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1

Introduction

Statistical models dealing with latent variables are often used in contemporary

psychometrics (Bartholomew & Knott, 1999; Marcoulides & Moustaki, 2002;

Skondral & Rabe-Hesketh, 2004; Lee, 2007). Two major fields of psychometrics

in which statistical models feature latent variables are factor analysis and item re-

sponse theory. Factor analysis (FA) was initiated by Spearman’s (1904) influential

investigations of general mental ability. Currently, factor analytic methods are

widely used in the social and behavioral sciences (see Cudeck & McCallum, 2007,

for a historical account), and firmly grounded in statistical theory (e.g., Lawley

& Maxwell, 1970; Basilevsky, 1994). Item response theory (IRT) developed out

of classical test theory (CTT; Gulliksen, 1950), with important contributors as

Lord (1952) and Birnbaum (1968) in the United States, and Rasch (1960) in Eu-

rope. Both CTT and IRT are discussed with mathematical rigour in the classic

treatise of Lord and Novick (1968) with contributions by Birnbaum. Although

IRT is applied throughout the social and behavioral sciences, large scale appli-

cations are found more frequently in educational measurement settings. Recent

accounts and developments of IRT can be found in, e.g., Fischer and Molenaar

(1995), Hambleton and van der Linden (1997), and De Boeck and Wilson (2004).

Mellenbergh (1994) provides an interesting account of IRT that also refers to FA

by making reference to the framework of generalized linear modelling (McCullagh

& Nelder, 1989). On a more theoretical level, Borsboom, Mellenbergh, and van

Heerden (2003) tackle the nature of latent variables.

In psychology, the latent variable models used in FA and IRT generally con-

cern uncertainties about measurable aspects of variables of interest. Perhaps

the most well known method of investigation in psychology is the questionnaire

method in which individuals is asked to answer questions that are designed to

be indicative of one or more latent psychological variables. In many cases, the

uncertainties about measurable aspects originate from the variation that arises

when measurements are taken from different, yet exchangeable individuals. In

other words, it is likely that individuals respond differently to the posed ques-

tions. Hopefully, these observed differences are largely attributable to differences
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in the psychological variable of interest and not to other sources. This can be

investigated by the fit of the selected latent variable model. A thus obtained la-

tent variable is then composed of variation between individuals. For example, we

administer a personality questionnaire to a group of individuals and use a latent

variable model in the analysis to compute extraversion scores. If the model fits

satisfactorily, these scores can then be interpreted meaningfully, and, e.g., we can

conclude that one individual scores higher on extraversion than another. How-

ever, it is important to state that such scores are only meaningful in reference to

the population from which the group was sampled.

This thesis is concerned with statistical models from the fields of FA and IRT.

Its main concern is however not with psychological measurements obtained from

different individuals, but with measurements that are repeatedly taken from the

same individual at different points in time. That is, this thesis is concerned with

measurements that form a time series (e.g., Hamilton, 1994; Lütkepohl, 2005).1

There are two important differences with the aforementioned situation in which

measurements are taken from different individuals. The first important difference

is that the measurements are no longer exchangeable, because the particular

order in which they arise now plays an important role. More specifically, early

measurements can influence later measurements, yet not the other way around.

So, the order of the measurements should be accounted for by the selected latent

variable model. The second important difference is that after the successful

application of such a model, latent scores are to be interpreted only in reference

to the studied individual’s trajectory instead of to the population from which the

individual was sampled. For example, we can only conclude that an individual’s

extraversion scores are higher now than they were before, and can be predicted

to some extent.

In this thesis, special interest goes out to a situation that arises often in

psychology, that is, the situation in which the measurements can be classified

into only a limited number of categories. To wit, this thesis is mainly about

categorical time series. This introductory chapter consists of a short motivation

for the investigation of such time series based on developments and focuses in

psychology and psychometrics. The present chapter ends with an overview of

this thesis.

1That is, time series in which time is discrete, and the analyses are conducted in the time

domain. In addition, the main focus is on psychological measurements, rather than physiological

measurements.
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1.1 Psychology

Psychologists have since long been interested in changes of psychological vari-

ables over time. An example of short term specific changes can be found in the

forgetting curve of Ebbinghaus (1885) that describes the functional relationship

between time and the retention of nonsense syllables. A second specific example

can be found in the analysis of the schizofrenia symptoms of a single patient over

time by Holtzmann (1963). More long term and general changes are described

by, for instance, Piaget’s theory of cognitive development, which deals with the

development of intelligent behaviors in children (Inhelder & Piaget, 1958).

From the inception of psychology as a scientific discipline, psychological re-

searchers have been struggling with the delineation of their research area. A ma-

jor problem was the formulation of definitions and operationalizations of psycho-

logical variables in order to allow for replicable scientific research. Hand in hand

with developments in the philosophy of science in the first half of the twentieth

century, such as the movement of logical positivism, it was felt that if psychology

was to become a true scientific discipline, the onus of psychology should be on

empirical research. Psychological research was fitted into fashionable paradigms

of scientific method, most notably, the hypothetico-deductive method advocated

by Popper (1935). The development of the statistical method of null hypothesis

testing , and mathematical statistics in general, by Fisher (1935) and others fitted

in tightly with the developments in psychological research.

Taking account of these developments, the focus in psychology on differences

between individuals in psychological variables such as general mental ability is

not surprising. Van Rijn and Molenaar (Chapter 4 of this thesis; 2005) argue that

this focus can also be ascribed to the scientific ideal of general nomothetic knowl-

edge: The theories of scientific psychology should apply to all human individuals.

In addition, they argue that this focus is one-sided, and that an ideographic ap-

proach, in which differences within a single individual are analysed with statistical

methods, deserves to be studied in its own right. Admittedly, the application of

such an ideographic approach to psychological research can be problematic for

various reasons. For instance, due to repeated nature of the measurements, sev-

eral kinds of confounding effects such as habituation are likely to occur. More

particular, many research questions pertain specifically to differences between in-

dividuals, and not within individuals, so that an ideographic approach does not

make sense. Although these problems make the reticence of psychologists to pur-

sue ideographic investigations understandable, it is evident that many interesting
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research questions in which latent variables are involved are open to ideographic

methods of investigation. In addition, ideographic approaches can also provide

an interesting contribution to the discussion on theoretical issues concerning la-

tent variables (see Borsboom, Mellenbergh, & van Heerden, 2003). It is not the

purpose of this thesis to provide an overview of interesting ideographic topics in

psychology. Rather, its purpose is to present a selection of ideographic meth-

ods of investigation, an investigation into its possibilities and shortcomings, and

eventually compare them with standard psychological methods.

1.2 Psychometrics

In 2007, a special issue on psychometrics appeared of the Handbook of Statistics

(Rao & Sinharay, 2007). It is illustrative of the lack of interest in time series

among present day psychometricians that in the 34 chapter counting volume of

well over a thousand pages, only two short sections are concerned with repeated

measurements. This is all the more striking, because repeated measurements

provided some vexing problems in psychometrics (see, e.g., Harris, 1963). It is not

that there are no methods for analysing time series in the field of psychometrics,

in fact, they are numerous. For example, Anderson (1963) provides an account of

the use of factor analysis for multivariate time series. Molenaar (1985) discusses

a method for the analysis of dynamic factors.

The analysis of single individuals is often associated with a less formal side of

psychology, and not with the more scientific side in which mathematical models

are fitted to psychological measurements. In various other branches of sciences,

particularly econometrics, formal analysis of single systems with statistical meth-

ods is well developed. It seems that the field of psychometrics is somewhat hes-

itant when it comes to the analysis of time series in the form of psychological

measurements. Yet, the matter of formally approaching the analysis of intra-

individual variation has been raised by numerous authors (Hamaker, Dolan, &

Molenaar, 2005; Molenaar, 2004; Wood & Brown, 1994; Holtzmann, 1963). Still,

this type of analysis has not found a niche in mainstream psychometrics. The

purpose of the present thesis is to contribute in its apprehension. Since the nu-

merous examples of analysis of intra-individual variation are mainly concerned

with continuous variables and factor analysis, and the fact that there are a lot of

psychological measures that can have a discrete nature, the focus in this thesis is

on categorical time series and item response theory.
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1.3 Overview

Essentially, this thesis can be divided into two parts. The first part consists of

chapter two, and the second part of chapters three, four, and five. In the first

part, the proclaims of modelling multivariate normal and categorical time series

within the framework of structural equation modelling (SEM) are studied. It

is concluded that the use of summary statistics in combination with SEM in a

time series setting is characterized by certain limitations both with respect to the

use of specific models and statistical inference. The application of SEM succeeds

only partially and is dependent on the particular models used. Especially for

categorical time series, the results are not promising, and there is a need for

techniques that use full information. The investigation and evaluation of such

procedures is the topic of the second part of this thesis. Towards the end of this

thesis, the settting is shifted towards the framework of IRT. The specific focus of

each of the chapters is as follows.

Chapter 2 of this thesis concerns an investigation into methods to analyse

multivariate normal and categorical time series within the SEM framework. This

framework is used because of its familiarity to behavioral researchers and the

availability of various standard SEM software packages. In the case of normal

time series, it is investigated if the matrix consisting of sample auto- and cross-

covariances, referred to as the Toeplitz matrix, can be used to estimate the pa-

rameters of various autoregressive models. The use of the Toeplitz matrix and

the SEM framework is advantegous, because this matrix is easily computed and

can then serve as input for standard SEM software packages to estimate the

model. In a simulation study, the performance of a maximum likelihood (ML),

weighted least squares (WLS), and, as a reference, Kalman filter (KF) estimation

procedure is investigated. For categorical time series, this approach can be used

as well. The Toeplitz matrix in this case, however, consists of polychoric auto-

and cross-correlations. In a second simulation study, the performance of WLS

estimation is investigated in terms of parameter recovery. It was found that the

Toeplitz method does not perform properly in all situations, and that, especially

for categorical time series, it is advisable to pursue the investigation of filtering

methods.

In Chapter 3, univariate categorical time series are analysed within the frame-

work of state space modelling (SSM). In a simulation study, the performance of

a Kalman filtering and smoothing procedure is investigated for the estimation

of autoregressive models for categorical time series. The discussed procedure is
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illustrated by an application to a time series of categorized sleep state measure-

ments.

Chapter 4 of this thesis presents an argumentation in favor of the analysis

of intra-individual variation. It is argued that such types of analyses have been

neglected in psychology and psychometrics. Having thus set the stage, the second

part of this chapter discusses a logistic model for multivariate dichotomous time

series that can be seen as a dynamic extension of the ubiquitous Rasch model in

IRT. The model is applied to a single-subject multivariate categorical time series

consisting of neuroticism scores.

In Chapter 5, the material discussed in Chapter 4 is elaborated on. In partic-

ular, extensions to polytomous and multi-subject time series are discussed within

the state space framework. Furthermore, it is illustrated by a real data example

how this framework can be used for standard applications of IRT as well. The

results of applying state space methods are compared with those of standard

IRT methods. The chapter ends with an application of the presented models

and methods to multi-subject polytomous time series in the form of extraversion

scores.

Since the four main chapters comprising this thesis are written with the in-

tention that they form self-contained papers, some material is repeated. Also,

abbreviations are introduced in each chapter seperately. The present thesis ends

with an epilogue with some general conclusions of the performed investigations,

and some guidelines for future research in the field of psychological measurement

in the form of categorical time series. The appendix concerns a short note on

the application of classical test theory methods in the situation of population

heterogeneity.



2

Contributions to the analysis of the block

Toeplitz matrix of multivariate stationary

time series1

2.1 Introduction

The analysis of time series measurements obtained from a single individual has

received increasing attention in the behavioral sciences (e.g., Hamaker, Dolan,

& Molenaar, 2005; Moskowitz & Hershberger, 2002). Although the majority

of research still concerns modelling differences between individuals or groups, it

might be argued that the development of models and methods for the study of

processes within individuals ought to be pursued with equal effort as to fully

grasp the subject matter of the behavioral sciences. However, investigations of

models and methods for the analysis of individual time series have concerned

univariate rather than multivariate time series, and almost not categorical time

series. The purpose of this chapter therefore is to investigate the estimation of

models for these types of time series measurements within a framework that is

well known to behavioral researchers. Specifically, the fitting of autoregressive

moving average (ARMA) models to multivariate time series is examined by means

of simulations within the framework of structural equation modelling (SEM). We

investigate both procedures for normally distributed time series, and because

many observed variables are discrete, a procedure for categorical time series.

ARMA modelling of univariate normally distributed stationary time series

may be carried out by a number of methods (Box & Jenkins, 1976; Hamilton,

1994). A distinction can be made between methods which employ the raw data,

and methods which make use of summary statistics. At present, the most pop-

ular method to estimate the parameters of an ARMA model is maximum likeli-

hood (ML) estimation with the raw data likelihood (Mélard, 1984). This can be

performed within the state space framework in a straightforward manner with

1This chapter has been conditionally accepted for publication in Structural Equation Mod-

eling, and is currently under revision.
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Kalman filtering and smoothing techniques, since ARMA models can be for-

mulated as state space models (Durbin & Koopman, 2001; de Jong & Penzer,

2004). Methods using summary statistics generally start out with computing

sample auto- and cross-covariances, and then fit the covariance structure of an

ARMA model to a matrix of Toeplitz form containing these sample covariances.

Instead of using as input for the analyis the matrix containing all auto- and

cross-covariances of the observed time series which dimension increases with the

length of the time series, one can limit the analysis to no more than the first

few lags if one is willing to assume stationarity (Molenaar, 1985). The number

of lags analysed is referred to as the window size, and is selected on the basis of

the type and the order of the model being fitted. The matrix thus obtained is of

Toeplitz or block Toeplitz form, and is therefore often referred to as the Toeplitz

matrix. Since the covariance structure of ARMA models can be written as struc-

tural equation models (see van Buuren, 1997), such analyses can be performed

using software packages designed for SEM, such as LISREL (Jöreskog & Sörbom,

1999). The use of SEM programs enables one to generalize the procedure in a

straightforward manner to multivariate data and to multiple-case analyses (Mole-

naar, 1985; Molenaar, de Gooijer, & Schmitz, 1992). In the present chapter, the

performance of model estimation with the Toeplitz matrix is investigated within

the SEM framework for several situations pertaining to multivariate stationary

time series.

Since most SEM programs are not specifically equipped for the analysis of time

series, two issues concerning the special structure of time series and their auto-

covariances need to be addressed. The first issue concerns the time-dependent

structure of time series observations. In standard SEM, where the aims of model

fitting include statistical inference, an observed covariance matrix serves as input

for the analysis. All estimators in SEM, which allow for statistical inference, re-

quire that this matrix is computed with independent and identically distributed

observations. This is not the case when using as input a block Toeplitz matrix

estimated from an observed multivariate time series. In fact, the very thing of

interest in time series analysis is the dependence between sequential observa-

tions. In addition, by using only the first few auto- and cross-covariances for the

estimation of models, one assumes beforehand that stationarity holds.

Secondly, given the sequential dependence, we need to ascertain the asymp-

totic properties of sample auto- and cross-covariances in order to fully understand

the SEM approach to ARMA modelling. For independent identically distributed

multivariate normal data, the maximum likelihood estimator of the covariance
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matrix is asymptotically unbiased and efficient, and its distribution is known. For

time series observations, unbiased estimation of the theoretical Toeplitz matrix

does not pose a problem. However, asymptotic efficiency of the estimator depends

on the type and the order of the model. In other words, the Cramér-Rao lower

bound is not reached as the length of the time series increases without bound for

certain models (Porat, 1987; Kakizawa, 1999). If asymptotic efficiency does not

hold, the asymptotic properties of normal theory maximum likelihood estimation

cannot be obtained, and this way lead to incorrect statistical inferences from the

data.

For univariate ARMA processes, Porat (1987) showed that sample autoco-

variances are asymptotically efficient only for p-th order autoregressive and q-th

order moving average (ARMA(p, q)) processes up to lag p, if p ≥ q. For vector

ARMA processes, Kakizawa (1999) obtained related results in that the sample

auto- and cross-covariances of vector AR(p) processes are asymptotically efficient

up to lag p. However, regardless of lag, sample auto- and cross-covariances of

vector MA processes are asymptotically inefficient. The problem remains unan-

swered for vector ARMA(p, q) processes, except that it can be shown that if

q > p, asymptotic efficiency does not hold (Kakizawa, 1999). In the case of mul-

tiple indicator ARMA or process factor models (Browne & Nesselroade, 2005),

asymptotic results are not available. The absence of full asymptotic results hin-

ders an investigation of the Toeplitz-SEM approach to ARMA modelling, since

it cannot be said that the outcomes of such an investigation are due either to

the quality of the sample block Toeplitz matrix or to the Toeplitz-SEM approach.

For that reason, we restrict ourselves initially to situations in which unbiased and

efficient estimation of auto- and cross-covariances is feasible. That is, we focus

on autoregressive models. In potential, vector ARMA models can be analysed as

well. However, since the necessary window size for this type of models is larger

than the lag at which asymptotic efficient estimates are considered possible, it is

not pursued here.

The Toeplitz-SEM approach to ARMA modelling is not new, and the available

results obtained with this approach are the following. Despite the fact that the

Toeplitz-SEM approach uses less information, Hamaker, Dolan, and Molenaar

(2002; see also van Buuren, 1997) found that moment estimates asymptotically

resemble raw data ML estimates in the case of univariate autoregressive (AR)

models, which is consistent with the results of Porat (1987). In the case of moving

average (MA) and ARMA models, they found that the moment estimates are not

raw data ML estimates. Hamaker et al. (2002) showed that the SEM estimates
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are moment estimates, and demonstrated that for AR models the standard errors

and χ2 goodness of fit indices were quite accurate. In ARMA and MA models,

the accurary of the results varied somewhat from model to model. Molenaar

and Nesselroade (1998) performed a small scale simulation study of the Toeplitz-

SEM approach to compare the performance of ML and a weighted least squares

(WLS) estimation procedure in the case of multivariate time series (see also

Molenaar, 1985). After selecting the maximum lag of the Toeplitz matrix by

the Bayesian information criterion computed from fitting vector AR models of

increasing order, they fitted a dynamic 1-factor model with autocorrelated errors

in LISREL. Although only one instance of the dynamic factor model was used,

their results are comparable to Hamaker et al. (2002) in that the parameter

estimates are quite accurate for both the ML and WLS method. However, the

standard errors and χ2 goodness of fit indices provide an unclear picture when

compared to standard deviations of estimates and expected values, respectively.

Taking account of the above arguments, the Toeplitz method remains a fast

and easy method to fit models to multivariate time series. This is mainly because

it can be performed in most standard SEM software packages. The software pack-

age DyFA deserves attention here, because it is specifically designed for dynamic

factor analysis with the Toeplitz method (Browne & Zhang, 2005). DyFA is not

used here though, because the present investigation is within the general frame-

work of SEM. An important question to be answered in this paper is how the

Toeplitz method performs in a variety of situations in which it can possibly per-

form well. The first interest then lies in assessing the quality of the parameter

estimates of the models used. In the present paper, this assessment is performed

by means of simulations in which estimated parameters are compared to their true

values in terms of accuracy and precision. In connection to Molenaar and Nes-

selroade (1998), we use ML and WLS estimation procedures. Since the Toeplitz

method uses summary statistics, thereby relying on limited information, it is of

general interest to establish the difference between limited and full information

methods. A more specific question concerns the possibility of obtaining results

with summary statistics that are of comparable quality as results obtained with

raw data methods. To adress this question and assess the size of the difference,

we compare the outcomes obtained with summary statistics, that is, the results

of the Toeplitz method, with the outcomes of a standard normal theory ML based

Kalman filter (Harvey, 1989).

Observed variables in the behavioral sciences often have a discrete nature,

therefore we also address the Toeplitz method for multivariate categorical time
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series. For our situation, this can be achieved by fitting AR models to the matrix

of polychoric auto- and cross-correlations. An advantage is that the implemen-

tation of this method is relatively easy for those familiar with categorical data

analysis within SEM. However, the performance of this method is unknown and

therefore studied here. Furthermore, in combination with the results of the nor-

mally distributed time series, more insight might be obtained in the Toeplitz-SEM

approach.

The outline of this chapter paper is as follows. First, we discuss AR models

for multivariate normal time series. Then, the estimation of auto- and cross-

covariances, and the construction of the Toeplitz matrix are addressed. This is

followed by the representation of the models in the SEM and state space frame-

work. Next, the maximum likelihood, weighted least squares, and Kalman filter-

ing estimation procedures are presented. Subsequently, we discuss a simulation

study to the methods presented. Further, the Toeplitz method for categorical

time series is discussed, followed by a second simulation study. The chapter ends

with a discussion.

2.2 Aspects of autoregressive modelling

We discuss two different types of multivariate autoregressive models. The first

type consists of pure vector autoregressive (VAR) models. VAR models can be

useful when the dimension of the observed time series is not too large (since the

number of parameters increases rapidly with the series dimension). For a more

detailed discussion of this type of models, the reader is referred to Hamilton

(1994) or Lütkepohl (1991, 2005). The second type of models is multiple indi-

cator vector autoregressive (MI-VAR) models. MI-VAR models consist of latent

autoregressions to which the observed time series are related by means of a linear

factor model (Hamaker et al., 2005). This type of models is useful when the

observed time series can be described by a latent process of smaller dimension

(Nesselroade, McArdle, Aggen, & Meyers, 2002).

2.2.1 Multivariate autoregressive models

To ease the presentation, let yt denote both a multivariate stochastic process and

an observed time series thereof. An n-variate zero mean Gaussian autoregressive

process of order p can then be imposed on yt by

yt = Φ1yt−1 + . . . + Φpyt−p + ξt, ξt ∼ N(0, Σξ) (2.1)
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where n × n matrices Φ1, . . . , Φp contain autoregressive parameters, and ξt is

a multivariate Gaussian white noise sequence with covariance matrix Σξ. The

above equation can be rewritten by making use of the backshift operator B as

follows

(I − Φ1B − . . . − ΦpB
p)yt = Φ(B)yt = ξt.

Stationarity of the process yt is obtained if all roots of the polynomial equation

|Φ(B)| = 0 lie outside the unit circle (Lütkepohl, 1991, p. 12).

In MI-VAR models, the autoregressive process is not directly observed, yet

indicated by an observed time series. An n-variate zero mean stochastic process

yt can be modelled by a latent Gaussian autoregressive process through a linear

factor model given by

yt = Λαt + εt, εt ∼ N(0, Σε), (2.2)

where Λ is a n × m matrix of factor loadings and αt denotes an m-dimensional

latent vector autoregressive process of order p given by

αt = Φ1αt−1 + . . . + Φpαt−p + ξt, ξt ∼ N(0, Σξ). (2.3)

Both εt and ξt are multivariate white noise sequences with covariance matrices Σε

and Σξ, respectively. It is noted that the MI-VAR models are not identified with-

out restrictions. What restrictions are necessary for identification and rotational

determination is discussed later on together with the SEM representation of the

above models. Stationarity holds for the latent process αt if again the roots of

the polynomial equation |Φ(B)| = 0 lie outside the unit circle. It is stressed that

stationarity of the observed process yt is necessary in order to justify the use of

only the first few auto- and cross-covariances for parameter estimation purposes.

Therefore, we only consider models in which Λ and Σε lack time dependence, in

which case stationarity of the observed time series follows from stationarity of

the latent process.

2.2.2 Auto- and cross-covariances

The n× n auto- and cross-covariance matrix of a zero mean stationary Gaussian

process yt at lag u is denoted by Γu and given by

Γu = E(yty
′
t−u), u = 0, 1, 2, . . . .

It can be shown that Γu = Γ′
−u. We present only the first p auto- and cross-

covariances of both types of autoregressive models, since that is sufficient for our
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purposes. For a VAR(p), the auto- and cross-covariance matrix at lag u can be

written as

Γu =







Φ1Γ
′
1 + . . . + ΦpΓ

′
p + Σξ, if u = 0,

Φ1Γu−1 + . . . + ΦpΓu−p, if u = 1, 2, . . . , p.
(2.4)

The above equations are referred to as the Yule-Walker equations (Lütkepohl,

1991, p. 21). For a MI-VAR(p), this can be written as follows

Γu =







Λ(Φ1Γ
∗′

1 + . . . + ΦpΓ
∗′

p + Σξ)Λ
′ + Σε, if u = 0,

Λ(Φ1Γ
∗
u−1 + . . . + ΦpΓ

∗
u−p)Λ

′, if u = 1, 2, . . . , p,

where Γ∗
u is the m × m auto- and cross-covariance matrix at lag u of the latent

VAR(p) process αt.

An estimate of the auto- and cross-covariance matrix at lag u of a zero mean

stationary Gaussian process yt can be obtained by (Lütkepohl, 1991, p. 79)

Cu =
1

T − u

T
∑

t=u+1

yty
′
t−u. (2.5)

One can also choose to divide by T instead of T − u. In that case, the estimator

is biased, but has smaller mean square error (Jenkins & Watts, 1968, p. 179).

In the above estimator, the mean square error increases as u approaches T . For

fixed values of u, however, both estimators have equal asymptotic properties

(Hannan, 1970, p. 208). It should also be noted that division by T leads to

a non-negative definite block Toeplitz matrix, which in general is a desirable

property (Shumway & Stoffer, 2006, p. 30). However, we make use of the above

estimator here, because we only discuss situations in which u is small compared

to T .

In order to fit a multivariate autoregressive model of order p, the symmetric

sample block Toeplitz matrix Sy is constructed as follows

Sy =













C0

C1 C0

...
...

. . .

Cp Cp−1 · · · C0













.

For zero mean stationary Gaussian processes, the auto- and cross-covariance es-

timator has a known normal sampling distribution (Hannan, 1970, p. 208 ff.).
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However, as mentioned, this estimator is not asymptotically efficient in all situ-

ations. More specifically, the estimator is unbiased, but does not have minimum

variance. For instance, a VAR(p) process has an asymptotically efficient sam-

ple autocovariance matrix Cu only up to lag p (Kakizawa, 1999). For MI-VAR

models, no results concerning the asymptotic efficiency of sample autocovariances

are available, and an investigation thereof would require a seperate study. Yet,

we discuss MI-VAR models, since they are of practical interest, especially when

the observed dimension is large and yt is amenable to factor analytic modelling.

We stress that these asymptotic results twarth the interpretation of outcomes of

fitting time series models with auto- and cross-covariances, and are to be kept in

mind in the remainder of this chapter.

2.2.3 SEM and state space representation

To represent the discussed models in SEM form, we chose the LISREL Submodel

3B (Jöreskog & Sörbom, 1996). This model is

y = Λη + ε, ε ∼ N(0, Θε), (2.6)

η = Bη + ζ, ζ ∼ N(0, Ψ). (2.7)

The model in the top equation is referred to as the measurement model in which

Λ is an n × m matrix of factor loadings, η is an m-dimensional vector of latent

factors, and ε is a multivariate normally distributed random vector with n ×
n diagonal covariance matrix Θε. The bottom equation is referred to as the

structural relation, where B is an m × m matrix with zeroes on the diagonal. It

is assumed that ε, η, and ζ are uncorrelated. Then, the n × n covariance matrix

of y denoted by Σy is modelled by

Σy = Λ(I − B)−1Ψ(I − B)−1′Λ′ + Θε.

A bivariate VAR of order 1 can now be represented in the SEM framework as

follows. Let Λ = I, Θε = 0, and

y =











y1t

y2t

y1,t−1

y2,t−1











, t = 2, . . . , T.

The covariance matrix Σy containing the auto- and cross-covariances up to lag 1
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is of block Toeplitz form and equals the simplified model structure

Σy =

[

Γ0

Γ1 Γ0

]

= (I − B)−1Ψ(I − B)−1′ , (2.8)

where

B =

[

0 0

Φ1 0

]

and Ψ =

[

Γ0

0 Σξ

]

.

Other VAR models can be easily put into SEM form by appropriately adjusting

the model vectors and matrices. Writing out the above equation results in
[

Γ0 Γ0Φ
′
1

Φ1Γ0 Φ1Γ0Φ
′
1 + Σξ

]

.

The above relations constitute the Yule-Walker equations. It can be shown that

all VAR models which are put in SEM form in this manner result in Yule-Walker

relations. Regardless of the specific fit function, the resulting estimates are solu-

tions to the Yule-Walker equations, and can be considered Yule-Walker estimates

(Hamaker et al., 2002). However, fit functions can differ in their use of auto- and

cross-covariances and possibly asymptotic covariances, and these different uses

can lead to different solutions. In addition, it should be noted that Yule-Walker

estimates are similar, but not identical to least squares estimates (see Lütkepohl,

1991, p. 65). It can be verified that for the above VAR(1) model this approach

results in Φ̂1 = C1C
−1
0 and Σ̂ε = C0 − C1C

−1
0 C ′

1. Yule-Walker estimates are

known to be biased, especially in the case of strongly autocorrelated processes

(Tjøstheim & Paulsen, 1983). It is noted that full VAR models are saturated, an

overall likelihood ratio test statistic is zero, and fit statistics can therefore not

be obtained. Restricted VAR models, such as models in which Σξ is diagonal,

can be represented in an analogous manner, and do provide fit statistics, e.g.,

likelihood ratio test statistics, i.e., a χ2 or noncentral χ2.

As a second example, a latent bivariate VAR(1) with four indicators is put

into SEM form in the following manner. For t = 2, . . . , T , let

y =





























y1t

y2t

y3t

y4t

y1,t−1

y2,t−1

y3,t−1

y4,t−1





























, Λ =





























λ11 λ12 0 0

λ21 λ22 0 0

λ31 λ31 0 0

λ41 λ42 0 0

0 0 λ11 λ12

0 0 λ21 λ22

0 0 λ31 λ32

0 0 λ41 λ42





























, η =











α1t

α2t

α1,t−1

α2,t−1











, and Θε = diag





























σ2
ε1

σ2
ε2

σ2
ε3

σ2
ε4

σ2
ε1

σ2
ε2

σ2
ε3

σ2
ε4





























.
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The block-Toeplitz auto- and cross-covariance matrix Σy is modelled by

Σy =

[

Γ0

Γ1 Γ0

]

= Λ(I − B)−1Ψ(I − B)−1′Λ′ + Θε,

where

B =

[

0

Φ1 0

]

and Ψ =

[

Γ∗
0

0 Σξ

]

.

The above model is not identified. Scaling of the latent process αt is necessary,

and can be performed by placing restrictions on elements of Λ or Ψ. An additional

constraint is required on Λ to fix rotational indeterminacy. In principle, this can

be carried out by fixing one of the elements of Λ to be estimated at zero (see

Millsap, 2001). Again, other multiple indicator VAR models are easily obtained

after appropriate adjustments.

The specification of the above models in state space form can be performed

along similar lines. For completeness, a simple linear state space model consisting

of an observation model and a transition model is given

yt = Zαt + εt, εt ∼ N(0, Σε), (2.9)

αt = Tαt−1 + ζt, ζt ∼ N(0, Ψ), (2.10)

with Z an n × m design matrix, T an m × m transition matrix, α0 ∼ N(a0, P0),

and disturbances εt and ζt uncorrelated with each other and α0. Hamilton (1994),

de Jong and Penzer (2004), and Durbin and Koopman (2001) describe state space

representations of VAR and other models in greater detail. In closing this section,

it should be noted that all autoregressive models considered can be represented

in SEM or state space form in various ways. We have chosen the representation

in which the latent process is of minimal dimension.

2.2.4 Estimation

Three procedures for the estimation of the parameters of multivariate autore-

gressive models are compared, namely maximum likelihood (ML) estimation,

weighted least squares (WLS) estimation, and Kalman filtering (KF). ML and

WLS estimation employ the information contained in the auto- and cross-

covariances, whereas KF uses the information of the raw data. All three methods

condition on the first p observations, which are sometimes referred to as pre-

sample values (Lütkepohl, 1991). With ML and WLS estimation, the difference
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between the sample and model block Toeplitz matrix is minimized. This differ-

ence is specified in a fit function F which is then minimized by appropriately

adjusting the model parameter estimates until convergence. For ML estimation,

the fit function that is minimized is given by

FML = log |Σy| + tr(SyΣ
−1
y ) − log |Sy| − n, (2.11)

where |.| denotes the determinant and tr(.) denotes the trace. This is a likelihood

ratio. For MI-VAR models, the χ2 fit statistic can be obtained by computing

(T − p − 1)FML at the solution.

The WLS fit function is specified by

FWLS = vech(Sy − Σy)
′W−1vech(Sy − Σy), (2.12)

where the vech(.) operator vectorizes the distinct elements for symmetric matri-

ces. The χ2 statistic in this case can be obtained by computing (T −p−1)FWLS at

the solution. The 1
2
n(n + 1)× 1

2
n(n + 1) estimated asymptotic covariance matrix

of Sy denoted by W is for independent normally distributed variables given by

W = 2D+(Sy ⊗ Sy)D
+′

, (2.13)

where D+ is the Moore-Penrose inverse of the n2× 1
2
n(n+1) D duplication matrix

given by

Dvech(Sy) = vec(Sy),

where the vec(.) operator vectorizes the elements for any matrix (see Magnus

& Neudecker, 1999). Although this estimator of the asymptotic covariance is

generally not suitable for time series, it is used here. The correct asymptotic

covariance for any two elements cuij and cvkl of the sample auto- and cross-

covariance matrices Cu and Cv is given in Hannan (1970, p. 209) by

Cov(cuij, cvkl) =
1

T

T−1
∑

r=−T+1

(

1 − |r|
T

)

(γrikγr+v−u,jl + γr+v,ilγr−u,jk),

where i, j, k, l = 1, . . . , n, neglecting fourth cumulants due to the time series being

normally distributed. Reiterating that estimates of Γu when u > p for VAR(p)

models are not asymptotically efficient (Kakizawa, 1999), these estimates are

needed to produce an estimate of the asymptotic covariance for WLS estimation.

An alternative method to obtain an estimate of the asymptotic covariances is

discussed in Molenaar and Nesselroade (1998). They first fit a VAR model se-

lecting the order on the basis of the Bayesian information criterion (BIC), after
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which they determine the asymptotic covariances according to the VAR model

parameters. In both cases, we know that asymptotic efficiency of the estimates

is not guaranteed. For now, therefore, we prefer the much simpler estimator W

given in Equation 2.13. The ML and WLS estimation procedure as decribed here

are implemented in the LISREL computer program (Jöreskog & Sörbom, 1999).

The fit function minimized with the Kalman filter for the model in Equations

2.9 and 2.10 is given by (Harvey, 1989)

FKF = 1
2

T
∑

t=1

log |Gt| + 1
2

T
∑

t=1

e′tG
−1
t et, (2.14)

where

et = yt − Zat|t−1,

Gt = ZPt|t−1Z
′ + Σε.

Now, parameter estimation proceeds iteratively as follows. After starting values

for all parameters are specified, the Kalman filter is applied to obtain estimates

of the state vector denoted by at|t−1 and associated covariance matrix Pt|t−1. For

t = 1, . . . , T , the Kalman filtering recursions consist of a prediction and correction

step respectively given by (Harvey, 1989)

at|t−1 = Tat−1, Pt|t−1 = TPt−1T
′ + Ψ,

at = at|t−1 + Pt|t−1Z
′G−1

t (yt − Zat|t−1), Pt = Pt|t−1 − Pt|t−1Z
′G−1

t ZPt|t−1.

(2.15)

The above recursions need to be initialised with values for a0 and P0. We chose a

practical diffuse prior with initial states fixed at zero and initial variances fixed at

a value of 10 (for exact diffuse initialisation, see de Jong, 1991). In the next step,

the fit function is minimized to obtain new parameter estimates. The procedure

is repeated upon convergence. The KF estimation procedure is implemented in

the MKF computer program (Dolan, 2005).

2.3 Simulation study I

In this simulation study, we investigate the Toeplitz method applied to normally

distributed time series with the maximum likelihood and weighted least squares

estimation procedures described in the previous section. For comparison, the

simulated raw data were analysed with the Kalman filter as well.
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2.3.1 Set up

Six different autoregressive models are used to simulate time series. These are

a MI(2)-AR(1), MI(2)-AR(2), VAR(1), MI(4)-AR(1), MI(4)-AR(2), and MI(4)-

VAR(1). Table 2.1 shows the dimension of the observed time series, the dimension

of the autoregressive process, the order of the autoregression, and the designations

of the six models used. Time series are simulated with two different lengths,

T = 100 and T = 1000. The number of replications in each condition equals

1000. Parameter values are set so that stationarity is obtained and the time series

have zero mean and unit variance (at least approximately). Actual parameter

values can be found in the tables with results.

Table 2.1: Dimensions and orders of autoregressive models in simulation study

Dim. observed (n) Dim. process (m) Order (p) Model name

2 1 1 MI(2)-AR(1)

2 1 2 MI(2)-AR(2)

2 2 1 VAR(1)

4 1 1 MI(4)-AR(1)

4 1 2 MI(4)-AR(2)

4 2 1 MI(4)-VAR(1)

The main interest of the simulation study lies in the comparison of parameter

recovery for the three discussed methods. Parameter estimates are evaluated

with respect to accuracy and precision. To this end, mean parameter estimates

are compared to true values and mean standard errors of parameter estimates

are compared to the standard deviation of parameter estimates over replications.

2.3.2 Results

Since much of the results obtained in different conditions of the simulation study

is similar, not all results are displayed. Most noticably, the results obtained

with the MI(2)-AR(1) and MI(2)-AR(2) models are so similar to those obtained

with MI(4)-AR(1) and MI(4)-AR(2) models, that they are not shown. For the

MI(4)-VAR(1) models, the outcomes of T = 100 are not shown.

Table 2.2 displays the results obtained for the VAR(1) model for T = 100

and T = 1000. Results for the ML, WLS, and KF method are almost equal.

Parameter estimates are close to true values and mean standard errors resemble
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Table 2.2: Results for VAR(1) model

ML WLS KF

T Parameter Value Mean1 SE2 SD3 Mean SE SD Mean SE SD

100 φ1
11 0.80 0.774 0.067 0.069 0.774 0.067 0.069 0.776 0.066 0.070

φ1
12 0.10 0.098 0.066 0.070 0.098 0.066 0.070 0.105 0.066 0.071

φ1
21 0.30 0.303 0.076 0.079 0.303 0.076 0.079 0.312 0.075 0.080

φ1
22 0.60 0.573 0.075 0.074 0.573 0.075 0.074 0.570 0.075 0.076

σ2
ξ1

0.25 0.255 0.036 0.038 0.249 0.036 0.039 0.248 0.035 0.036

σ2
ξ2

0.33 0.330 0.047 0.047 0.322 0.046 0.047 0.323 0.046 0.045

1000 φ1
11 0.80 0.797 0.020 0.020 0.797 0.020 0.020 0.797 0.020 0.020

φ1
12 0.10 0.100 0.020 0.021 0.100 0.020 0.021 0.100 0.020 0.021

φ1
21 0.30 0.299 0.023 0.023 0.299 0.023 0.023 0.300 0.023 0.023

φ1
22 0.60 0.598 0.023 0.023 0.598 0.023 0.023 0.598 0.023 0.023

σ2
ξ1

0.25 0.252 0.011 0.012 0.251 0.011 0.012 0.251 0.011 0.012

σ2
ξ2

0.33 0.329 0.015 0.014 0.329 0.015 0.014 0.329 0.015 0.014
1 Mean estimate

2 Mean standard error

3 Standard deviation of estimates

the standard deviations very well for all three methods. The results for T = 1000

shown in the bottom half of Table 2.2 indicate the expected overall improvement

of the parameter estimates in terms of precision.

The results of the analyses of time series following a MI(4)-AR(1) model are

presented in Table 2.3 for series of length T = 100 and T = 1000. Several

observations can now be made for T = 100. First, the WLS method performs

worst in terms of accuracy, that is, the variances of ε and ξ are not very well

recovered compared to the ML and KF method. Second, the standard error

estimates of factor loadings λ and variance terms σ2
ε for the ML and WLS methods

seem incorrect when compared to the standard deviations over replications. In

contrast, the KF method does seem to produce correct standard errors for these

parameters. Finally, the standard deviations of the parameter estimates are

comparable for all three methods. The results for a MI(4)-AR(1) model with

T = 1000 are shown in the bottom half of Table 2.3. The accuracy of the

WLS method improves with the increase in T , whereas a difference between

mean standard errors and standard deviations remains for factor loadings λ and

variance terms σ2
ε for both the ML and WLS method. Note, however, that this

difference is small. Again, the KF method produces standard errors which are

comparable to the standard deviation of the estimates.

Table 2.4 shows the results for the MI(4)-AR(2) for T = 100 and T = 1000.
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Table 2.3: Results for MI(4)-AR(1) model

ML WLS KF

T Parameter Value Mean SE SD Mean SE SD Mean SE SD

100 λ2 0.90 0.902 0.048 0.069 0.902 0.048 0.069 0.900 0.067 0.068

λ3 0.90 0.906 0.048 0.068 0.906 0.048 0.069 0.904 0.067 0.068

λ4 0.90 0.904 0.048 0.069 0.905 0.048 0.069 0.903 0.067 0.068

σ2
ε1

0.19 0.188 0.025 0.035 0.168 0.024 0.032 0.188 0.035 0.035

σ2
ε2

0.19 0.187 0.025 0.036 0.168 0.024 0.034 0.187 0.035 0.036

σ2
ε3

0.19 0.188 0.025 0.037 0.168 0.024 0.034 0.188 0.035 0.037

σ2
ε4

0.19 0.189 0.025 0.036 0.169 0.024 0.034 0.190 0.035 0.036

φ1 0.70 0.677 0.082 0.076 0.698 0.082 0.077 0.677 0.078 0.077

σ2
ξ 0.51 0.512 0.091 0.098 0.470 0.087 0.094 0.508 0.096 0.097

1000 λ2 0.90 0.900 0.014 0.021 0.900 0.014 0.021 0.900 0.020 0.020

λ3 0.90 0.900 0.014 0.019 0.900 0.015 0.020 0.900 0.020 0.019

λ4 0.90 0.900 0.015 0.020 0.900 0.015 0.020 0.900 0.020 0.020

σ2
ε1

0.19 0.190 0.008 0.011 0.188 0.008 0.011 0.190 0.011 0.011

σ2
ε2

0.19 0.189 0.008 0.011 0.188 0.008 0.011 0.190 0.011 0.011

σ2
ε3

0.19 0.190 0.008 0.011 0.188 0.008 0.011 0.190 0.011 0.011

σ2
ε4

0.19 0.190 0.008 0.011 0.188 0.008 0.011 0.190 0.011 0.011

φ1 0.70 0.699 0.025 0.023 0.702 0.025 0.023 0.699 0.024 0.023

σ2
ξ 0.51 0.511 0.029 0.031 0.507 0.029 0.031 0.511 0.030 0.031

The results of the WLS method are not displayed, because the asymptotic co-

variance matrix W was not positive definite in any replication with T = 100 and

in a substantial part of the replications with T = 1000 (note that W contains

3081 distinct elements). The available results of the ML and KF method are

comparable to those obtained for the MI(4)-AR(1) model except that aforemen-

tioned differences in standard error and standard deviation are clearer. That is,

the standard errors of the ML method appear underestimated.

In Table 2.5, the results are shown for the MI(4)-VAR(1) model obtained with

T = 1000 and the ML, WLS, and KF method. Results are comparable to those

of the MI(4)-AR(1) model in Table 2.3. It seems that the standard error of the

estimates of the factor loadings and error variances are incorrect whereas those of

the autoregressive parameters and innovation variance are only slightly off. The

KF method outperforms both the ML and WLS method in terms of precision.
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Table 2.4: Results for MI(4)-AR(2) model

ML KF

T Parameter Value Mean SE SD Mean SE SD

100 λ2 0.90 0.908 0.040 0.071 0.906 0.068 0.071

λ3 0.90 0.905 0.039 0.070 0.903 0.068 0.070

λ4 0.90 0.910 0.039 0.075 0.908 0.068 0.075

σ2
ε1

0.19 0.188 0.020 0.036 0.187 0.035 0.036

σ2
ε2

0.19 0.189 0.020 0.037 0.189 0.035 0.037

σ2
ε3

0.19 0.188 0.020 0.036 0.188 0.035 0.036

σ2
ε4

0.19 0.186 0.020 0.035 0.186 0.035 0.035

φ1 0.50 0.492 0.112 0.108 0.489 0.108 0.107

φ2 0.25 0.221 0.112 0.112 0.225 0.108 0.111

σ2
ξ 0.52 0.516 0.088 0.098 0.512 0.096 0.097

1000 λ2 0.90 0.901 0.012 0.021 0.901 0.020 0.021

λ3 0.90 0.901 0.012 0.020 0.900 0.020 0.020

λ4 0.90 0.900 0.012 0.020 0.900 0.020 0.020

σ2
ε1

0.19 0.190 0.006 0.011 0.190 0.011 0.011

σ2
ε2

0.19 0.190 0.007 0.011 0.190 0.011 0.011

σ2
ε3

0.19 0.190 0.007 0.012 0.190 0.011 0.012

σ2
ε4

0.19 0.190 0.007 0.011 0.190 0.011 0.011

φ1 0.50 0.498 0.035 0.035 0.498 0.034 0.035

φ2 0.25 0.249 0.035 0.035 0.250 0.035 0.035

σ2
ξ 0.52 0.523 0.028 0.030 0.523 0.031 0.030

2.4 Categorical time series

We now extend the discussion of methods to estimate autoregressive models to

a method for time series that can take on a small number of discrete values, i.e,

categorical time series. This method utilizes the WLS procedure to fit models

to categorical variables in LISREL that makes use of polychoric correlations for

categorical time series. That is, autoregressive models are fitted to a matrix

containing polychoric auto- and cross-correlations. The method can be easily

implemented analogous to the procedure for continuous time series described

in the previous sections. Filtering methods for categorical time series, such as

described in Fahrmeir (1992) and Durbin and Koopman (2001), are not employed

here, since they are beyond the scope of this chapter.
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Table 2.5: Results for MI(4)-VAR(1) model, T = 1000

ML WLS KF

Parameter Value Mean SE SD Mean SE SD Mean SE SD

λ21 0.90 0.900 0.017 0.023 0.900 0.017 0.023 0.900 0.022 0.023

λ42 0.90 0.900 0.018 0.024 0.900 0.018 0.024 0.900 0.023 0.024

σ2
ε1

0.19 0.189 0.011 0.013 0.187 0.011 0.013 0.189 0.013 0.013

σ2
ε2

0.19 0.190 0.011 0.014 0.188 0.011 0.014 0.190 0.013 0.013

σ2
ε3

0.19 0.190 0.012 0.016 0.188 0.012 0.016 0.190 0.015 0.015

σ2
ε4

0.19 0.190 0.012 0.015 0.188 0.012 0.015 0.190 0.015 0.015

φ1
11 0.80 0.794 0.031 0.027 0.794 0.031 0.027 0.794 0.026 0.025

φ1
12 0.10 0.100 0.030 0.027 0.101 0.030 0.027 0.101 0.026 0.025

φ1
21 0.30 0.302 0.032 0.031 0.302 0.032 0.031 0.303 0.029 0.030

φ1
22 0.60 0.595 0.032 0.032 0.595 0.032 0.032 0.594 0.029 0.030

σ2
ξ1

0.25 0.252 0.021 0.020 0.251 0.021 0.020 0.252 0.020 0.017

σ2
ξ2

0.33 0.329 0.024 0.021 0.328 0.024 0.021 0.329 0.024 0.019

2.4.1 Multivariate autoregressive models for categorical time

series

Now, let yt denote an n-dimensional vector of categorical time series of which

each element yit, i = 1, . . . , n, can assume q + 1 discrete values ranging from

0, 1, . . . , q. To ease the presentation, but without loss of generality, it is assumed

that all elements of yt have an equal number of categories. A continuous latent

variable y∗
it is assumed to underly each yit, such that

yit = k, if βik < y∗
it ≤ βi,k+1, (2.16)

where βi0 ≡ −∞ and βi,q+1 ≡ ∞ for i = 1, . . . , n and k = 0, 1, . . . , q. As

indicated, the βik’s are required to be time-invariant thresholds. This requirement

is necessary in order for the time series to be stationary.

The specification of VAR and MIVAR models proceeds along the same lines

as before, with the notable difference that for VAR models, y∗
t is not observed,

and for MIVAR models, both y∗
t and αt are not observed. This means that

additional restrictions are needed in order to provide a metric for both latent

processes. Besides time invariant thresholds, the conditions stated in Section

2.2.1 are needed to obtain stationarity.
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2.4.2 Polychoric auto- and cross-correlations

Polychoric auto- and cross-correlations are used to estimate multivariate autore-

gressive models for categorical time series. The estimation of polychoric correla-

tions as implemented in the PRELIS computer program is briefly outlined here

for categorical time series. More detailed information on the estimation of the

polychoric correlation matrix and its asymptotic covariance matrix can be found

in Jöreskog (1994).

Estimation of the thresholds and the polychoric correlation matrix of cate-

gorical variables would amount to maximizing the likelihood of the underlying

continuous variables with respect to these quantities. Since such an approach

rapidly becomes computationally cumbersome with increasing dimension, simpler

procedures based on univariate and bivariate marginal distributions are preferred

(Song & Lee, 2003). For stationary categorical time series, such a procedure is

essentially the same and estimates can be obtained as follows. Consider a station-

ary standard normal latent process y∗
t which underlies a categorical time series

yt. The univariate marginal distributions can then be given by

p(yit = k) =

∫ βi,k+1

βik

1√
2π

exp
(

−1
2
y∗2

it

)

dy∗
it, (2.17)

for i = 1, . . . , n and k = 0, 1, . . . , q. The bivariate marginal distribution of yit and

its lagged version yj,t−p, given the first p observations, can be written as

p(yit = k, yj,t−p = l) =
∫ βj,l+1

βjl

∫ βi,k+1

βik

1√
2π(1−ρ2)

exp
(

−y∗2
it −2ρy∗

ity
∗

j,t−p+y∗2
j,t−p

2(1−ρ2)

)

dy∗
itdy∗

j,t−p,

(2.18)

for k, l = 0, 1, . . . , q and i, j = 1, . . . , n. In this case, ρ is referred to as the

polychoric auto- or cross-correlation of yit and yj,t−p at lag p. With the assumption

of stationarity, the parameters of the both marginal distributions do not change

under shifts of the time axis, and the latent variables can be integrated out.

The estimation of thresholds and polychoric correlations can now be per-

formed in several ways (Olsson, 1979; Song & Lee, 2003). One manner is to

estimate both thresholds and correlations from the joint marginal distributions.

A second manner is to estimate the thresholds first from the univariate marginals

and then estimate the polychoric correlations from the joint marginals (Jöreskog,

1994). This method has the advantage that it cannot result in different estimates

of the same thresholds from one variable computed from different combinations

with a second variable (Jöreskog, 1994). This second manner is implemented in

PRELIS and is used here.
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One can ultimately describe the full marginal likelihood associated with the

n× (p + 1)-dimensional contingency table and estimate the thresholds and poly-

choric auto- and cross-correlations under the assumption of stationarity leading

to a correlation matrix of Toeplitz form. Again, this likelihood consists of mul-

tiple integrals and the estimation procedure rapidly becomes computationally

intractable. A method tried by the authors was to first compute the thresholds

from the univariate marginals, followed by computing the polychoric auto- and

cross-correlation matrix from its full marginal likelihood with given thresholds

under the assumption of stationarity. However, since this approach lead to un-

stable solutions and the PRELIS method can be easily performed, it is preferred

for now. It could form an approach in future investigations, because estimates

of the polychoric correlations as well as the weight matrix W are then obtained

under the assumption of stationarity.

To obtain estimates of the polychoric auto- and cross-correlations with

PRELIS, the input data matrix is arranged as follows. In the general case, we

have an n-variate categorical time series observed from t = 1, . . . , T , to which we

want to fit an autoregressive model. Then, we arrange the data in a data matrix

as follows:



























lag 0 lag 1 . . . lag p

y1,p+1 . . . yn,p+1 y1,p . . . yn,p . . . y1,1 . . . yn,1

y1,p+2 . . . yn,p+2 y1,p+1 . . . yn,p+1 . . . y1,2 . . . yn,2

...
...

...
...

...
...

y1,t . . . yn,t y1,t−1 . . . yn,t−1 . . . y1,t−p . . . yn,t−p

...
...

...
...

...
...

y1,T . . . yn,T y1,T−1 . . . yn,T−1 . . . y1,T−p . . . yn,T−p



























.

(2.19)

The observed series of length T is clipped to length T − p so that the time

series and lagged versions are of equal length. In order to satisfy the stationarity

condition, we need to ensure that the estimated thresholds of different lags of the

time series are equal. This is easily resolved in PRELIS, and the polychoric auto-

and cross-correlations can then be computed.

A drawback of this procedure is that for shorter time series the estimated
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polychoric correlation matrix Ry does not necessarily has the block Toeplitz form:

Ry =













R0

R1 R0

...
...

. . .

Rp Rp−1 . . . R0













,

where the blocks Rj, j = 0, . . . , p contain the polychoric correlations of corre-

sponding columns of Equation 2.19. The blocks that appear repeatedly are com-

puted with different lagged versions of the original time series, and using different

lags can lead to different estimates. A simple solution to this problem would be

to average the blocks in question. However, some type of pooling procedure has

to be applied to the asymptotic covariance matrix W as well, which becomes

intractable as the dimension of the series and the order of the autoregressive

process increase. In addition, W can lose full rank and the WLS procedure can

no longer be applied. Since this problem rapidly disappears as the length of the

time series increases, no action is taken in the present study.

2.4.3 SEM representation

Again, the LISREL Submodel 3B is used to represent autoregressive models. The

analysis is now performed on the polychoric correlation matrix. This does not

influence the representation, which is equal to that in Section 2.2.3. Specifically,

the theoretical polychoric correlation matrix R̃y is modelled by

R̃y = Λ(I − B)−1Ψ(I − B)−1′Λ′ + Θε. (2.20)

An additional constraint is needed since modelling is performed on the latent

process y∗
t instead of the observed process. In order to fix the variance of the

latent process y∗
t to unity, the constraint can be given by diag(Σε) = diag(I−ΛΛ′).

As an example, we restate the latent bivariate VAR(1) model though now

with four categorical indicators. For t = 2, . . . , T , Let

y =





























y1t

y2t

y3t

y4t

y1,t−1

y2,t−1

y3,t−1

y4,t−1





























, Λ =





























λ11 λ12 0 0

λ21 λ22 0 0

λ31 λ31 0 0

λ41 λ42 0 0

0 0 λ11 λ12

0 0 λ21 λ22

0 0 λ31 λ32

0 0 λ41 λ42





























, η =











α1t

α2t

α1,t−1

α2,t−1











, and Θε = diag(I−ΛΛ′).
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The block-Toeplitz polychoric auto- and cross-correlation matrix R̃y is modelled

by

R̃y =

[

R̃0

R̃1 R̃0

]

= Λ(I − B)−1Ψ(I − B)−1′Λ′ + Θε,

where R̃0 and R̃1 are the polychoric correlation matrices at lag zero and one,

respectively, and where

B =

[

0

Φ1 0

]

and Ψ =

[

Γ∗
0

0 Σξ

]

,

where Γ∗
0 is the variance matrix of the VAR(1) process αt. Again, identification

and rotational constraints are obtained by fixing parameters of Λ or Ψ.

2.4.4 Estimation

Having available an estimate of the polychoric auto- and cross-correlation matrix

and its asymptotic covariance matrix W , estimates of the parameters of the

autoregressive model can be obtained with the weighted least squares procedure

as implemented in LISREL. To this end, the following fit function is minimized

FWLS = vech(Ry − R̃y)
′W−1vech(Ry − R̃y). (2.21)

For stationary continuous VAR models, the results of the ML and WLS methods

are almost exactly the same, as displayed in Tables 2.2 and 2.3. This can be seen

as an indication that the WLS procedure in LISREL can work when VAR models

are fitted to stationary categorical time series. For that reason, and given the ease

of use, the weight matrix W used here is that obtained by PRELIS (for details

see Jöreskog, 1994). The derivation of the full information maximum likelihood

estimate of the polychoric Toeplitz matrix and its asymptotic covariance matrix

would require a separate study.

In summary, the Toeplitz method for categorical time series consists of three

steps. First, the thresholds β are estimated from the univariate marginals, which

are then used to estimate the polychoric auto- and cross-correlations and their

covariances. Finally, the WLS procedure employs the bivariate information of the

estimated Toeplitz matrix to obtain parameter estimates of the autoregressive

model.
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2.5 Simlation study II

A second simulation study is performed to investigate the Toeplitz method in the

case of categorical time series.

2.5.1 Set up

The same six autoregressive models are used as in the simulations with continuous

time series (see Table 2.1). For all six models, categorical time series are simulated

with two and five categories, and lengths T = 100 and T = 1000. The number of

replications equals 1000. The threshold for all time series with two categories is

zero leading to P (yit = 0) = P (yit = 1) = 0.5. For time series with five categories,

the rounded thresholds are -1.65, -0.84, 0.84, and 1.65, leading to the following

exact probabilities of the associated ordered categories: 0.05, 0.15, 0.40, 0.15,

and 0.05. Parameter values are set so that stationarity holds, and are reported

in the tables with results.

The main objective of these simulations is to investigate the performance of

the Toeplitz WLS parameter estimation procedure in LISREL for autoregressive

models with categorical time series. Parameter estimates are again evaluated on

accuracy and precision. Mean parameter estimates are compared to true values

and mean estimated standard errors are compared to the standard deviation of

parameter estimates over replications.

2.5.2 Results

Only results for models that are illustrative of the methods used are shown and

discussed. These models are the VAR(1), MI(4)-AR(1), MI(4)-AR(2), and MI(4)-

VAR(1) models. Since a substantial part of the analyses of categorical time series

of length T = 100 failed due to either the Toeplitz matrix or the W matrix not

being positive definite, these analyses are not discussed here. It is not to say that

the method cannot be applied for shorter time series, but in order to provide fair

comparisons, we have chosen to discuss only situations for which full results are

available.

Table 2.6 shows the results for the VAR(1) and MI(4)-VAR(1) models with

time series of length T = 1000 with two and five categories. For the VAR(1)

model, mean parameter estimates closely resemble true values. The results im-

prove as the number of categories increases from two to five in terms of precision,

that is, standard errors and standard deviations decrease. Remarkably, estimated
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Table 2.6: Results for VAR(1) and MI(4)-VAR(1) models, T = 1000

Model Categories Parameter Value Mean SE SD

VAR(1) 2 φ11 0.80 0.797 0.057 0.040

φ12 0.10 0.100 0.056 0.044

φ21 0.30 0.299 0.057 0.047

φ22 0.60 0.596 0.056 0.047

5 φ11 0.80 0.794 0.048 0.031

φ12 0.10 0.100 0.042 0.031

φ21 0.30 0.301 0.042 0.032

φ22 0.60 0.595 0.045 0.033

MI(4)-VAR(1) 2 λ21 0.90 0.900 0.022 0.028

λ42 0.90 0.899 0.026 0.030

φ1
11 0.80 0.797 0.050 0.053

φ1
12 0.10 0.102 0.056 0.049

φ1
21 0.30 0.305 0.055 0.049

φ1
22 0.60 0.594 0.053 0.053

5 λ21 0.90 0.900 0.016 0.020

λ42 0.90 0.900 0.018 0.022

φ1
11 0.80 0.797 0.036 0.039

φ1
12 0.10 0.101 0.040 0.037

φ1
21 0.30 0.302 0.039 0.037

φ1
22 0.60 0.598 0.038 0.040

standard errors are larger than standard deviations of the parameter estimates

over replications. For the MI(4)-VAR(1) results displayed in the lower part of

Table 2.6, the comparability to the continuous time series case increases with the

number of categories.

The outcomes of the analyses of categorical time series following MI(4)-AR(1)

and MI(4)-AR(2) models are displayed in Table 2.7. Parameters of both models

are well recovered by the WLS method in terms of mean values. Again, the larger

the number of categories, the more precise the estimates. Yet, for all parame-

ters including the autoregressive parameters, the estimated standard errors are

smaller than the standard deviations over replications.
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Table 2.7: Results for MI(4)-AR(1) and MI(4)-AR(2) models, T = 1000

Model Categories Parameter Value Mean SE SD

MI(4)-AR(1) 2 λ2 0.90 0.901 0.015 0.020

λ3 0.90 0.900 0.015 0.020

λ4 0.90 0.901 0.015 0.020

φ1 0.70 0.712 0.027 0.032

5 λ2 0.90 0.900 0.010 0.015

λ3 0.90 0.900 0.010 0.015

λ4 0.90 0.900 0.010 0.015

φ1 0.70 0.705 0.021 0.027

MI(4)-AR(2) 2 λ2 0.90 0.901 0.012 0.021

λ3 0.90 0.901 0.012 0.021

λ4 0.90 0.901 0.012 0.020

φ1 0.50 0.517 0.053 0.057

φ2 0.25 0.250 0.055 0.059

5 λ2 0.90 0.901 0.008 0.015

λ3 0.90 0.900 0.008 0.015

λ4 0.90 0.901 0.008 0.015

φ1 0.50 0.510 0.038 0.044

φ2 0.25 0.251 0.039 0.045

2.6 Discussion

In this paper, we studied the performance of the Toeplitz method for the fitting of

autoregressive models to multivariate stationary time series. Since this method is

fast and easy to use for those familiar with SEM, it has the potential to become a

popular tool to analyse time series if it performs according to expectations. The

results of this study indicate, however, that only in certain situations the Toeplitz

method works well. If the purpose of the analysis is to estimate parameters, then

the Toeplitz method is useful, purely as a method of moments. In contrast, if the

analyses are intended for inferential statements making use of statistics such as

standard errors, one should be wary of making these statements based on results

obtained with the Toeplitz method.

For normally distributed time series, the results of the present study indicate

that the Toeplitz method only provides correct estimates and standard errors for

pure VAR models, and not for MI-VAR models. For VAR models, this is to be
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expected, because the Toeplitz method is then equal to the multivariate extension

of the Yule-Walker method. This method is known to perform badly when the

process tends to non-stationarity or is strongly periodical (Tjøstheim & Paulsen,

1983; de Hoon, van der Hagen, Schoonewelle, & van Dam, 1996). For these situ-

ations, the ordinary least squares or Burg estimator outperform the Yule-Walker

estimator (Lütkepohl, 1991). However, procedures for these estimators cannot

be easily constructed within the realm of SEM and implemented in existing SEM

software.

To establish the difference with raw data methods, we applied a Kalman filter

to all studied models for normally distributed time series as well. It was found

that the main difference between the Toeplitz method and the Kalman filter-

ing method existed in the estimation of standard errors. That is, the Kalman

filtering method produced correct standard errors for all models studied, while

the Toeplitz method did not. The mean and standard deviation of the parame-

ter estimates were, however, very much alike for both methods. For parameter

estimation purposes, the Toeplitz method therefore seems usable, for statistical

inference, on the other hand, it is not. Since we took into account the fact that the

necessary auto-covariances are only efficient for certain models, we conclude that

it is likely that for other multivariate models, the Toeplitz method will not work

well for inference. However, it might still have practical utility. For the models

studied here, one can for instance multiply the standard errors by a factor two

in order to be on the safe side for the signifance of parameter estimates.

For categorical time series, the results are comparable or worse. That is, the

parameters are recovered well in terms of accuracy, but estimated standard er-

rors are incorrect for all models used in this study. Part of these results might

be traced to problems associated with the estimation of the matrix of polychoric

auto- and cross-correlations and its asymptotic covariance matrix under the con-

dition of stationarity. The task of improving the estimation procedure has more

cons than pros, however. The complexity of this task is high and based on the

results obtained with continuous time series, the merit is questionable. The ef-

fort might be better spend on developing or improving filtering techniques for

categorical time series. In future investigations, the results of the present study

can be linked to those obtained with a filter based method for categorical time

series. Up till now, such methods have seen little application within the domain

of behavioral research.

An important shortcoming of the Toeplitz method is that it can only be used

for stationary time series. Since it is more likely that nonstationarity is the rule
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rather than the exception in behavioral research practice, the Toeplitz method is

no match for filtering techniques. Despite the results of our simulation studies, the

Toeplitz method is a useful point of departure in the analysis, e.g., by providing

sensible starting values for computer intensive filtering techniques.



3

State space analysis of univariate

categorical time series

3.1 Introduction

In time series analysis, the interest lies in the modelling of sequential observations

obtained from some aspect of a dynamic system in order to explain or predict

its course. The general approach considered in this paper to modelling time

series, without making reference to a specific class of models, is the state space

approach. In this approach, the observed time series is associated with a time

series of unobserved states through an observation equation. The dynamics of the

system are modelled at the level of the unobserved time series. Specifically, this

dynamic part is represented by a stochastic difference equation, which is referred

to as the transition equation. The combination of the observation and transition

equation results in the canonical state space model. In this chapter, we limit

our attention to the analysis of univariate time series that can only take on a

restricted number of discrete values, that is, we consider univariate categorical

time series models.

In general, state space modelling proceeds by specifying an appropriate ob-

servation and transition equation, and estimating the unobserved states, and

the unknown parameters of the state space model. Although selecting an ap-

propriate state space model can be a complicated process, the primary interest

in this chapter lies in its estimation. The problem of estimating unobserved

states is dependent on the phase of the data collection process. If estimates

of future states are required, it is referred to as the prediction problem. If es-

timates are required as the data are recorded, the problem is one of filtering

(online). Thirdly, if estimates are required only after the whole time series has

been recorded, the problem is one of smoothing (offline). In this paper, filtering

and smoothing techniques are considered given the complete time series (offline).

One commonly used technique for normally distributed time series is the Kalman

filter (Kalman, 1960), which proceeds forwards in time by sequently updating the

available state estimates as observations are being gathered. The Kalman filter
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represents a least-squares solution to the problem of minimizing prediction error.

However, it makes efficient use of the normal distribution, which allows the linear

transformations that are necessary for the solution (Jullier & Uhlmann, 1997).

A commonly used smoothing technique is the classical fixed interval smoother

that moves backwards in time and adjusts the estimates of the Kalman filter by

utilising information unknown at the time the filter was applied (see Anderson

& Moore, 1979).

A great deal of the research in the field of time series modelling is based on the

normal distribution (Harvey, 1989; Hamilton, 1994; Durbin & Koopman, 2001).

For time series following a normal distribution, observations can be related di-

rectly to the states, and when combined with a linear transition, filtering and

smoothing procedures can be readily applied. However, ever since the advent of

filtering and smoothing techniques, many applications have been challenged by

difficulties concerning non-normally distributed observations, non-linear transi-

tions, or both. Several methods have been developed over the years to account for

these problems, which can essentially be divided into two categories. The first

category consists of exact solutions, which are available only for some specific

non-linear cases (see Elliott, Aggoun, & Moore, 1995; Vidoni, 1999). The second

and largest category is formed by solutions in which some kind of approximation

procedure is used. In turn, this category can roughly be subdivided into two

types. The first type is formed by solutions that replace non-normal and non-

linear elements of a state space model by normal and linear approximations. In

the extended Kalman filter (Jazwinski, 1970), for example, Taylor expansions of

non-linear transitions around provisional state estimates are simply inserted in

the usual Kalman filtering recursions. Although many approximate methods of

this type work well for minor departures of normality and linearity, it is known

that they break down in more intricate situations (Schnekenburger, 1988). The

second type, which is computationally more intensive, employs simulation tech-

niques to approximate non-normal and non-linear elements numerically. These

techniques are generally referred to as sequential Monte Carlo methods (for an

overview, see Doucet, de Freitas, & Gordon, 2001). With the increases in com-

puting power, this type of solutions has become a powerful tool for estimating

non-normal and non-linear state space models.

The special case of non-normality considered in this paper arises when the

time series can be characterised as sequential categorical observations. The dis-

crete nature of these observations precludes the direct use of the normal distri-

bution, and so modelling categorical time series has to be performed by different
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means. It is noted that categorical time series are a special case of discrete vari-

ate time series (see McKenzie, 2003). Whereas realizations of the latter exist of

(positive) integer values, categorical time series only assume a limited number of

integer values. The class of time series models considered here is that of state

space models for exponential family time series (see, e.g., Durbin & Koopman,

1997). In this class, it is assumed that the time series observations follow a distri-

bution belonging to the exponential family. Since the binomial and multinomial

distributions are generally used for categorical observations and are members of

the exponential family, this approach allows for a general frame of reference.

As for the available filtering and smoothing techniques that can be applied

in this case, a number of them deserve special attention here. Kitagawa (1987)

presented a general approach to non-normal state space modelling in which the

probability densities or distributions are numerically approximated directly by

first order splines. However, this approach is computationally intractable for

higher dimensional models. Fahrmeir (1992) presented a generalized extended

Kalman filter and smoother in which posterior modes of a penalized likelihood

are numerically approximated. An iterative version of this filter and smoother

is discussed in Fahrmeir and Wagenpfeil (1997), and is used here. Durbin and

Koopman (1997) present a simulation technique in which essentially the same

recursions as those of Fahrmeir and Wagenpfeil (1997) are used. It is the purpose

of this paper to discuss and investigate a unified approach to estimate both states

and unknown parameters of models for univariate categorical time series. A fur-

ther purpose is to assess the performance of the methods by means of simulation.

In practice, state space models include not only unobserved states, but also

certain other parameters, depending on the time series model used. Such param-

eters are often called hyperparameters, and are generally unknown. Estimating

these parameters is a difficult problem, since state estimates and parameter es-

timates are confounded. Kitagawa (1998) presented a self-organizing state space

model, in which states and parameters are estimated simultaneously. However,

most other procedures are iterative in that they first estimate states with given

parameters, and then estimate parameters with given states until convergence.

We discuss such a technique for the estimation of the parameters of categorical

time series models which is based on the penalized likelihood criterion of Fahrmeir

and Wagenpfeil (1997).

This chapter is set out as follows. First, the state space modelling approach

for univariate categorical time series is discussed. In the next section, filtering

and smoothing techniques are presented. This is followed by a discussion of a
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method to estimate parameters. Then, the results of a simulation study are pre-

sented, which was conducted to assess the performance of the presented methods.

Finally, the methods are illustrated by an application to a categorical time series

consisting of sleep state measurements. The chapter ends with a discussion of

the results.

3.2 Categorical time series models

We discuss our approach to modelling categorical time series within the frame-

work of state space models. To ease the presentation, we assume that the dis-

tributions are members of the exponential family, and that the latent process

is linear and normally distributed (see also Durbin & Koopman, Ch. 10, 2001;

Fahrmeir & Tutz, Ch. 8, 2001; Klein, 2003). This approach to modelling can

also be fitted into the framework of dynamic generalized linear models (West,

Harrison, & Migon, 1985; Fahrmeir & Tutz, 2001). However, we adhere to the

state space framework, because the filtering and smoothing techniques that we

use are explained more naturally within this framework. For dynamic regression

models for categorical time series, the reader is referred to Kedem and Fokianos

(2002).

As a prelude to the discussion of categorical time series, we shortly discuss

the state space approach to modelling exponential family time series. In general,

an n-dimensional multivariate time series yt is assumed to follow an exponential

family distribution. Dropping the dispersion parameter for simplicity, this is

p(yt|θt, y
∗
t−1) = exp(y′

tθt − bt(θt) + ct(yt)), (3.1)

where θt is referred to as the natural parameter, y∗
t−1 denotes the history of yt

given by (y′
t−1, . . . , y

′
1)

′, bt(θt) is a twice differentiable function, and ct(yt) is a

function of yt only. Equation 3.1 is referred to as the observation equation. The

natural parameter θt is related to the linear predictor ηt as follows

θt = v(ηt) = µ−1
t (h(ηt)),

ηt = u(θt) = g(µt(θt)),

where g(.) is the link function, and h(.) = g(.)−1 is the response function. If

the function g(.) is the natural link function, the mean value mapping µ(.) equals

g(.)−1, and consequently, the natural parameter and the linear predictor coincide,

i.e., θt = ηt. We limit our attention in this paper to models, which allow for the
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use of the natural link function, and hereafter, we only refer to the linear predictor

ηt. In Equation 3.1, it is assumed that the present observation is independent of

the history of the process η∗
t−1, that is

p(yt|η∗
t , y

∗
t−1) = p(yt|ηt, y

∗
t−1). (3.2)

In addition, it is assumed that the process ηt is first-order Markovian

p(ηt|η∗
t−1, y

∗
t−1) = p(ηt|ηt−1). (3.3)

Two standard results of exponential family distributions are that the mean and

variance functions are the first and second derivatives of the function bt(ηt) with

respect to ηt, that is

E(yt|ηt, y
∗
t−1) =

∂bt(ηt)

∂ηt

= µt, (3.4)

Var(yt|ηt, y
∗
t−1) =

∂2bt(ηt)

∂ηt∂η′
t

= Σt. (3.5)

The structural relation is formed by the specific construction of the linear pre-

dictor ηt. To this end, an n × m design matrix Zt with known elements and an

m-dimensional series of unobserved states αt are related to the mean by

µt = h(ηt) = h(Ztαt). (3.6)

In general, Zt can consist of fixed values, covariates and past values of yt. The

dynamic part of the model is captured in the sequential dependence of αt. A

normal linear transition equation can be expressed for t = 1, 2, . . . , T , as

αt = Ftαt−1 + Rtξt, ξt ∼ N(0, Qt), (3.7)

where Ft is an m×m transition matrix, Rt is an m×p selection matrix with fixed

elements, and ξt is a p-dimensional normally distributed white noise sequence with

associated covariance matrix Qt. An advantage of this representation is that the

state vector αt can consist of time-varying and time-constant elements, and by

using the selection matrix appropriately Qt remains positive definite. The time-

varying elements of the initial state α0 are assumed to be normally distributed

with mean the corresponding elements of a0 and p × p covariance matrix Q0.

A wide variety of models is obtained by the specific choice of the distri-

bution, the link function, the structural relation, and the transition equation.

For normally distributed time series, for example, autoregressive moving average
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(ARMA) models and structural models with trends and seasonal effects can be

specified in this manner. We now turn to the discussion of the models that we

use for univariate categorical time series in which we make a distinction between

categorical time series with two categories (dichotomous) and more than two

categories (polytomous).

3.2.1 Dichotomous time series

A special case of categorical time series arises when the time series can take

on only two values at each time point, generally scored as either 0 or 1. In

this case, the binomial distribution can be assumed, which is a member of the

exponential family. Since a single realisation of the time series is considered in

the present situation, the binomial coefficient is discarded. Such a time series can

be considered to be a dependent sequence of Bernoulli trials. The probability of

yt is then given by

p(yt|πt, y
∗
t−1) = π

yt

t (1 − πt)
(1−yt), (3.8)

where πt is the probability that yt takes on the value 1 at time t. The natural link

and response function, and the variance function associated with the binomial

distribution are respectively given by

ηt = log

(

πt

1 − πt

)

, (3.9)

πt =
exp(ηt)

1 + exp(ηt)
, (3.10)

σ2
t = πt(1 − πt). (3.11)

A complete model is obtained by the specific construction of the linear predictor

and the transition equation.

As an example of how model specification proceeds, we discuss this in detail

for a dichotomous time series which is governed by an unobserved stationary

normally distributed first-order autoregressive (AR(1)) process θt. Then, the

linear predictor is inserted in the logistic response function given by Equation

3.10, and is constructed as follows

ηt = θt + β,

where β is a time-invariant threshold. The latent AR(1) process θt can be ex-

pressed as

θt = φ1θt−1 + ξt, ξt ∼ N(0, σ2
ξ ), (3.12)
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where φ1 is the autoregressive parameter, and ξt is a white noise sequence. The

process θt is said to be stationary if it holds that |φ1| < 1. Since θt has no

scale, we fix it to have zero mean and unit variance by setting σ2
ξ = 1 − φ2

1 (see

Hamilton, 1994, p. 53). Now, the time indices of the state space model matrices

in Equations 5.9 and 5.10 are discarded, and to represent the above model in

state space form their elements are filled in as follows

Z =
[

1 1
]

, αt =

[

θt

β

]

, F =

[

φ1 0

0 1

]

, R =

[

1

0

]

, Q =
[

σ2
ξ

]

.

Note that the innovations ξt are simply inserted in the transition equation. Other

dynamic models can be formed as well, and are amenable to state space form by

analogous reasoning.

3.2.2 Polytomous time series

The multinomial distribution, which is also a member of the exponential family,

is adopted for polytomous time series. The number of categories is denoted by

q. It is common practice to dummy code each polytomous response by k = q − 1

dummy variables yjt, j = 1, . . . , k (see Fahrmeir & Tutz, 2001). The dummies

are coded 1 if category j is observed, and 0 otherwise. In this manner, the

polytomous time series is represented by a multivariate dichotomous dummy time

series yt = (y1t, . . . , ykt)
′. Again, the multinomial coefficient is discarded, because

we only consider a single realisation of the time series. Then, the multinomial

distribution function is given by

p(yt|πt, y
∗
t−1) = π

y1t

1t . . . π
ykt

kt (1 − π1t − . . . − πkt)
1−y1t−...−ykt . (3.13)

A distinctive feature of a polytomous time series is whether it consists of nom-

inal or ordinal categories. In the case of nominal categories, the category specific

probabilities can be modelled without reference of one category to another, i.e.,

the only feature is that the categories are distinct. For ordinal categories, how-

ever, it is desirable that the ordinal information be represented in the modelling of

the category specific probabilities. This can be achieved in various manners, and

different ordering representations lead to different interpretations of the model

and its parameters. For some representations, however, the natural link function

can no longer be used and the advantages of the exponential family are lost. For a

more thorough description of different link functions and ordering representations

for models with categorical variables, the reader is referred to Agresti (2002) and

Fahrmeir and Tutz (2001).



40 Chapter 3

The natural link and response function, and the variance function associated

with the multinomial distribution are given by

ηjt = log

(

πjt

1 −∑k

i=1 πit

)

, (3.14)

πjt =
exp(ηjt)

1 +
∑k

v=1 exp(ηvt)
, j = 1, . . . , k, (3.15)

Σt = diag(πt) − πtπ
′
t. (3.16)

Our interest lies in ordinal categories, and we discuss models for this type only.

As an example, we completely specify the model for a polytomous time series with

three categories following a latent stationary Gaussian first order autoregressive

process. Writing out the response function for this situation results in

π0t =
1

1 + exp(η1t) + exp(η2t)
,

π1t =
exp(η1t)

1 + exp(η1t) + exp(η2t)
,

π2t =
exp(η2t)

1 + exp(η1t) + exp(η2t)
.

In order to retain the ordinal information, the linear predictor is constructed as

follows
[

η1t

η2t

]

=

[

θt + β1

2θt + β1 + β2

]

,

where θt is an AR(1) process as given in Equation 3.12 and β1 and β2 are threshold

parameters. The model can be expressed in terms of conditional probabilities,

which emphasizes the resemblance with the model for dichotomous time series.

For the two conditional dichotomies that yt is either 0 or 1, and either 1 or 2, the

conditional probabilities are given by

π1t|0,1 =
π1t

π0t + π1t

=
exp(θt + β1)

1 + exp(θt + β1)
,

π2t|1,2 =
π2t

π1t + π2t

=
exp(θt + β2)

1 + exp(θt + β2)
.

So, the model provides a natural extension of the model for dichotomous time

series. This extension resembles the extension of the Rasch model to the par-

tial credit model used in psychometrics (see Masters, 1982). The state space
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representation of this model is given by

Z =

[

1 1 0

2 1 1

]

, αt =







θt

β1

β2






, F =







φ1 0 0

0 1 0

0 0 1






, R =







1

0

0






, Q =

[

σ2
ξ

]

.

Again, it is acknowledged that the ordinal information in polytomous time series

can be represented in different manners. However, we find this representation

convenient, because of its natural extension of dichotomous models. Other types

of dynamic models can be obtained by appropriate adjustments.

3.3 Estimation

We discuss the estimation of categorical time series models in two parts. First,

the filtering and smoothing procedures for the estimation of the latent process

αt are discussed in the situation of known parameters. Second, we discuss the

estimation of these parameters. Both procedures are based on the log-posterior

distribution of the underlying states α∗
T given an observed stretch y1, y2, . . . , yT .

This log-posterior is a penalized log-likelihood criterion (Fahrmeir & Tutz, 2001,

p. 351), and can be obtained from the state space model and the assumptions

described in the previous section. This results in

L(α∗
T ) =

T
∑

t=1

lt(αt) − 1
2
(α0 − a0)

′R0Q
−1
0 R′

0(α0 − a0) (3.17)

− 1
2

T
∑

t=1

(αt − Ftαt−1)
′RtQ

−1
t R′

t(αt − Ftαt−1),

where the contributions of the categorical time series observations are given by

lt(αt) =

k
∑

j=1

yjt log(πjt) + (1 −
k
∑

j=1

yjt) log(1 −
k
∑

j=1

πjt). (3.18)

3.3.1 Estimating latent states

In order to obtain estimates of the latent process αt, we make use of the iter-

atively weighted Kalman filter and smoother (IWKFS) developed by Fahrmeir

and Wagenpfeil (1997). The resulting estimates are numerical approximations to

posterior modes and curvatures of the log-posterior in Equation 3.17. The filter

consists of a prediction and correction step of which the modes and curvatures
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are denoted by at|t−1, Vt|t−1, at|t, and Vt|t, respectively. The smoother steps are

denoted by at|T and Vt|T . In discussing the filter and smoother, the parameters

in a0, Q0, Ft, and Qt are considered as fixed and known. The estimation of these

parameters is discussed in the next paragraph.

Since the considered distributions are members of the exponential family and

we consider natural link and response functions only, the filtering recursions can

be expressed in a more simplified form than described in Fahrmeir and Wagenpfeil

(1997). Essentially, both the Jacobian matrix of the response function and the

conditional covariance function Σt are needed in the recursions. However, these

coincide when the natural link and response functions are used, which leads to

the simplifications. Durbin and Koopman (2000) describe a similar procedure

derived on different grounds. However, their recursions can be rewritten into the

recursions of Fahrmeir and Wagenpfeil (1997) in the case of natural link functions.

At each iteration i, the IWKFS needs to be invoked with evaluation values

for the latent process, given by ãi = (ã
i′
1 , ã

i′
2 , . . . , ã

i′
T )′. We continue by defining

the filtering recursions for t = 1, . . . , T , as follows

1. Prediction:

at|t−1 = Ftat−1|t−1, a0|0 = a0, (3.19)

Vt|t−1 = FtVt−1|t−1F
′
t + RtQtR

′
t, V0|0 = R0Q0R

′
0.

2. Correction:

Vt|t = (V −1
t|t−1 + Bt)

−1, (3.20)

at|t = at|t−1 + Vt|tbt,

where Bt and bt are given by

Bt = Z ′
tΣtZt,

bt = Z ′
t(yt − h(Ztã

i
t)) − Bt(at|t−1 − ãi

t),

and Σt is evaluated at ãi
t.

In the first iteration, the state evaluation vector consists of the filter predictions,

i.e., ã1
t = at|t−1, and the last term in the expression of bt disappears. The filter

then simplifies to the generalized extended Kalman filter developed by Fahrmeir

(1992).
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The fixed interval smoother for t = T, . . . , 2 is given by the recursions

at−1|T = at−1|t−1 + Gt(at|T − at|t−1) (3.21)

Vt−1|T = Vt−1|t−1 + Gt(Vt|T − Vt|t−1)G
′
t,

where

Gt = Vt−1|t−1F
′
tV

−1
t|t−1. (3.22)

The smoother is started with filter estimates aT |T and VT |T . After each iteration,

the state evaluation vector is updated with the smoother estimates, that is, ãi+1 =

(a′
1|T , a′

2|T , . . . , a′
T |T )′. The procedure is repeated upon convergence of the state

estimates. It is noted that in our implementation of the above recursions, we have

used the Moore-Penrose generalized inverse in the case that any of the matrices

to be inverted is singular.

3.3.2 Estimating parameters

Having available estimates of the latent process α∗
T , we can now maximize the

penalized likelihood in Equation 3.17 with respect to the parameters. The course

chosen here is to perform this maximization numerically. To this end, we employ

the NPSOL software package which consists of a number of FORTRAN routines

with which the penalized likelihood is maximized by means of a quasi-Newton

optimization procedure (Gill, Murray, Saunders, & Wright, 1986). Other opti-

mization routines can be used as well.

Recall the example of an AR(1) process underlying a polytomous time se-

ries with three ordered categories. The parts of the penalized likelihood can be

expressed as follows

lt(αt) = y1t ln

(

exp(θt + β1)

1 + exp(θt + β1) + exp(2θt + β1 + β2)

)

+ y2t ln

(

exp(2θt + β1 + β2)

1 + exp(θt + β1) + exp(2θt + β1 + β2)

)

+ (1 − y1t − y2t) ln

(

1

1 + exp(θt + β1) + exp(2θt + β1 + β2)

)

= y1t(θt + β1) + y2t(2θt + β1 + β2)

− ln(1 + exp(θt + β1) + exp(2θt + β1 + β2)).

The contribution of the latent process reduces to

1
2

T
∑

t=1

(θt − φ1θt−1)
2

σ2
ξ

,
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where σ2
ξ is fixed to 1 − φ2

1, so that the total variance of the process is equal to

one. The initial state and variance are given by

a0 =







θ0

β1

β2






, Q0 =

[

σ2
θ0

]

,

where θ0 and σ2
θ0

are constrained to be zero and one, respectively, for identifica-

tion purposes. With this constraint, the initial state contribution to the likelihood

can be discarded. So, β1, β2, and φ1 are the only parameters to be estimated.

Estimates of the threshold parameters β1 and β2 can be obtained by applica-

tion of the IWKFS. So, our purpose in this example is to estimate φ1, which

can be performed by numerically maximizing the penalized likelihood. Maxi-

mization is performed by NPSOL which returns an estimate and a (numerically

approximated) standard error. After a maximum is found, the IWKFS is applied

once more to obtain final estimates of the latent process θt and the threshold

parameters β1 and β2.

3.4 Simulation study

3.4.1 Set up

A series of simulations was carried out to investigate the performance of the

IWKFS for the estimation of the models described in the previous section. In

order to provide insight into the methods, the following variables are used: the

number of categories and the length of the time series. The number of categories

is chosen to be two, three, and five. The lengths of the time series equal T = 100

and T = 1000. All simulated categorical time series follow a latent Gaussian

AR(1) with φ1 = 0.7 and consequently σ2
ξ = 0.51, and the number of replications

is set at 1000.

The distribution of the thresholds is set so that the probabilities at θt = 0

are symmetrically distributed over the categories. For dichotomous time series,

threshold β1 is set at 0. For polytomous time series, thresholds β1 and β2 are set

at 0.75 and -0.75 for three categories, and β1, β2, β3, and β4 are set at 1.50, 0.50,

-0.50, and -1.50 for five categories, respectively. It is noted that the threshold

parameters need to be ordered for simulating the time series in the polytomous

case. Otherwise some categories never come to be the most probable category

regardless of the value of the latent process. Since the latent process is the only
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source of variaton, not all categories can be reached as a consequence. This is

not to say that the threshold parameters need to be ordered in the estimation

procedure.

The performance of the parameter estimation procedure with the IWKFS is

evaluated by comparing mean parameter estimates over replications with true

parameter values, and mean estimated standard errors with standard deviations

of parameter estimates over replications.

3.4.2 Results

The results of the simulation study are shown in Tables 3.1 and 3.2. For the

autoregressive parameter φ1, Table 3.1 displays mean estimates over replications,

mean estimated SEs as produced by the NPSOL optimization routine, and SDs

of estimates taken over replications. The estimates of φ1 are reasonably close to

their true values. In addition, the fact that in all studied cases mean standard

errors are larger than the standard deviations of the estimates can be seen as an

indication that the AR parameter can be estimated consistently.

Table 3.1: Results for autoregressive parameter

T Categories Parameter Value Mean1 SE2 SD3

100 2 φ1 0.70 0.692 0.129 0.091

1000 2 φ1 0.70 0.744 0.046 0.043

100 3 φ1 0.70 0.692 0.112 0.081

1000 3 φ1 0.70 0.724 0.032 0.024

100 5 φ1 0.70 0.626 0.111 0.072

1000 5 φ1 0.70 0.670 0.031 0.024
1 Mean estimate

2 Mean standard error

3 Standard deviation of estimates

Table 3.2 shows mean threshold estimates over replications, mean estimated

SEs as produced by IWKFS, and SDs of threshold estimates over replications.

The estimates of the threshold parameters β do not closely resemble true values,

and are not very consistent when comparing mean standard errors to standard

deviations over replications. This result is most likely due to the IWKFS and the

fact that all parameters are estimated together.
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Table 3.2: Results for threshold parameters

T Categories Parameter Value Mean SE SD

100 2 β1 0.00 0.009 0.325 0.445

1000 2 β1 0.00 -0.007 0.108 0.147

100 3 β1 0.75 1.223 0.373 0.510

β2 -0.75 -1.265 0.376 0.502

1000 3 β1 0.75 1.186 0.118 0.151

β2 -0.75 -1.188 0.118 0.148

100 5 β1 1.50 1.716 0.454 0.961

β2 0.50 0.810 0.357 0.500

β3 -0.50 -0.793 0.356 0.479

β4 -1.50 -1.658 0.441 0.974

1000 5 β1 1.50 1.745 0.143 0.737

β2 0.50 0.784 0.114 0.199

β3 -0.50 -0.792 0.114 0.197

β4 -1.50 -1.729 0.142 0.750

Two options can be considered in adjusting the model. The first option is

to use a different link function, for example the logistic function with a different

parameterization or the probit function (see e.g., Song, 2000). However, order

restrictions on the threshold parameters are needed in most cases (Fahrmeir &

Tutz, 2001, p. 348). In addition, the benefits of using the canonical link func-

tion are lost when using a different link function. A second option is to assume

a logistic distribution for the sequence ξt (see Arnold & Robertson, 1989; and

Durbin & Koopman, 2001, Ch. 10), but one then loses the benefits of the nor-

mal distribution. Either way, the penalized likelihood criterion and the IWKFS

recursions need to be rewritten accordingly, and the parameters have a different

interpretation.

3.5 Real data example

We now discuss an application of the method to real data consisting of sleep

state measurements of an infant recorded over one night as discussed in Kedem

and Fokianos (2002, §3.5.3). The data are EEG coded into one of four ordered

categories: awake (0), quiet sleep (1), indeterminate sleep (2), and active sleep

(3). The purpose of this analysis is illustrate how the discussed methods can be
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Table 3.3: Results for sleep data

Model φ̂1 φ̂2 β̂1 β̂2 β̂3 D AIC BIC %

AR(1) 0.94 - 1.34 -2.05 -0.92 953.73 961.73 981.46 87.36

(0.01) - (0.20) (0.22) (0.23)

AR(2) 0.66 0.31 0.83 -3.13 -2.44 796.74 806.74 831.40 93.15

(0.03) (0.03) (0.56) (0.57) (0.58)

used to find a suitable model that can describe the sleep state process with fair

accuracy. To this end, we have fitted an AR(1) and AR(2) model. The results

of the analysis are displayed in Table 3.3. To compare the fit of the two models,

we investigated several goodness of fit measures (see Fahrmeir & Tutz, 2001,

§3.4.3; Kedem & Fokianos, 2002, §3.4.3). One of these is the scaled deviance or

likelihood ratio statistic, and can be expressed as

D = −2

T
∑

t=1

lt(αt),

where lt(αt) is given by Equation 3.18. The asymptotic distibution of D ap-

proaches a χ2 distribution with kT −p degrees of freedom, where p is the number

of parameters. However, the approximation may fail and large values cannot be

seen as an indication of lack of fit (Fahrmeir & Tutz, 2001, p. 51). We also

investigated Akaike’s information criterion (AIC) and the Bayesian information

criterion (BIC), which can be given by

AIC = D + 2p,

BIC = D + p log T.

Since the variance of the latent process is fixed to one for scaling purposes, the

percentage of variance explained by the model can also be used for inspecting

model fit. This percentage is calculated easily from the model parameters in this

situation, and is given in the last column in the Table 3.3. All four fit measures

indicate that in this analysis the AR(2) model provides a better explanation of

the data than the AR(1) model. Figure 3.1 depicts the sleep state measurements

and the predicted values of the AR(1) and AR(2) models. It can be seen that

the AR(2) model fits closer to the data. For a description of analyses in which

auxiliary information in the form of predictors such as heart rate and temperature

are used, see the discussion in Kedem and Fokianos (2002, §3.5.3).
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Figure 3.1: Smoothed expected values for AR(1)(-) and AR(2)(- -) models with

dotted observations

3.6 Discussion

The IWKFS developed by Fahrmeir and Wagenpfeil (1997) was implemented to

fit models to categorical time series as well as a method to numerically optimize

a penalized likelihood to obtain estimates of parameters of these models. The

results of the simulation study indicate that the autoregressive parameter of an

AR(1) model can be estimated with reasonable consistency. However, the esti-

mates of threshold parameters obtained with the IWKFS proceeded are biased

and inconsistent. An application to sleep state measurements illustrate the use

of the modelling and estimation techniques.

The approach to modelling categorical time series presented in this paper can

be extended naturally to multivariate categorical time series, which remains an

interesting topic for further research and is largely untouched. The performance

of the estimation of thresholds is expected to improve, particularly when the la-

tent process is of smaller dimension than the observed time series. This situation
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of a dynamic factor model (see, e.g., Molenaar, 1985) for a multivariate categor-

ical time series would therefore be of special interest. The performance of the

presented methods in this situation is a topic for future investigations. In addi-

tion, the methods can also be extended to the analyses of multiple cases. Such

extensions can provide worthwile comparisons between latent processes of e.g.,

sleep stages for several infants. In particular, thresholds can then be fixed over

time and over cases, whereafter different latent processes can be fitted seperately

to each case.

In closing, it is stressed that all time series models considered in this paper

are stationary. For many applications, stationarity cannot be assumed. The

performance of the methods for nonstationary time series models remains to be

assessed.





4

Logistic models for single-subject time

series1

4.1 Introduction

Statistical methods in psychology are mostly applied to a collection of individ-

uals rather than to a single one (Kratochwill, 1978, p. 3). The development of

methods for psychological testing in the first half of the twentieth century put

the individual on the background, because the initial objective of psychological

testing was to differentiate among individuals. Keeping this in mind, the focus

in the remainder of the twentieth century on advancement of statistical methods

based on variation between individuals (inter-individual variation, IEV) instead

of variation within a single individual, seems understandable. However, mod-

els for time-dependent variation of a single individual (intra-individual variation,

IAV) have been widely available for some time. The discovery of the intrinsi-

cally stochastic time-dependent behavior within grains of pollen suspended in air

(Brownian motion) led to the development of appropriate statistical models for

single systems in the beginning of the 20th century. In this regard, the lack of

interest in a pure N = 1 perspective in psychometrics seems remarkable.

It is not to say that examples of analyses of IAV are wholely absent in the

psychometric literature. The measurement of (individual) change, for example,

is a branch of psychometrics with a relatively long history. An early overview

of problems encountered in measuring change can be found in Harris (1963). In

that book, a single-subject analysis of multivariate time series is described by

Holtzmann, who stressed that psychologists should study this type of analysis, in

1An earlier draft of this chapter appeared as van Rijn, P.W. & Molenaar, P.C.M. (2005).

Logistic models for single-subject time series. In L.A. van der Ark, M.A. Croon, & K. Si-

jtsma(Eds.), New developments in categorical data analysis for the social and behavioral sciences

(pp. 125-146). London: Erlbaum.
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view of the increasing importance of time series in other branches of science such

as econometrics and biometrics (Holtzmann, 1963, p. 199). More recently, Nes-

selroade and Schmidt McCollam (2000) advocated analysing IAV in the context

of developmental processes in psychology, and Collins and Sayer (2001) provided

an overview of newly developed methods for the analysis of change.

Apart from the historical development, it is difficult to find an explicit and

convincing rationale for the one-sided focus on IEV in contemporary psychomet-

rics. The restriction to IEV appears to be considered to be an almost self-evident

consequence of the scientific ideal to strive for general nomothetic knowledge.

The science of psychology should involve theories and laws that apply to all hu-

man subjects. Such nomothetic knowledge would seem to be poorly served by

intensive study of single subjects, because results thus obtained may not be gen-

eralizable in the intended sense. Despite its possible appeal, we will argue that

this kind of rationale is incorrect in many instances by making use of a set of

well-known mathematical theorems.

In our criticism of the one-sided focus on IEV, we do not take issue with the

ideal of nomothetic knowledge, i.e., the search for psychological theories and laws

that apply to all human subjects. Our criticism only concerns the assumption

that theories and laws based on analysis of IEV apply to each human subject,

and thus, would hold for IAV. To obtain valid theories and laws about IAV, one

cannot generalize results derived from IEV, but one has to study IAV in its own

right. That is the implication of the mathematical theorems to which we will

refer. Having available the results of a sufficient number of individual analyses

of IAV, one then can search for general characteristics by means of standard

inductive techniques. If successful, this will yield valid nomothetic knowledge

about the structure of IAV, i.e., nomothetic theories and laws about idiographic

(individual) processes.

This chapter is divided into two parts. The first part starts out with a descrip-

tion of analyses for IEV and IAV, and the condition under which there exists a

relationship between the two types of analysis, namely ergodicity. This condition

is explained in the context of psychometrics.

Having thus set the stage for serious consideration of IAV, the second part of

this chapter discusses latent variable models for single-subject time series data.

Special attention is given to the logistic model for multivariate dichotomous time

series, which can be seen, in its simplest form, as a dynamic variant of the Rasch

model, where the person parameter is replaced by a person process. It must

be stated that logistic models for repeated measurements have been discussed
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by various authors (e.g., Kempf, 1977; Fischer 1983, 1989; Verhelst & Glas,

1993; Agresti, 1997). In most of these applications, however, the IAV nature of

single-subject data is not emphasized as much as in the present chapter. The

presented modelling approach is illustrated by examples with simulated data and

an application to real data.

4.2 The ergodic notion in psychology

In its basic form, standard statistical analysis in psychology proceeds by drawing a

sample of individuals, assessing their scores on selected measurement instruments,

and then computing statistics by taking appropriate averages over the scores of

all available individuals. If all individuals would yield the same score, statistical

analysis would be severely reduced. Hence, it is the manner in which scores vary

across subjects, IEV, which provides the information for the analysis. In contrast,

in time series analysis the same individual subject is repeatedly measured, and

statistics are computed by taking appropriate averages over the scores obtained

at all measurement occasions. Hence, it is the manner in which an individual’s

scores vary across measurement occasions, IAV, which provides the information

for time series analysis.

We already indicated that psychometricians are mainly interested in analyses

of IEV. A vivid illustration of this tendency can be found in the classic treatise

of test theory by Lord and Novick (1968). They define the concept of true score

of a person as the mean of the distribution of scores obtained by independent

repeated measurement of this person. This is obviously a definition in terms

of IAV. Lord and Novick then remark that repeated measurement of the same

person will affect this person’s state and give rise to fatigue, habituation, or

other confounding effects. They conclude that therefore, instead of measuring

one person a large number of times, test theory has to be based on the alternative

paradigm in which a large number of persons is measured once or twice. The shift

to the latter alternative paradigm implies that test theory is based on analysis of

IEV.

Notwithstanding that confounding factors such as habituation and fatigue

might complicate the implementation of a purely IAV based test theory, a ref-

erence to such contingent states of affairs cannot be taken as the reason for the

impossibility of this whole paradigm. In addition, Lord and Novick (1968, p. 32)

state that the definition of true score in terms of IAV would be better suited for

individual assessment than an IEV based test theory that is meant to differen-
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tiate among individuals. It might therefore be expected that psychological tests

constructed on the basis of analysis of IEV perform suboptimally when applied

for the purpose of individual prediction. However, a task that still awaits fur-

ther elaboration is the assessment of situations in which such test performance is

suboptimal.

The urgency to determine the performance of standard tests in the context

of individual assessment and prediction is all the more pressing given the strong

justification for the conjecture that the differences between analysis of IEV and

IAV go deeper than a mere difference in degree of success in the context of indi-

vidual prediction. The reasons we have in mind are of two kinds: the implications

of ergodic theorems, and results from mathematical biology suggesting the pres-

ence of substantial heterogeneity in human populations. Ergodic theory concerns

the characterization of stochastic processes for which analysis of IEV and IAV

yield the same results (e.g., Petersen, 1983). The classic ergodic hypothesis orig-

inates from statistical physics, and states that the average of a stochastic process

over time is equal to the average of the ensemble of stochastic processes at a

single point in time. By an ensemble is meant the possibly infinite number of

hypothesized copies of a system. An ergodic hypothesis can also be stated for

the variance or distribution of a stochastic process. In this sense, for ergodic

processes the one-sided psychometric focus on analysis of IEV does not present

any problem, because results thus obtained also are valid for individual assess-

ment and prediction of IAV. Unfortunately, however, the criteria for ergodicity

are very strict, and involve the absence of any time-dependent changes in the

distributional characteristics of a stochastic process. Therefore, all developmen-

tal, learning and adaptive processes do not obey the criteria for ergodicity. For

these classes of non-ergodic processes, there may not exist any lawful relationship

between IEV and IAV.

Related to ergodicity is the notion of stationarity, which concerns the distri-

butional characteristics of a single realization of a stochastic process. Stationarity

amounts to the absence of time-dependent changes in distributional character-

istics and, except for certain special cases of non-stationarity, is a condition for

ergodicity.2 For Gaussian processes, stationarity is a necessary condition for

ergodicity. An example of a stationary process can be given by the notion of

general intelligence in normal adults.3 Now, it can be assumed that, under nor-

2Note that strict stationarity is meant here, see, e.g., Hamilton (1994, p. 45-46).
3For the sake of argument, let us neglect all problems associated with the theoretical status

and operationalization of general intelligence.
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mal circumstances, a normal adult’s level of general intelligence does not change

structurally over his lifespan. Administration of several intelligence tests over

the lifespan will result in scores that vary, but probably only slightly. The dis-

tribution of intelligence scores in the first half of the measurements is likely to

be equal to that of the second half, and the process can be considered to be sta-

tionary. However, if circumstances change drastically due to, for example, illness

or excessive training on intelligence tests, this distribution is bound to change as

well. The process then is no longer stationary.

Even if the distributional characteristics of a stochastic process are invariant

in time, that is, the process is stationary, it still may be non-ergodic. The key

difference between stationarity and ergodicity concerns the uniqueness of the so-

called equilibrium distribution of a stochastic process, i.e., the distribution of the

values of a stochastic process as time increases without bound. Each stationary

process gives rise to an equilibrium distribution, but this equilibrium distribution

may not be unique. Only if the process is ergodic, then this is necessary and

sufficient for its equilibrium distribution to be unique (cf. Mackey, 1992, Theorem

4.6). Hence stationary processes are non-ergodic if they display a moderate kind

of heterogeneity: their equilibrium distribution is not unique. Notice that this is

the kind of non-ergodicity known from Markov chain theory (e.g., Kemeny, Snell,

& Knapp, 1966). Already the presence of this moderate form of heterogeneity

with respect to the equilibrium distribution implies the possibility of a lack of

lawful relationships between IEV and IAV.

Now, let us return to our intelligence example. The general level of intelligence

of an ensemble of normal adults is not likely to change structurally over time

under normal circumstances. Yet, it is unlikely that all adults have the same

distribution of intelligence scores over time, that is, there does not exist a unique

equilibrium distribution. Thus, the ensemble of human adults in this case is non-

ergodic, although the individual intelligence processes in this example can be

considered stationary. If the ensemble of adults would be ergodic, the following

odd statement would hold: ”Five percent of the people score 125 or higher on

an intelligence test, therefore five percent of the time your intelligence score is

higher than 125”.

There are strong indications that heterogeneity in human populations may

be much more pervasive, transcending the moderate forms associated with non-

ergodicity. Mathematical theory about biological pattern formation (e.g., Mur-

ray, 1993) and nonlinear epigenetics (Edelman, 1987) shows that growth processes

are severely underdetermined by genetic and environmental influences. Conse-
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quently, growth processes have to be self-organizing in order to accomplish their

tasks. In particular the maturation of the central nervous system results from

self-organizing epigenetic processes. Self-organization, however, gives rise to sub-

stantial endogeneous variation that is independent from genetic and environmen-

tal influences (Molenaar, Boomsma, & Dolan, 1993; Molenaar & Raijmakers,

1999). For instance, homologous neural structures on the left-hand and right-

hand side of the same individual (IAV) can differ as much as the left-hand side

of this neural structure in different individuals (IEV). Insofar as the activity of

such heterogeneous neural structures is associated with the performance on psy-

chological tests, this performance can be expected to be heterogeneous in much

stronger forms than is the case with non-ergodicity.

It has been shown by means of simulation experiments as well as mathemat-

ical proof (Molenaar, Huizenga, & Nesselroade, 2003; Kelderman & Molenaar,

2007) that standard factor analysis of IEV is insensitive to the presence of sub-

stantial heterogeneity. For instance, it is an assumption of the standard factor

model that factor loadings are invariant (fixed) across subjects. If, however,

these factor loadings in reality varied randomly across subjects (a violation of

the assumption of fixed factor loadings), then the standard factor model still fits

satisfactorily. There appears to be only one principled way in which the presence

of such heterogeneity can be detected, namely by carrying out replicated factor

analyses of IAV (dynamic factor analysis of multivariate time series; Molenaar,

1985) and then compare the solutions thus obtained for distinct subjects.

In closing this section, it is reiterated that in general one cannot expect law-

ful relationships to exist between the structure of IEV and the structure of IAV.

Such relationships can only be obtained under the restrictive condition that the

processes concerned are ergodic. For non-ergodic processes, and in cases where

human subjects are heterogeneous in even more pervasive ways (e.g., each subject

having its personal factor model with its own distinct number of factors, factor

loading pattern and/or specific variances), the use of IAV paradigms is manda-

tory. To accomplish this, appropriate time series analysis extensions of standard

statistical techniques are required. Brillinger (1975) presents a rigorous deriva-

tion of time series analogues of all standard multivariate techniques (analysis of

variance, regression analysis, principal component analysis, canonical correlation

analysis). In the next section, we present an overview of time series analogues of

latent variable models.
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4.3 Latent variable models

From a general point of view, a stochastic process can be interpreted as a ran-

dom function. That is, as an ensemble of time-dependent functions on which a

probability measure is defined (e.g., Brillinger, 1975, section 2.11). Each time-

dependent function of this ensemble is called a trajectory (or realization). Even if

information is available about the entire past of a stochastic process up to some

time t, then exact prediction for the next time point still is impossible. Each

trajectory in an ensemble extends over the entire time axis. An observed time

series, i.e., the particular stretch of values obtained by repeated measurement

of a single subject, constitutes a randomly drawn trajectory from the ensemble,

where this trajectory is clipped by a time window with width equal to the period

of repeated measurement. In what follows we will denote a stochastic process by

yt and an observed time series thereof by yt, t = 1, . . . , T . We acknowledge that

this notation is not entirely correct, but it is convenient and customary.

A subset of latent variable models for IAV is obtained by replacing all

random variables in a standard latent variable model by stochastic processes.

Bartholomew (1987) has given a useful classification of standard latent variable

models based on two features: whether the observed variable is continuous or

discrete and whether the common latent variable is continuous or discrete. This

classification will be followed in our overview of latent variable models for IAV.

There is an additional third feature which has to be considered for latent variable

models for IAV, namely whether the time dimension is continuous or discrete. We

will, however, restrict attention to models in discrete time only, as this is sufficient

for our present purposes.

If both the observed variable and the common latent variable are continuous,

the latent variable model is classified as a factor model. Replacement of all

random variables in the linear factor model by continuous stochastic processes

yields the linear state-space model: yt = Ztαt + ǫt, wherein yt is the observed

continuous n-variate process, Zt is a matrix of factor loadings, αt is a common m-

variate latent process (also called state process), and ǫt is a n-variate measurement

error process. Statistical analysis of the state-space model is well developed and

is treated in several text books (e.g., Durbin & Koopman, 2001). Hamaker,

Dolan, and Molenaar (2003) discuss applications of the state-space model in

psychological research.4

4Software for the fit of state-space models can be downloaded from:

http://users.fmg.uva.nl/cdolan/.
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If both the observed variable and the common latent variable are discrete,

the latent variable model is classified as a latent class model. Replacement of all

random variables in the latent class model by discrete stochastic processes yields

the hidden Markov model (e.g., Elliott, Aggoun, & Moore, 1995). Visser, Raij-

makers, and Molenaar (2000) present applications of hidden Markov modelling

in psychological research.5 If the observed variable is continuous and the com-

mon latent variable is discrete, the latent variable model is classified as a latent

profile model (Bartholomew, 1987; Molenaar & von Eye, 1994). Replacement of

the observed variable by a continuous stochastic process and the common latent

variable by a discrete stochastic process yields a variant of the hidden Markov

model (Elliott et al., 1995).

If the observed variable is discrete and the common latent variable is con-

tinuous, the latent variable model is classified as a generalized linear model.

Replacement of all random variables in the generalized linear model by discrete

(observed) and continuous (latent) stochastic processes yields a dynamic gener-

alized linear model as described in Fahrmeir and Tutz (2001).

We will focus on a subset of dynamic generalized linear models. That is,

models in which the observed process is dichotomous, related to a continuous

latent process through the logistic response function.

4.4 A logistic model for dichotomous time series

Dichotomous (or binary) time series can be modelled in various ways. If auxiliary

information is available, regression models can be used. For dichotomous time

series, such models are discussed in detail in Kedem and Fokianos (2002) and in

Fahrmeir and Tutz (2001). Our focus is on modelling dichotomous time series

using latent variables which is comparable to the modelling of dichotomous vari-

ables in item response theory (see also, Mellenbergh, 1994; Mellenbergh & Van

den Brink, 1998). Since the latent variable is replaced by a stochastic process,

this approach can be seen as a dynamic extension of item response modelling. As

stated before, this approach is not new, although the emphasis on the modelling

of IAV in this sense is novel. Modelling is pursued following the dynamic gener-

alized linear modelling approach as described in Fahrmeir and Tutz (2001), that

is, by specifying a distributional model, response function, linear predictor, and

transitional model.

5Appropriate software can be found at: http://users.fmg.uva.nl/ivisser/hmm.
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4.4.1 General outline

Consider the situation in which we have a dichotomously scored, multivariate

time series, i.e., an n-dimensional observation vector yt such that yt ∈ {0, 1}n, at

each time point t = 1, . . . , T . Each single univariate observation yit, i = 1, . . . , n,

follows a Bernoulli distribution with parameter πit as the probability of obtaining

a score one, given by

yit ∼ B(πit) = π
yit

it (1 − πit)
1−yit , 0 < πit < 1. (4.1)

The probability πit is modelled by inserting a linear predictor ηit into the logistic

response function, resulting in

πit =
exp(ηit)

1 + exp(ηit)
. (4.2)

Next, the n-dimensional linear prediction vector ηt is constructed by linking the

n × m design matrix Zt with the m-dimensional latent state vector αt

ηt = Ztαt. (4.3)

A linear transition equation is assumed, which relates states at t−1 to t through

the m × m transition matrix Ft, and is given by

αt = Ftαt−1 + Rtξt, ξt ∼ N(0, Qt). (4.4)

The state vector αt is allowed to contain time-invariant elements. The m× p se-

lection matrix Rt is assumed to be a subset of the columns of the m-dimensional

identity matrix Im, so that it associates the elements of the p-dimensional dis-

turbance vector ξt with the p time-varying elements of the state vector (Durbin

& Koopman, 2001, p. 38).6 The elements of ξt are generally referred to as in-

novations. In general, the state process is started up by an initial state α0. The

initialization is dependent on the type of process that is used. If all elements of

the state vector are time-varying, the process can be initialized by α0, which is

normally distributed as follows

α0 ∼ N(a0, Q0). (4.5)

In the above representation, the covariance matrices Qt are nonsingular, which

is somewhat more advantageous in estimation procedures (Durbin & Koopman,

6Notice that m = p + n does not necessarily follow.
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2001, p. 38). Note that a0, Q0, Zt, Ft, Rt, and Qt can contain parameters to be

estimated. Methods for the estimation of these parameters are not well developed.

However, Fahrmeir and Wagenpfeil (1997) describe an estimation procedure for

the estimation of a0, Q0, and Qt.

The following three assumptions are stated to completely specify the model

in terms of densities. The first assumption is that current observations are de-

pendent on current states only:

p(yt|αt, αt−1, . . . , α0, yt−1, yt−2, . . . , y1) = p(yt|αt, yt−1, yt−2, . . . , y1).

The second assumption is that the state process is first order Markovian:

p(αt|αt−1, . . . , α0) = p(αt|αt−1).

Finally, and in addition to assumption one, it is assumed that the multivariate

observations are independent given the current state:

p(yt|αt, yt−1, yt−2, . . . , y1) =
n
∏

i=1

p(yit|αt, yt−1, yt−2, . . . , y1).

Since the specific contents of the state and disturbance vector can be freely

chosen, a variety of latent processes can be captured with the current representa-

tion. Depending on the hypothesized dynamic constellation of the latent process,

one can choose between, for instance, autoregressive processes, moving average

processes, and random walks (e.g., Hamilton, 1994). In addition, trends and

cyclic change parameters can be included in the current representation. For now,

we restrict the latent process to be either a white noise process, an autoregressive

process, or a random walk.

The model can be extended to more than one person (N > 1), more than

one latent process (p > 1), and also to multi-categorical or polytomous time

series. However, the interest here lies in N = 1 and since results of analyses of

dichotomous time series with this type of models are not widely available, we

next consider some simple, yet illustrative modelling examples.

4.4.2 A dynamic logistic model

We now illustrate how a dynamic variant of the Rasch model can be obtained.

We begin by contructing the state vector αt, which consists of two parts. The first

part describes a person’s univariate latent process θt. The second part consists

of n time-invariant threshold parameters, each associated with the corresponding
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element of yt, denoted by β. We consider three different processes, namely, a

white noise process, a first-order autoregressive process, and a first-order random

walk. These processes are given by, respectively,

θt = µθ + ξt, ξt ∼ N (0, q) , (4.6)

θt = µθ + φ1θt−1 + ξt, ξt ∼ N (0, q) , (4.7)

θt = µθ + θt−1 + ξt, ξt ∼ N (0, q) , (4.8)

where µθ is a time-invariant mean and φ1 is the autoregressive parameter. Note

that if |φ1| < 1, the autoregressive process is stationary. The random walk

in Equation 4.8 can be perceived of as the discrete time analogue of Brownian

motion (Klebaner, 1998, p. 80). It should be noted that the random walk process

is nonstationary since Var(θt) → ∞ as t → ∞, and therefore non-ergodic. For

each of the three processes, we have αt = (θt, µθ, β
′)′ and m = p + n + 1. For

simplicity and sufficiency for present purposes, the following model parameters

and matrices are considered time invariant as well: the design matrix (Z), the

transition matrix (F ), the selection matrix (R), and the covariance matrix of the

state disturbances (Q).

Consider now the situation in which we have four dichotomous variables.

Modelling is pursued as follows. We have a 4-dimensional vector of observations

yt, a 4-dimensional probability vector πt, and a 4-dimensional linear prediction

vector ηt, related to each other as stated in Equations 4.1 and 4.2. The time

invariant elements of the state vector do not need to be initialized, and the white

noise process in Equation 4.6 does not either. Only the autoregressive process

and the random walk have to be initialized with θ0. The initial state and the

6-dimensional state vector then have the following form

α0 = Rθ0 =





















θ0

0

0

0

0

0





















, αt =





















θt

µθ

β1

β2

β3

β4





















.

The specification of the design matrix defines the relation between the person
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process and the threshold parameters, and is given by

Z =











1 1 −1 0 0 0

1 1 0 −1 0 0

1 1 0 0 −1 0

1 1 0 0 0 −1











.

The logistic response function relates the linear predictor ηt = Zαt to the prob-

ability vector πt with elements

πit =
exp(θt − βi)

1 + exp(θt − βi)
. (4.9)

Equation 4.9 can be seen as a dynamic variant of the Rasch model. Note that this

is the form of the Rasch model without the so-called item-invariant discrimination

parameter (see Hambleton & Swaminathan, 1985, p. 47). For the random walk

process, the transition matrix F is simply the 5 × 5 identity matrix, I5. For the

white noise process, F is the same except that its first element F1,1 is zero. For the

autoregressive process, the first element F1,1 is equal to φ1. The selection matrix

R reduces to a vector r, because we have only a single time-varying parameter

(θt), and is given by

r =





















1

0

0

0

0

0





















Estimation of the latent process is discussed next.

4.5 Estimation

The iteratively weighted Kalman filter and smoother (KFS) as described in

Fahrmeir and Wagenpfeil (1997) is used to obtain estimates of the latent pro-

cess αt. The KFS procedure maximizes the following log-posterior distribution
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of the states αt, t = 1, . . . , T ,

log p(α) =
T
∑

t=1

n
∑

i=1

(yit log(πit) + (1 − yit) log(1 − πit))

− 1

2
(α0 − a0)

′Q−1
0 (α0 − a0)

− 1

2

T
∑

t=1

(αt − Ftαt−1)
′RtQ

−1
t R′

t(αt − Ftαt−1), (4.10)

For the white noise process, the initial state contribution can be eliminated from

the log-posterior. Also, in the third part of Equation 5.11, only the time-varying

elements (θt) of the state vector contribute to the log-posterior. However, this

contribution differs for the three models that are used here, and therefore, the

above representation is retained. In the presentation of the KFS procedure, the

parameters or values in a0, Q0, Z, F , R, and Q are considered to be either known

or fixed. In each iteration i of the KFS procedure, evaluation values for the state

process are needed, which are denoted by ãi = (ã
i′
1 , ã

i′
2 , . . . , ã

i′
T )′. Filtering and

smoothing then proceeds as follows.

4.5.1 Filtering

First, the filter is initialized by

a0|0 = a0 and V0|0 = R0Q0R
′
0.

The extended Kalman filter consists of two recursive steps, a prediction and

correction step, which are taken consecutively. The prediction step is described

as follows

at|t−1 = Ftat−1|t−1,

Vt|t−1 = FtVt−1|t−1F
′
t + RtQtR

′
t.

The correction step is given by the following equations

Vt|t = (V −1
t|t−1 + Bt)

−1,

at|t = at|t−1 + Vt|tbt,

where bt and Bt are the so-called working score function and expected information

matrix given by

Bt = Z ′
tDtΣ

−1
t D′

tZt,

bt = Z ′
tDtΣ

−1
t (yt − h(Ztã

i
t)) + Bt(at|t−1 − ãi

t),
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where h(.) is the logistic response function and, for the modelling example con-

sidered in Section 4.4.2, Dt is the symmetric Jacobian matrix of the response

function given by

Dt =
∂h(ηt)

∂ηt

=











πt1 (1 − πt1)

0 πt2 (1 − πt2)

0 0 πt3 (1 − πt3)

0 0 0 πt4 (1 − πt4)











,

and Σt is the covariance matrix of yt given by

Σt =











πt1 (1 − πt1)

0 πt2 (1 − πt2)

0 0 πt3 (1 − πt3)

0 0 0 πt4 (1 − πt4)











.

Both Dt and Σt are evaluated at ãi
t. Note that Dt and Σt are equal for our

modelling example, although, in general, this is not necessarily the case.

4.5.2 Smoothing

The fixed interval smoother is a backward procedure to obtain state estimates

at−1|T utilizing the information of the complete time series. For t = T, . . . , 2, we

obtain

at−1|T = at−1|t−1 + Gt(at|T − at|t−1),

Vt−1|T = Vt−1|t−1 + Gt(Vt|T − Vt|t−1)G
′

t,

where

Gt = Vt−1|t−1F
′

t V
−1
t|t−1.

After each application of the filter and smoother, the state evaluation values

are updated with the results of the smoother, that is, ãi+1 = (a
′

1|T , . . . , a
′

t|T )
′

.

The filter and smoother are applied repeatedly until some convergence criterion

is reached. The stopping criterion of the KFS procedure used in the present

investigation is max |ãi − ãi−1| < 1−12.
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Table 4.1: Results on parameter estimation for simulated data

WN AR RW

Parameter Value Est.1 SE2 Est. SE Est. SE

µθ 0.00 0.068 (0.086) 0.066 (0.148) 0.134 (0.276)

β1 -1.50 -1.289 (0.148) -1.268 (0.152) -1.447 (0.160)

β2 -0.50 -0.511 (0.134) -0.532 (0.139) -0.500 (0.146)

β3 0.50 0.559 (0.136) 0.461 (0.140) 0.504 (0.153)

β4 1.50 1.241 (0.151) 1.339 (0.158) 1.442 (0.182)
1 Estimate

2 Standard error

4.6 Examples

4.6.1 Simulated data

Data were simulated using the three models described in Section 4.4.2 with the

following parameter settings. Each simulated time series has length T = 200.

The threshold parameters for all three models are the same and given by

β =











β1

β2

β3

β4











=











−1.5

−0.5

0.5

1.5











.

For identification purposes, µθ is kept fixed at zero. This parameter can then

be deleted from the state vector, and associated model matrices Z, F , and R

are of reduced dimension. The variance of the white noise process θt is fixed at

one, so q = 1. The autoregressive parameter is φ1 = 0.7, and the variance of the

autoregressive process θt is also fixed at one, which means that q = 1−φ2
1 = 0.51.

The variance of the innovations of the random walk process is q = 0.01. So we

have four items, a single latent factor, a single person, and a series of length

T = 200.

The results on parameter estimation for the three simulated data examples

are given in Table 4.1. The estimated β’s are rescaled, so that their mean is

zero, and an estimate of µθ is obtained. In this example, the item parameters

are recovered best with the RW process in terms of bias, but the standard errors

of the item parameters are slightly larger than for WN and AR processes. The
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Figure 4.1: Estimated probabilities with dotted observations for white noise

process

differences in standard error of µθ for the three processes are remarkably large

compared to those for the item parameters.

The results of filtered and smoothed probabilities, and filtered and smoothed

states are presented in figures. Figure 4.1 displays the smoothed probabilities

of the white noise process and Figure 4.2 displays the true and estimated latent

process. Since the process is sequentially independent, the smoothed process can

take on only five different values (the number of possible sumscores on the four

items). This is seen in Figure 4.1, where each item has five probabilities and

the probability values are dependent on the β’s. Because the estimated latent

process can take on only five different values, the true process is not well tracked,

which can be seen in Figure 4.2.

Figure 4.3 displays the true and estimated probabilities for the AR example.
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Figure 4.2: True (-) and estimated (- -) white noise process

Since the process is dependent on its first lag, the estimated latent process can

take on many more values than the number of sumscores. The estimated proba-

bilities track the true probability with reasonable accuracy. Figure 4.4 shows the

true and estimated process paths. The true process is roughly tracked, although

sometimes peaks or jumps seem difficult to recover.

Figures 4.5 and 4.6 show the results obtained with the random walk. Since a

relatively small variance was selected for the innovations, the process is smoother

than the first two examples. The estimated probabilities follow the true proba-

bilities, although they tend to be too smooth. The divergence of the estimated

latents process, however, is more severe, which is clearly seen in the middle of

the time series in Figure 4.6.

4.6.2 Real data

Real data were analysed with the described techniques. We selected a single

subject and a single subscale (Neuroticism) containing six items of a data set

consisting of personality questionnaires containing 30 items scored on seven-point

scales, administered to 22 psychology students on 90 consecutive days (Borkenau
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Figure 4.3: True (-) and estimated (- -) probabilities with dotted observations

for autoregressive process

& Ostendorf, 1998).7 The questionnaires were constructed as to measure the Big

Five personality factors (McCrae & John, 1992). The data were dichotomized

for illustrative purposes only in order to apply the dynamic logistic model.

The WN, AR, and RW processes were fitted to the observed time series. Since

this example is for illustrative purposes, the parameters q and φ1 were fixed at

the same values as in the simulated data examples. The results on the estimation

of the other parameters is displayed in Table 4.2. The estimates of µθ display

the same pattern as in the simulated data. The item parameter estimates show a

different pattern in that with the WN process, the estimates are somewhat more

spread out than with the AR process and the RW process. The standard errors

7Data were kindly made available by professor Borkenau.
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Figure 4.4: True (-) and estimated (- -) autoregressive process

of the item parameters do not differ much between the three processes.

Figure 4.7 shows the estimated latent WN, AR, and RW processes. On the

left side, the results of the filter are displayed, and on the right side, the results of

the smoother. Some observations can be made. For the WN process, there are as

many values for the process as there are sumscores, but only after the smoother

has been applied. The effect of smoothing is much larger for the RW process than

for the other two processes in this example. The smoothed RW process displays

an interesting swelling pattern which is difficult to unveil with the WN process.

In the AR process, the pattern of the RW process is becoming visible.

4.7 Discussion

In the present chapter we took a closer look at the rationale for the emphasis in

psychometrics on the analysis of IEV. It was found that this rationale is weak

and that arguments for analysis of IAV are too easily brushed aside. We provided

arguments for the development of models based on IAV. The question of the ex-

istence of any lawful relationship between analysis of IEV and IAV was addressed
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Figure 4.5: True (-) and estimated (- -) probabilities with dotted observations

for random walk process

and it was argued that there are criteria for the existence of such a relationship.

These criteria, however, are very strict and are met only when the processes con-

cerned are ergodic. Since, in practice, little is known about the relation between

analysis of IEV and IAV, and thus about ergodicity of the processes concerned in

psychometrics, investigation of this relation is important. First, however, reliable

methods have to be developed for analysis of IAV. The present chapter attempted

to provide an outline of methods for analysing single-subject dichotomous time

series.

An advantage of the presented modelling approach is that models for poly-

tomous responses can be easily obtained after appropriate adjustments. In ad-

dition, it can be investigated if several persons can be analysed with the same

model with equal parameter settings, i.e., if measurement invariance holds. How-
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Figure 4.6: True (-) and estimated (- -) random walk process

ever, the results of the simulated and real data examples indicate that the dis-

cussed modelling outline requires further investigation. Important topics in this

investigation are the development of estimation methods for variances and au-

toregressive parameters. Fahrmeir and Wagenpfeil (1997) discuss a procedure to

estimate a0, Q0, and Q, but little is known about its behavior. Finally, in order

to perform a full analysis of real data, methods to evaluate the fit of the discussed

types of models become a necessary tool. Such methods await development and

investigation.

Table 4.2: Results on parameter estimation for single subject neuroticism data

WN AR RW

Item Parameter Est. SE Est. SE Est. SE

µθ 0.276 (0.123) 0.319 (0.222) 0.637 (0.319)

Irritable (+) β1 -0.117 (0.214) -0.109 (0.207) -0.100 (0.202)

Emotionally stable (-)1 β2 0.211 (0.217) 0.193 (0.210) 0.176 (0.205)

Calm (-) β3 0.046 (0.215) 0.041 (0.208) 0.037 (0.203)

Bad-tempered (+) β4 0.799 (0.230) 0.738 (0.224) 0.679 (0.219)

Resistant (-) β5 -0.714 (0.216) -0.655 (0.210) -0.601 (0.204)

Vulnerable (+) β6 -0.225 (0.214) -0.208 (0.207) -0.191 (0.202)
1 Items with a minus are negatively formulated and therefore recoded.
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Figure 4.7: Filter (left) and smoother (right) results of fitting white noise

(top), autoregressive (middle), and random walk (bottom) processes to single

subject neuroticism data
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State space methods for item response

modelling

5.1 Introduction

Item response theory (IRT) is an important area of research in psychometrics. It

provides a theoretical framework for the construction, application, and evalua-

tion of tests in psychological and educational measurement. Within contemporary

IRT, probabilistic models are used to describe the relations between observable

item responses and unobservable psychological traits or abilities (Hambleton &

Swaminathan, 1985). A primary purpose of IRT, and of test theory in general, is

to describe the differences in item responses and test scores between individuals,

because most applications are more suited for describing groups than individ-

uals (Lord & Novick, 1968, p. 32). The purpose of this paper is to describe

IRT models that are based on differences in item responses within individuals

to whom is administered the same test repeatedly over time, that is, to describe

dynamic IRT models. For the analysis of this type of measurements, the state

space framework is used (Durbin & Koopman, 2001). As demonstrated, the state

space methodology is capable of handling the analysis of both standard and dy-

namic IRT models in a straightforward manner. In addition, this framework can

simultaneously handle the analysis of differences between and within individuals.

Most IRT models are developed to account for the variation in item responses

that arises when items are administered to different individuals. The argumen-

tation for the development of such models is to explain the differences between,

rather than within, individuals. It can be argued that, at least on a theoretical

level, this focus is one-sided, and that it is of interest to develop IRT models

that account for the variation within individuals. For a thorough argumenta-

tion in favor of developing models for describing variation within individuals,

see Molenaar (2004) and the subsequent discussion. One of the arguments for

pursuing the development of such models is that a model that provides an in-

formative account of inter-individual differences, is not necessarily valid at the

level of intra-individual differences, as observed in repeated measures obtained
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from a single individual (Kelderman & Molenaar, 2007; Borsboom, Mellenbergh,

& van Heerden, 2003). While the ultimate goal of a standard application of IRT

is to make inferences about a person’s position on one or more latent dimensions

of inter-individual differences, such inferences are not necessarily correct at the

intra-individual level. More specifically, the constitution of the latent space of

inter-individual traits or abilities that one intends to measure may be either in-

complete or over-complete at the intra-individual level. That is, while ignoring

a latent dimension contributing to an individual’s development on the one hand,

too much importance might be attached to certain factors which can be relevant

for only some individuals on the other. In addition, a person’s latent position

can change over time, and individual differences can exist in the structure of such

changes.

The above argumentation can be related to a discussion of two commonly

used interpretations of probability in IRT (see Fischer & Molenaar, 1995; Hol-

land, 1990). In describing the two views, a single administration of a single

specific test is considered. The first view is the so-called random-sampling view,

in which the only source of variation is the random sampling of individuals. In

this view, individuals conceivably possess fixed, yet unknown response patterns.

By sampling individuals at random from a population with a certain latent po-

sition, variation in response patterns is likely to occur. The probability of a

response pattern can then be viewed as the proportion of individuals from that

population that would show that pattern under repeated random sampling. The

second and more popular view is the stochastic-subject view. In this view, each

individual possesses a certain latent position, and probability is defined by the

proportion of response patterns obtained by hypothesized repeated and indepen-

dent administrations of the same test under the exact same circumstances.

This view is adopted when defining IRT models from variation within in-

dividuals over time, except that the administrations are not independent and

circumstances are subject to change. In defining a dynamic IRT model in this

sense, an individual can at first instance be considered as fixed, and is therefore

no source of variation. Variation in response patterns may arise from different ad-

ministrations of the same test, and an analogous argumentation can be advanced

in this case. An immediate practical problem occurs, since these administrations

can only be performed sequentially. As a consequence, they cannot be considered

to be independent, and this sequential dependence should be accounted for in the

model. As such, we are dealing with a time series, and methods to model the

dependence and changes explicitly are widely available (Hamilton, 1994). Stan-
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dard IRT models can be built from the random-sampling view (Holland, 1990),

but when it comes to the interpretation of the characteristics that desribe an in-

dividual, one often relapses to the stochastic-subject view (Fischer & Molenaar,

1995). Ellis and van den Wollenberg (1993) have argued that this shift is justi-

fied only if the condition of local homogeneity holds. Local homogeneity amounts

to invariance of the distribution of the item responses conditional on the latent

variables accross all possible subpopulations (Ellis & van den Wollenberg, 1993,

Theorem 2).

IRT models in which intra-individual variation is explicitly accounted for pro-

vide a different view on matters, because they start out from the smallest possible

subpopulation, that is, a single individual. An important topic that arises when

one is interested in models for intra-individual variation is that of stationarity.

A second topic which is important when one is concerned with more than one

individual, is that of ergodicity. Stationarity concerns the lack of time depen-

dence of the distribution of a single time series (Hamilton, 1994). Ergodicity

concerns the distributional properties of an ensemble of time series. The notion

of ergodicity, to which we adhere, can be formulated as follows: If the model

is stationary and the same for each individual, the collection of individuals is

considered ergodic. This means that individuals are interchangeable and that an

analysis of a collection of individuals on a single time point provides the same

results as an analysis of a randomly selected single individual on a collection of

time points. Generalizations can then be conducted either way. Consider the fol-

lowing example, if a model with a univariate latent process can be used to explain

the response patterns obtained by repeated administrations of the same test to a

single individual, and the model parameters and the distribution of this process

does not change over time, then the condition of stationarity is met. Now, if the

same model and univariate latent process holds for the collection of individuals,

the condition of ergodicity is said to be met.

Thus, when the collection of individuals is ergodic, the two views on proba-

bility in item response modelling coincide. In this sense, it is agreed that local

homogeneity is necessary to abide by the stochastic-subject view. In contrast,

if ergodicity holds, individual predictions based on interindividual analysis are

justified as well as interindividual statements based on a single intra-individual

analysis. However, human ensembles are likely to be non-ergodic in many aspects

(see Chapter 4 of this thesis).

In comparing the two types of variation within IRT, two implications of the er-

godic notion are pertinent. First, the number of latent dimensions best describing
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the item responses can differ between individuals. In this case, ergodicity does not

hold, and each individual or cluster of comparable individuals needs to be anal-

ysed seperately. Second, even if the latent processes of two persons are stationary

and of the same dimension, the specific time dependencies can be different. For

example, an autoregressive and a white noise process can both be stationary and

univariate. If this combined model proves to be best fitting on the data of two

individuals, can the interpretation of the two latent processes be equated? In

terms of the psychological content of the processes, there is no definitive answer.

This issue complicates matters substantially in comparing individual differences

in variation over time.

Many models for dynamic testing and measuring change have been described

(e.g., Fischer, 1989; Embretson, 1994), and some of which are of special interest

here. Within the framework of IRT, Kempf (1977) dropped the assumption of

local independence. He derived sufficient statistics for the person parameters by

conditioning on the sumscore of previous responses. Verhelst and Glas (1993)

circumvented dropping the assumption of local independence by deftly manipu-

lating the concept of incomplete designs. They develop a dynamic Rasch model

and a marginal maximum likelihood estimation procedure. In the present chap-

ter, we describe a dynamic model for responses to repeatedly administered items

in which latent variables are generalized to latent processes. An extended version

of the Kalman filter is used to estimate the parameters, which is based on the

posterior distribution of so-called states of a state space model (Fahrmeir, 1992;

Fahrmeir & Wagenpfeil, 1997).

The outline of this chapter is as follows. First, the Rasch model and the partial

credit model are discussed followed by a description of commonly used parameter

estimation methods and the assessment of model fit. Next, the dynamic versions

of the Rasch and partial credit models are introduced. Hereafter, a description

follows of how to specify both standard and dynamic IRT models as a state space

model. Then, the estimation by means of Kalman filtering and smoothing is

discussed. The methods are illustrated by two example data sets, one standard

IRT analysis and one dynamic IRT analysis. This chapter ends with a discussion.
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5.2 Standard IRT

5.2.1 Models

In a basic IRT setting, a unidimensional latent variable θ is assumed to be related

to the probability of the responses y on a test of n items by a monotonically

increasing function. This function is referred to as the item response function

(IRF). The latent variable θ refers to some unobserved psychological trait of

an individual, e.g., math ability, which the items are supposed to measure, and

describes the differences between individuals. The characteristics of an item can

be described by one or more parameters. Rasch (1960) developed such a model for

dichotomous item responses, that is, when the elements of y can each be scored

as either 0 or 1. In this model, the probability that a person with a certain

θ responds to item i with threshold parameters βi with 1 is determined by the

logistic function as follows

p(yi = 1|θ) = pi(θ) =
exp(θ − βi)

1 + exp(θ − βi)
, i = 1, . . . , n. (5.1)

If a person’s θ exceeds the items threshold βi, the response 1 is more likely, and if

βi exceeds θ, the response 0 is more likely. This model has been used extensively

in educational settings in which dichotomous item responses can often be scored

as incorrect (0) or correct (1). The parameter βi has therefore acquired the

interpretation as item difficulty. The model in Equation 5.1 has come to be

known as the Rasch model (RM), although it is also referred to as the one-

parameter logistic model (Hambleton & Swaminathan, 1985). The RM possesses

the property of specific objectivity which states that the comparison of items is

only dependent on the difference in difficulty (β), and in turn, the comparison

of persons is only dependent on the difference in ability (θ). For two different

items and two different persons, specific objectivity is obtained by simplifying

the following log odds ratios,

log

(

p1(θ)
1−p1(θ)

p2(θ)
1−p2(θ)

)

= β2 − β1 and log

(

pi(θ1)
1−pi(θ1)

pi(θ2)
1−pi(θ2)

)

= θ1 − θ2.

The Rasch model for dichotomous items can be extended to allow for more

differences between items than the difficulty alone. For instance, differences in

steepness of the IRFs can be represented in the model by the inclusion of a

discrimination parameter. It can also be extended to allow for guessing if ability

items with a closed response format are concerned. For the logistic model, these
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extensions were developed by Birnbaum (1968). Rasch and others extended the

models to allow for items with more than two responses, that is, for polytomous

items (Samejima, 1969; Andersen, 1995). Since these extensions not only allow

for polytomously scored ability items, but also for the use of Likert scale formats,

IRT models have found their way outside the realm of ability testing. Apart from

educational settings, applications can nowadays be found in clinical psychology,

personality testing, and attitude measurement (see Embretson & Reise, 2000;

Van der Linden & Hambleton, 1997).

One polytomous extension of the dichotomous Rasch model is the rating scale

model discussed by Andrich (1978a, 1978b). Masters (1982) obtained a somewhat

more general extension for items with ordered categories scored from k = 0, . . . , q.

This model is known as the partial credit model (PCM), and it is used here.

Without loss of generality, it is assumed throughout that all items have an equal

number of categories, that is, q + 1. Then, the conditional probability that

a person with a certain θ responds to item i with threshold parameters βi =

{βi1, . . . , βiq} with response k is determined by the logistic function as follows

p(yi = k|θ) = pik(θ) =
exp

∑k

v=0(θ − βiv)
∑q

c=0 exp
∑c

v=0(θ − βiv)
, k = 0, 1, . . . , q, (5.2)

i = 1, . . . , n,

where
∑0

v=0(θ − βiv) ≡ 0. The above function is referred to as the k-th item

category response function (ICRF). The following representation can be used as

well

pik(θ) =
exp(kθ −

∑k

v=0 βiv)

1 +
∑q

c=1 exp(cθ −
∑c

v=1 βiv)
,

in which case we define βi0 ≡ 0. For k = 1, . . . , q it holds that, given that a

person responded to item i in category k or k − 1, the probability of response k

is governed by the Rasch model, that is,

p(yi = k|yi = k or k − 1, θ) =
exp(θ − βik)

1 + exp(θ − βik)
.

The item category parameters βi1, . . . , βiq are interpreted as threshold locations

on the θ-scale (see Masters & Wright, 1997). If θ exceeds βik, then category

k becomes more probable than category k − 1. If not, category k − 1 is more

probable than category k. The location on the θ-scale at which θ = βik indicates

that the adjacent ICRFs intersect. Note that the item category parameters do

not need to be ordered as is the case in other polytomous item response models



5.2 Standard IRT 79

such as the graded response model developed by Samejima (1969). The RM and

its extensions such as the PCM are exponential family models, and therefore have

certain favorable properties such as sufficient statistics for their parameters.

5.2.2 Estimation

In the estimation of item parameters, the person parameters θ and item pa-

rameters β are referred to as incidental and structural parameters, respectively

(Fischer & Molenaar, 1995; Neyman & Scott, 1948). This is due to the fact

that the number of person parameters increases as the sample size N increases,

whereas the number of item parameters does not. With the increase in sample

size, the item parameter estimates improve in terms of accuracy and precision,

whereas the person parameters do not. Reiterating that the final object of any

psychological or educational test is to make inferences about persons, the some-

times used term nuisance parameter for θ is only meaningful in the phase of item

parameter estimation. In fact, van der Linden and Hambleton (1997, p. 5) rather

refer to the person parameter as structural parameters, and the item parameters

as nuisance parameters. Needless to say, if test length is increased, person param-

eter estimates improve, and item parameter estimates do not. Item and person

parameters are usually estimated seperately, and, consequently, item parameter

estimation methods are distinguished from person parameter estimation methods.

We discuss some commonly used methods in the following.

Generally, both item and person parameter estimation methods are based on

the log-likelihood function of the observed responses, possibly in combination

with some appropriate prior distribution of the item and person parameters.

Given a set of n dichotomous items administered to N persons, the log-likelihood

function of θ = (θ1, . . . , θN ) and β = (β1, . . . , βn) for the RM can be written as

log L(y; θ, β) =

N
∑

j=1

n
∑

i=1

yij log(pi(θj)) + (1 − yij) log(1 − pi(θj)) (5.3)

=

N
∑

j=1

n
∑

i=1

yij(θj − βi) − log(1 + exp(θj − βi)).

For polytomous items, the log-likelihood function is obtained as follows. Let the

polytomous response yij be replaced by a dummy vector of length q of which each

element yijk, k = 1, . . . , q is scored 1 if category k is observed and 0 otherwise.
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Then, the log-likelihood function for polytomous PCM items can be given by

log L(y; θ, β) =

N
∑

j=1

n
∑

i=1

(

q
∑

k=1

yijk log(pik(θj)) + (1 −
q
∑

k=1

yijk) log(1 −
q
∑

k=1

pik(θj))

)

.

(5.4)

The three most commonly used item parameter estimation methods for the

RM and the PCM are joint maximum likelihood (JML), conditional maximum

likelihood (CML) and marginal maximum likelihood (MML) estimation (see

Molenaar, 1995; Andersen, 1995). JML estimation is an iterative procedure in

which both item and person parameters are estimated. First, starting values for

the item parameters are considered as fixed and the person parameters are esti-

mated by maximizing the log-likelihood function. In turn, the obtained person

parameter estimates are considered as fixed, and the item parameters are esti-

mated again by maximizing the log-likelihood. This procedure is repeated until

the estimates of both sets of parameters have converged. The JML procedure can-

not be applied when either persons or items obtain minimum or maximum scores,

because the log-likelihood has no finite maximum in that case. For polytomous

PCM items, JML estimation also poses problems when categories have zero fre-

quencies, so-called null categories (see Wilson & Masters, 1993). Bertoli-Barsotti

(2005) stated necessary and sufficient conditions for existence and uniqueness of

JML item parameter estimates for the PCM for this case.

CML estimation is a procedure that makes use of the fact that the Rasch

model and its extensions are exponential family models, in which case a persons

sumscore is a sufficient statistic for θ. By conditioning on this sufficient statistic,

θ can be removed from the likelihood and the item parameters are estimated by

maximizing the thus obtained conditional likelihood (Andersen, 1972). Again,

estimation problems arise in cases of minimum or maximum item scores and null

categories.

In the MML estimation procedure, the likelihood is multiplied by a probability

density function for θ that is assumed over persons. The normal density is an

obvious choice, yet other distributions can be used as well (see Thissen, 1982).

The MML procedure generally starts out by integrating θ out of the product of

the likelihood and the assumed density, and the thus obtained marginal likelihood

is maximized to find item parameter estimates. Since the integration cannot be

performed exactly, one usually resides to some kind of numerical approximation

such as Gauss-Hermite quadratures. An advantage of this procedure is that

item parameter estimates can be found for extreme item scores as well as null
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categories.

In comparing the three methods, there is no obvious advantage, although

some comparisons can be made (see also, Holland, 1989). The CML and MML

procedures are known to produce consistent estimates, whereas the JML pro-

cedure does not necessarily do so. CML estimation has attractive asymptotic

features, and does not need to make assumptions about the distribution of θ. On

the other hand, some information can be lost in CML estimation (see Holland,

1989; Eggen, 2000). On the whole, MML estimation is most widely applicable,

whereas CML estimation possesses the most attractive properties when applica-

ble. However, note that the advantages of MML are largely due to additional

assumptions, which are not necessary to apply the JML and CML estimation

procedures.

Except for the JML procedure, item parameters are generally estimated first.

Then, these estimates are considered as fixed and θ is estimated by some appro-

priate procedure. It should be noted that CML estimation is also applicable to

the estimation of person parameters for Rasch models, although this is unusual

and computationally cumbersome. Commonly used methods for the estimation

of θ with fixed item parameters are maximum likelihood (ML), weighted max-

imum likelihood (WML), or a Bayesian estimation procedure such as Bayesian

modal (BM) estimation (see also, Hoijtink & Boomsma, 1995). In ML estima-

tion θ, the log-likelihoods in Equations 5.3 and 5.4 are simply maximized while

keeping item parameters fixed. Again, no estimates are available for extreme re-

sponse patterns. Warm (1989) developed an alternative procedure named WML

which overcomes this problem, and in which the likelihood is multiplied by a

weight function involving the test information function and then maximized with

respect to θ. In BM estimation, the likelihood function is multiplied by a dis-

tribution function for θ and the mode of the resulting posterior is used as an

estimate for θ. If a standard normal distribution is used, the log posterior can be

written as (Hambleton & Swaminathan, 1985, p. 94)

f(θ|y) ∝ log L(y; θ, β)− 1

2

N
∑

j=1

θ2
j .

Tsutakawa and Johnson (1989) discussed a person parameter estimation proce-

dure which accounted for the uncertainty in the item parameter estimates.
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5.2.3 Evaluation

In general, a thorough evaluation of the fit of an IRT model consists of several

stages, and many aspects of the model and estimation procedure can be tested.

Glas and Verhelst (1995) distinguished three aspects of evaluating model fit,

which are the assumptions and properties of the selected model and estimation

procedure, the type of statistic, and the mathematical refinement of the method.

One can select appropriate fit measures on the basis of which aspects are deemed

important for a particular application of IRT.

The basic assumptions such as the (uni)dimensionality of the model and local

independence are checked first. For RMs combined with CML estimation, suffi-

ciency of the sumscore can be tested. If MML is used, fit measures testing the

appropriateness of the assumed distribution for θ can be used. In addition, prop-

erties pertaining to specific models can be investigated. If the RM holds, there

exist no differences in discrimination between the items, and, in ability testing,

the probability of guessing the correct answer is minimal. Such properties can

for instance be tested with likelihood ratio tests. Furthermore, the fit of certain

elements of the model can be studied seperately. For example, the fit of a specific

item can be investigated, and person fit statistics can be constructed to detect

aberrant response behavior.

Since a full discussion of model fit procedures is beyond the purpose of this

chapter, we only discuss procedures to evaluate overall fit and to inspect item and

person fit that we use in our analyses later on. Measures of overall goodness of fit

are often based on differences between observed and expected response patterns.

Usually, some approximation to the χ2 distribution is calculated from the n-

dimensional contingency table and the model used. However, such contingency

tables rapidly become very large as the number of items and categories increase.

That is, the table rapidly becomes sparse, and the χ2 approximations are only

valid if the sample size is very large which in turn increases the power of the

test. In addition, the implications of rejecting the null hypothesis depend on the

model and estimation procedure.

Within the realm of MML, for each possible response pattern, an expected

frequency can be calculated on the base of the marginal probabilities. These

expected frequencies can be obtained with the following marginal probability of

a given response vector y

pMML(y) =

∫ ∞

−∞





n
∏

i=1

q
∏

k=1

pik(θ)
yik

(

1 −
q
∑

k=1

pik(θ)

)1−
∑q

k=1
yik



 f(θ)dθ, (5.5)
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where the integral can be approximated numerically by, say, Gauss-Hermite

quadrature. A simple χ2 approximation such as the Pearson X2 or the likelihood-

ratio statistic G2 is easily computed by

X2 = N
∑

y

(pOBS(y) − pMML(y))2

pMML(y)
,

G2 = 2N
∑

y

pOBS(y) log

(

pOBS(y)

pMML(y)

)

,

where pOBS(y) is the observed proportion of response pattern y, and the sum-

mation occurs over all possible response patterns, that is, over all cells in the

n-dimensional contingency table. Note that the observed proportion is required

to be larger than zero in order to compute G2.

Masters and Wright (1997) discuss infit and outfit measures for inspecting

item and person fit. For each response, a standardized residual can be calculated

from the observed and expected response by

zij =
yij − E(yij|θ)
√

Var(yij|θ)
, (5.6)

where E(yij|θ) and Var(yij|θ) are the expected response and variance given by

E(yij|θ) =

q
∑

k=0

kpik(θj), Var(yij|θ) =

q
∑

k=0

(k − E(yij|θ))2pik(θj).

Note that the probability pik(θj) can be calculated in different ways depending on

which estimation procedure was used to estimate the item and person parameters.

Item and person fit indices can be obtained by

ui =
N
∑

j=1

z2
ij and uj =

n
∑

i=1

z2
ij ,

respectively. The asymptotic distribution of the above measures is unknown and

no rules of thumb are available for the interpretation of their values. Yet, it is

safe to say that items and persons with relatively large residuals require close

inspection if overall fit measures like the X2 and G2 indicate a bad fit.

5.3 Dynamic IRT

5.3.1 Models

The dynamic item response models used here are straightforward extensions of

the RM and the PCM. The relations and parameters, however, are interpreted
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at the level of a single individual. It is assumed throughout that time unfolds

in equidistant discrete steps, item parameters are constant over time, and θ is

unidimensional. These assumptions are not strictly necessary, but simplify the

presentation and illustration of the models and methods considerably. The di-

chotomous or polytomous n-variate time series yt is observed from t = 1, 2, . . . , T .

We do not distinguish between a time series and a realization thereof. The condi-

tional probability of response yit = 1 of a person with a certain θt to dichotomous

item i at time t is defined by

p(yit = 1|y∗
t−1, θt, βi) = pi(θt) =

exp(θt − βi)

1 + exp(θt − βi)
, (5.7)

where y∗
t−1 denotes the complete history of responses of a person, that is,

(yt−1, . . . , y1), and θt is a latent process. The above dynamic Rasch model (DRM)

can be extended in the same manner as the RM to allow for polytomous time

series. This dynamic partial credit model (DPCM) is then determined by the

conditional probability that a person with a certain θt at time t responds to item

i with threshold parameters βi = (βi1, . . . , βiq) with response k as follows

p(yit = k|y∗
t−1, θt, βi) = pik(θt) =

exp(kθt −
∑k

v=0 βiv)

1 +
∑q

c=1 exp(cθt −
∑c

v=1 βiv)
, (5.8)

where βi0 ≡ 0. The specification of the latent person process and further assump-

tions are discussed in the next section.

5.3.2 State space representation

In general, a state space model concerns the relations between an observed time

series and an unobserved time series (for an overview, see Sage & Melsa, 1979, or

Durbin & Koopman, 2001). The relation between the observed time series yt and

a series of unobserved states αt is specified in an observation model. In addition,

a transition model describes the evolution of the unobserved states over time.

The observation and transition model together form what is referred to as the

state space model. The state space modelling framework is comparable to the

framework of structural equation modelling (SEM) often used in behavioral re-

search (McCallen & Ashby, 1984). Whereas the state space framework generally

pertains to within system variation, for example, the tracking of the position, di-

rection, and speed of an aeroplane, the SEM framework usually concerns between

systems variation, that is, individual differences on some psychological variables

of interest. The simplest of state space models is that in which all variables are
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normally distributed and all relationships are linear. The generality of state space

modelling lies in the fact that the same estimation methods can be applied to

a very wide range of time series models. For the normal linear case, dynamic

regression models, structural time series models, and auto-regressive moving av-

erage (ARMA) models can all be analyzed within this framework after being

represented in state space form. This is analogous to the procedure in SEM in

which a variety of regression and factor models can be estimated after being put

in SEM form.

The specific state space model considered here concerns non-normally dis-

tributed variables and non-linear relationships. Now, the observation models for

the dynamic Rasch and partial credit model are already given in Equations 5.7

and 5.8, respectively. The approach to the modelling of dichotomous and polyto-

mous time series presented here resembles the discussion of dynamic generalized

linear models for categorical time series in Fahrmeir and Tutz (2001, Chapter 8).

The relations between the observed and latent time series are specified by the

construction of a linear predictor ηt. To this end, an (n×q)×m design matrix Zt

with known elements and the m-dimensional series of unobserved states αt are

related to the mean of the observed time series by

µt = h(ηt) = h(Ztαt), (5.9)

where the function h(.) is referred to as the response function. The covariance

matrix of the observed time series is denoted by Σt. The design matrix Zt can

consist of fixed values, covariates and past values of yt. For the evolution of αt,

the following linear transition equation is used

αt = Ftαt−1 + Rtξt, ξt ∼ N(0, Qt), (5.10)

where Ft is an m×m transition matrix, Rt is an m×p selection matrix, and ξt is

a p-dimensional white noise sequence with associated covariance matrix Qt. The

state vector αt can consist of time-varying and time-constant elements, which

are selected by Rt. The initial state α0 is normally distributed with mean a0

and covariance matrix Q0. In our present situation, the state vector can consist

of multiple person processes, person means, and item parameters. Examples of

specifying IRT models in state space form are discussed in the next section.

In addition to the observation and transition equation, the following assump-

tions are made. Let y∗
t−1 and α∗

t denote the complete histories of the observed

and unobserved time series, that is, y∗
t−1 = (yt−1, . . . , y1) and α∗

t = (αt, . . . , α0).
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Then, it is assumed that yt is independent of α∗
t−1, that is,

p(yt|y∗
t−1, α

∗
t ) = p(yt|y∗

t−1, αt).

Additionally, it is assumed that the state process αt is first-order Markovian, i.e.,

p(αt|α∗
t−1, y

∗
t−1) = p(αt|αt−1).

The final assumption resembles the assumption of local independence in IRT and

is given by

p(yt|y∗
t−1, αt) =

n
∏

i=1

p(yit|y∗
t−1, αt).

5.3.3 Examples of model specification

In order to illustrate the generality of the state space modelling framework, two

examples of how the discussed IRT models can be specified in state space form

are given. The first example is the specification of the RM for which we use a

data set to estimate its parameters with state space methods and compare with

the estimation methods commonly used in IRT in the next section. We consider

a Rasch model for five items and for persons that are tested on only one occasion.

Although it is an atypical application of the state space framework, this model can

be specified in state space form as follows. The observation equation has already

been given by Equation 5.1. The transition equation consists of an independent

normally distributed process. However, it does not describe the variation over

time, but the variation between persons. In the specification, the index t can

now be replaced by j to emphasize that persons are considered instead of time

points. It is stressed that by specifying the transition equation in this manner, a

distribution for θ is assumed which is generally not necessary in a Rasch model.

However, if MML estimation is used, a (standard) normal distribution is usually

assumed in the estimation of item parameters. The design matrix specifies the

relation between the person parameters θ and the item parameters β, which are

stacked in the state vector αj . For the model under consideration, this results in

Z =















1 1 −1 0 0 0 0

1 1 0 −1 0 0 0

1 1 0 0 −1 0 0

1 1 0 0 0 −1 0

1 1 0 0 0 0 −1















and αj =

























θj

µθ

β1

β2

β3

β4

β5

























.
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For identification purposes, the mean µθ is fixed at zero, and all corresponding

elements of the model vectors and matrices can be deleted. The response function

h(.) is the logistic, that is, exp(.)
1+exp(.)

. It can be easily verified that by inserting the

above specification into Equation 5.9, the relation of Equation 5.1 is obtained.

Note that the vector containing the n item probabilities p(θj) is equal to h(Zαj).

We can then denote the covariance matrix by making use of the assumption of

local independence as follows

Σj =















p1(θj)q1(θj)

0 p2(θj)q2(θj)

0 0 p3(θj)q3(θj)

0 0 0 p4(θj)q4(θj)

0 0 0 0 p5(θj)q5(θj)















,

where qi(θj) = 1 − pi(θj), i = 1, . . . , 5. Keeping in mind that µθ is fixed, the

transition, selection and error covariance matrices for this model are specified by

F =





















0 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





















, R =





















1

0

0

0

0

0





















, and Q = σ2
θ .

The initial state and covariance a0 and Q0 can be disregarded in this situation,

because it can be assumed that the observations are independent, and there-

fore the Markov assumption can be dropped. The model can be extended in a

straightforward manner for instance to analyze multiple groups and inspect group

differences and uniform differential item functioning.

As a second example, consider the time series obtained from the scores of three

persons measured from t = 1, . . . , T on two items with each three categories

following a partial credit model. The observed time series vector yt consists

of the stacked dummy coded response vectors of each person and is of length

N × n × q = 3 × 2 × 2 = 12. Assume that the first person follows a zero

mean independent normally distributed process, the second latent process is a

zero mean first order autoregression, and the third latent process obeys a zero

mean first order random walk. Then, the design matrix and the state vector are
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specified as follows

Z =

















































1 0 0 −1 0 0 0

2 0 0 −1 −1 0 0

1 0 0 0 0 −1 0

2 0 0 0 0 −1 −1

0 1 0 −1 0 0 0

0 2 0 −1 −1 0 0

0 1 0 0 0 −1 0

0 2 0 0 0 −1 −1

0 0 1 −1 0 0 0

0 0 2 −1 −1 0 0

0 0 1 0 0 −1 0

0 0 2 0 0 −1 −1

















































and αt =

























θ1t

θ2t

θ3t

β11

β12

β21

β22

























.

The covariance matrix for this model is a block matrix given by

Σt =







Σ1t

0 Σ2t

0 0 Σ3t






,

where each block j = 1, . . . , 3 is given by

Σjt =

[

diag(p1(θjt)) − p1(θjt)p1(θjt)
′

0 diag(p2(θjt)) − p2(θjt)p2(θjt)
′

]

where diag(pi(θjt)), i = 1, 2 is a 2 × 2 diagonal matrix with the elements of the

vector containing the item category probabilities pi(θjt) on the diagonal. The

transition, selection, and state error covariance matrix can be formed by

F =

























0 0 0 0 0 0 0

0 φ1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

























, R =

























1

1

1

0

0

0

0

























, and Q =







σ2
θ1

0 σ2
θ2

0 0 σ2
θ3






.

The process of the first person is stationary. In order for the process of person two

to be stationary, we constrain |φ1| to be < 1. The process of the third person is not

stationary. It should be noted that the Kalman filtering and smoothing procedure

discussed next does not require the process under scrutiny to be stationary.
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5.3.4 Estimation

The estimation of the discussed IRT models represented in state space form is

performed by an iterative Kalman filtering and smoothing procedure as described

in Fahrmeir and Wagenpfeil (1997). In this procedure, the mode of the posterior

distribution of the states αt is found by numerical approximations. The log-

posterior for the state space model described above in the polytomous case is

given by

log L(y; θ, β) =

T
∑

t=1

N
∑

j=1

n
∑

i=1

q
∑

k=1

yijkt log(pik(θjt))

+ (1 −
q
∑

k=1

yijkt) log(1 −
q
∑

k=1

pik(θjt)

− 1

2
(α0 − a0)

′RQ−1
0 R′(α0 − a0)

− 1

2

T
∑

t=1

(αt − Fαt−1)
′RQ−1R′(αt − Fαt−1), (5.11)

where all individual latent processes θjt, j = 1, . . . , N , individual means, and

item parameters are stacked in the state vector αt. The procedure consists of

several steps which are now described in detail.

In discussing the steps of the Kalman filter and smoother (KFS), it is assumed

that the elements of Z, F , a0, Q0, R, and Q are either fixed or known. Estimates

of αt and associated covariance matrices are denoted by at|t and Vt|t for the

filter, and at|T and Vt|T for the smoother. Each iteration i of the KFS needs

evaluation values for the complete latent state process which are denoted by ãi =

(ã
i′
1 , ã

i′
2 , . . . , ã

i′
T )′. The filtering recursions consist of a prediction and correction

step defined for t = 1, . . . , T by

1. Prediction:

at|t−1 = Fat−1|t−1, a0|0 = a0, (5.12)

Vt|t−1 = FVt−1|t−1F
′ + RQR′, V0|0 = RQ0R

′.

2. Correction:

Vt|t = (V −1
t|t−1 + Bt)

−1, (5.13)

at|t = at|t−1 + Vt|tbt,
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where Bt and bt are given by

Bt = Z ′ΣtZ,

bt = Z ′(yt − h(Zãi
t)) − Bt(at|t−1 − ãi

t),

and Σt is evaluated at ãi
t.

The filter predictions at|t−1 are a natural choice to start up the iterations, i.e.,

ã1
t = at|t−1. If the procedure is terminated after a single iteration, it is equal to

the generalized extended Kalman filter described in Fahrmeir (1992).

The fixed interval smoother is initialized with the final estimates of the

Kalman filter at|t and Vt|t. For t = T, . . . , 2, the smoother can be given by

at−1|T = at−1|t−1 + Gt(at|T − at|t−1), (5.14)

Vt−1|T = Vt−1|t−1 + Gt(Vt|T − Vt|t−1)G
′
t,

where

Gt = Vt−1|t−1F
′V −1

t|t−1. (5.15)

After the smoother is applied the evaluation values are updated with the smoother

estimates, that is, ãi = (a
′

1|T , . . . , a
′

t|T )
′

. The procedure is repeated until some

convergence criterion is reached. The stopping criterion used in the present study

is max |ãi − ãi−1| < 1−12. The KFS procedure discussed in the above resembles

the procedure described in Durbin and Koopman (2001, Chapter 10).

When the KFS procedure is applied in a standard IRT setting, some com-

parisons can be made with the estimation procedures described in the previous

section. The KFS procedure resembles MML in that a distribution is assumed

for θ, and so estimates can be obtained for extreme score patterns. However,

the distributional assumption is part of the model and not of the estimation pro-

cedure (see also, Holland, 1990). It differs from MML in that both item and

person parameters are estimated simultaneously. This resembles JML estimation

procedure, yet, that procedure iteratively estimates person and item parameters.

The procedure shows similarities with that described in Tsutakawa and Johnson

(1989) in which uncertainties in item parameter estimates are incorporated in the

person parameter estimation procedure.

5.3.5 Evaluation

The same aspects of evaluating the fit of standard IRT models are involved in the

case of dynamic IRT models. An important additional aspect is the dependence
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of the observations over time. In particular, the time dependence is explicitly

accounted for by the specification of the model, and the extent to which this is

successfully performed can be checked. A customary method is to inspect the

autocorrelations or spectra of the residuals. Any substantial residual dependen-

cies can then be interpreted as a misspecification of the transition equation. This

inpection can be performed at the level of the individual. Together with the fit

indices discussed earlier which are now to be interpreted conditionally on y∗
t−1,

an indication of the appropriateness of the model can be obtained at different

levels.

The standardized residuals zij as defined in Equation 5.6 can now be extended

with the time index t. The lag l n × n auto- and cross-correlation matrix of the

standardized residuals of person j is denoted by Cjl and can be computed1 from

the standardized residual zijt by

Cjl =
T
∑

t=l+1

zjtz
′
j,t−l

T
.

The lag zero correlation matrix can be used for inspection of any residual de-

pendencies not accounted for by the model. If the model provides an accurate

description, off-diagonal elements should be close to zero. Lagged correlation

matrices can be used to inspect any residual time dependencies.

5.4 Examples

In order to provide an illustration of how the discussed models can be applied

by making use of the state space framework, we analyse two data sets: one

obtained in a standard IRT setting and the other in a longitudinal setting. The

first analysis is performed in order to compare the KFS estimation procedure

with standard IRT estimation methods for the estimation of both person and

item parameters. The second analysis illustrates the generality of the state space

framework in a longitudinal setting where the number of persons is relatively

small and the number of time points is relatively large.

5.4.1 Standard IRT: LSAT-6 data

The first data set has been used frequently to illustrate and compare parameter

estimation methods for the RM (see e.g., Baker, 1991; Thissen, 1982; Andersen

1Note that the denominator that we use here is T , as opposed to T − l, which was used in

Chapter 2.
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& Madsen, 1977). It consists of the responses of 1000 persons to five figure

classification items which formed Section 6 of the Law School Admission Test

(LSAT) as described in Bock and Lieberman (1970). With these data, the item

parameter estimation methods CML and MML are compared with the KFS.

In addition, we compared BM estimation of θ with the output of the KFS. It

is stressed that with the KFS, both person and item parameter estimates are

obtained at the same time. The RM is used in the state space representation

that was discussed in the previous section.

All analyses are performed with the free software package R (R Development

Core Team, 2008). For CML and MML estimation of the item parameters, the

R packages extended Rasch modelling (eRm; Mair & Hatzinger, 2006, 2007) and

latent trait modelling (ltm; Rizopoulos, 2006) are used, respectively. The ltm

package is also used to produce BM estimates of the person parameter. The KFS

estimation procedure was implemented in R by the present authors.2 In applying

the MML and KFS procedures, a standard normal distribution is assumed for

θ. In comparing the methods for item parameter estimation, the mean item

difficulty is fixed to zero.

Table 5.1 displays the five estimated item difficulties and standard errors

(SEs) of the CML, MML, and KFS estimation procedures. The CML and MML

point estimates are very close to each other compared to those obtained with the

KFS. The differences between the point estimates of the KFS and those of CML

and MML are not large, yet not negligible, larger at the extremes, and can be

interpreted as bias. The differences are most likely due to the fact that the KFS

procedure utilizes a posterior and CML and MML a likelihood. The standard

errors of all three methods are very close, although those of the KFS are slightly

smaller.

In Table 5.2, the sumscores and associated person parameter estimates and

SEs are shown for the BM and KFS estimation procedures. BM estimation of θ is

performed with fixed item parameters estimated with MML, whereas the KFS es-

timates of θ are obtained simultaneously with the item parameter estimates. The

point estimates of the two methods have to be compared in view of the differences

between MML and KFS for the estimation of item parameters and especially µθ.

Keeping these differences in mind, the two methods can be considered to yield

comparable point estimates. The standard errors of the KFS are substantially

smaller than the SEs obtained with BM estimation. This might be due to the

2The source code is available upon request.
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Table 5.1: Item parameter estimates of LSAT data set

CML MML KFS

Parameter Est.1 SE2 Est. SE Est. SE

β1 -1.256 (0.104) -1.255 (0.104) -1.223 (0.102)

β2 0.475 (0.070) 0.476 (0.070) 0.465 (0.069)

β3 1.236 (0.069) 1.235 (0.069) 1.194 (0.065)

β4 0.168 (0.073) 0.168 (0.073) 0.168 (0.071)

β5 -0.623 (0.086) -0.625 (0.086) -0.604 (0.084)

µθ - (-) 1.475 (0.052) 1.417 (0.051)

σθ - (-) 0.755 (0.069) - (-)
1 Estimate

2 Standard error

fact that the KFS simultaneously estimates item and person parameters.

Goodness of fit of the Rasch model was evaluated with the Pearson X2 and the

likelihood ratio statistic G2 as discussed earlier. For the LSAT data, the results of

the MML estimation procedure were used for computing the fit statistics which

resulted in X2 = 18.33 with df = 25 (p = 0.83), and G2 = 21.80 also with df =

25 (p = 0.65), indicating a good fit. Since the fit is satisfactory, checking further

item and person fit diagnostics is not deemed necessary for now.

In order to compare the results of the KFS estimation procedure in this situa-

tion with the CML and MML estimation procedures, a small study is conducted

in which data are simulated on the basis of the LSAT analysis. That is, 1000

replications of 1000 responses to a test with 5 items are simulated. The param-

Table 5.2: Person parameter estimates of LSAT data set

BM KFS

Sumscore Est. SE Est. SE

0 -0.432 (0.790) -0.526 (0.704)

1 0.038 (0.793) -0.038 (0.696)

2 0.516 (0.801) 0.448 (0.701)

3 1.007 (0.816) 0.950 (0.720)

4 1.519 (0.836) 1.490 (0.754)

5 2.058 (0.862) 2.095 (0.804)



94 Chapter 5

Table 5.3: Results of simulation with respect to estimation of item parameters

CML MML KFS

Parameter Value Mean1 SE2 SD3 Mean SE SD Mean SE SD

β1 -1.25 -1.263 0.104 0.103 -1.262 0.106 0.106 -1.231 0.104 0.100

β2 -0.50 -0.502 0.084 0.082 -0.504 0.084 0.092 -0.484 0.083 0.079

β3 0.00 0.001 0.073 0.072 0.001 0.075 0.077 0.005 0.074 0.070

β4 0.50 0.506 0.072 0.072 0.507 0.070 0.073 0.494 0.069 0.069

β5 1.25 1.257 0.069 0.069 1.258 0.069 0.072 1.216 0.065 0.064

µθ 1.50 - - - 1.507 0.053 0.060 1.446 0.051 0.044

σθ 0.75 - - - 0.754 0.071 0.103 - - -
1 Mean estimate
2 Mean standard error
3 Standard deviation of estimates

eters in this simulation are rounded off for ease of comparison. The results of

this study with respect to the item parameters are displayed in Table 5.3. It can

be seen that the item parameters produced by KFS are biased. The pattern of

the bias is the same as in Table 5.1. The differences in SEs between the three

methods are very small and can be neglected. The mean and standard deviations

of the fit measures were 27.32 and 11.26 for the G2, and 25.88 and 10.76 for the

X2, respectively, both with 25 degrees of freedom.

Table 5.4 shows the results of the simulations with respect to the person

parameter estimates. Again, the results should be compared in view of the dif-

ferences in the estimates of item parameters and the mean µθ. In this respect,

the differences are not too large, except perhaps for sumscore 5.

Table 5.4: Results of simulation with respect to estimation of person parame-

ters

BM KFS

Sumscore Mean SE SD Mean SE SD

0 -0.402 0.791 0.128 -0.509 0.703 0.050

1 0.061 0.794 0.102 -0.027 0.692 0.051

2 0.542 0.803 0.090 0.461 0.701 0.047

3 1.027 0.818 0.067 0.962 0.721 0.049

4 1.544 0.838 0.067 1.507 0.756 0.046

5 2.082 0.864 0.067 2.112 0.807 0.046
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5.4.2 Dynamic IRT: Borkenau data

The second example consists of an application of a dynamic PCM as discussed

in Section 5.3 to repeated administrations of a personality questionnaire. We

use a selection of the data set that has already been used to illustrate dynamic

models and associated estimation methods (Molenaar, 2004; Hamaker, Dolan, &

Molenaar, 2005). The data have been collected by Borkenau and Ostendorf (1998)

and consist of the responses of 22 persons to a 30 item personality questionnaire

on 90 consecutive days. The questionnaire was designed to measure the Big Five

personality factors and the items were scored on a seven-point Likert scale. Since

our interest lies in the illustration of a dynamic PCM, we only used the responses

to the six items that are indicative of the factor Extraversion. This scale consisted

of three positively formulated and three negatively formulated items.

Since we have no knowledge about the individual latent processes for this

type of analysis, modelling starts out by assuming that each person follows a

unidimensional independent normally distributed process with possibly different

means. In other words, a measurement invariant model is assumed over persons

to start the analysis. Each individuals variance is fixed at one for now, and to

reiterate, the item category parameters are assumed to be constant over time.

The specification of the dynamic PCM in state space form for this situation

proceeds along similar lines as described in Section 5.3. A full description of the

state space representation is given. If we define

Z1 =













1 1

2 2
...

...

6 6













, and Z2 =













−1 0 · · · 0

−1 −1 · · · 0
...

...
. . .

...

−1 −1 · · · −1













,

we can write the 792 × 80 design matrix Z for this example by

Z =
[

I22 ⊗ (16 ⊗ Z1) 122 ⊗ (I6 ⊗ Z2)
]

,

where I. is an identity matrix of indicated dimension, 1. indicates an identity

vector of indicated dimension, and ⊗ is the kronecker product. The state vector
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containing the person and item parameters is given by

αt =





































θ1t

µθ1

...

θ22,t

µθ22

β11

β12

...

β66





































The covariance matrix Σt can be build in an analogous manner as described in

Section 5.3.3. If we continue by defining

F1 =

[

0 0

0 1

]

,

then the 80 × 80 transition matrix can be written as

F =

[

I22 ⊗ F1 0

0 I36

]

.

Finally, let us define

R1 =

[

1 0

0 0

]

,

then the 80 × 22 selection matrix can be written as

R =

[

I22 ⊗ R1

0

]

.

The model in the above representation is not identified and at least one of the

person means or item parameters needs to be fixed. We choose to fix the first

person mean at zero for the present situation. The dimensions of all associated

model vectors and matrices are then reduced by one. The resulting dimensions

of the model vectors and matrices are displayed in Table 5.5.

Table 5.6 displays the results of the KFS estimation procedure with respect

to the item category parameters. The values of the category thresholds are fairly

spread out over the scale. Their overall mean is rescaled at zero, so that the

individual latent processes can be related to the response scale. Except for the
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Table 5.5: Model dimensions for state space representation of dynamic PCM for

Extraversion data

Model vector Dim. Model matrix Dim.

yt 792 Z 792 × 79

αt 79 F 79 × 79

ξt 22 R 79 × 22

first two category thresholds of item four, all item category parameters are ordered

within items. It is observed that the parameters of the outer categories have the

largest standard errors, especially the lowest categories.

Table 5.7 displays the estimated person means, standard errors, and person

fit output of the KFS procedure. It is clear that the differences in individual

means are quite large, ranging from -0.47 for person 3 up till 2.72 for person

6. The overall mean is equal to 0.68, indicating that the persons responded

on the positive side of the scale of the extraversion items. No overall goodness

of fit measures are calculated here, because χ2 approximations based on the

contingency table of possible response patterns are likely to fail. That is, the

total number of observations (22 × 90 = 1980) compared to the number of cells

of this table is very small (76 = 117649). The individuals that show the largest

sum of squared standardized residuals are persons 5 and 6.

Table 5.6: Item category parameter estimates

i k βik SE i k βik SE i k βik SE

1 1 -2.52 0.21 3 1 -2.13 0.27 5 1 -2.87 0.24

2 -1.01 0.11 2 -1.78 0.16 2 -1.04 0.10

3 -0.55 0.08 3 -0.88 0.10 3 -0.40 0.08

4 0.65 0.06 4 -0.21 0.07 4 0.50 0.07

5 1.97 0.08 5 1.06 0.07 5 1.67 0.08

6 3.50 0.14 6 1.86 0.08 6 2.72 0.11

2 1 -1.87 0.22 4 1 -1.82 0.23 6 1 -2.11 0.22

2 -1.71 0.13 2 -1.91 0.15 2 -1.56 0.13

3 -0.41 0.08 3 -0.43 0.09 3 -0.53 0.08

4 0.09 0.07 4 -0.08 0.07 4 0.43 0.07

5 1.37 0.07 5 1.21 0.07 5 1.73 0.08

6 2.33 0.09 6 2.31 0.09 6 2.41 0.10
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Table 5.7: Estimated person means, standard error, and fit

Person θ̄ SE Fit Person θ̄ SE Fit

1 0.26 0.11 0.42 12 0.68 0.11 0.39

2 0.09 0.11 0.37 13 1.25 0.12 0.96

3 -0.47 0.11 1.00 14 0.80 0.12 0.90

4 1.43 0.12 1.01 15 0.09 0.11 0.58

5 1.50 0.12 1.47 16 0.22 0.11 0.42

6 2.72 0.12 1.38 17 0.47 0.11 0.64

7 0.57 0.11 0.74 18 0.66 0.11 0.76

8 1.28 0.11 1.01 19 0.51 0.11 0.96

9 0.92 0.11 0.69 20 0.85 0.11 0.68

10 -0.07 0.11 0.55 21 -0.38 0.11 0.71

11 1.49 0.12 0.82 22 0.09 0.11 0.74

As a final illustration, first order autoregressive latent processes were fitted to

the time series of each person seperately. The penalized likelihood of Equation

5.11 was optimized numerically with the L-BFGS-B method of the R function

optim() (see Byrd, Lu, Nocedal, & Zhu, 1995). The item category thresholds

were fixed at the values displayed in Table 5.6, the process was restricted to

be stationary by restricting |φ1| < 1, and again each individual’s variance was

fixed at one. It is investigated if the individual fit improved. The results of this

analysis are shown in Table 5.8. In inspecting point estimates and standard errors,

it can be said that in about one third of the cases a substantial autoregressive

component is found. Remarkably, the change in fit index is negligible in most

cases. However, it can be seen that for person 6, a relatively strong autoregressive

component is found whereas the fit worsened.

5.5 Discussion

The main purpose of this article was to apply state space methods to the mod-

elling of item responses. Not only can these methods be applied in standard

IRT settings, extensions to modelling repeated measurements are easily made

within the same framework, and the same estimation methods can be used. An

application of Kalman filtering and smoothing techniques to two example data

sets illustrated the flexibility of the state space framework. The results of the

first analysis indicated that the KFS can result in some bias in the estimation of
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Table 5.8: Estimated autoregressive parameter, standard error, and fit

Person φ1 SE Fit Person φ1 SE Fit

1 0.17 0.13 0.42 12 0.23 0.11 0.39

2 0.16 0.14 0.37 13 0.26 0.07 0.97

3 0.27 0.20 1.00 14 0.22 0.04 0.92

4 0.30 0.08 1.01 15 0.12 0.12 0.58

5 0.28 0.06 1.48 16 0.17 0.19 0.42

6 0.60 0.06 1.48 17 0.20 0.11 0.65

7 0.16 0.09 0.75 18 0.37 0.21 0.75

8 0.39 0.11 1.00 19 0.21 0.09 0.96

9 0.24 0.09 0.69 20 0.32 0.13 0.68

10 0.15 0.11 0.55 21 0.21 0.21 0.71

11 0.34 0.08 0.82 22 0.15 0.11 0.74

item parameters. This can be related to the fact that a posterior distribution is

optimized by the KFS estimation procedure, and this is known to produce bias

(see Tsutakawa & Johnson, 1989; Hoijtink & Boomsma, 1995). However, the SEs

are consistent with the two standard IRT estimation procedures CML and MML.

The discussed framework can be easily equipped to perform typical IRT analyses

such as multi-group and DIF analyses.

The second example illustrated some possibilities of the state space approach

to the modelling of repeated measurements. The KFS estimation procedure was

applied to a data set to obtain item and person parameter estimates. Hereafter,

individual time series were analyzed again to investigate the strength of latent

autoregressions. It can be stated that this procedure works reasonably well for

the discussed situation and might be useful for analyzing various types of longi-

tudinally observed item responses. However, an investigation into the quality of

the produced estimates and fit diagnostics, e.g., by means of simulations, remains

an important and interesting topic for future research.

Admittedly, many extensions of the discussed models and procedures remain

to be explored. For instance, the inclusion of a discrimination parameter as in

the two parameter logistic model (Birnbaum, 1968) and generalized partial credit

model (Muraki, 1994) is an interesting extension, because in many applications,

the Rasch model and its extensions do not fit very well to all item responses. In

close connection with this is the extension to differing individual variances of the
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latent process in the case of repeated measurements. Fahrmeir and Wagenpfeil

(1997) discuss an estimator for this case, but its quality is as yet unknown.

Finally, extensions of the model to allow for time varying parameters, e.g., item

parameters or person means (trends) might be significant developments for the

future, especially when the interest lies in the analysis of change.

In closing, all possible applications of the state space framework are interesting

only when the different models and extensions can be compared, and the differ-

ences can be tested. That is, reliable diagnostics and fit statistics are necessary

to find a fit model, and finding them is perhaps the biggest challenge.
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Epilogue

This thesis discussed methods for the analysis of psychological measurements in

the form of categorical time series. The discourse started out with the analysis

of multivariate continuous and categorical time series within the framework of

structural equation modelling (SEM). The final part of the thesis concerned the

analysis of multi-subject multivariate categorical time series by making reference

to the frameworks of state space modelling (SSM) and item response theory

(IRT). This final chapter consists of a short review of the general conclusions

that can be drawn from the investigations in Chapters 2 to 5, i.e., the core of

this thesis. Finally, guidelines for future research in the field of psychological

measurement in the form of categorical time series are suggested.

6.1 Conclusions

6.1.1 Structural equation modelling

In Chapter 2, the use of the Toeplitz matrix containing sample auto- and cross-

covariances in order to fit multivariate stationary autoregressive (AR) models was

investigated. For normally distributed time series, it was found that parameters

and standard errors are correctly recovered only for pure vector autoregressions.

For multiple indicator autoregressive models, the estimated parameters were cor-

rect, but the standard errors were not. This limits the use of the Toeplitz method

for this type of measurements. In the second part of the chapter, autoregressive

models were fitted to multivariate categorical time series by using the Toeplitz

matrix containing polychoric auto- and cross-correlations. The results indicated

that the estimates of the parameters are correct for the used models, but the

standard errors are not. In view of the simulation results and available asymp-

totic results on sample auto- and cross-covariances, it can be argued that the

Toeplitz method should not be used in investigations with real data in which the

type and order of the model is not known. Also, since stationarity is a necessary

assumption for the Toeplitz method, but not for filtering methods, the latter are

preferable in modelling time series measurements. The Toeplitz method can how-
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ever have practical utility when used as a method of moments to obtain parameter

estimates.

The above argumentation should not be taken as a case against applying the

SEM framework in a time series setting (see also, MacCallum & Ashby, 1986).

Rather, it is the methodology of using summary statistics for estimating and

fitting models, a regular course of things in standard SEM applications, that

is not recommended in the situation of normal and, especially, categorical time

series.

6.1.2 State space modelling

Since filtering and smoothing methods to analyse categorical time series are not

widely available, the second part of this thesis consisting of Chapters 3 to 5

focused on such methods. Specifically, the SSM framework was referred to for

specifying and estimating models for categorical time series. Chapter 3 addressed

the case of univariate categorical time series, whereas Chapters 4 and 5 discussed

the multivariate case.

In Chapter 3, a Kalman filtering and smoothing method was used to fit a

latent autoregressive process to an observed univariate categorical time series

through a logistic response function. It was found that autoregressive param-

eters showed some bias, but could be consistently estimated. The estimates of

threshold parameters, associated with particular categories of the time series,

were however found to be biased and inconsistent. In general, the presented ap-

proach did not seem to work satisfactorily for univariate categorical time series.

The first part of Chapter 4 presented a case in favor of the analysis of intra-

individual variation. The second part contained illustrations of a dynamic logistic

model for multivariate dichotomous time series with simulated and real data. In

this chapter, the presented dynamic logistic model was related to the Rasch

model.

Chapter 5 elaborated on Chapter 4, with the focus shifting towards a compar-

ison of the SSM and IRT frameworks. A comparison was made between standard

IRT estimation methods and a Kalman filtering and smoothing method for the

estimation of item and person parameters in the situation of cross-sectional data.

The modelling approach presented in Chapter 4 was extended to polytomous time

series. The chapter ended with an application of the methods to multiple subject

polytomous time series. The presented approach provided a useful methodology

for simultaneously fitting models to polytomous time series of multiple subjects.
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The fact that the SSM framework is very useful for modelling time series

measurements is not new. That it provides a meaningful framework for psy-

chological time series measurements is therefore to be expected. In the present

thesis, we have discussed models and estimation methods for categorical time se-

ries within the SSM framework, but also within the frameworks of SEM and IRT.

That the SSM framework can be used in a sensible manner in combination with

the familiar and comprehensive frameworks of SEM and IRT is one of the main

conclusions of the present thesis. Particularly, the frameworks of SSM and IRT

form a good combination for the type of categorical time series measurements

which were analysed in this thesis. More general, the combination of these two

frameworks can provide a unified approach to model cross-sectional, longitudinal,

and time series data formed by categorical psychological measurements.

6.2 Guidelines for future research

In closing this thesis, guidelines for future investigations in psychological measure-

ment in the form of categorical time series are suggested, which are distinguished

in three interesting topics. First, further comparisons of the Kalman filtering and

smoothing estimation method used in this thesis with other filtering methods are

important. Many methods for non-normal time series and non-linear time se-

ries model are Bayesian (Doucet, de Freitas, & Gordon, 2001), and are known to

work well. It would be of interest to compare Bayesian filtering methods with the

method used in this thesis. Recently, Chow, Ferrer, and Nesselroade (2007) used

an unscented Kalman filter to fit nonlinear dynamic models for dyadic interac-

tions in emotions. Such a filter might also be applied to dynamic logistic models

for categorical time series. It is evident that comparative studies are necessary

to expose strengths and weaknesses of different methods.

A second important topic is the further development of parameter estimation

methods apart from methods for filtering. Particularly, the estimation methods

for parameters such as latent autoregressive parameters and variances of inno-

vations are not well developed (Fahrmeir & Wagenpfeil, 1997). The numerical

method used in the present thesis can then, for instance, be used for comparison.

Apart from the establishment of the performance of the estimation methods,

there is a need to develop and investigate the quality of measures of fit for the

particular time series models under scrutiny. This has clearly been a neglected

issue in the present thesis, but is largely uncharted and remains one of the most

important topics in future investigations. This because a crucial stage in any
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statistical analysis is the selection of an appropriate model. Of special interest

would be statistical fit procedures to assess if an observed psychological time series

is or is not obtained from a stationary stochastic process. If nonstationarity is

then found, an immediate need arises for developing statistical techniques for the

fit of state space models with time-varying parameters (for the linear Gaussian

model, see e.g., Molenaar, 1994). Whereas it is often straightforward to estimate

complex statistical models, it is often more difficult to select the best of several

straightforward statistical models.



A

A note on classical test theory in

heterogeneous populations

A.1 Introduction

A standard definition of the true score in classical test theory is as the mean

of the propensity distribution of scores of a fixed person obtained in an infinite

series of independent trials with that person (Lord & Novick, 1968). Because it is

considered not to be realistic to obtain an infinite series of independent trials with

the same person, classical test theory is instead based on the scenario in which an

infinite number of persons is measured at a fixed number of independent trials.

As is explicitly acknowledged by Lord and Novick (1968, p. 32), this implies that

classical test theory is compatible with a situation in which the variance of the

propensity distribution of scores for each person in the population differs between

persons. We will denote the latter situation by heterogeneity of the population.

The only relationship between individual and population variances which exists

is that the mean of the variances of individual propensity distributions equals the

error variance in the heterogeneous population of persons (Lord & Novick, 1968,

p. 35).

The increase in reliability as a consequence of group heterogeneity was men-

tioned by Gulliksen (1950), Lord and Novick (1968), and studied by, e.g., Zim-

merman, Williams, and Burkheimer (1968). The type of heterogeneity studied in

this paper differs from group heterogeneity in that it concerns different variances

of individual propensity distributions. In a factor analytical context, unobserved

heterogeneity produced by varying parameters in a number of subpopulations

was studied by means of finite mixture analysis in, e.g., Muthén (1989). More

recently, Kelderman and Molenaar (2007) investigate the effects of individual dif-

ferences in factor loadings. Various types of heterogeneity were investigated using

Bayesian factor analysis in Ansari, Jedidi, and Dube (2002). Their definition of

heterogeneity in covariance structures partially coincides with our notion of pop-

ulation heterogeneity. In this appendix, however, the situation is studied in the

context of classical test theory and different subtypes of heterogeneity, defined by
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different measurement forms, i.e., parallel, tau-equivalent, and congeneric, can be

explicitly studied.

Since population heterogeneity is explicitly accounted for in classical test the-

ory, an examination in its effects on estimation and its possible detection, is a

useful undertaking. The purpose of this study is to investigate whether the ap-

plication of classical test theory is still justified in the situation of population

heterogeneity in the sense that good results in terms of estimation performance

are to be expected. It is investigated in a simulation study whether the pres-

ence of population heterogeneity in the classical test model has an effect on true

score prediction in the situation of parallel, tau-equivalent, and congeneric mea-

surements. Prediction of true scores in classical test theory can be accomplished

in various ways, e.g., by means of variants of factor score prediction (Lord &

Novick, 1968). The specific aim of this note is to compare the performance of

a traditional factor score predictor of true scores with an unconventional predic-

tor of true scores defined by simple pooling of measurements in a heterogeneous

population of subjects. Finally, the fit of the factor models defined by different

types of measurements is inspected for revealing population heterogeneity.

A.2 Population heterogeneity

There are many ways to construct population heterogeneity in the classical test

theory model. In what follows, a description of a possible construction of hetero-

geneity is given which is in line with the simulation study described in Section

A.3. It should be stressed that this construction is a methodological issue in the

investigation of population heterogeneity in classical test theory.

Consider a possibly heterogeneous population of subjects in which the propen-

sity density of each individual subject i is Gaussian with mean µi and variance

σ2
i : Yi ∼ N(µi, σ2

i ). Let µi and σ2
i be random variables over subjects. That is, the

mean and variance of µi are hyperparameters denoted by, respectively: τµ and

ω2
µ. The mean and variance of σ2

i are hyperparameters denoted by, respectively,

τσ2 and ω2
σ2 . Note that if the variance hyperparameter of σ2

i is nonzero, ω2
σ2 > 0,

then the population is heterogeneous. It is emphasized that the distributions of

the hyperparameters do not affect the distribution of measurements, because a

drawing from the hyperparameter distributions only determines the values of the

parameters of the individual propensity distributions.

Consider now a random sample of N subjects drawn from this population,

i = 1, . . . , N , which is measured at T occasions j = 1, . . . , T . If the propensity
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density of each subject in the random sample is invariant across measurement

occasions, then the T sets of N scores thus obtained constitute parallel measure-

ments according to classical test theory. If the mean of this propensity density is

invariant, but not the variance, then the measurements are tau-equivalent. The

measurements are congeneric if the mean on one measurement occasion is a lin-

ear combination of the mean on another occasion. For all this to hold, it is not

required that the propensity density is of the same type for each subject. Hence,

our assumption that this propensity density is Gaussian for each subject is not

necessary to obtain the different types of measurements, but is only used to ease

the presentation.

A.3 Simulation study

Suppose that T parallel measurements Yij, j = 1, . . . , T , are available for subjects

i = 1, . . . , N , and that the correlation between these measurements in the popu-

lation of subjects is ρ. Suppose also that the variance of scores in the population

is σ2
Y . Then the true score variance ω2

µ and the error variance σ2
E (= τσ2) in the

population of subjects are, respectively, ω2
µ = ρσ2

Y and σ2
E = (1 − ρ)σ2

Y .

The T parallel, tau-equivalent, or congeneric measurements define different 1-

factor models (see Lord & Novick, 1968, Chapter 24; Jöreskog, 1971; and Jöreskog

& Sörbom, 1979). The regression predictor of factor scores as well as the asso-

ciated prediction variance are given in, e.g., Lawley and Maxwell (1971, p. 109,

Eqs. 8.7 and 8.9). For the restricted 1-factor model in the population associated

with T parallel measurements the regression predictor of true scores, RP [µi] and

its prediction variance var[RP ] for the i-th subject are given by

RP [µi] = τµ +

T
∑

j=1

(

ω2
µ

σ2
E + Tω2

µ

)

(yij − τµ) and var[RP ] =
ω2

µσ2
E

σ2
E + Tω2

µ

. (A.1)

The alternative unconventional pooling predictor of true score, PP [µi], and its

prediction variance var[PP ] are defined by pooling across T measurements. For

the i-th subject these are given by

PP [µi] =

T
∑

j=1

yij

T
and var[PP ] =

T
∑

j=1

(yij − µi)
2

T 2
. (A.2)

Note that var[RP ] is invariant across subjects, whereas var[PP ] can differ between

subjects.
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A.3.1 Set up

To compare both predictors a simulation study was carried out using the following

hyperparameter settings. The mean τµ and variance ω2
µ of the true scores were

fixed at τµ = 100 and ω2
µ = 10. The mean τσ2 of the individual variances was fixed

at τσ2 = 2.5. If the variance ω2
σ2 of the individual variances equals zero, then this

yields correlations ρ between measurements of ρ = 0.8. In the simulation runs

for the parallel measurements, the variance hyperparameter ω2
σ2 was increased

from ω2
σ2 = 0 to 5 with unit steps. The variance hyperparameter was drawn

from a folded normal distribution (see Johnson, Kotz, & Balakrishnan, 1994, p.

170). For the tau-equivalent measurements, within each increase of the variance

hyperparameter, the individual error variances on each measurement occassion

were drawn from a folded normal distribution with mean equal to the individual

error variance and variance 1, 2 or 3. Congeneric measurements were obtained

by forming the true scores on one measurement occasion on the basis of a linear

combination of the individual true scores on another measurement occassion. The

multiplicative parameter in the linear combination was drawn from U(0.95,1.05)

or U(0.90,1.10) and the additive parameter was drawn from N(0,1) or N(0,2).

For each simulation, T = 8 parallel scores were generated for N = 10000

subjects. The restricted 1-factor model associated with parallel, tau-equivalent

or congeneric measurements was fitted to the 8 × 8-dimensional covariance ma-

trix and the 8-dimensional vector of means thus obtained by means of normal

theory maximum likelihood estimation (Lawley & Maxwell, 1971). Notice that

applicability of normal theory maximum likelihood estimation does not depend

upon the distribution of the hyperparameters.

To assess the performance of the both predictors, the mean relative bias and

mean absolute bias of true score predictors and associated variance are investi-

gated, defined by, respectively, the mean difference between estimated and true

true score and associated variance and mean absolute difference between esti-

mated and true true score and associated variance.

A.3.2 Results

Since there were no effects of heterogeneity on relative bias of both true score

predictors and associated variances, these results are not displayed in tables. In

short, predictions of true score obtained with parallel measurements showed rela-

tively little bias and prediction with congeneric measurements showed more bias

than with tau-equivalent measurements. In general, the relative bias of both true
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Table A.1: Absolute biases of regression and pooling predictor for parallel

measurements

RP PP

ω2
σ2 Abs-T Abs-V Abs-T Abs-V P-value

0 0.44 0.12 0.45 0.04 0.31

1 0.43 0.16 0.44 0.04 0.18

2 0.43 0.18 0.43 0.04 0.15

3 0.43 0.20 0.43 0.04 0.57

4 0.43 0.22 0.44 0.04 0.32

5 0.45 0.23 0.45 0.05 0.13

score predictors were comparable. The prediction variance of the pooling predic-

tor, however, showed somewhat more bias than that of the regression predictor.

Table A.1 shows the absolute bias of the regression and pooling predictor

(Abs-T) and its associated prediction variances (Abs-V) for parallel measure-

ments. The following observations can be made from Table A.1. Firstly, the

fit of the restricted 1-factor model associated with parallel measurements is not

affected by population heterogeneity. The p-values of the likelihood-ratio test

are excellent in view of the large power (N = 10000). Hence, population hetero-

geneity cannot be detected by inspecting the fit of the restricted 1-factor model.

Secondly, the performance of the regression predictor is substantially affected by

population heterogeneity in that its estimated prediction variance shows more

absolute bias with increasing ω2
σ2 . In contrast, the variance of the pooling pre-

dictor is much less affected by population heterogeneity. It should be noted that

the effective ρ decreases with increasing ω2
σ2 , although the decrease was small

(ρ ≈ 0.78 for extreme heterogeneity).

Table A.2 displays the absolute bias of both predictors and associated predic-

tion variances for tau-equivalent measurements. The absolute bias of the variance

of the regression predictor increases with increasing heterogeneity whereas that of

the pooling predictor remains relatively consant. The 1-factor model associated

with tau-equivalent measurements fits in more than 50% of the studied cases,

although no clear indication can be given about the situation in which the model

does not fit. The results obtained with congeneric measurements are comparable

to those obtained with parallel measurements.

In Table A.3, the absolute bias of both predictors and associated prediction

variances are given for congeneric measurements with a multiplicative parame-
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Table A.2: Absolute biases of regression and pooling predictor for tau-

equivalent measurements

RP PP

ω2
σ2 τ Abs-T Abs-V Abs-T Abs-V P-value

0 1 0.44 0.13 0.45 0.04 0.94

0 2 0.44 0.14 0.45 0.04 0.46

0 3 0.45 0.15 0.45 0.04 0.071

1 1 0.43 0.16 0.43 0.04 0.041

1 2 0.44 0.17 0.45 0.04 0.73

1 3 0.45 0.17 0.46 0.04 0.011

2 1 0.44 0.19 0.45 0.04 0.17

2 2 0.45 0.19 0.45 0.04 0.011

2 3 0.45 0.19 0.46 0.04 0.68

3 1 0.44 0.20 0.45 0.04 0.001

3 2 0.45 0.20 0.45 0.04 0.061

3 3 0.46 0.20 0.46 0.05 0.24

4 1 0.44 0.22 0.45 0.04 0.44

4 2 0.46 0.22 0.47 0.05 0.82

4 3 0.46 0.22 0.47 0.05 0.80

5 1 0.45 0.23 0.46 0.05 0.011

5 2 0.46 0.23 0.47 0.05 0.061

5 3 0.47 0.22 0.48 0.05 0.48
1 Model does not fit (α = 0.10)

ter drawn from U(0.90,1.10) and an additive parameter drawn from N(0,2). It

is clearly seen that the absolute biases of the predictors are much larger than

in the situation of parallel and tau-equivalent measurements. Also, the 1-factor

model for congeneric measurements does not fit for all the situations studied.

The absolute bias for the pooling predictor of true score is smaller than that of

the regression predictor, although the difference is sometimes small. For the pre-

diction variance, however, the pooling predictor shows substantially less absolute

bias than the regression predictor. A clear effect of heterogeneity on the two pre-

dictors could not be found in contrast to the situation of parallel and congeneric

measurements.
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Table A.3: Absolute biases of regression and pooling predictor for congeneric

measurements

RP PP

ω2
σ2 τ Abs-T Abs-V Abs-T Abs-V P-value

0 1 0.75 0.68 0.46 0.04 0.001

0 2 1.46 1.04 1.40 0.28 0.061

0 3 1.31 1.70 1.02 0.17 0.061

1 1 0.79 0.79 0.47 0.05 0.031

1 2 2.98 2.05 2.99 1.15 0.001

1 3 1.00 1.46 0.54 0.06 0.011

2 1 2.26 1.20 2.25 0.67 0.001

2 2 0.58 0.42 0.50 0.05 0.001

2 3 0.84 0.82 0.54 0.06 0.001

3 1 1.66 1.38 1.59 0.36 0.001

3 2 2.16 1.85 2.13 0.61 0.001

3 3 1.15 1.80 0.73 0.10 0.001

4 1 1.36 1.64 1.19 0.21 0.001

4 2 1.31 1.15 1.18 0.21 0.001

4 3 1.66 1.60 1.59 0.36 0.081

5 1 1.77 1.98 1.67 0.40 0.001

5 2 1.04 1.26 0.71 0.09 0.001

5 3 1.78 1.06 1.76 0.44 0.001

1 Model does not fit (α = 0.10)

A.4 Discussion

First, it is noteworthy that even under extreme heterogeneity, the 1-factor model

shows an excellent fit for the parallel measurements. This can be seen as an

indication that classical test theory is in this case compatible with the situation

that the variance of the propensity distribution of scores for each person in the

population differs between persons (Lord & Novick, 1968). Whereas the fit of

the 1-factor model is poor for congeneric measurements, the fit for tau-equivalent

measurements is moderate, but not affected by population heterogeneity which

supports the above indication of applicability of classical test theory.

Second, the results of the simulation study show that population heterogene-

ity has a clear effect on the variance of the regression predictor in the situation
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of parallel and tau-equivalent measurements, but not congeneric measurements.

It can be argued that having available N individual estimates of var[RP ] and

var[PP ] obtained with parallel or tau-equivalent measurements, makes it pos-

sible to detect population heterogeneity. Under the hypothesis of population

homogeneity and normality of the data, these estimates should be considered as

N random samples of the chi-squared distribution.

Carefulness has to be taken with respect to the conclusion of population

heterogeneity. The reliability of the test, the sample size, the number of repeated

measurements, and the type of measure (parallel, tau-equivalent, congeneric)

have to be taken into account.

Ansari et al., (2002) show that a Bayesian approach to confirmatory factor

analysis can be very useful in dealing with heterogeneity. In closing, applying

such a Bayesian factor model to the three types of measurements is a recom-

mendable option in the further investigation and possible detection of population

heterogeneity in the context of classical test theory.
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Samenvatting (Summary in Dutch)

Dit proefschrift behandelt statistische modellen voor psychologische metingen

uit de factor-analyse (FA) en item-respons-theorie (IRT). Het betreft hier echter

niet, zoals gebruikelijk is in de psychologie, psychologische metingen verkregen

bij verschillende personen, maar metingen verkregen bij dezelfde persoon op ver-

schillende momenten in de tijd. Dat wil zeggen, psychologische metingen die een

tijdreeks vormen. Speciale belangstelling gaat hierin uit naar een situatie die

vaak voorkomt in de psychologie, namelijk de situatie waarin de psychologische

meting kan worden geklassificeerd in slechts een beperkt aantal categorieën. Met

andere woorden, dit proefschrift gaat over categorische tijdreeksen. Hoofdstuk 1

bestaat uit een korte motivatie voor het onderzoeken van categorische tijdreek-

sen, die gebaseerd is op ontwikkelingen en aandachtsgebieden in de psychologie

en psychometrie. Het hoofdstuk eindigt met een overzicht van de hoofdstukken

van dit proefschrift.

In Hoofdstuk 2 worden methoden voor het analyseren van multivariaat nor-

male en categorische tijdreeksen onderzocht binnen het kader van structurele

vergelijkingsmodellen (”structural equation modelling”, SEM). Dit kader wordt

gebruikt vanwege de bekendheid bij onderzoekers in de psychologie, en omdat

er verscheidene standaard SEM softwarepakketten voorhanden zijn. Voor het

geval van normaal verdeelde tijdreeksen, is onderzocht of de zogeheten Toeplitz

matrix bestaande uit auto- en kruis-covarianties gebruikt kan worden om de pa-

rameters van verschillende autoregressieve modellen te schatten. Het gebruik van

de Toeplitz matrix binnen het SEM kader heeft voordelen, omdat deze matrix

eenvoudig is uit te rekenen en zodoende als invoer kan dienen voor SEM soft-

ware waarmee het model kan worden geschat. De prestaties van een maximum

likelihood (ML), gewogen kleinste-kwadraten (”weighted least squares”, WLS),

en, als referentie, Kalman filter (KF) schattingsprocedure zijn in een simulatie-

onderzoek met elkaar vergeleken. De resultaten gaven aan dat de parameters

en standaardfouten alleen correct werden geschat in het geval van pure vector

autoregressies. Voor autoregressieve modellen met meerdere indicatoren waren

de geschatte parameters correct, maar de standaardfouten niet.

Dezelfde benadering kan worden gebruikt voor categorische tijdreeksen. De

Toeplitz matrix bestaat in dit geval echter uit polychorische auto- en kruis-

correlaties. In een tweede simulatie-onderzoek zijn de prestaties van een WLS
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schattingsprocedure onderzocht in termen van het terugschatten van parameters

van autoregressieve modellen. De schattingen van parameters van de gebruikte

modellen waren in de meeste gevallen correct, maar de standaardfouten niet. De

resultaten van de simulatie-onderzoeken en de reeds beschikbare asymptotische

resultaten van auto- en kruiscovarianties duiden erop dat de Toeplitz methode

slechts beperkte bruikbaarheid kent. Dit moet niet worden gezien als argument

tegen het gebruik van SEM in de analyse van tijdreeksen. Het is de methodolo-

gie van het gebruik van beschrijvende statistieken voor het schatten en passen

van modellen, een reguliere gang van zaken in standaard toepassingen van SEM,

die wordt afgeraden voor normaal verdeelde tijdreeksen en voor categorische tij-

dreeksen in het bijzonder.

In Hoofdstuk 3 worden univariate categorische tijdreeksen geanalyseerd bin-

nen het referentiekader van toestand-ruimte modellen (”state space modelling”,

SSM). In een simulatie-onderzoek worden de prestaties van een Kalman filter en

effen(”smoothing”)-procedure onderzocht voor het schatten van autoregressieve

modellen voor categorische tijdreeksen. De procedure wordt tevens gëıllustreerd

door een toepassing op echte data. Uit de simulatie-resultaten bleek deze aanpak

niet geheel naar bevrediging te werken voor univariate categorische tijdreeksen.

Hoofdstuk 4 van dit proefschrift behandelt in het eerste deel een argumentatie

ten faveure van het analyseren van intra-individuele variatie. Er wordt geargu-

menteerd dat zulke analyses onderbelicht zijn in de psychologie en psychometrie.

Het tweede deel betreft de presentatie van een logistisch model voor multivariate

dichotome tijdreeksen, dat kan worden gezien als een dynamische extensie van

het alomtegenwoordige Rasch model in IRT. Het model wordt gëıllustreerd door

voorbeelden met gesimuleerde en echte data.

Hoofdstuk 5 borduurt voort op Hoofdstuk 4. Uitbreidingen naar polytome

en multi-subject tijdreeksen worden besproken binnen het SSM kader. In een

voorbeeld wordt gedemonstreerd dat het SSM kader ook kan worden gebruikt

voor gebruikelijke toepassingen van IRT. De resultaten van een Kalman filter en

effen-procedure voor het schatten van item- en persoonsparameters in het geval

van cross-sectionele data worden vergeleken met standaard IRT methoden. Het

hoofdstuk eindigt met een toepassing van de SSM methoden op multi-subject

polytome tijdreeksen.

Hoofdstuk 6 bevat de conclusies over de bevindingen in dit proefschrift en

biedt wat handvaten voor toekomstig onderzoek op het gebied van categorische

tijdreeksen in de psychologie. De conclusies kunnen als volgt worden samengevat.

Het kader van SSM is zeer bruikbaar voor het analyseren van psychologische
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metingen in de vorm van categorische tijdreeksen en sluit goed aan bij de voor

veel onderzoekers bekende kaders van SEM en IRT. Met name, de SSM en IRT

kaders vormen een goede combinatie voor het type categorisch tijdreeksen waarop

de nadruk ligt in dit proefschrift. Echter, op het gebied van het ontwikkelen en

vergelijken van schattingsmethoden voor modellen voor categorische tijdreeksen

is meer onderzoek gewenst. Een belangrijk aspect in het modelleren van cate-

gorische tijdreeksen, dat in dit proefschrift is onderbelicht, is modelpassing. Het

ontwikkelen en onderzoeken van geschikte passingsmaten voor modellen voor cat-

egorische tijdreeksen moet als een prioriteit worden gezien in toekomstig onder-

zoek. Tot slot bevat dit proefschrift een appendix, die een korte noot behelst over

het gebruik van klassieke test theorie in het geval van heterogene populaties.


