The UvA-LINKER will give you a range of other options to find the full text of a publication (including a direct link to the full-text if it is located on another database on the internet).
De UvA-LINKER biedt mogelijkheden om een publicatie elders te vinden (inclusief een directe link naar de publicatie online als deze beschikbaar is in een database op het internet).

Search results

Query: journal id: "astrophysicalxjournal"

AuthorsC.O. Heinke, P.G. Jonker, R. Wijnands, C.J. Deloye, R.E. Taam
TitleFurther constraints on thermal quiescent X-ray emission from SAX J1808.4-3658
JournalAstrophysical Journal
FacultyFaculty of Science
Institute/dept.FNWI: Astronomical Institute Anton Pannekoek (IAP)
AbstractWe observed SAX J1808.4-3658 (1808), the first accreting millisecond pulsar, in deep quiescence with XMM-Newton and (near simultaneously) Gemini-South. The X-ray spectrum of 1808 is similar to that observed in quiescence in 2001 and 2006, describable by an absorbed power law with photon index 1.74 +/- 0.11 and unabsorbed X-ray luminosity L-X = 7.9 +/- 0.7 x 10(31) ergs s(-1), for N-H = 1.3 x 10(21) cm(-2). Fitting all the quiescent XMM-Newton X-ray spectra with a power law, we constrain any thermally emitting neutron star (NS) with a hydrogen atmosphere to have a temperature less than 30 eV and L-NS (0.01-10 keV) 6.2 x 10(30) ergs s(-1). A thermal plasma model also gives an acceptable fit to the continuum. Adding an NS component to the plasma model produces less stringent constraints on the NS; a temperature of 36(-8)(+4) eV and L-NS (0.01-10 keV) = 1.3(-0.8)(+0.6) x 10(31) ergs s(-1). In the framework of the current theory of NS heating and cooling, the constraints on the thermal luminosity of 1808 and 1H 1905+000 require strongly enhanced cooling in the cores of these NSs. We compile data from the literature on the mass transfer rates and quiescent thermal flux of the largest possible sample of transient NS low-mass X-ray binaries. We identify a thermal component in the quiescent spectrum of the accreting millisecond pulsar IGR J00291+5934, which is consistent with the standard cooling model. The contrast between the cooling rates of IGR J00291+5934 and 1808 suggests that 1808 may have a significantly larger mass. This can be interpreted as arising from differences in the binary evolution history or initial NS mass in these otherwise similar systems.
Document typeArticle
Document finderUvA-Linker