The UvA-LINKER will give you a range of other options to find the full text of a publication (including a direct link to the full-text if it is located on another database on the internet).
De UvA-LINKER biedt mogelijkheden om een publicatie elders te vinden (inclusief een directe link naar de publicatie online als deze beschikbaar is in een database op het internet).


Zoekopdracht: auteur: "benthem,j.f.a.k.van"

AuteursJ.F.A.K. van Benthem, A. Montanari, G. D'Agostino, A. Policriti
TitelModal Deduction in Second-Order Logic and Set Theory - II
FaculteitFaculteit der Geesteswetenschappen
Faculteit der Natuurwetenschappen, Wiskunde en Informatica
Instituut/afd. FGw/FNWI: Institute for Logic, Language and Computation
SerieILLC Mathematical Logic and Foundations / ILLC ; ML-1996-8
SamenvattingModal Deduction in Second-Order Logic and Set Theory - II
Johan van Benthem, Giovanna D'Agostino, Angelo Montanari, Alberto Policriti

In this paper, we generalize the set-theoretic translation method for
polymodal logic introduced in [11] to extended modal logics. Instead of
devising an ad-hoc translation for each logic, defining a new set-theoretic
function symbol for each new modal operator, we develop a general framework
within which a number of extended modal logics can be dealt with. More
precisely, we extend the basic set-theoretic translation method to weak
monadic second-order logic through a suitable change in the underlying set
theory that connects up in interesting ways with constructibility; then, we
show how to tailor such a translation to deal with specific cases of extended
modal logics.
Soort documentPreprint
Document finderUvA-Linker