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2 Theoretical background

2.1 Introduction

This chapter provides some theoretical background to the subsequent experimental
chapters. The experimentally important concepts of magnetic trapping and evap-
orative cooling are briefly described. The main part of this chapter provides a
summary of theory for the one-dimensional (1D) Bose gas at low temperature (and
the cross-over to it from a 3D trapped gas) that is relevant for our experiment.

The 1D Bose system has attracted much interest because it has properties signifi-
cantly different from that in higher dimensions. Counterintuitively, repulsive bosons
in 1D become more strongly interacting with decreasing density. The theoretical de-
scription of such a many-particle system with strong interactions is challenging: As
interactions increase in importance theoretical approaches that treat the gas as non
interacting (ideal Bose gas) or weakly interacting (mean-field) break down. Already
in the 1960s theorists were able to do much better, however. Helped by the sim-
ple symmetry of the 1D geometry Girardeau, Lieb and Liniger, and Yang and Yang
were able to construct exact solutions for the many-body quantum system. Solutions
were found for impenetrable bosons, known as the Tonks-Girardeau (TG) gas, by
Girardeau [53] and for bosons with finite delta-function interaction by Lieb and Lin-
iger [35] [54], using a Bethe Ansatz [55]. The model of 1D delta interacting bosons
is integrable and therefore exactly solvable. Yang and Yang found analytic integral
equations for the thermodynamics of the Lieb-Liniger gas [36] at any finite temper-
ature and interaction strength. Their method is also known as the thermodynamic
Bethe Ansatz.

With the spectacular advances in experiments with ultracold atomic gases in
the 1990s this theoretical work became of experimental relevance and the first 1D
condensates were realized in 2001 [39–41]. The importance of exactly solvable models
for experiments with quantum gases was first pointed out by Olshanii in 1998 [33].
Until recently, however, most experimental attention was to the zero-temperature
case of the Lieb-Liniger gas. In particular, there was a run to reach the strongly
interacting Tonks-Girardeau (TG) gas. The TG regime was reached experimentally
in 2004 in two groups. The group of Immanuel Bloch used a 2D optical lattice
and added a weak periodic potential along the third axis to increase the effective
mass of the bosons [42]. David Weiss and coworkers used a different laser scheme
that removed the need for the complicating third periodic potential [43, 56–58]. It
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6 Theoretical background

was the paper by Kheruntsyan and coworkers [59] of 2003 that elaborated on the
connection between Yang-Yang thermodynamics and cold atom experiments, the
authors could identify new physical regimes using their exact calculations of the
local pair correlation function.

Besides the strictly one-dimensional case, in practice many experiments [39, 50,
60] are performed in the cross-over from a three-dimensional to a one-dimensional
system. Moreover, one works in a trap as opposed to the homogeneous case. The
dimensional cross-over is of crucial importance in the description of our experimental
data and is therefore given special attention in this chapter. In experiments on our
trapped cold atomic clouds we turn two knobs: atom number and temperature. By
turning these knobs we probe a variety of different physical regimes that are mostly
separated by smooth cross-overs rather than sharp phase transitions. Besides the
only true phase transition that we encounter: Bose-Einstein condensation, three
cross-overs are met:

• cross-over from a three-dimensional to a one-dimensional system,

• cross-over from a decoherent to a coherent atomic sample in 1D,

• cross-over from a weakly interacting to a strongly interacting gas in 1D.

The outline of this chapter is as follows. Section 2.2 introduces the basics of
magnetic trapping. In Sec. 2.3 the commonly used approach to the ideal Bose gas
and the phenomenon of Bose-Einstein condensation is summarized. We discuss the
homogeneous and trapped cases in 3D and 1D as well as the dimensional cross-over.
Section 2.4 deals with weakly interacting (quasi-)condensates in 3D, in 1D and in
the dimensional cross-over. Phase-fluctuating condensates, and the relation between
the phase coherence length and the temperature of a quasi-condensate are studied
in Sec. 2.4.4. Section 2.5 is dedicated to the exact results for 1D repulsive bosons by
Tonks-Girardeau, Lieb-Liniger and Yang-Yang. In section 2.5.3 we present a new
finite-temperature model that explains our experimentally obtained data very well
(see also Ch. 6). The weakly interacting 1D gas is treated using the exact Yang-Yang
thermodynamic solutions thus incorporating both the cross-over from a decoherent
to a coherent system and the cross-over from weak to strong interactions. In Sec. 2.6
we give an overview of the discussed regimes that can be characterized by the three
parameters: interaction strength, radial confinement and temperature. These pa-
rameters span a three dimensional space. We specifically describe two subspaces:
(a) interaction strength versus radial confinement at T = 0 (Sec. 2.6.1); (b) inter-
action strength versus temperature in the 1D limit (Sec. 2.6.2). Section 2.7 briefly
touches on previous models for finite-temperature degenerate systems. Finally, in
Sec. 2.8 we give some theoretical background for the experimentally important tool
of evaporative cooling.

2.2 Magnetic trapping

Magnetic trapping is due to the Zeeman effect: The energy of the atomic state
depends on the magnetic field due to the interaction of the magnetic moment of the
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atom with the magnetic field, for a detailed description see e.g. [61–63]. A Zeeman
sublevel of an atom with given total electronic angular momentum J and nuclear
spin I can be labelled by the projection mF of the total atomic spin F ≡ I + J
on the axis of the field B and by the total F ranging from |I − J | to I + J . We
are specifically dealing with the electronic ground state (J = S = 1/2) of 87Rb
(I = 3/2) so that F = 1 or F = 2. For these states the Zeeman energy shift can
be calculated with the Breit-Rabi formula [63]. For the special case of atoms in
the doubly polarized state (F = 2,mF = 2) the Breit-Rabi formula yields a linear
Zeeman shift

U(B) = U(0) + 2gFμB|B|, (2.1)

where gF ≡ (gJ + 3gI)/4, with gJ = 2.00233113(20) [61] the fine structure Landé
g-factor, gI = −0.0009951414(10) [61] the nuclear g-factor, U(0) the energy in zero
field and μB being the Bohr magneton. Because of the increasing energy in Eq. (2.1)
with increasing magnetic field, atoms in the state (F = 2,mF = 2) are “low-field
seekers” that can be trapped in a local magnetic-field minimum. The other Zeeman
states for 87Rb that can be magnetically trapped for moderate field values are F =
2,mF = 1 and F = 1,mF = −1. In a region of small magnetic field the precession of
the atomic magnetic moment is so slow that the changing field direction as a result of
the atomic motion cannot be followed adiabatically. Atoms traversing such a region
can undergo a so-called Majorana spin-flip to an untrapped state. To avoid this loss
mechanism access of the atoms to low magnetic field regions should be prevented
by arranging a non-zero magnetic field strength at the potential minimum.

To describe the thermodynamics of a trapped gas it is convenient for future
reference to approximate the confining potential as a power-law trap of the general
form [31]

U(x, y, z) = ax|x|1/δ1 + ay|y|1/δ2 + az|z|1/δ3 , (2.2)

where
δ =

∑
i

δi, (2.3)

with δ = 0 for 3D box-like, δ = 3/2 for 3D harmonic and δ = 3 for a spherical-
quadrupole trap. The lowest order, and therefore tightest, magnetic trapping po-
tential that has a non-zero minimum is 3D harmonic and can be written as

U(x, y, z) = U0 +
1

2
mω2

xx
2 +

1

2
mω2

yy
2 +

1

2
mω2

zz
2, (2.4)

where ωi is the single-particle oscillator frequency and m is the atomic mass.
A magnetic-field configuration that is 3D harmonic near the minimum was in-

troduced by Ioffe [64] for plasma confinement. It was first proposed and used by
Pritchard [65] to trap neutral atoms and is known as the Ioffe-Pritchard (IP) trap.
Following Luiten [66] we define α = (∂B⊥/∂ρ)x=x0 and β = (∂2Bx(0, 0, x)/∂x

2)x=x0 ,
and write the magnetic field for the IP configuration in polar coordinates

B⊥(ρ, φ, x) = αρ sin(2φ)− 1
2
βρ(x− x0),

Bφ(ρ, φ, x) = αρ cos(2φ),
B‖(ρ, φ, x) = B0 + 1

2
β(x− x0)

2 − 1
4
βρ2.

(2.5)
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Indeed the magnetic field is approximately harmonic close to the center of the IP
trap, for magnetic field values close to B0 (the value of the magnetic field in the
trap bottom). The harmonic approximation is valid for trapped atom clouds with a
temperature much lower than μBB0/kB. Using equations (2.1), (2.4) and (2.5) we
find the trap frequencies in axial and radial direction

ω‖ =

√
μBgFmF

m
β, (2.6)

ω⊥ =

√
μBgFmF

m
(
α2

B0

− β

2
) (2.7)

In the high-temperature limit, if the thermal energy of atoms in a IP-trap is much
larger then the energy corresponding to the trap bottom, kBT � μBB0, we can
approximate the IP potential, resulting from Eq. (2.1) and Eq. (2.5), in the two
radial directions by a linear and in the axial direction by a harmonic shape. The
factor δ, Eq. (2.3), equals 5/2 in this case.

Strong trapping forces are generated by high magnetic field gradients. Weinstein
and Librecht [47] realized that when creating a trapping field at a distance r from
a wire that carries a current I, the field gradient scales as I/r2. Microtraps thus
provide an advantage over conventional electromagnets to tightly confine atoms.

The simplest wire-based trap is illustrated in Fig. 1.1. A current-carrying wire
(along x) whose magnetic field is compensated by a homogeneous field Bbias (along
y) forms a waveguide. Around the minimum (r0), the field in the radial direction
(yz-plane) is quadrupolar. This waveguide can be closed at the end points by adding
two perpendicular current-carrying wires (along y) thus creating an H. End caps
can also be made by bending the leads of the x-wire in the y-direction to create a
Z shape. One can estimate the field gradient of such a trap using the field for an
infinitely thin wire

r0 =
μ0

2π

I

Bbias

, (2.8)

B′(r0) = −μ0

2π

I

r2
0

, (2.9)

with μ0 = 4π · 10−7NA−2. For example, with a current of 1 A and Bbias = 100 G we
have r0 = 20 μm and a huge gradient B′(r0) = 5 · 104 G/cm.

2.3 Ideal Bose gas

In the ideal-gas description, atoms are considered as non-interacting quantum-
mechanical particles. For homogenous ultracold dilute Bose gases in 3D this de-
scription can be found in textbooks such as [67]. This treatment has been extended
for power-law potentials [31, 68], and for lower dimensional systems [32,69].
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In a 3D homogenous gas of bosons the average occupation number Ni of states
with energy εi obeys Bose statistics

Ni =
1

eβ(εi−μ) − 1
=

ze−βεi

1− ze−βεi
, (2.10)

where β = (kBT )−1. The fugacity z and the chemical potential μ are related by
z = eβμ. The total atom number N is found by summing over all quantum states i

N =
∞∑
i=0

Ni. (2.11)

This sum diverges for z → 1 because the term N0 = z/(1 − z) diverges in the
thermodynamic limit (we take ε0 = 0 from here on). Splitting off the diverging
term N0, replacing the rest of the sum by an integral (one state per phase space
element ΔrΔp = h3) the equation of state for N atoms occupying a volume V
becomes

N

V
=

4π

h3

∫ ∞

0

dp p2 1

z−1eβp2/2m − 1
+

1

V

z

1− z
. (2.12)

This can be written in the form [67]

n(z, T ) =
1

Λ3
T

g3/2(z) +
N0

V
, (2.13)

where n = N/V is the particle density,

ΛT =
√

2π�2/mkBT , (2.14)

is the thermal de Broglie wavelength and g3/2 is the Bose or Polylog function defined
by

gα(z) =
∞∑
j=1

zj/jα. (2.15)

For the ground-state particle density we have

N0

V
= n0 =

1

V

z

1− z
(2.16)

and for the density in the excited states

ne =
1

Λ3
T

g3/2(z). (2.17)

Note that g3/2(z) is finite for z → 1 (g3/2(1) = 2.612 . . . ), and thus ne is limited,
ne ≤ g3/2(1)/Λ3

T . At a given density, for low enough temperature, μ tends to zero
from below and we have z → 1; the Bose gas is saturated. All extra particles
added at constant temperature will be accommodated in the ground state. The
ground state becomes macroscopically occupied giving rise to the phenomenon of
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Bose-Einstein condensation. At the transition, the critical density and temperature
are

nc =
1

Λ3
T

g3/2(1), (2.18)

Tc =
2π�

2

mkB

(
n

g3/2(1)

)2/3

. (2.19)

A phase space density can be defined as the number of particles occupying a volume
equal to the de Broglie wavelength cubed

Φ = nΛ3
T . (2.20)

At the critical point the phase space density is Φ = g3/2(1). We make use of
Eq. (2.19) to write down the temperature dependence of the fraction of particles in
the ground state

N0

N
= 1−

(
T

Tc

)3/2

. (2.21)

Homogeneous 2D and 1D ideal gas

Unlike the 3D case, for a 2D system in the thermodynamic limit the population of
the ground state remains microscopic for decreasing temperatures down to T → 0.
One can say that there is no BEC in a finite-temperature ideal homogeneous 2D
Bose gas. Similarly in 1D, in the thermodynamic limit the population of the ground
state remains microscopic for any T indicating the absence of BEC in this system.

One can define a degeneracy temperature Td for lower-dimensional systems that
indicates the transition from the classical regime to the regime where a quantum
treatment is needed because the thermal de Broglie wavelength starts to exceed the
average interparticle separation. For a homogeneous Bose gas in 1D the semiclassical
approach yields

n(z, T ) =
1

ΛT

g1/2(z), (2.22)

the 1D equivalent of Eq. (2.13) for 3D. Note that g1/2(z) diverges as z → 1, con-
sistent with the absence of a macroscopically occupied ground state in 1D in the
semiclassical approximation. Degeneracy for a one-dimensional homogeneous Bose
gas is thus reached for

Td =
�

2n2
1

2mkB
, (2.23)

where n1 is the 1D density.

2.3.1 Ideal Bose gas harmonically trapped in 3D and 1D

We now turn to the D-dimensional ideal Bose gas in the presence of external har-
monic confinement Vext(r) =

∑D
i=1mω

2
i r

2
i /2. We assume kBT � �ωi, consequently
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we can use the semiclassical approximation and replace the sum in Eq. (2.11) by an
integral. The semiclassical energy of the atoms trapped in the external potential is

ε(r,p) =
p2

2m
+ Vext(r). (2.24)

The density distribution of the thermal atoms as a function of position and mo-
mentum respectively is then obtained by integration (over momentum and position
respectively) yielding

n(r) =
1

ΛD
T

gD/2
[
ze−βVext(r)

]
, (2.25)

n(p) =
1

(mω̄ΛT )D
gD/2

[
ze−βp

2/2m
]
, (2.26)

where ω̄ = (ΠD
i=1ωi)

1/D.
It was shown in [32] that upon lowering the dimension the critical temperature

becomes higher. The expression for the critical temperature in a 1D trapped gas
obtained in [32] is

N =
kBTc
�ω

ln
2kBTc

�ω
. (2.27)

2.3.2 Ideal Bose gas in the 3D-1D cross-over

If the 3D harmonic trap is highly anisotropic and needle shaped with ω⊥ � ω‖
and kBT ≈ �ω⊥ we have a cross-over from 3D to 1D for the ideal Bose gas. Only
a few radial quantum states are occupied, therefore radially we can no longer use
the semiclassical approximation from Sec. 2.3.1. In this cross-over case we sum
explicitly over the radially exited states j of the harmonic oscillator with degeneracy
(j + 1). For the axial direction we use the local density approximation (LDA): We
treat the gas as locally homogeneous with a spatially varying chemical potential
μ(x) = μ−mω2x2/2 [70]. The resulting axial atomic density nl is

nl(x) =
∞∑
j=0

(j + 1)
1

ΛT

g1/2

[
eβ(μ(x)−j�ω⊥)

]
. (2.28)

2.4 Weakly interacting (quasi-)condensate

Consider a harmonically trapped gas in the low temperature limit far below the
condensation temperature: T � Tc and N0/N → 1, i.e. we have an almost pure
Bose-Einstein condensate. Nearly all particles occupy the ground state and the
atomic density becomes high. When the interaction energy exceeds the harmonic
oscillator level splitting we can no longer neglect the effect of interatomic interac-
tions.

Bogoliubov [71] adopted a mean-field approach to approximate the many-body
wavefunction for the weakly interacting Bose gas, in order to obtain the excitation
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spectrum for the zero-temperature limit (see Sec. 2.4.4). For an inter-particle sepa-
ration that is much larger than the range of the atomic interaction potential and for
low collision energies atomic interactions can be described using only s-wave scat-
tering. The mean-field interaction energy can then be written as μ = ng, where n
is the 3D atomic density and g the coupling constant

g =
4π�

2a

m
, (2.29)

where a is the s-wave atomic scattering length (a = 5.24 nm for 87Rb in the state
F = 2,mF = 2 [72]). The Gross-Pittaevski (GP) equation is a mean-field expression
for the ground-state wavefunction ψ[

− �
2

2m
∇2 + Vext(r) + g|ψ(r)|2

]
ψ(r) = μψ(r), (2.30)

where Vext(r) is an external confining potential. Equation (2.30) is a non-linear
Schrödinger equation, normalized as

N =

∫
dr|ψ(r)|2. (2.31)

A Bose-Einstein condensate in the 3D mean-field regime is characterized by long-
range order of the phase. The correlation length lc = �/

√
mng, the typical length

scale associated with the atomic interaction energy, should be much smaller than
the decay length of the phase coherence for any mean-field theory to hold.

2.4.1 Mean-field in three dimensions

We take the external potential in Eq. (2.30) to be a 3D isotropic harmonic trap
Vext(r) = mω2r2/2. A trapped Bose-Einstein condensate in the mean-field regime
can be treated in the local density approximation (LDA) provided μ� �ω. In this
limit, the atomic density changes on a length scale much larger than that of the
correlations in the gas, consequently we can treat the gas as locally homogeneous
with a spatially varying chemical potential [70]. This amounts to neglecting the first
(kinetic energy) term in Eq. (2.30); the mean-field energy of the trapped condensate
exactly compensates the external potential energy. We have, for the spatial region
where Vext < μTF , a cloud with a parabolic Thomas-Fermi (TF) profile in all three
directions

nTF (r) =
μTF − Vext(r)

g
, (2.32)

and nTF = 0 elsewhere. The peak chemical potential μTF is determined by the total
particle number N0. For a harmonic potential, the result is

μTF =
�ω

2

(
15N0a

l

)2/5

, (2.33)

where l =
√

�/mω is the ground-state size.
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2.4.2 Mean-field 1D

If in an ultracold gas under strong radial confinement the thermal energy drops
below the radial level splitting (kBT � �ω⊥), the atomic motion in transverse
directions is frozen and we speak of a one-dimensional system. For temperatures
much lower than the degeneracy temperature (T � Td) [Eq. (2.23)], and sufficiently
high density we have a weakly interacting gas that can be treated similarly to the 3D
case using a mean-field theory. The resulting 1D system exhibits quasi-long-range
order of the phase at zero temperature (the phase coherence decays algebraically)
[34]. Therefore we do not speak of a true condensate but rather of a quasi-condensate
(under sufficient axial harmonic confinement full phase coherence can be regained,
see Sec. 2.4.4). We can now write for the 1D mean-field interaction energy μ ≈
g1n1 � �ω⊥, where we use the effective 1D coupling found by Olshanii [33]

g1 =
2�

2a

ml2⊥

(
1− C a√

2l⊥

)−1

, (2.34)

with the constant C = 1.4603 . . . [33] and the transverse oscillator length l⊥ =√
�/mω⊥. In our experimental situation l⊥ � a and the second term on the right-

hand-side of Eq. (2.34) is a small correction. This 1D mean-field gas has the shape of
the harmonic-oscillator ground state in the transverse direction. Along the axis we
can use the LDA and find the parabolic Thomas-Fermi shape for the harmonically
trapped case.

2.4.3 Mean-field 3D-1D crossover

The dimensional cross-over at T = 0 for a quasi-condensate with μ ≈ �ω⊥ was
treated in the mean-field regime by Menotti and Stringari [73] and by Gerbier [74].
The cross-over is approached from the 3D side where the chemical potential is much
higher then the axial level splitting (μ� �ω‖): The condensate is in the GP regime
and the density profile is parabolic both in axial and radial directions. Upon re-
duction of the linear density and consequently of the chemical potential we pass
the dimensional cross-over regime (μ ≈ �ω⊥) and reach the regime μ � �ω⊥. This
results in a shape change of the radial density profile from parabolic when μ� �ω⊥
to the gaussian shape of the harmonic oscillator ground state for μ� �ω⊥. As long
as μ � �ω‖ the axial shape stays parabolic. The characteristics of the condensate
change gradually when going from elongated 3D to 1D. There is no transition point
but a transition region. Gerbier [74] found a simple interpolation for the calculation
of the chemical potential across the transition

μ = �ω⊥
(√

1 + 4anl − 1
)
, (2.35)

where the local linear density nl is used without information on the axial potential.
This approximate function Eq. (2.35) yields values that were found to be very ac-
curate in comparison with exact numerical results obtained by Menotti [75]. The
linear density profile in the external axial potential Vext = mω2

xx
2/2 can be found in
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the local density approximation using1

n(x) =
1

4a

Vext(L)− Vext(x)

�ω⊥

[
Vext(L)− Vext(x)

�ω⊥
+ 2

]
, (2.36)

L =
l2x
l⊥

√
2μ

�ω⊥
, (2.37)

where lx,⊥ =
√

�/mωx,⊥. We can define a cross-over point by equating the chemical
potential Eq. (2.35) to the transverse oscillator strength (μco = �ω⊥), yielding

nl,co =
3

4a
. (2.38)

For 87Rb in the F = 2,mF = 2 state (a = 5.24 nm) the cross-over to 1D is reached
at a linear density nl,co ≈ 150 μm−1.

2.4.4 Excitations in elongated quasi-condensates

This section follows the lines of the review article on low-dimensional trapped gases
by Petrov and coworkers [76] and in particular their treatment of finite temperature
excitations of condensates with fluctuating phase (quasi-condensates) in the 1D
regime, that is relevant to the experiments described in this thesis. The treatment
starts from the 1D case. Petrov et al. [77] showed that a similar treatment holds for
elongated 3D condensates.

In the mean-field regime at T = 0 long range order decays algebraically [28,29].
At finite T , the phase coherence decays exponentially with a characteristic phase
coherence length lφ. In a trap, if lφ exceeds the condensate halflength L, we have
a true condensate. While for lφ < L we have a quasi-condensate with fluctuating
phase. In a quasi-condensate at sufficiently low temperatures so that lφ � lc density
fluctuations are suppressed by the atomic interactions. The appearing phase fluc-
tuations at finite temperature stem from thermal excitations of elementary modes
of oscillation along the axis of the cloud. Bogoliubov [71] derived the excitation
spectrum of a homogeneous weakly interacting Bose gas at zero temperature. His
treatment was generalized for the spatially non-uniform case by de Gennes [78]. The
Bogoliubov-de Gennes equations yield the energies of the elementary excitations of
phase and density of the condensate

ε(k) =
√
E(k)[E(k) + 2μ], (2.39)

where E(k) = �
2k2/2m is the free-particle spectrum. The spectrum Eq. (2.39)

is phonon-like for energies in the order of or smaller than μ. The energies are
ε(k) ≈ cs�k, with the speed of sound cs =

√
μ/m. For larger momenta the spectrum

is particle like with ε(k) ≈ E(k) + μ. At low enough temperature, T � Td, μ, the
assumption that density fluctuations are small is justified. Then the fluctuations of

1In the 2004 article by Gerbier [74] there are a few typographical errors in the corresponding
equations.
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the phase alone follow the same phonon-like Bogoliubov-de Gennes equations [76].
The gas can be viewed as consisting of the sum of a macroscopic wave-function
containing contributions with wave-vectors k � 1/lc, with lc = �/

√
mμ, and a

small component including the contributions with k ∼ 1/lc.
Theory for excitations of quasi-condensates can be extended to include non-zero

temperature in the Bogoliubov-Popov approach [79, 80]. Petrov et al. worked out
the case of a harmonically trapped, phase-fluctuating condensate for 1D [34] and
elongated 3D [77] systems. We repeat some of their results below.

Phase fluctuations originate from thermal excitations of Bogoliubov modes of
oscillation along the condensate axis. The phase coherence length is inversely pro-
portional to the quasi-condensate temperature, therefore lφ can be used as a ther-
mometer for phase fluctuating condensates

lφ =
�

2n1

mkBT
. (2.40)

Below a temperature Tφ the phase coherence extends over the whole harmonically
trapped cloud (lφ = L) and a true condensate is regained

Tφ =
�

2n1

mkBL
. (2.41)

The mean-field approach is not valid anymore at high temperatures or low den-
sities such that lc � lφ. In that case the density fluctuates strongly like in a non-
degenerate gas. It is important to point out here that these strong density fluctu-
ations imply that the usual (perturbative) Bogoliubov approach to the degenerate
gas must break down, since the Popov approximation (expanding the fluctuations
around the average density) can no longer be relied upon. In the next section we will
show that, luckily, for this regime exact solutions for the many-body wavefunction
are known.

2.5 Exact solutions in 1D

This section discusses exactly solvable models for interacting bosons in 1D. Solutions
were found for impenetrable bosons by Girardeau [53] and for bosons with finite
delta-function interaction by Lieb and Liniger [35]. Remarkably, Yang and Yang
found integral equations describing the thermodynamics of the Lieb-Liniger gas [36]
at any finite temperature. Figure 2.1 shows a cartoon of atomic density distributions
in 1D for T = 0 (adapted from Ref. [43]). For increasing values of the interaction
parameter γ, the interatomic separation increases, and the size of the wave-functions
decreases.

2.5.1 Tonks-Girardeau

For a system of impenetrable point-like bosons in 1D the wave-function and ground
state energy were derived by Girardeau [53]. By definition impenetrability means
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Figure 2.1: (a) Cartoon of atomic density distributions for the Lieb-Liniger gas at T = 0 [43]. For

increasing values of the interaction parameter γ the interatomic separation increases and the size of

the wave-functions decreases. Top: 1D quasi-condensate where atomic waves overlap. Middle: for

decreasing density the atomic waves become more localized. Bottom: at very low density the atomic

wave-functions exclude each other similar to ideal fermions, for T = 0 we have a Tonks-Girardeau

gas. (b) Momentum distribution for a Tonks-Girardeau gas of impenetrable bosons at zero temperature

(straight line). The corresponding distribution for an ideal Fermi gas is shown for comparison (dashed

line). Adapted from Ref. [33].

that the wave-functions of two bosons vanishes when the two atoms are at the same
position. Girardeau realized that this is just like the case of ideal fermions, in that
case as a result of the exclusion principle. Consequently the ground-state wave-
function for interacting bosons ψB can be mapped to a system of ideal free spinless
fermions ψF by multiplying the Fermi wave-function by −1 upon particle exchange.
For a ring of length L:

ψB = |ψF | ∝
∏
j>l

| sin[πL−1(xj − xl)]|. (2.42)

This wave-function varies smoothly everywhere except for the position where two
particles meet, where it vanishes and has a cusp. While the density distribution of
these “fermionized” bosons is identical to that of ideal fermions, their momentum
distributions w(k) are distinctly different. An analytic rigorous upper bound for
w(k) was first given by Lenard [81]. Later the long-range and short-range expansions
for w(k) were derived [82, 83]. Following Olshanii [33], we plot w(k) in Fig. 2.1(b).
For comparison the momentum distribution for the ideal Fermi case, with kF =
π (N − 1) /L, is also plotted.
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2.5.2 Lieb-Liniger

Lieb and Liniger [35] found the ground-state wave-function for bosons with repulsive
delta-function interaction of any strength on a one-dimensional ring (a box of length
L with periodic boundary conditions). The Hamiltonian for the Lieb and Liniger
system is

H = − �
2

2m

N∑
j=1

∂2

∂x2
j

+ g1

∑
i>j

δ(xi − xj), g1 > 0. (2.43)

The dimensionless ‘Lieb and Liniger’ parameter γ is then introduced

γ =
mg1

�2n1

, (2.44)

where n1 = N/L. Using the Bethe Ansatz [55] Lieb and Liniger showed that the k’s
in the Ansatz satisfy

(−1)N−1 exp (−ikL) = exp

[
i
∑
k′
θ(k′ − k)

]
, (2.45)

where θ is a phase shift obeying

θ(k) = −2 tan−1 (k/γn1), −π < θ < π. (2.46)

Lieb [54] also analyzed the excitation spectrum of the Lieb-Liniger gas and found
that besides a phonon-like “type I” excitation spectrum, a “type II” branch exist.
While the type I excitations match the Bogoliubov phonon spectrum (Sec. 2.4.4)
that is valid in the weak coupling limit, the type II excitations do not exist in the
Bogoliubov approach. The new branch in the spectrum is associated with “hole-
like” excitations: A hole is an omitted k value and is created when a particle with
ki is taken to kN .

The 1D system shows a peculiar behavior: the system becomes more strongly
interacting as the density decreases. This counter-intuitive effect can be qualitatively
understood through the γ parameter. It can be interpreted as the ratio of the
interaction energy εint = n1g1 to the characteristic kinetic energy of the atoms
εkin ≈ �

2n2
1/2m. Lowering the density, reduces the kinetic energy faster than the

interaction energy, thus for low density (γ � 1) we have a strongly interacting
gas (Tonks-Girardeau), while in the opposite limit for (γ � 1) we have a weakly
interacting gas (1D mean-field).

A nice hybrid theoretical and numerical approach to calculate the excitation
spectrum of the Lieb-Liniger gas was taken by Caux and Calabrese [84]. From
their results for 0.25 < γ < 100 it becomes clear that for zero temperature hole-like
excitations are important only for γ � 1. We shall see in the following that already
at weak coupling (γ � 1) but for finite temperature deviations from the Bogoliubov
treatment become important.
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2.5.3 Yang-Yang

Yang and Yang [36] extended the Lieb-Liniger treatment to non-zero temperatures.
Their method is also known as thermodynamic Bethe Ansatz [37, 38]. Yang and
Yang included the effect of thermal excitations by allowing the existence of a whole
collection of omitted momentum states (holes), with density ρh(k) besides the den-
sity of occupied momentum states ρ(k). Yang and Yang were then able to derive
analytic expressions for the thermodynamics of this gas. Their main result is formed
by the two integral equations

ε(k) = −μ+
�

2k2

2m
− kBTg1

2π

∫ ∞

−∞

dq

(g1m/�2)2 + (k − q)2
ln {1 + exp [−ε(q)/kBT ]},

(2.47)
where ε is defined by

ρh/ρ = exp[ε(k)/kBT ], (2.48)

and

2πf(k) = 1 +
2g1m

�2

∫ ∞

−∞

ρ(q)dq

(g1m/�2)2 + (k − q)2
, (2.49)

for
f(k) = ρ+ ρh. (2.50)

Equation (2.47), where μ is the chemical potential, can be solved for ε by iteration.
Subsequently ρ can be obtained by iterating Eq. (2.49).

Extra information is obtained [59] by differentiating the free energy per particle
FN−1 with respect to γ at constant density and temperature

g(2) =
2m

�2n2
1

[
∂(FN−1(γ, τ))

∂γ

]
n,τ

, (2.51)

where g(2) is the local pair correlation function that expresses the (normalized)
probability to find two particles at the same position. In a mean-field conden-
sate, interactions stabilize the density and g(2) ≈ 1. While ideal bosons experience
“bunching” and have g(2) = 2, the opposite holds for ideal fermions with g(2) = 0
(“anti-bunching”). Fermionized bosons in the TG limit also have g(2) = 0.

Figure 2.2(a) shows the numerical solution of the Yang-Yang equations for 1/γ ∝
nY Y for different values of the dimensionless temperature parameter

t =
2kBT�

2

mg2
1

. (2.52)

We plot the values: t=2000 (red), t=1000 (black), t=500 (blue), (numerical data
obtained by Kheruntsyan [59, 85]). The exact numerical result (solid lines) is com-
pared with the behavior in the mean-field regime (dashed lines) and with the ideal
Bose gas result (dotted lines). The Yang-Yang thermodynamic equations yield a
smooth equation of state nY Y (μ, T ), including the region around μ(x) = 0. This
deviates dramatically from both the ideal-gas description (diverging density as μ
approaches zero from below, cf. Eq. (2.22)) and the quasi-condensate description
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Figure 2.2: (a) Equation of state of the uniform weakly interacting 1D Bose gas for three different

values of the temperature parameter t = 2kBT�
2/mg21 : t=2000 (red); t=1000 (black); t=500 (blue).

The exact numerical result (solid lines) is compared with the behavior in the mean-field regime (dashed

lines) and with the ideal Bose gas result (dotted lines). (b) The local correlation g(2) versus μ/kBT

for the same values of t as above. The solid curves are exact numerical results, while the dashed line

indicates the mean-field value and the dotted line the behavior of the ideal Bose gas.

(μ = n1g1; vanishing density as μ approaches zero from above). Hence the exact
solutions are crucial for a correct description of the Bose gas in the region around
μ = 0 as is described in more detail in Ch. 6.

Fig. 2.2(b) shows the local correlation g(2) versus μ/kBT for the same values
of t as above. The solid curves are exact numerical results, while the dashed line
indicates the mean-field value and the dotted line the behavior of the ideal Bose
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gas. The calculated value of the local pair correlation function g(2) varies smoothly
between ≈ 1 and � 2 in the plotted range of μ. This differs from the ideal-gas value
of 2 and the quasi-condensate value of ≈ 1.

2.6 Overview of ultracold Bose gas regimes

2.6.1 Regimes for T = 0
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Figure 2.3: Phase diagram for T = 0, in the plane Nω‖/ω⊥ versus l⊥/a, based on Fig. 1 of Ref. [73].

The dashed line indicates Nω‖/ω⊥ = (ω‖/ω⊥)3/2l⊥/a for ω‖/ω⊥ = 1/400. The red line indicates the
parameter range covered in our experiment.

The transitions between the various regimes for the T = 0 case, that were summa-
rized above, have been studied for a trapped gas by several authors [34, 73]. We
follow here the approach by Menotti and Stringari [73]. These authors describe
atoms trapped in an elongated harmonic trap with ω⊥ � ω‖. The longitudinal
confinement is weak and for high enough atom number N the atomic interaction
energy largely exceeds the axial level splitting (μ � �ω‖) and the local density
approximation can be used.

A schematic phase diagram is plotted in Fig. 2.3. The line Nω‖/ω⊥ = l⊥/a indi-
cates the cross-over from the 3D cigar from the 1D mean-field regime. Using μ = �ω⊥
in Eq. (2.36) it follows that this is equivalent to the criterium nl = 3/4a [74]. The
line Nω‖/ω⊥ = (l⊥/a)−2 indicates the cross-over from 1D mean-field to the Tonks-
Girardeau gas. This demarkation, marked by γ = 1 in the homogeneous case, is
found when the interaction energy equals the kinetic energy: π2

�
2n2

1/2m = g1n1

for the harmonically trapped case, solved in Ref. [73]. The dashed line indicates
the cross-over from the parabolic 1D mean-field regime to the ideal gas or gaus-
sian condensate regime where the axial level splitting is large compared to the
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atomic interaction energy and the LDA can not be used. We draw the dashed
line Nω‖/ω⊥ = (ω‖/ω⊥)3/2l⊥/a for ω‖/ω⊥ = 1/400, the aspect ratio of the trap used
in Chapters 5 and 6. In our experiment we vary the number of atoms in the quasi-
condensate between 103 and 104, while l⊥/a = 36. The covered range is indicated in
red in Fig. 2.3. It is clear that the physics of one-dimensional atomic gases plays an
important role in our experiments. Secondly, for our aspect ratio we do not reach
the TG regime when the atom number is lowered.

2.6.2 Regimes in 1D
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Figure 2.4: Diagram of states for the homogeneous 1D Bose gas in the plane T/Td versus γ =
mg1/�

2n1. The degeneracy temperature in 1D is given by Td = �
2n2

1/2mkB . The area shaded in red

indicates the parameter range covered in our experiment.

The system of delta-function interacting bosons in 1D can be effectively charac-
terized by the combination of the dimensionless coupling parameter γ [Eq. (2.44)]
and the reduced temperature τ = T/Td, with Td the 1D degeneracy temperature
[Eq. (2.23)]. Using the exact values of g(2) [Eq. (2.51)] Kheruntsyan and cowork-
ers [70] have classified various physical regimes for the interacting Bose gas in 1D
at finite temperature. The diagram of states is shown in Fig. 2.4. Above the degen-
eracy temperature two regimes are indicated. For small γ we are in the ‘decoherent
classical’ or non-degenerate ideal Bose gas regime were g(2) ≈ 2. For large γ, strong
interactions result in high temperature fermionization, characterized by g(2) → 0.
Below the degeneracy temperature four regimes are distinguished. For γ � 1 we
have a degenerate Tonks-Girardeau gas with g(2) → 0. For τ � γ � 1 we have
the mean-field regime and the finite temperature correction to the zero-temperature
result for the local correlations is small: g(2) ≈ 1. In this regime quantum fluctu-
ations of the phase dominate over thermal fluctuations. For higher temperatures
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γ � τ � √
γ we have a mean-field quasi-condensate characterized by thermal fluc-

tuations of the phase, interactions stabilize the density so that g(2) � 1. If we
increase the temperature further

√
γ � τ � 1 phase coherence is destroyed and we

enter the decoherent quantum regime with g(2) � 2. The parameter range covered in
the experiments described in this thesis, indicated in red, ranges from the classical
regime via the decoherent quantum regime into the mean-field regime.

2.7 Previous models for T > 0

2.7.1 Semi-ideal Bose gas

In the situation of a three-dimensional harmonically trapped cloud (kBT, μ � �ω)
just below the condensation temperature T/Tc � 1, the number of non-condensed
atoms is large and can not be neglected. In a first approximation [86] we suppose
that condensed and non-condensed fractions can be separated spatially because the
spatial extent of the BEC is much smaller than that of the thermal cloud so the
two parts do not have much spatial overlap. It is further assumed that the BEC
is not influenced by the presence of the thermal atoms and maintains its TF pro-
file [Eq. (2.32) and Eq. (2.33)]. The quantum saturated thermal cloud however is
repelled by the mean-field interaction energy 2gnTF (r) with the much denser con-
densate in the trap center. The factor 2 accounts for collisions between atoms in
different quantum states. To find the density distribution of the thermal atoms for
this case we use Eq. (2.25) with D = 3 that can be written as

nT (r) =
1

Λ3
T

g3/2

[
eβ[μ−Veff(r)]

]
, (2.53)

where we use the effective potential Veff(r)− μ = Vext(r)− μTF + 2gnTF (r).

2.7.2 Self-consistent Hartree-Fock

When dealing with the system as described in the previous section a more refined
approximation can be made by taking into account not only the influence of the
condensate on the thermal atoms but also vice versa. This problem can be solved
numerically in an iterative process and is referred to as a self-consistent Hartree-Fock
(HF) approach [87,88]. The self-consistent potential for the thermal atoms is

Veff(r)− μ = Vext(r) + 2gn0(r) + 2gnT (r)− μ. (2.54)

The condensate profile is affected by the density of the thermal atoms:

n0(r) = max

{
0,
μ− Vext(r)− 2gnT (r)

g

}
. (2.55)

Fixing the total atom number fixes the chemical potential of the thermal fraction
μ = gn0(0) + 2gnT (0). This self-consistent HF approach gives accurate results in
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the 3D case [89] but has been shown to fail in the description of experimentally
obtained profiles when the gas approaches the one-dimensional regime: kBT, μ �
2�ω⊥ [60]. The breakdown of this HF method when approaching the 1D regime
and μ ≈ 0, can be seen as follows: In 1D, since g1/2(z) → ∞ as μ ↑ 0 (Sec. 2.3)
for any peak density n(0), one can always find a self-consistent HF solution, in
the semiclassical approximation for the axial distribution, which has n0 = 0, and
μ < Vext(0). Note also that the local value of the two particle correlation function
g(2) differs significantly from both the values 2 and 1 assumed in this approach for
the thermal atoms and the condensate atoms respectively (Fig. 2.2).

Luttinger liquid

Another mean-field approach, that will not be discussed further here, is employing
the Luttinger liquid (see Haldane [90–93]). It is used mainly for strongly interact-
ing systems and has the same region of validity as Bogoliubov-Popov: lφ � lc. The
Luttinger-liquid approach to one-dimensional Bose gases with delta-function interac-
tion was discussed in detail by Cazalilla [94]. The method has been used successfully
to describe the dynamics of phase fluctuations in mean-field condensates [95,96].

2.8 Evaporative cooling

An important tool in atom cooling that provides the final increase in phase-space
density that ultimately leads to Bose-Einstein condensation is evaporative cooling.
In this process the high-energy tail of the Maxwell-Boltzmann velocity distribu-
tion of the trapped atoms is selectively removed, for example using radio-frequency
(RF) induced spin flips. The remaining atoms collide elastically and re-thermalize.
The energy per particle decreases and the sample is cooled. Theory describing the
evaporative cooling process can be found in [97–100]. We repeat here only the key
equations that can be used to calculate the efficiency of the evaporative cooling
process. We add specific calculations for the case of the Ioffe-Pritchard trap in the
high temperature limit with δ = 5/2 that do not appear in the cited references. A
treatment of the IP trap that is valid in the complete range from the high to the
low temperature limit can be found in Ref. [100].

If the atomic density of trapped alkali atoms is not too high (n < 1020 m−3)
three body collisions (that lead to losses via spin exchange) are rare and for typical
experiments on alkali atoms the trap lifetime is limited by collisions with background
gas. For a trap depth ε the truncation parameter is η = ε/kBT . Evaporative
cooling works most effectively if the truncation parameter η is kept constant. This
can be achieved by ramping down the trap barrier during the cooling process, so
called forced evaporation. The timescale for evaporative cooling is set by the elastic
collision time

1

τel
=
√

2n0vthσ, (2.56)

where σ = 8πa2 is the s-wave collisional cross-section and vth =
√

8kBT/πm the
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Figure 2.5: (a) Minimum value for the ratio of good to bad collisions plotted as a function of the

truncation parameter. Comparison between the 3D parabolic potential (δ = 3/2, solid line) and the

2D linear 1D harmonic potential (δ = 5/2, dashed line). (b) The efficiency parameter of evaporative
cooling γ versus the truncation parameter η for δ = 3/2 (solid lines) and δ = 5/2 (dashed lines). In

each case, three different lines are given for ratio of good to bad collisions R of 5000 (blue), 1000

(black) and 200 (red).

thermal velocity. For efficient evaporative cooling the ratio R of “good” elastic
collisions to “bad” collisions with background gas should exceed a minimal value
R = τloss/τel > Rmin, where τloss is the trap lifetime. If R > Rmin the collision rate
increases with decreasing temperature and the regime of run-away evaporation is
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entered. Run-away evaporation is most easily reached for steep traps where the
density of states decreases rapidly with decreasing temperature as can be seen in
the comparison between the 3D harmonic trap [δ = 3/2, Eq. 2.2] and the steeper
1D harmonic 2D linear trap (δ = 5/2) in Fig. 2.5(a). The minimal value for the
ratio of good to bad collisions is given by

Rmin(δ, η) =
λ(δ, η)

α(δ, η)[δ − 1/2]− 1
, (2.57)

where α is the key parameter of the evaporative cooling process, which expresses
the temperature decrease per particle lost, and λ is the ratio of the evaporation time
to the elastic collision rate. The parameters α and λ can be calculated using the
following expressions.

Used below are the incomplete gamma functions P and R, defined as (see ap-
pendix in Ref. [98])

P (a, η) =
1

Γ(a)

∫ η

0

ta−1e−tdt, (2.58)

R(a, η) =
P (a+ 1, η)

P (a, η)
, (2.59)

where Γ(a) is the Euler gamma function. The average energy of the escaping atoms
is (η + κ)kBT , where the parameter κ for the case of a power-law trap is

κ = 1− P (7/2 + δ, η)

ηP (3/2 + δ, η)− (5/2 + δ)P (5/2 + δ, η)
. (2.60)

This leads to an expression for α for forced evaporative cooling at constant η (see
p. 194 of Ref. [99])

α(δ, η) =
η + κ(δ, η)− [3/2 + γ̃(δ, η)]

3/2 + γ̃(δ, η) + κ(δ, η)[δ − γ̃(δ, η)]
, (2.61)

where the scaling parameter γ̃ [see Ref. [98], Eq. (99)] for a power-law trap is

γ̃ = −3

2
+

(
3

2
+ δ

)
R(3/2 + δ, η). (2.62)

Finally, the parameter λ, expressing the ratio of the evaporation time to the elastic
collision rate is given by

λ(δ, η) =

(
1−

[
3

2
+ δ

]
[1−R(3/2 + δ, η)]α(δ, η)

) √
2 exp(η)

η − (5/2 + δ)R(3/2 + δ, η)
.

(2.63)
Once the condition R > Rmin is fulfilled it is useful to calculate the overall figure

of merit for the effectiveness of the evaporation process given by the parameter
γe,tot, that expresses the relative increase in phase space density with decreasing
atom number

γe,tot =
ln(Φfinal/Φinitial)

ln(Nfinal/Ninitial)
. (2.64)
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This global parameter is maximal when γe = −d(ln Φ)/d(lnN) is optimized at all
times. From Eq. (10) of Ref. [99] we find

γe(δ, η, R) =
α(δ, η)[δ + 3/2]

1 + λ(δ, η)/R
− 1. (2.65)

The calculated values of γe for the cases δ = 3/2 and δ = 5/2 are plotted in
Fig. 2.5(b). In the case δ = 5/2 for R = 1000 the overall maximal efficiency γe = 2,
provided η ≈ 7. This means that a typical gain of 6 orders of magnitude in phase
space density costs 3 orders of magnitude in atom number.


