z values than there are samples — it might be possible to
find two arbitrary groups that can be well separated. In that case, a good discrimination in
the original problem may very well be a coincidence and may not be very significant. A
permutation test can evaluate this possibility. In a permutation test the class labels of the
samples are randomly permuted: Every sample is randomly assigned a label while the
number of control and diseased labels is the same as in the original problem. The permuted
problem is treated in exactly the same way as the original problem. If the results are
comparable to or better than the results of the original problem, the discrimination is
probably a coincidence, or the result of confounded variables in poorly matched diseased
and control samples. However, when a lot of permutations give groups for which the
discrimination is worse, the result for the original problem may be significant [19].

Cross-validation

As mentioned before, the number of components in the PCDA model is determined with
cross-validation. Cross-validation has two distinct applications. In the first place, it is a
method that can give an estimate of the prediction error when the sample group is small.
Cross-validation gives other information about the model than a permutation test because
the latter does not assess the classification performance (i.e. it does not give a prediction
error). When the dataset contains many samples, the predictions of one larger separate test
set can also give an independent prediction error. This error differs in one important aspect

133

o



versie 17-04.gxp 17-4-2008 10:50 Pagina 134 $

Chapter 9

from the information obtained by cross-validation. The dataset on which the model is built
is only one subset from the entire control and diseased population. The model and
corresponding prediction error are one possible outcome. Another subset would surely
result in a different model and error. Cross-validation evaluates the effects of using only
one subset by splitting the available data several times into different test and training sets.
In ten-fold cross-validation, for example, the modelling and subsequent prediction is
repeated ten times. Every time, ten percent of the data is masked; the remaining ninety
percent is the training set that is used for modelling. Although the training sets overlap
partly, they are different subsets from the data and they result in different models. The ten
different models from the cross-validation give insight in the variability of the model we
build on the complete data set. In addition, a possible lucky subset that results in an
optimistic prediction error is averaged out by the other subsets.

The second use of cross-validation is in estimating a tuneable parameter. For PCDA
models the tuneable parameter is the number of components. For estimation of the
parameter the complete cross-validation procedure is repeated for all possible parameters.
The parameter is chosen that leads to the lowest cross-validation error. With this choice,
information from the masked test sets is brought into the model. It makes the cross-
validation error corresponding to the chosen number of components an optimistically
biased estimate of the prediction error of the model.

Taking many components conserves the original data best. Restricting the number of
components reduces the amount of noise after the PCA step. Calculating the number of
components in the PCA model with cross-validation is an appropriate way of obtaining a
correct number of components. This number of components is capable of retaining the
crucial information for the discrimination while discarding noise.

Double cross-validation

Cross-validation can still be used to find a good estimate of the prediction error, but it has
to be used in a different way. Determining the tuneable parameter with cross-validation is
part of the procedure to build a model. The entire modelling procedure has to be cross
validated in order to obtain the prediction error. This can be done in a double cross-
validation [20,21]. Double cross-validation consists of two nested cross-validation loops
(Scheme 1). The modelling procedure, including the cross-validation that determines the
tuneable parameter, forms the inner loop. The cross-validation for the error estimation
takes place in the outer loop.

The outer loop starts by masking a few samples. The remainder of the data enters the inner
loop. In the inner loop cross-validation estimates the tuneable parameter for the model as
described above. The estimated parameter is used to build a model on all the data that
entered the inner loop. This model is returned to the outer loop where it predicts the
samples that were masked thus far. The masking, parameter estimation, model building
and predicting of masked samples is repeated until each sample is masked exactly once in
the outer loop. The double cross-validation error is a reliable estimate of the error of the
modelling procedure, because the predicted samples are completely new to the model.
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Double cross-validation also gives insight in the variability of the tuneable parameter and
the model. Every outer loop generates a different subset on which the parameter is
estimated and the model is built. Each different subset results in a different estimate for the
parameter and in a different model.

ol Outer cross validation, 10 fold
—>| otrain
|

all possible

cross validation, 9 fold

#of PCs
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i
wll | e e
# PCs error >

Y
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> <
Y

model
|
v error
T otest > | error 7> prediction

Scheme 1. Double cross-validation. The original data set is split into a training set (otrain) and test set (otest) ten times in the
outer cross-validation loop. In the inner loop otrain is split up nine times in a training set (itrain) and a test set (itest). Every
number of components (PCs) for the PCA step that is considered is used to build a model on itrain. This model then predicts the
classes of the samples in itest, leading to an error. The errors of all the inner cross-validation models that have the same number
of components are combined in the cross-validation error (CV error). The number of components that leads to the lowest cross-
validation error is selected and used together with the corresponding otrain for the model in the outer loop. The data in otest is
predicted with this model to give an error. The errors made in the ten different outer test sets are combined in the cross-validation

CITOT.

Rank products

In the cross validating procedure several models are built. The rank products procedure
seems to be a natural partner for cross-validation to evaluate the overall importance of a
variable. The discriminant vector found with PCDA represents the differences between the
control and the diseased groups. Since the largest peaks in this vector are most important
for the discrimination, we can select m/z values based on their absolute value in the
discriminant vector. In the ten-fold cross-validation ten different discriminant vectors are
found in which the importance of the m/z values may differ. The information in the ten
discriminant vectors can be combined using the rank products selection method [13]. For
each of the discriminant vectors, the m/z values are ranked according to their absolute
value. The m/z value with the largest absolute value gets rank 1, the next largest gets rank
2, etcetera. The ten ranks of each m/z value are multiplied to obtain the rank product, and
the m/z values with the lowest rank product are the ones with the largest discriminative
power. In this way, single cross-validation in combination with rank products can be used
for variable selection. The prediction error associated with the selected variables is
determined with double cross-validation.
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Results

Data

Serum samples of 20 controls and 20 Gaucher patients were measured with SELDI-TOF
MS. On visual inspection of the spectra, the mass spectrum of one Gaucher sample (a
female receiving enzyme replacement therapy) appeared to be flawed. Consequently, this
mass spectrum was excluded from the study. Preprocessing of the spectra was performed
according to the descriptions given above. The resulting data set contained 20 control and
19 Gaucher spectra, each consisting of 590 m/z values between 1000 en 10.000. The
protein profiles were normalized by dividing each profile by its median to arrive at
comparable spectra. To prevent the largest peaks in the protein profiles from dominating
the PCA part of the model, the data were auto-scaled. For (double) cross-validation, auto-
scaling was always performed on the training data before modelling and then the test data
was scaled prior to prediction with the scaling parameters of the training set. By doing this,
it is ensured that the prediction of the test data is truly independent.

Discrimination

A discrimination model was built based on all data. A single cross-validation pointed at
15 principal components to be used (see further on). This resulted in a model that perfectly
discriminated between the Gaucher and control groups: all samples were assigned to the
correct class. Hence, the resubstitution error — error made in classifying samples used to
model the data - was zero. With a permutation test, the significance of the discrimination
was evaluated. The class labels of the samples were randomly permuted 10,000 times and
PCDA models were made. A histogram of the resubstitution errors of the resulting models
is shown in Fig. 2A. Although the average resubstitution error for the permutations (8.6)
was larger than the resubstitution error for the original data (0), it was much smaller than
the average error expected for randomly permuted problems (19.5: a flip of the coin result).
Also, four of the permuted problems resulted in a resubstitution error of zero, like the
original problem. This shows the well known overfitting phenomenon and a resubstitution
error which is a severely optimistically biased prediction error.

The number of principal components for the discrimination model on all data was
determined with cross-validation. The number of components was restricted between 2 and
20. For each possible number of components, a ten-fold single cross-validation was
performed. In each fold, two samples were masked from both classes. Since there were 19
Gaucher samples, only one Gaucher sample was masked in the last fold. The single cross-
validation error was lowest when 15 components were used; of the 39 samples 1 control
and 2 Gaucher samples were misclassified. The same cross-validation strategy was applied
to the 10.000 permuted problems. Fig. 2B shows a histogram of the number of
misclassifications. None of the permutations gave a lower single cross-validation error of
the original problem, but one permutation resulted in the same cross-validation error (three
misclassifications). On average, the permutations resulted in 16.6 misclassifications in the
single cross-validation. Like the average resubstitution error this number is still lower than
the expected number of misclassifications in random permutations. This confirms and
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illustrates that the single cross-validation error is also optimistically biased when it is used
for tuneable parameter estimation and validation simultaneously.
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Figure 2. Permutation test. Histogram of the number of misclassifications in 10,000 permutations. A: resubstitution error; B:
cross-validation error; C: double cross-validation error. The arrows indicate the number of misclassifications in the original
problem.

Classification

The prediction error of the model in classifying unknown samples was established by
double cross-validation. In the inner loop, the number of components for the model was
determined by using nine-fold cross-validation. As in the single cross-validation, between
two and twenty components were used in a model. The models from the inner loop were
tested in the outer loop with ten-fold cross-validation. In the end, out of a total of 39
samples, two control and two Gaucher samples were misclassified. Thus, the sensitivity of
the model was 89% and the specificity 90%.

These classification results are again compared to the double cross-validation results of
10.000 permutations (Fig. 2C). The double cross-validation errors of all the permuted
problems were larger than the double cross-validation error of the original problem. The
average prediction error was 19.9 misclassifications, which is approximately half of the 39
samples. This is what would be expected for random data: the model is not able to classify
truly new samples. The best it can do is 'guess' at the class label, which leads to this flip-
of-the-coin result. It illustrates the statement that the double cross-validation error is an
independent estimate of the prediction error.
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All three methods, re-substitution, single cross-validation and double cross-validation
yield statistical significance in the permutation test. A P-value from each test could be
calculated as the ratio of the number of equal or better performances with the permutated
data and the total number of permutations. The significance of the double cross-validation
is highest. Because the mean of the distribution of the double cross-validation is furthest
away from zero the power of this test is also better than in the case of the other two
methods.

Double cross-validation not only resulted in a prediction error for the model, it also gave

information about the variability. The ten-fold outer loop resulted in ten different
discriminant vectors at the end of the double cross-validation. The number of components
in the PCA step of these models ranged from seven to twenty. However, the resulting ten
discriminant vectors were very similar, which implies that PCDA is a robust method.
The combination of samples to form test sets in the outer loop was one possible order. The
double cross-validation was repeated 100 times, each time with different combinations of
samples in the test and training sets. This was done to exclude the possibility that a specific
order of left-out objects would influence the results. The average number of
misclassifications of those 100 runs was 4, which is the same as the number of
misclassifications found in the double cross-validation discussed above. Hence, this is a
stable result.

The validity of the sensitivity and specificity which was found depends on the matching
of the Gaucher and control samples. In this study, the matching was not perfect: There is
a difference in the distribution of sexes between the two groups. Also, the age of the
patients and controls are not matched perfectly, but the groups do have the same large age
range. Similar cohorts of patients and controls were used in studies that revealed the now
well established Gaucher markers chitotriosidase and CCL18 [5,12]. The permutation test
also gives information on (poor) matching of cases and controls. In a random permutation
the (poor) matching is broken. In the 10,000 permutations there are many where for
example the male/female matching is much poorer then in the original data. Still all the
classification results turn out to be worse. From this it can be concluded that the matching
was sufficient and that the difference due to Gaucher disease is the dominant effect.

Rank products

In the previous section it was determined that 15 components is the optimal number. With
this number the ten fold cross-validation is performed. The ten discriminant vectors were
used for variable selection using rank products. All m/z values per model were ranked and
multiplied to obtain its rank product. The average rank product for a given m/z value
(590/2)1% = 5-10%. Table 1 shows the ten m/z values with the lowest rank products, so the
largest contributions to the discrimination. Surprisingly, all the top ten proteins are up-
regulated in the group of Gaucher patients. It should be kept in mind that the analysis was
focussed on relatively small proteins (molecular masses below 10.000 Da). It is known that
various proteases, particularly cathepsins, are elevated in Gaucher plasma [22]. This may
conceivably lead to unique low molecular mass degradation products. Alternatively, the
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top ten ranking m/z values may also represent only one or a few proteins. Due to the action
of proteases and singly and doubly charged states one protein could give rise to multiple
peaks. The proteins with the lowest rank products are candidate biomarkers. A biochemical
validation is the next step to assert the relevance of the putative markers before they can
be viewed as true biomarkers, but this is beyond the scope of this paper.

Table 1. Top 10 best discriminating m/z values according to the rank products method and their rank products

m/z value Rank product
4058 36
5852.6 288
3685.4 1.15E+05
4546 4.35E+05
2067.9 2.92E+07
4214.8 1.13E+08
3840.1 1.36E+09
1008.2 2.28E+09
4016.2 5.03E+10
8949.4 7.81E+10

Note: All 10 proteins are up-regulation in the Gaucher patients.

Another question is how many m/z values with low rank product would have to be
selected for a good predictive model. Fig. 3 shows how the classification error rate depends
on the number of m/z values selected for the model. The error rates in Fig. 3 are double
cross-validation errors. The rank products were calculated in an inner cross-validation and
models based on different numbers of m/z values were tested in the outer cross-validation.
In this way, the performance of the selected m/z values in classifying unknown samples
was tested. As Fig. 3 shows, incorporating ten m/z values or less resulted in error rates of
8 out of 39 and higher. The lowest prediction error was achieved when 200 m/z values were
incorporated in the model. Selecting 50 or more m/z values leads to a performance that is
comparable to the performance of the model without selection. Apparently, not all m/z
values are needed in the model to achieve good prediction. In fact, the best predictions
were obtained with less than half of the m/z values. On the other hand, it is not possible to
reduce the number of m/z values to just a few without significant loss of performance.

Conclusion

A strategy is presented for the discovery of candidate disease markers and statistical
validation thereof. It consists of building a discrimination model with PCDA and
subsequent validation of its discriminative ability with a permutation test and of its
predictive ability by double cross-validation. It was shown that it is possible to select
candidate biomarkers by combining cross-validation with rank products. The strategy was
applied to SELDI-TOF MS spectra of serum samples of Gaucher patients and healthy
controls. Double cross-validation showed that the PCDA model has a sensitivity of 89%
and a specificity of 90%. In addition, the permutation test proved that the discrimination
was significant. The results of the resubstitution, cross-validation and double cross-
validation permutations tests supported the use of double cross-validation. All three tests
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indicated that the result obtained for the original problem were not a coincidence.
However, the test with double cross-validation was the only test that gave the flip-a-coin
result that can be expected for randomly permuted labels in the two group case. These
results illustrate the need for a thorough validation of discriminant models in proteomics.
In this study, PCDA was chosen to build a discriminant model on SELDI-TOF MS data,
but the conclusions regarding the validation with permutation tests and double cross-
validation also hold for other discrimination methods and other types of omics data. For a
procedure in which no meta-parameter has to be estimated the same procedure as described
in this paper can be used, but with a single cross-validation instead of a double cross-
validation.

Mean error rate

dh e

0 100 200 300 400 500 600
# m/z values

Figure 3. Error rate versus number of variables. For 1, 5 and 10 variables LDA was used to build the model, for larger number
of variables we used PCDA with 10 PCs. The reported error rates are averages of 100 different double cross-validations.
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